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1. Introduction. Many special cases of the Diophantine equation

(1.1) x2 + qm = yn, x, y,m, n ∈ N, n ≥ 3,

where q is a prime, have been studied by many authors. Cohn [11],
Arif and Abu Muriefah [3], Cohn [12] and Le [17] considered (1.1) for
q = 2 and proved x2 + 2m = yn, x, y,m, n ∈ N, 2 - y, n > 2, has only
the solutions (x, y,m, n) = (5, 3, 1, 3), (7, 3, 5, 4), (11, 5, 2, 3). Arif and Abu
Muriefah [4], [5], Luca [19], Tao [21] considered (1.1) for q = 3 and proved
x2 + 3m = yn, x, y,m, n ∈ N, (x, y) = 1, n > 2, has only the solu-
tions (x, y,m, n) = (10, 7, 5, 3), (46, 13, 4, 3). Abu Muriefah and Arif [2],
Abu Muriefah [1] and Tao [22] solved certain special cases of (1.1) for
q = 5. Luca [20] considered a special case of (1.1) for q = 7 and found
that all the primitive solutions of x2 + 72k = yn, x, y, k ∈ N, n ≥ 3,
are (x, y, k, n) = (524, 65, 1, 3), (24, 5, 1, 4). Bugeaud, Mignotte and Sik-
sek [10] proved that all solutions of x2 + 7 = yn, x, y ∈ N, n ≥ 3, are
(x, y, n) = (1, 2, 3), (3, 2, 4), (5, 2, 5), (11, 2, 7), (181, 2, 15). So there remains
the case

(1.2) x2 + 72k+1 = yn, x, y, k ∈ N, n ≥ 3,

but it is difficult.
In [6], it has been proved that the equation x2 + q2k+1 = yn, where q

is an odd prime, q 6≡ 7 (mod 8), n ≥ 5 is an odd integer and (n, 3h) = 1,
h being the class number of the field Q(

√
−q), has exactly two families of

solutions given by

q = 19, n = 5, k = 5M, x = 22434 · 195M , y = 55 · 192M ,

q = 341, n = 5, k = 5M, x = 2759646 · 3415M , y = 377 · 3412M .
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In [8], the authors consider the equation x2 + p2k = yn in integer un-
knowns x, y, n, k satisfying x ≥ 1, y > 1, n ≥ 3 prime, k ≥ 0 and (x, y) = 1
and suppose that 2 ≤ p < 100 is a prime. Then all solutions are

(x, y, p, n, k) ∈ {(11, 5, 2, 3, 1), (46, 13, 3, 3, 2), (524, 65, 7, 3, 1), (2, 5, 11, 3, 1),
(278, 5, 29, 7, 1), (38, 5, 41, 5, 1), (52, 17, 47, 3, 1), (1405096, 12545, 97, 3, 1)}.
In this paper, we deal with n = 3 and prove the following results:

Theorem 1.1. The Diophantine equation

(1.3) x2 + q2k+1 = y3, x > 0, y > 1, k > 0, (x, y) = 1,

where q > 3 is an odd prime, q 6≡ 7 (mod 8), and the class number h of
the quadratic field Q(

√
−q) satisfies (h, 3) = 1, has exactly one solution

(q, k, x, y) = (11, 1, 9324, 443).

Theorem 1.2. Let q > 3 be an odd prime. The Diophantine equation

(1.4) x2 + q2k = y3, x > 0, y > 1, k > 0, (x, y) = 1,

has many solutions and they all occur in the case of k = 1. All solutions can
be parametrized as

(x, y) = (8a3 − 6a, 4a2 + 1),

when a ∈ N and q is a prime of the form 12a2 − 1; or

(x, y) =
(

8q2 + 1
3

√
q2 − 1

3
,
4q2 − 1

3

)
,

when r ∈ N, X1 = 2, X2r = 2X2
2r−1 − 1, and q is an odd prime of the

form X2r .

2. Preliminaries

Lemma 2.1 ([7, Theorem 1.1]). If n ≥ 4 is an integer and

C ∈ {1, 2, 3, 5, 6, 10, 11, 13, 17},
then the equation

(2.1) xn + yn = Cz2

has no solutions in nonzero pairwise coprime integers (x, y, z) with, say,
x > y, unless (n,C) = (4, 17) or

(n,C, x, y, z) ∈ {(5, 2, 3,−1,±11), (5, 11, 3, 2,±5), (4, 2, 1,−1,±1)}.
Lemma 2.2 ([7, Theorem 1.2]). Suppose that n ≥ 7 is prime. If

(C,α0) ∈ {(1, 2), (3, 2), (5, 6), (7, 4), (11, 2), (13, 2), (15, 6), (17, 6)},
then the equation

(2.2) xn + 2αyn = Cz2
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has no solutions in nonzero pairwise coprime integers (x, y, z) with xy 6= 1
and integers α ≥ α0, unless, possibly, n ≤ C or (C,α, n) = (11, 3, 13).

Lemma 2.3 ([14], [18], [16]). The Mordell equations Y 2 = X3+27, Y 2 =
X3−27 and Y 2 = X3 +216 have only the trivial solutions (X,Y ) = (−3, 0),
(X,Y ) = (3, 0) and (X,Y ) = (−6, 0), respectively. The Mordell equation
Y 2 = X3 − 216 has integer solutions (X,Y ) = (6, 0), (10, 28), (33, 189).

Lemma 2.4 ([9, Theorem 2]). Let D1 and D2 be coprime square-free
positive integers and denote by h the class number of the quadratic field
Q(
√
−D1D2). Let m ≥ 0 and n ≥ 5 be integers with n prime and gcd(n, 2h)

= 1. The equation

(2.3) D1x
2 + 22mD2 = yn in positive integers x > 0 and y > 1 odd

has only the solutions x2 + 19 = 555 and x2 + 341 = 3775.

Lemma 2.5 ([13], [15]). Apart from (x, y) = (1, 0), the equation

(2.4) xn = Dy2 + 1, x, y, n,D ∈ Z, n ≥ 3, D ≤ 100,

has the solutions

(x, y) = (5,±12) if (n,D) = (3, 31),
(x, y) = (2,±1) if (n,D) = (5, 31),
(x, y) = (7,±3) if (n,D) = (3, 38),
(x, y) = (13,±6) if (n,D) = (3, 61),
none if (n,D) = (5, 71),
none if (n,D) = (7, 71).

3. Proof of Theorem 1.1. We consider the equation x2 + q2k+1 = y3,
x > 0, y > 1, k > 0, (x, y) = 1, where q > 3 is an odd prime, q 6≡ 7 (mod 8).
If 2 -x, then 2 | y. By considering the equation modulo 8, we obtain 1+q ≡ 0
(mod 8). This is impossible for q 6≡ 7 (mod 8). So 2 |x, 2 - y.

Case 1. If q ≡ 1 (mod 4), then

(3.1) x+ qk
√
−q = (a+ b

√
−q)3, a, b ∈ Z, y = a2 + qb2.

Comparing the imaginary parts of the two sides in (3.1), we get

(3.2) qk = b(3a2 − qb2).

Hence b | qk. If b = ±ql, where 0 ≤ l < k, then ±qk−l = 3a2− q2l+1. Thus we
obtain q | 3a2, q | a, q | y, q |x. This is impossible since (x, y) = 1. Therefore,
b = ±qk and ±1 = 3a2 − q2k+1. We rewrite this equation as

(3.3) q2k+1 + (±1)2k+1 = 3a2.



198 H. L. Zhu

From Lemma 2.1, we know that when 2k + 1 ≥ 4, the equation (3.3) has
no solutions. So 2k + 1 = 3 and q3 ± 1 = 3a2. Let X = 3q, Y = 9a. Then
Y 2 = X3 ± 27. From Lemma 2.3, we know that (3.3) has no solutions.

Case 2. If q ≡ 3 (mod 8), then
(3.4)

x+ qk
√
−q =

(
A+B

√
−q

2

)3

, A,B ∈ Z, y =
A2 + qB2

4
, A ≡ B (mod 2).

Comparing the imaginary parts of the two sides in (3.4), we get

(3.5) 23qk = B(3A2 − qB2).

If 2 |B, then 2 |A. Letting A = 2a,B = 2b, we obtain

(3.6) qk = b(3a2 − qb2), y = a2 + qb2.

If b = ±ql, 0 ≤ l < k, then ±qk−l = 3a2 − q2l+1. Thus we get q | 3a2, q | a,
q | y, q |x, contrary to (x, y) = 1. Therefore, b = ±qk and ±1 = 3a2 − q2k+1.
As in Case 1, the equation has no nontrivial solutions.

If 2 -B, then 2 -A. From 23qk = B(3A2 − qB2), we get B | qk. When
B = ±ql, we have 0 ≤ l < k, ±23qk−l = 3A2 − q2l+1 and q | 3A2, q |A, q | y,
q |x, which is impossible. So B = ±qk and ±23 = 3A2 − q2k+1. We rewrite
the equation as

(3.7) q2k+1 ± 23 = 3A2.

From Lemma 2.2, we know that 2k + 1 = 3 or 2k + 1 = 5.
When 2k + 1 = 3, we get

(3.8) q3 ± 23 = 3A2.

Let X = 3q, Y = 9A. So Y 2 = X3 ± 216. By Lemma 2.3, the Mordell
equation Y 2 = X3+216 are no nontrivial solutions, and the integer solutions
of the Mordell equation Y 2 = X3−216 are (X,Y ) = (6, 0), (10, 28), (33, 89).
Therefore, X = 3q = 33, Y = 9A = 189. Hence q = 11, A = 21, k = 1, B =
±11. So the equation (1.3) has the solution (q, k, x, y) = (11, 1, 9324, 443).

When 2k + 1 = 5, we have

(3.9) 3A2 ± 8 = q5.

By Lemma 2.4, we know that the equation 3A2 + 8 = q5 has no solutions.
Now we will prove that 3A2 − 8 = q5 has no solutions either. We will study
the equation 6A2 − 16 = 2q5 in the real quadratic field Q(

√
6). The class

number of Q(
√

6) is 1 and we rewrite the equation as

(A
√

6 + 4)(A
√

6− 4)

= (
√

6 + 2)(
√

6− 2)(5 + 2
√

6)j(5− 2
√

6)j(u+ v
√

6)5(u− v
√

6)5,
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where u, v ∈ Z, q = u2−6v2, j ∈ {0,±1,±2}, ε = 5+2
√

6 is the fundamental
unit of Q(

√
6) and 2 = (

√
6 + 2)(

√
6− 2). So

A
√

6 + 4 = (
√

6± 2)(5 + 2
√

6)j(u+ v
√

6)5, A, u, v ∈ Z, j ∈ {0,±1,±2}.

As
√

6 + 2 = (
√

6− 2)(5 + 2
√

6), we only need to solve the equation
(3.10)
A
√

6 + 4 = (
√

6 + 2)(5 + 2
√

6)j(u+ v
√

6)5, A, u, v ∈ Z, j ∈ {0,±1,±2}.

Comparing the rational parts in (3.10) and multiplying by 1/2 leads to
some Thue equations. By taking a closer look it follows by symmetry that
it suffices to consider the cases with j ≥ 0.

If j = 0, we get the Thue equation

(3.11) 2 = u5 + 15u4v + 60u3v2 + 180u2v3 + 180uv4 + 108v5.

If j = 1, we get the Thue equation

(3.12) 2 = 11u5 + 135u4v + 660u3v2 + 1620u2v3 + 1980uv4 + 972v5.

If j = 2, we get the Thue equation

(3.13) 2 = 109u5 + 1335u4v+ 6540u3v2 + 16020u2v3 + 19620uv4 + 9612v5.

We solved these three Thue equations by applying the ThueSolve function
in MAGMA, and no solution was found.

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2. We consider the equation x2 + q2k = y3,
where x > 0, y > 1, k > 0, (x, y) = 1, and q > 3 is an odd prime. If 2 -x, then
2 | y. By considering the equation modulo 8, we obtain 1 + 1 ≡ 0 (mod 8),
a contradiction. So 2 |x, 2 - y. We factor the equation in Z[i] to obtain

(4.1) (x+ qki)(x− qki) = y3.

Now, x+qki and x−qki are coprime in Z[i], which is a UFD. The only units
of Z[i] are ±1,±i, of multiplicative orders dividing 4 (hence, coprime to 3).
This yields the relations

(4.2) x+ qki = (u+ vi)3, x− qki = (u− vi)3,

for some integers u, v and y = u2 + v2, x = |u3 − 3uv2|. From (4.2), we
have qk = v(3u2 − v2). Note that u and v are coprime since any common
prime factor would also divide both x and y, which is impossible. If v = ±ql,
0 < l < k, then ±qk−l = 3u2 − q2l, hence q | 3u2. Since q > 3, we obtain
q |u. This is impossible as (u, v) = 1. So the only possibilities are v = ±1 or
v = ±qk. This leads to the equations

(4.3) 3u2 = 1± qk
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and

(4.4) 3u2 = ±1 + q2k.

The equation (4.3) is impossible if the sign is −, because then the right
hand side is negative but the left hand side is positive. If the sign is +, then
by Lemma 2.1, we have k < 4. The case k = 2 is impossible by considering
the equation modulo 3. When k = 3, we have (3q)3 + 27 = (9u)2. This is a
Mordell equation without solutions, by Lemma 2.2. So k = 1, q = 3u2 − 1.
Since q > 3 is an odd prime, we have 2 |u. Letting u = 2a, a ∈ N, we
get q = 12a2 − 1. Obviously, there are many such q and the first seven are
11, 47, 107, 191, 431, 587, 971. So y = 4a2 + 1 and x = 8a3 − 6a.

The sign of the equation (4.4) must be − by considering modulo 3.
We get (qk)2 − 3u2 = 1. By Lemma 2.5, when k ≥ 2, this equation has
no solutions. Thus k = 1. Since the Pell equation X2 − 3Y 2 = 1 has the
smallest positive integer solution (X1, Y1) = (2, 1) and all positive solutions
are Xt+Yt

√
3 = εt = (2+

√
3)t, t ∈ N, we only need to find all odd primes q

in the sequence (Xt)t≥1. Suppose p is an odd prime and t = pl, l ∈ N. Then
Xt + Yt

√
3 = εt = εpl = (Xl + Yl

√
3)p and

Xt = Xl

[(
p

0

)
Xp−1
l +

(
p

2

)
Xp−3
l (3Y 2

l ) + · · ·+
(
p

2i

)
Xp−1−2i
l (3Y 2

l )i + · · ·

+
(

p

p− 3

)
X2
l (3Y 2

l )(p−3)/2 +
(

p

p− 1

)
(3Y 2

l )(p−1)/2

]
.

Obviously, Xl ≥ X1 = 2 and the expression in square brackets is ≥ 2, so
Xt is not a prime. Therefore, t only has the prime divisor 2, that is, an odd
prime q may only occur as X2r , r ∈ N. Since

X2l + Y2l

√
3 = ε2l = (Xl + Yl

√
3)2 = (X2

l + 3Y 2
l ) + 2XlYl

√
3

= (2X2
l − 1) + 2XlYl

√
3,

we know X2l = 2X2
l − 1. Hence by induction, we have X2r = 2X2

2r−1 − 1,
r ∈ N, X1 = 2 and q = X2r ,

u2 =
q2 − 1

3
, v2 = q2, y =

4q2 − 1
3

, x =
8q2 + 1

3

√
q2 − 1

3
.

One can check X2r , 1 ≤ r ≤ 6, by Calculator and Mathematica:

X2 = 7, X4 = 97, X8 = 18817 = 31 · 607, X16 = 708158977,

X32 = 1002978 . . . = 127 · 7897 . . . ,
X64 = 20119 . . . = 22783 · 265471 · 592897 . . . .

Therefore, the first three primes are q = 7, 97, 708158977.



The Diophantine equation x2 + qm = y3 201

This completes the proof of Theorem 1.2.
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