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1. Introduction. The use of elliptic curves to give proofs of reciprocity
laws has a long history which goes back to Eisenstein, who proved the cubic
and the biquadratic reciprocity laws by considering the values of elliptic
functions at torsion points ([Le]). Other landmarks in this history were the
proofs by Fueter ([F]) in 1927 of quadratic reciprocity over all imaginary
quadratic fields and by Kubota ([K1]) in 1961 of cubic and biquadratic
reciprocity using the theory of elliptic curves with complex multiplication.
We refer the reader to the commentaries and references in [G4] for more
about this fascinating topic.

Following the tracks of this rich tradition, Grant derived in [G2] Kum-
mer’s reciprocity law for fifth powers from the main theorems of com-
plex multiplication of abelian varieties applied to the jacobian of the curve
y2 = x5 + 1/4, which is a genus 2 curve and a rational image of the quintic
Fermat curve, and asked whether other power reciprocity laws could be de-
duced in a similar way. In [G4] he himself gave a remarkable answer to this
question, by proving Kummer’s general reciprocity law for any regular prime
and of Eisenstein’s reciprocity law which rest on the arithmetical properties
of the jacobians of rational images of the Fermat curves. Although the main
idea is essentially the same in both papers, in [G2] a particular embedding
of the jacobian in a projective space—which was constructed in [G1]—plays
a central role, whereas in [G4] the chief tools are the theory of abelian vari-
eties in arbitrary characteristics and the theory of formal groups. However,
the strategy followed in [G4] does not seem to provide any method to tackle
the complementary laws of Kummer’s reciprocity.
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According to Grant, the idea that formal groups could be used to prove
higher reciprocity laws is due to Childress. The knowledge of the existence
of a formal group whose points can be identified with the kernel of reduction
seems to go back to Mattuck’s thesis ([M]), which was supervised by Artin
and completed in 1954.

In this paper we prove Kummer’s reciprocity law for seventh powers mak-
ing use of the theory of complex multiplication applied to the jacobian J of
the curve y2 = x7 + 1/4, which is a genus 3 curve and a rational quotient of
the seventh Fermat curve. The main idea for the proof of the general law is,
as in [G2], to reverse an argument of Kubota, who in [K2] derived facts about
products of functions at torsion points using the reciprocity law. More pre-
cisely, we consider a number in the cyclotomic field of seventh roots of unity
which is described as the product of a function of J at torsion points and
whose seventh roots lie in a division field of J and deduce its factorization
up to seventh powers using the theory of formal groups. This factorization,
together with Gauss’s lemma, provides the desired proof. Since we do not
know an explicit embedding of J in a projective space, the definition of this
number differs from the one given by Grant in [G2].

A cornerstone of our proof of the complementary laws is the explicit
knowledge of some 7-torsion points of J . The computation of these points
is a somewhat delicate task that has been carried out in [C-E-G], taking
advantage of the insights of Greenberg in [Gr]. It is possible that there
is something deep in the relationship between Greenberg’s work and our
own that should be investigated in more detail. Moreover, along the way
we obtain some interesting units as values of a rational function at torsion
points, which perhaps deserve a closer look.

In Section 2 we gather some facts necessary to understand Kummer’s
reciprocity law for seventh powers and we state this law. In Section 3 we
introduce the curve x7 + y2 + y = 0 (which coincides with the curve y2 =
x7 + 1/4 after a linear change of variables) and its jacobian J , we study
the formal group of J at the origin and prove several results concerning J
and its torsion. In Section 4 we prove the general law and we conclude in
Section 5 with the proof of the complementary laws.

Finally we want to point out that this work coincides essentially with
the content of the second author’s Ph.D. in the University of the Basque
Country ([E]), which was completed in March 2006.

2. Kummer’s reciprocity law. Let ζ denote a primitive seventh root
of unity in C and let F = Q(ζ). Let O be the ring of integers of F , that is,
O = Z[ζ]; recall that O is a principal ideal domain. We set λ = 1 − ζ, so
that λO is the unique prime ideal of O lying above 7. Let µ1 = ζ + ζ−1 and
µ2 = ζ2 + ζ−2; it can be shown that {µ1, µ2} is a fundamental set of units
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of O, so that every unit of O can be written in a unique way as ±ζiµj1µk2
with 0 ≤ i ≤ 6 and j and k in Z. For every integer i, 1 ≤ i ≤ 6, let σi be the
automorphism of F defined by ζσi = ζi; then Gal (F/Q) = {σi | 1 ≤ i ≤ 6}.
If σi ∈ Gal (F/Q), for any α ∈ F and any ideal a of O, we shall denote by
αi and ai, respectively, the images of α and a under the action of σi.

Let p be a nonzero prime ideal of O, different from λO, and let N(p)
be its norm. For any ν ∈ O, ν 6∈ p, the symbol

(
ν
p

)
is defined by

(
ν
p

)
= ζj ,

where j is determined modulo 7 by the congruence ζj ≡ ν(N(p)−1)/7 mod p.
For every α ∈ O, there is a unique sequence {an}n≥0 of integers such

that 0 ≤ an ≤ 6 for every n ≥ 0 and α ≡ a0 + a1λ + · · · + aiλ
i mod λi+1

for every i ≥ 0; as usual, we shall call a0 + a1λ + a2λ
2 + · · · the λ-adic

expansion of α. A nonzero element µ ∈ O is said to be primary if µ is prime
to λ and there are rational integers r and s such that µ ≡ r mod λ2 and
µµ ≡ s mod 7, where µ is the complex conjugate of µ. For any n ∈ Z, let
[n] denote the unique integer such that 0 ≤ [n] ≤ 6 and [n] ≡ n mod 7. If
α ∈ O and a + bλ + cλ2 + dλ3 + eλ4 + · · · is the λ-adic expansion of α, it
can be shown that α is primary if and only if a 6= 0, b = c = 0 and e = [5d].

Since the quotient of two associated primary elements of O is the seventh
power of a unit of O, the following definition makes sense. Let a be a nonzero
ideal of O, prime to p and to λO; then we put(

a

p

)
=
(
ν

p

)
,

where ν is a primary generator of a. If α ∈ O is primary, we shall say that
α is normalized when α ≡ 1 mod λ. It is not difficult to prove that any
nonzero ideal a of O, prime to λO, has a normalized primary generator.

We can now state Kummer’s reciprocity law, together with its comple-
mentary laws.

Theorem 2.1 (Kummer’s general reciprocity law). Let p and q be two
nonzero distinct prime ideals of O, both different from λO. Then(

q

p

)
=
(

p

q

)
.

Theorem 2.2 (Complementary laws). Let p be a nonzero prime ideal
of O, different from λO, and let π be a normalized primary generator of p
with λ-adic expansion 1 + aλ3 + [5a]λ4 + cλ5 + dλ6 + eλ7 + · · · . Then(
ζ

p

)
= ζ−a+3a2+c+d,

(
µ1

p

)
= ζ−2a−c,

(
µ2

p

)
= ζ3a+3c,

(
λ

p

)
= ζ−2a2−e.

3. The curve C and its jacobian J . Let C be the nonsingular model
of the curve defined by the affine equation X7 + Y 2 + Y = 0. Then C is
a hyperelliptic curve of genus 3 whose points can be identified with the



302 R. Clement Fernández et al.

points of the affine curve X7 + Y 2 + Y = 0 together with the point at
infinity (0 : 1 : 0), which will be denoted by ∞. The involution I of C is the
automorphism of C defined by

I(x, y) = (x,−1− y), I(∞) =∞.
If we put

(3.1) ζ(x, y) = (ζx, y), ζ∞ =∞,
then ζ defines an automorphism of C. Let us denote by J the jacobian of C
and if d is a divisor of C of degree 0, let [d] be its class in J . If Θ is the Theta
divisor of J corresponding to the Abel–Jacobi embedding C → J defined
by A 7→ [A − ∞], then every element of J outside Θ can be written in a
unique way up to order as [A+B+D− 3∞] with A,B and D affine points
of C such that B 6= I(A), D 6= I(A) and D 6= I(B), while every nonzero
element of Θ can be written as [A −∞] with A an affine point of C or as
[A + B − 2∞] with A and B affine points of C. In any case, every element
of J can be written as [A+B +D − 3∞] with A, B and D points of C.

One can easily check that for any w = [A+B +D − 3∞] in J , one has

(3.2) −w = [I(A) + I(B) + I(D)− 3∞].

The jacobian J is an abelian variety with complex multiplication by the ring
of integers O of the cyclotomic field F (see [S-T]). Indeed, the automorphism
of C given by (3.1) induces an automorphism [ζ] of J defined by

(3.3) [ζ][A+B +D − 3∞] = [ζA+ ζB + ζD − 3∞].

From (3.2), (3.3) and Z-linearity one easily deduces the effect of any endo-
morphism of the form [α] with α ∈ O on any element of J .

Notice that statements similar to the above hold when one takes as base
point for the Abel–Jacobi embedding a point of J different from ∞, as we
shall do below to investigate the formal group at the origin.

We remark as well that the CM-type of J is Φ = {σ1, σ2, σ3}; then, since
(F,Φ) is simple ([L]), the reflex type of J is

Φ′ = {σ−1
1 , σ−1

2 , σ−1
3 } = {σ1, σ4, σ5}.

The following proposition is not hard to prove.

Proposition 3.1. The curve C and hence its jacobian J both have good
reduction at p over F for every nonzero prime ideal p of O, different from
λO, and everywhere good reduction over K = F ( 7

√
2,
√
λ).

Let us now consider the formal group of J at the origin. Let C(3) denote
the symmetric product of three copies of C and write (P1, P2, P3)sym for
the class of a triple (P1, P2, P3). The Abel–Jacobi injection C → J given
by P 7→ [P − (0, 0)] induces the birational equivalence C(3) → J defined
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by (P1, P2, P3)sym 7→ [P1 + P2 + P3 − 3(0, 0)]. This means that the rational
functions on J are simply the symmetric functions on triples of points of C.

Let P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3) be three points of C,
let P , Q and R be the rational functions on J determined respectively by
the symmetric polynomials x1 + x2 + x3, x1x2 + x1x3 + x2x3 and x1x2x3,
and let ÔJ,0 denote the completion of the local ring of J at the origin. Then
there is an isomorphism of F -algebras

ÔJ,0 ' F [[P,Q,R]].

The formal group of J at the origin is the translation, via this isomorphism,
of the mapping induced by the group law J×J→J which maps (z, w) to z+w.
The computation, with Mathematica, of the first terms of the expansions of
P (z+w), Q(z+w) and R(z+w) in F [[P (z), Q(z), R(z), P (w), Q(w), R(w)]],
though tedious, massive and quite involved, is not seriously difficult. We
write them in the next proposition, in which, to simplify notation, we have
set P (z) = P1, P (w) = P2, Q(z) = Q1, Q(w) = Q2, R(z) = R1 and
R(w) = R2.

Proposition 3.2. The formal group of J at the origin with respect to
the system of parameters P , Q and R has coefficients in Z. Moreover, the
first terms of the expansions for P (z + w), Q(z + w) and R(z + w) are the
following:

P (z + w)

= P1 + P2 + 2(R2
1Q2 +Q1R

2
2) + 4(Q1R1R2 +Q2R1R2)

− 3(Q2
1Q

2
2 + P 2

2R
2
1 + P 2

1R
2
2)− 2(Q3

1Q2 +Q1Q
3
2)− 4(P1P2R

2
1 + P1P2R

2
2)

− 8(P1Q1Q2R1 + P2Q1Q2R1 + P1Q1Q2R2 + P2Q1Q2R2 + P1P2R1R2)

− 2(P2Q
2
1R1 + P1Q

2
2R1 + P 2Q2

1R2 + P1Q
2
2R2)− 6(P2Q

2
2R1 + P1Q

2
1R2

+ P 2
1R1R2 + P 2

2R1R2) + 2(P 2
2Q

2
1Q2 + P 2

1Q1Q
2
2) + 6(P 2

1Q
2
1Q2 + P 2

2Q1Q
2
2)

+ 8(P 3
2Q2R1 + P 3

1Q1R2) + 2(P 3
2Q1R1 + P 3

1Q2R1 + P 3
2Q1R2 + P 3

1Q2R2)

+ 4(P1P2Q
2
1Q2 + P1P2Q1Q

2
2 + P1P

2
2Q1R1 + P 2

1P2Q2R1 + P1P
2
2Q1R2

+ P 2
1P2Q2R2) + 6(P 2

1P2Q1R1 + P1P
2
2Q2R1 + P 2

1P2Q1R2 + P1P
2
2Q2R2)

+ 4(R3
1R

2
2 +R2

1R
3
2) + 2(R4

1R2 +R1R
4
2) + · · · ,

Q(z + w)

= Q1 +Q2 + P1P2 + 2(R2
1R2 +R2

2R1)− 2(Q3
1R2 +Q3

2R1)− 6(Q2
1Q2R1

+Q1Q
2
2R1 +Q2

1Q2R2 +Q1Q
2
2R2)− 4(P2Q1R1R2 + P1Q2R1R2)

− 8(P1Q1R1R2 + P2Q2R1R2)− 2(P1Q2R
2
1 + P2Q1R

2
2)− 4(P2Q1R

2
1

+ P2Q2R
2
1 + P1Q1R

2
2 + P1Q2R

2
2) + 3(P1Q

2
1Q

2
2 + P2Q

2
1Q

2
2)
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+ 4(P1Q
3
1Q2 + P2Q1Q

3
2)− (P1P

2
2R

2
1 + P 2

1P2R
2
2) + (P 3

2R
2
1 + P 3

1R
2
2)

+ 6(P 2
2Q

2
2R1 + P 2

1Q
2
1R2) + 4(P1P2Q

2
1R1 + P 2

1Q1Q2R1 + P 2
2Q1Q2R1

+ P 2
1Q1Q2R2 + P 2

2Q1Q2R2 + P1P2Q
2
2R2)− 2(P1P2Q

2
2R1 + P1P2Q

2
1R2

+ P 2
1P2R1R2 + P1P

2
2R1R2) + 2(P 3

1R1R2 + P 3
2R1R2)

+ 2(P 2
1P2R

2
1 + P1P

2
2R

2
2) + · · · ,

R(z + w)

= R1 +R2 + P1Q2 +Q1P2 − 2(R3
1P2 + P1R

3
2)− (R2

1Q
2
2 +Q2

1R
2
2)

− 4(Q1R
2
1Q2 + P1R

2
1R2 +R2

1P2R2 + P1R1R
2
2 +R1P2R

2
2 +Q1Q2R

2
2)

− 2(Q2
1R1R2 +R1Q

2
2R2)− 4Q1R1Q2R2 + 4(P1Q1R

2
1P2 + P1Q

2
1R1Q2

+Q1P2Q
2
2R2 + P1P2Q2R

2
2)− 4(Q2

1R1P2Q2 + P1Q1R1Q
2
2 +Q2

1P2Q2R2

+ P1Q1Q
2
2R2)− (Q1R

2
1P

2
2 + P 2

1Q2R
2
2) + 2(P 2

1R
2
1Q2 +Q1P

2
2R

2
2)

− 2(Q1R1P2Q
2
2 +Q1R1R2P

2
2 + P1Q2R2Q

2
1 + P 2

1R1Q2R2)

+ 3(R2
1P

2
2Q2 + P 2

1Q1R
2
2)− (Q3

1Q
2
2 +Q2

1Q
3
2)− 2(P1R1Q

3
2 + P2R2Q

3
1)

+ 6(P 2
1Q1R1R2 + P 2

2R1Q2R2) + · · · ,
where the dots mean terms of total degree ≥ 6.

Since O = Z[ζ], repeated application of Proposition 3.2 together with the
fact that P ([ζ]z) = ζP (z), Q([ζ]z) = ζ2Q(z) and R([ζ]z) = ζ3R(z), yields
explicitly the first terms of the action of any α ∈ O on the formal group.
Namely, one gets the following proposition, in which, to simplify notation,
P (z), Q(z) and R(z) are denoted P , Q and R, respectively.

Proposition 3.3. Let α ∈ O. Then:

(1) The coefficients of the monomials of total degree ≤ 5 in the expansion
of P ([α]z) are zero, except perhaps the coefficients of P , QR2, Q4,
P 2R2, PQ2R, P 2Q3, P 3QR and R5. Moreover, the coefficients of
P , QR2, Q4 and R5 are α, 2(α2α

2
3−α), −1

2(α4
2−α) and 2

5(α5
3−α),

respectively.
(2) The coefficients of the monomials of total degree ≤ 4 in the expansion

of Q([α]z) are zero, except perhaps the coefficients of Q, P 2, R3,
Q3R and PQR2. Moreover the coefficients of Q and R3 are α2 and
2
3(α3

3 − α2), respectively.
(3) The homogeneous linear part of the expansion of R([α]z) is α3R.

Next we shall describe some facts related to Frobenius endomorphisms.
For any α ∈ O, let J [α] denote the kernel of the endomorphism [α] of J and,
for any ideal a of O, put J [a] =

⋂
α∈a J [α].

Proposition 3.4. Let p be a nonzero prime ideal of O, different from
λO, let π be a generator of p such that π ≡ 1 mod λ3 and let J̃ be the
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reduction of J modulo p. Then the Frobenius endomorphism of J̃ is the
reduction modulo p of the endomorphism [ππ4π5] of J .

Proof. There is a unique α ∈ O such that the Frobenius endomorphism
Frp of J̃ is the reduction modulo p of the endomorphism [α]. Moreover, since
the reflex type of J is Φ′ = {σ1, σ4, σ5}, we can assert that there is a unit
u of O such that α = uππ4π5 and in fact u is a root of unity of O (see
[L] or [S-T]). Since ππ4π5 ≡ 1 mod λ3, in order to prove that u = 1, it is
enough to show that α ≡ 1 mod λ3. The first assertion of Proposition 3.1
and the fact that J [λ3] is rational over F (see [Gr]) imply that 73 divides
the cardinality of J̃(O/p). But it is known that

Card(J̃(O/p)) = deg(1− Frp) = N(1− α).

Hence 73 divides N(1− α) and therefore α ≡ 1 mod λ3.

It follows from Hecke’s theorem ([C, Theorem 10.2.9]) that λO is totally
ramified in K = F ( 7

√
2,
√
λ). Let Λ be the only prime ideal of the ring of

integers of K lying above λO and let Ĵ denote the reduction of J modulo Λ.
Let
√
−7 denote the square root of −7 with imaginary part > 0, that is,√

−7 = ζ+ζ2−ζ3+ζ4−ζ5−ζ6. In the next proposition we give a description
of the Frobenius endomorphism of Ĵ that will be used in Section 5.

Proposition 3.5. Let Ĵ be the reduction of J modulo Λ. Then the Frobe-
nius endomorphism of Ĵ is the reduction modulo Λ either of the endomor-
phism [

√
−7] or of the endomorphism [−

√
−7] of J .

Proof. We make an extensive use of [L, Chapter 4] and the notation
thereof. There is a unique α ∈ O such that the Frobenius endomorphism
FrΛ of Ĵ is the reduction modulo Λ of the endomorphism [α]. Moreover
(α) = NΓ ′(Λ), where Γ ′ is an extension to K of the reflex type Φ′ of J
over F . Since

NΓ ′(Λ) = NΦ′ ◦NK/F (Λ)

and Λ is totally ramified in K/F , it follows that

(α) = NΦ′((λ)) = (λλ4λ5).

One also knows that |α| =
√

N(λ) =
√

7 for any archimedean absolute value
on F ; therefore α = uλλ4λ5, where u = ±ζj for some j, 0 ≤ j ≤ 6. Hence

α = ±ζj(1− ζ)(1− ζ4)(1− ζ5) = ±ζj−2
√
−7.

It is not difficult to prove that all 2-torsion points of J are rational over K.
This fact, together with the fact that Card(Ĵ [2]) = Card(J [2]) = 26, implies
that 26 divides Card(Ĵ). Since Card(Ĵ) = deg(1−FrΛ) = N(1−α), it follows
that 26 divides N(1− α). Let ε = ζ + ζ2 + ζ4; then 2 = εε. Thus ε6 divides
N(1−α) and therefore α ≡ ±1 mod ε. This implies, taking into account the
equality

√
−7 = 2ε+ 1, that j = 2.
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In what follows we shall prove some further properties of J that will be
needed later. For any ideal a of O, let F (J [a]) denote the extension of F
generated by the coordinates of the points of J [a].

Proposition 3.6. Let p be a nonzero prime ideal of O, different from λO.
Any nonzero prime ideal of O, different from λO, p, p2 and p3, is unramified
in the extension F ⊆ F (J [p]).

Proof. For the sake of simplicity, write E instead of F (J [p]). Since J has
complex multiplication by O, the extension F ⊆ E is abelian and E = F (z)
for any primitive p-torsion point z of J . Let q be a nonzero prime ideal of
O different from λO, p, p2 and p3, and let Q be a prime ideal of the ring of
integers of E lying above q. Denote by ÊQ the completion of E with respect
to Q and by JÊQ

the jacobian of C over ÊQ; then, invoking the first claim
of Proposition 3.1, for any σ in the inertia group of Q, zσ− z can be viewed
as an element of JÊQ

contained in the kernel N of the reduction morphism
JÊQ

→ JFq , where JFq is the reduced jacobian over the residue field Fq of

the local field ÊQ. If π is a generator of p, obviously π, π2 and π3 are units
in ÊQ; hence π induces an isomorphism on the maximal ideal MQ of ÊQ

endowed with the group structure given by the formal group of J at the
origin with respect to the parameters P , Q and R. Since MQ is isomorphic
to N (see [H-S]), we deduce that there is no nontrivial p-torsion element
in N . Therefore zσ − z = 0 and the proposition follows.

Invoking the second claim of Proposition 3.1, one obtains quite similarly
the following result.

Proposition 3.7. Let p be a nonzero prime ideal of O, different from
λO, and let Λ be the unique prime ideal of the ring of integers of K =
F ( 7
√

2,
√
λ) lying above λO. Then Λ is unramified in the extension K ⊆

K(J [p]).

Let p be a nonzero prime ideal of O, different from λO, and write as
before E to denote F (J [p]). Let P be a prime ideal of the ring of integers
of E lying above p, let ÊP be the completion of E at P, and let Fq be its
residue field, so that we have the reduction morphism

ϕ : JÊP
→ JFq .

For every α ∈ O, let [̃α] denote the endomorphism of JFq induced by [α].

Proposition 3.8. Let p be a nonzero prime ideal of O, different from
λO and of degree one or two. Then J [p] is contained in the kernel of the
reduction morphism ϕ defined above.

Proof. Let π be a generator of p such that π ≡ 1 mod λ3. It follows from
Proposition 3.4 that the Frobenius endomorphism of JFq is just ˜[ππ4π5],



A geometric proof of Kummer’s reciprocity 307

which coincides with the composition [̃π]◦[̃π4]◦[̃π5]. But the degree of p being
one or two, π4 and π5 are both units modulo p, and this implies that [̃π4]
and [̃π5] are both automorphisms of JFq . Since the Frobenius endomorphism
of JFq is purely inseparable, [̃π] is also purely inseparable and this implies
that J [p] is indeed contained in the kernel of the reduction morphism ϕ.

4. The number A(p) and the general law. Let p be a nonzero prime
ideal of O, different from λO and of degree one or two, and let J [p]′ =
J [p]− {0}. It can be shown (see [A] or [G3]) that the rational functions P ,
Q and R are defined at every point of J [p]′, so that in particular we can
consider the algebraic number A(p) defined as follows:

(4.1) A(p) =
∏

z∈J [p]′

P (z).

First of all, it is easily seen that the Galois group of the algebraic closure of
Q over F fixes A(p) and hence A(p) ∈ F . Our proof of Kummer’s reciprocity
law relies essentially on the prime factorization, up to seventh powers, of the
number A(p) in the cyclotomic field F .

Proposition 4.1. Let p be a nonzero prime ideal of O, different from
λO and of degree one or two. Then ordp(A(p)) = 1, ordp2(A(p)) = 4 and
ordp3(A(p)) ≡ 5 mod 7.

Proof. Write as before E to denote F (J [p]). Let P be a prime ideal of the
ring of integers of E lying above p, let ÊP be the completion of E at P, and
let MP be the corresponding maximal ideal. Let π be a generator of p such
that π ≡ 1 mod λ3. From Proposition 3.8 it follows that the homomorphism
of O-modules

ψ : J [p]→MP ×MP ×MP

defined by z 7→ (P (z), Q(z), R(z)) identifies J [p] with a submodule of the
kernel of the endomorphism induced by [π] in the formal group. Therefore,
for every z ∈ J [p], one has

(4.2) [π](P (z), Q(z), R(z)) = (0, 0, 0).

Hence from Proposition 3.3 we get

(4.3) 0 = πP (z) + · · · , 0 = π2Q(z) + · · · , 0 = π3R(z) + · · ·

where the dots mean terms of total degree ≥ 2. Since π2 and π3 are units in
the completion Ôp of O at p, we can express Q(z) and R(z) as power series
in Ôp[[P (z)]]. Again from Proposition 3.3 one has

(4.4) P ([ππ4π5]z) = ππ4π5P (z) + · · ·
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where the dots mean terms of total degree ≥ 2. Since, by Proposition 3.4,
[ππ4π5] induces the Frobenius endomorphism modulo p, replacing Q(z) and
R(z) by their corresponding series expansions in P (z), we obtain a power
series H(P (z)) in Ôp[[P (z)]] such that

H(P (z)) ≡ P (z)N(p) mod pÔp

and such that H(P (z)) = 0, because (4.2) ensures that P ([ππ4π5]z) = 0.
Applying the Weierstrass preparation theorem one obtains

H(P (z)) = S(P (z))u(P (z))

with
S(P (z)) = a1P (z) + a2P (z)2 + · · ·+ aN(p)P (z)N(p)

where a1 = ππ4π5, ai ≡ 0 mod pÔp (1 ≤ i ≤ N(p) − 1) and aN(p) ≡ 1
mod pÔp. Notice that the roots of the polynomial S(X)/X are exactly the
numbers P (z) when z runs through J [p]′. Therefore

A(p) =
ππ4π5

aN(p)
.

But π4 and π5 are units in Op and since aN(p) ≡ 1 mod pÔp, aN(p) is also a
unit in Ôp, hence indeed ordp(A(p)) = 1.

In order to compute ordp2(A(p)) we slightly modify the above argument.
Consider the equalities (4.3) in the completion Ôp2 of O at p2; now π and
π3 are units in Ôp2 , so that P (z) and R(z) can be written as power series
of Ôp2 [[Q(z)]]. Substituting these series in

Q([ππ2π3]z) = π2π4π6Q(z) + · · ·

one obtains a power series I(Q(z)) in Ôp2 [[Q(z)]] such that I(Q(z)) = 0 and

I(Q(z)) = π2π4π6Q(z) + · · ·

where the dots mean terms of total degree ≥ 2. Since [ππ2π3] induces the
Frobenius endomorphism modulo p2 we obtain as before

I(Q(z)) = T (Q(z))v(Q(z)) with T (Q(z)) = b1Q(z)+ · · ·+bN(p)Q(z)N(p),

where b1 = π2π4π6, bi ≡ 0 mod p2Ôp2 (1 ≤ i ≤ N(p) − 1) and bN(p) ≡ 1
mod p2Ôp2 . The roots of the polynomial T (X) are the numbers Q(z) with
z running through J [p], and T (X)/X is an Eisenstein polynomial of degree
N(p)−1. Therefore Fp2 ⊆ Fp2(J [p]) is a totally ramified extension and Q(z)
is for any z ∈ J [p] a uniformizing parameter of Fp2(J [p]). Since the power
series obtained above for P (z) in terms of Q(z) is given by

P (z) =
1

2π
(π4

2 − π)Q(z)4 + · · ·
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where the dots mean terms of total degree ≥ 5, it follows that ordm2(P (z))
= 4 for any z ∈ J [p]′, where m2 is the maximal ideal in Fp2(J [p]). Therefore

ordm2(A(p)) = ordm2

( ∏
z∈J [p]′

P (z)
)

=
∑
z∈J [p]′

ordm2(P (z)) = 4(N(p)− 1)

and this implies indeed that ordp2(A(p)) = 4.
Finally, in order to compute ordp3(A(p)) we consider the equalities (4.3)

in the completion Ôp3 of O at p3; now π and π2 are units in Ôp3 , so that
P (z) and Q(z) can be written as power series in Ôp3 [[R(z)]]. The power
series for P (z) is

(4.5) P (z) =
2

15ππ2
(7π2π

5
3 − 13ππ2 + 10π2

2π
2
3 + 10ππ3

3)R(z)5 + · · ·

where the dots mean terms of total degree ≥ 6. Since 3 and 5 are inert in O,
and the prime ideals of O lying over 2 are of degree three while p3 is of
degree one or two, it follows that p3 is prime to 2, 3 and 5. Hence 2, 3 and 5
are units in Ôp3 .

Now, if 13 is a unit in Ôp3 , it is easy to check that the coefficient of
R(z)5 in (4.5) is a unit in Ôp3 ; therefore the order of P (z) in Fp3(J [p]) is 5.
Arguing as in the previous case one gets ordp3(A(p)) = 5.

If 13 is not a unit in Ôp3 , since 13 is a product of three prime ideals in O,
necessarily p3 is one of them and consequently N(p3) = 132. In this case the
order of the coefficient of R(z)5 in Ôp3 is 1; thus, its order in Fp3(J [p]) is
N(p3) − 1 = 132 − 1 = 168. Since R(z) is a uniformizer in Fp3(J [p]), it
follows that the order of P (z) in Fp3(J [p]) is 168 + 5 = 173. Let m3 denote
the maximal ideal of Fp3(J [p]). Then

ordm3(A(p)) = ordm3

( ∏
z∈J [p]′

P (z)
)

=
∑
z∈J [p]′

ordm3(P (z)) = 173 · 168.

Since ordp3(A(p)) = ordm3(A(p))/168, we get ordp3(A(p)) = 173. In any
case, whether 13 is a unit in Ôp3 or not, ordp3(A(p)) ≡ 5 mod 7 as an-
nounced.

Proposition 4.2. Let p be a nonzero prime ideal of O, different from
λO and of degree one or two, let π be a primary normalized generator of
p with λ-adic expansion 1 + aλ3 + [5a]λ4 + cλ5 + dλ6 + · · · , and let m =
[−2a− a2 + 2c+ 2d]. Then:

(a) The extension F ⊆ F ( 7
√

2mA(p)) has degree seven and is unramified
at λO.

(b) There exists D(p) ∈ F ∗ such that A(p) = ππ4
2π

5
3D(p)7.



310 R. Clement Fernández et al.

Proof. Let M be a 7-section of J [p]′, that is, a subset M of J [p]′ with
(N(p)− 1)/7 elements such that

J [p]′ = M ∪ ζM ∪ · · · ∪ ζ6M.

We define

(4.6) B(p) =
∏
z∈M

P (z).

Of course, B(p) depends also on M , but for the sake of simplicity let us
forget this in the notation. Clearly B(p) ∈ F (J [p]) and B(p)7 = A(p); hence
F ( 7
√
A(p)) ⊆ F (J [p]). It follows from Proposition 3.6 that F ⊆ F ( 7

√
A(p))

is a Kummer extension of degree 7 ramified, at most, at the primes λO, p,
p2 and p3. Thus, by Hecke’s theorem ([C, Theorem 10.2.9]), there is a unit
u in O, an element D(p) 6= 0 in F and an integer l ≥ 0 such that

A(p) = uλlππ4
2π

5
3D(p)7.

Furthermore, there are integers i, j and k such that u = ±ζiµj1µk2; hence

(4.7) A(p) = ±ζiµj1µ
k
2λ

lππ4
2π

5
3D(p)7.

Consider the following diagram of fields and field extensions:

F ( 7
√

2,
√
λ)

7 // F ( 7
√

2,
√
λ,B(p)) // F ( 7

√
2,
√
λ, J [p])

F ( 7
√

2)

2

OO

7 // F ( 7
√

2, B(p))

OO

// F ( 7
√

2, J [p])

OO

F

7

OO

7 // F (B(p))

OO

// F (J [p])

OO

The prime λO is totally ramified in the extension F ⊆ F ( 7
√

2,
√
λ); let Λ

be the lone prime of F ( 7
√

2,
√
λ) lying above λO. It follows from Propo-

sition 3.7 that Λ is unramified in F ( 7
√

2,
√
λ) ⊆ F ( 7

√
2,
√
λ,B(p)). Let L

denote the prime of F ( 7
√

2) lying above λO; then the ramification index of
L in F ( 7

√
2) ⊆ F ( 7

√
2,
√
λ,B(p)) is 2. Therefore the ramification index of λO

in F ⊆ F ( 7
√

2, B(p)) is 7.
Let L be the inertia field of λO in F ⊆ F ( 7

√
2, B(p)); then L is a cyclic

extension of F of degree 7 and λO is unramified in F ⊆ L. By elementary
Galois theory, there exists a nonnegative integer n such that

L = F ( 7
√

2nA(p)).

It then follows from (4.7) and Hecke’s theorem that l ≡ 0 mod 7 and that
there exists x ∈ F such that

(4.8) x7 ≡ 2nζiµj1µ
k
2ππ

4
2π

5
3 mod λ7.
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Looking at the λ-adic expansions one deduces that

(4.9) 2nζiµj1µ
k
2ππ

4
2π

5
3 ≡ 2n+j+k mod λ.

Making in (4.8) the change of variables x = z + 2n+j+k and using (4.9) one
concludes that λ7 divides 27(n+j+k) − 2mζiµj1µ

k
2ππ

4
2π

5
3. From this fact and

after some elementary manipulations with the λ-adic expansions, one finds
easily that i ≡ j ≡ k ≡ 0 mod 7, which proves (b), and also that

n ≡ −2a− a2 + 2c+ 2d mod 7,

which proves (a).

The proof of the following generalized Gauss lemma is quite straightfor-
ward (see for example [K2] or [Le]).

Lemma 4.3. Let p be a nonzero prime ideal of O, different from λO,
α an element of O outside p, and M a 7-section of J [p]′. Then(

α

p

)
=
∏
z∈M P ([α]z)∏
z∈M P (z)

.

Theorem 4.4. Let p and q be nonzero prime ideals of O, different from
λO and such that p is of degree one or two and different from q, q2 and q3.
Then (

qq2q3

p

)
=
(

p

qq2q3

)
.

Proof. Let π be a primary normalized generator of p, B(p) and D(p) the
numbers appearing in Proposition 4.2, and Frq2 the Frobenius automorphism
of q2 in the abelian extension F ⊆ F (J [p]). The definition of the symbol,
Proposition 4.2(b) and the fact that D(p) ∈ F give rise to the equalities(

pp4
2p

5
3

q2

)
=
(
ππ4

2π
5
3

q2

)
=

(B(p)/D(p))Frq2

B(p)/D(p)
=
B(p)Frq2

B(p)
.

Let q denote a primary normalized generator of q. Now the definition of
B(p), Proposition 3.4, Lemma 4.3 and the definition of the symbol produce
consecutively the following equalities:

B(p)Frq2

B(p)
=
∏
z∈M P (zFrq2 )∏
z∈M P (z)

=
∏
z∈M P ([qq2q3]z)∏

z∈M P (z)
=
(
qq2q3

p

)
=
(

qq2q3

p

)
.

Therefore on the one hand one has(
pp4

2p
5
3

q2

)
=
(

qq2q3

p

)
and on the other hand it follows from elementary facts that(

pp4
2p

5
3

q2

)
=
(

p

q2

)(
p2

q2

)4(
p3

q2

)5

=
(

p

q2

)(
p

q

)(
p

q3

)
=
(

p

qq2q3

)
.

This finishes the proof of the theorem.
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Now we can proceed to prove Kummer’s reciprocity law, which was
stated above as Theorem 2.1. Taking into account the action of Gal(F/Q)
on the Kummer symbol, which rules out the various settings in which The-
orem 2.1 is indeed trivial, it is not difficult to establish that it suffices to
prove the theorem in the following two cases: when the ideals p and q are
not conjugate and at least one of them has degree one or two, and when p
and q are conjugate and have degree one.

Consider the first case. Suppose that p has degree one or two. If q also
has degree one or two, applying Theorem 4.4 to the ordered pairs (p, q),
(p, q2), (p, q3), (p, q4), (q, p) and (q, p2) one gets a multiplicative system of
six linear homogeneous equations in the variables xi =

( p
qi

)
/
(qi

p

)
(1 ≤ i ≤ 6)

with nonzero determinant in F7, which implies that x1 = 1. If q has degree
three and one writes x =

(p
q

)
/
( q

p

)
and y =

( p
q3

)
/
(q3

p

)
, applying Theorem 4.4

to the ordered pairs (p, q) and (p, q3) one gets x2y = 1 and xy2 = 1 and thus
x = 1. Finally, if q is of degree 6, since q1 = q2 = q3, applying Theorem 4.4
to the ordered pair (p, q) one gets

(p
q

)3 =
( q

p

)3 and therefore
(p

q

)
=
( q

p

)
.

Consider now the second case. Applying Theorem 4.4 to the ordered
pairs (p2, p4), (p3, p4), (p6, p4), (p, p6) and (p, p3) one gets a multiplicative
system of five linear homogeneous equations in the variables zi =

( p
pi

)
/
(pi

p

)
(2 ≤ i ≤ 6) with nonzero determinant in F7, which implies that zi = 1
(2 ≤ i ≤ 6).

5. The complementary laws. The purpose of this section is to prove
the complementary laws of Kummer’s reciprocity for seventh powers, which
was stated above as Theorem 2.2. We skip the computation of the symbol( ζ

q

)
since it follows immediately from its definition without any further con-

sideration. We shall first compute the symbols for µ1 and µ2 and conclude
with the computation of the symbol for λ.

In order to compute the symbols for µ1 and µ2, we shall consider a
certain rational function Y on J whose values at 7-torsion points of J are
related on the one hand to µ1 and µ2 and, on the other hand, to the values
of a seventh power of another rational function on J .

As at the beginning of Section 3, take ∞ as base point for the Abel–
Jacobi embedding. Recall that via this embedding the rational functions
on J are simply the symmetric functions on triples of points of C. Let
P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3) be three points of C; as
above, we denote by P , Q and R the rational functions on J determined
respectively by the symmetric polynomials x1 +x2 +x3, x1x2 +x1x3 +x2x3

and x1x2x3.
We define Y to be the rational function on J determined by the sym-

metric polynomial y1y2y3.
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Let us say momentarily that a polynomial expression h in the indeter-
minates X1, Y1, X2, Y2, X3, Y3 with coefficients in a ring A is symmetric
whenever

h(Xσ(1), Yσ(1), Xσ(2), Yσ(2), Xσ(3), Yσ(3)) = h(X1, Y1, X2, Y2, X3, Y3)

for every permutation σ in the symmetric group S3. If P is a point in the
affine plane, let as usual xP denote its first coordinate and yP its second
coordinate.

Lemma 5.1. There is an open set U ⊂ J such that for every u, v ∈ U
such that u = [A+B + C − 3∞] and v = [D + E + F − 3∞] one has

R(u)7R(v)7Y (u+ v) = −e(u, v)7Y (u)Y (v)

where e(u, v) is a quotient of symmetric polynomial expressions with coef-
ficients in Z[xA, xB, xC , yA, yB, yC ] evaluated at xD, xE , xF , yD, yE , yF and
also a quotient of symmetric polynomial expressions with coefficients in
Z[xD, xE , xF , yD, yE , yF ] evaluated at xA, xB, xC , yA, yB, yC .

Proof. We confine ourselves here to giving a quick sketch of the proof.
Write u+ v = [J +K + L− 3∞]. By the Riemann–Roch theorem, there is
a rational function g = ax4 + bx3 + cx2 + dx+ e+ fy − xy whose divisor is

J +K + L+ I(A) + I(B) + I(C) + I(D) + I(E) + I(F )− 9∞.

Thus clearly all the coefficients of g, and in particular e, are expressions with
the symmetry property described in the statement of the lemma. Moreover,
the resultant of g and the curve C yields

(yA + 1)(yB + 1)(yC + 1)(yD + 1)(yE + 1)(yF + 1)yJyKyL = −e7

so that

yA(yA + 1)yB(yB + 1)yC(yC + 1)yD(yD + 1)yE(yE + 1)yF (yF + 1)Y (u+ v)

= −e7Y (u)Y (v)

and the lemma follows.

Proposition 5.2. There is a rational function G on J with coefficients
in F such that G7 = Y ◦ [λ].

Proof. Recall that [λ]z=z−[ζ]z for any z ∈ J . Thus, applying Lemma 5.1
to u = z and v = −[ζ]z one gets

(5.1) R(z)7R(−[ζ]z)7Y ([λ]z) = −e(z,−[ζ]z)7Y (z)Y (−[ζ]z).

Using the equalities Y (−[ζ]z) = Y (−z), Y (z)Y (−z) = R(z)7 and R(−[ζ]z)7

= R(z)7, it follows from (5.1) that

(5.2) R(z)7Y ([λ]z) = −e(z,−[ζ]z)7.
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We define

G(z) = −e(z,−[ζ]z)
R(z)

.

From the properties of e stated in Lemma 5.1, it is clear that G is a rational
function on J with coefficients in F . Moreover, (5.2) implies that G7 =
Y ◦ [λ].

Proposition 5.3. Let ω1 = [(0, 0)−∞] ∈ J . There is an open set V ⊂ J
such that for any z ∈ V one has

G(z + ω1) = ζ4G(z).

Proof. It follows from Proposition 5.2 and the fact that [λ]ω1 = 0 that

G(z + ω1)7 = Y ([λ](z + ω1)) = Y ([λ]z) = G(z)7.

Hence for some i, 0 ≤ i ≤ 6, the quotient G(z + ω1)/G(z) is the constant
function ζi. Evaluating this quotient at a suitable point z one concludes that
i = 4.

The strategy now is to evaluate the function Y at several 7-torsion points
of J . Actually it is a rather difficult task to compute nontrivial torsion points
of J explicitly. However, all the λ3-torsion points and some λ4-torsion and
λ5-torsion points of J were computed in [C-E-G]. In particular, we have
determined in [C-E-G] four points ω2, ω3, ω4 and ω5 such that

(5.3) [λ]ω5 = ω4, [λ]ω4 = ω3, [λ]ω3 = ω2, [λ]ω2 = ω1.

Let us remark that in the notation of [C-E-G], ω2 is ω1,4 and ω3 is ω1,4,0.
Let s be the unique real seventh root of µ3

1µ2. It was proved in [C-E-G] that

Y (ω3) = −µ3
1µ2,(5.4)

Y (ω5) = µ2τ
7,(5.5)

where τ is a unit in the ring of integers of F (s) defined explicitly by

τ =
1
7

(1− 3ζ2 − ζ3 − ζ4 − 3ζ5 + (5ζ + ζ2 + 2ζ3 + ζ4 + 5ζ5)s

+ (−4− 5ζ − 3ζ2 − 5ζ3 − 4ζ4)s3 + (2− 4ζ − 4ζ2 + 2ζ3 − 3ζ5)s4

+ (3 + 4ζ + 3ζ2 + 2ζ4 + 2ζ5)s5 + (−6− 6ζ − 2ζ3 − 5ζ4 − 2ζ5)s6).

From (5.4) and previous results one obtains the following proposition.

Proposition 5.4. Let p be a nonzero prime ideal of O, different from
λO, and let π be a normalized primary generator of p such that π ≡ 1 +
aλ3 mod λ4. Then (

µ3
1µ2

p

)
= ζ4a.

Proof. Let Frp denote the Frobenius automorphism of p in the abelian
extension F ⊆ F (s). Notice that Proposition 5.2 combined with the second
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statement of (5.3) implies that G(ω4)7 = Y (ω3). This fact, together with
Proposition 3.4, the equalities in (5.3) and Proposition 5.3, gives rise to the
following chain of equalities:(

µ3
1µ2

p

)
=
G(ω4)Frp

G(ω4)
=
G(ωFrp

4 )
G(ω4)

=
G([ππ4π5]ω4)

G(ω4)

=
G([1 + aλ3 + αλ4]ω4)

G(ω4)
=
G(ω4 + aω1)

G(ω4)
= ζ4a,

where α denotes a certain element of O.

Notice that Corollary 2 of [C-E-G] means that we cannot go any further
using λ3-torsion points and that to be successful, it is actually necessary to
get some essentially new data coming from other torsion points. Indeed, with
the help of Proposition 5.4 and (5.5), we can now prove the complementary
laws for µ1 and µ2. Let us denote by ρ the inverse of the unit τ defined
above, let E = F (s) and let M = E( 7

√
µ2) = F ( 7

√
µ1, 7
√
µ2). Let FrM/F (p)

and FrE/F (p) be the Frobenius automorphisms of p in the corresponding ex-
tensions; of course, FrM/F (p) coincides with FrE/F (p) when restricted to E.
If ω6 is any of the seven points of J such that [λ]ω6 = ω5, we have(

µ2

p

)
=
(
Y (ω5)ρ7

p

)
=

(G(ω6)ρ)FrM/F (p)

G(ω6)ρ
=
G(ω6)FrM/F (p)

G(ω6)
· ρ

FrE/F (p)

ρ
.

Let us look at the two factors above. On the one hand, Proposition 5.4 says
that sFrE/F (p) = ζ4as and from this it follows easily that ρFrE/F (p)/ρ is a
unit of the ring of integers of M depending only on a. On the other hand,
Proposition 3.4, the equalities in (5.3) and Proposition 5.3 yield

G(ω6)FrM/F (p)

G(ω6)
=
G([ππ4π5]ω6)

G(ω6)
=
G([1 + aλ3 + [5a]λ4 − cλ5 + βλ6]ω6)

G(ω6)

=
G(ω6 + aω3 + [5a]ω2 − cω1)

G(ω6)
= ζ3cG(ω6 + aω3 + [5a]ω2)

G(ω6)
where β is some element in O. Since G(ω6 + aω3 + [5a]ω2)/G(ω6) depends
only on a, we can write

G(ω6 + aω3 + [5a]ω2)
G(ω6)

· ρ
FrE/F (p)

ρ
= ζφ(a)

where φ(a) is an integer depending only on a. Summing up, one has

(5.6)
(
µ2

p

)
= ζ3c+φ(a).

Combining (5.6) with Proposition 5.4 gives

(5.7)
(
µ1

p

)
= ζ−a−5φ(a)−c.
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Since π2 ≡ 1 + aλ3 + 5aλ4 + 4cλ5 mod λ6, the same argument leading to
(5.6) yields

(5.8)
(
µ2

p2

)
= ζ12c+φ(a).

Now, using (
µ2

1

p

)
=
(
µ1

p

)σ2

=
(
µ2

p2

)
together with (5.7) and (5.8), we get

ζ2(−a−5φ(a)−c) = ζ12c+φ(a),

which ensures that φ(a) ≡ 3a mod 7, and this proves the complementary
laws for µ1 and µ2.

Finally we tackle the complementary law for λ. Since we already have
formulas for

( ζ
p

)
,
(µ1

p

)
and

(µ2

p

)
, the equality

√
−7 = −λ3ζ2µ−1

1 µ−2
2

shows that to determine
(
λ
p

)
it is enough to compute

(√−7
p

)
. Here again the

facts stated in Proposition 4.2 play a central role.

Proposition 5.5. Let p be a nonzero prime ideal of O, different from
λO, and let π be a normalized primary generator of p with λ-adic expansion
1 + aλ3 + [5a]λ4 + cλ5 + dλ6 + eλ7 + · · · . Then(√

−7
p

)
= ζa−3c+2d−3e.

Proof. Suppose that p has degree one or two. Let K = F ( 7
√

2,
√
λ), let

m = [−2a − a2 + 2c + 2d] and let A(p) be the number defined in (4.1).
Consider the following diagram of fields and field extensions:

K // K(J [p])

F

OO

// F ( 7
√

2mA(p))

OO

It is known from Proposition 4.2(a) that λO is unramified in the abelian
extension F ⊆ F ( 7

√
2mA(p)); let Frλ denote the Frobenius automorphism

of λO in this extension. Recall that λO is totally ramified in F ⊆ K; let Λ
be the only prime of K lying above λO. We know from Proposition 3.7 that
Λ is unramified in the abelian extension K ⊆ K(J [p]); let FrΛ denote the
Frobenius automorphism of Λ in this extension.

Let B(p) be the number defined in (4.6). On the one hand, from the
definition of B(p), Proposition 3.5 and Lemma 4.3 it follows that
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B(p)FrΛ

B(p)
=

(
∏
z∈M P (z))FrΛ∏
z∈M P (z)

=
∏
z∈M P (zFrΛ)∏
z∈M P (z)

=
∏
z∈M P ([±

√
7i]z)∏

z∈M P (z)

=
(√
−7
p

)
.

On the other hand, since B(p) is a seventh root of A(p) and 7
√

2 belongs to
K(J [p]), one has

B(p)FrΛ

B(p)
=

( 7
√
A(p))FrΛ

7
√
A(p)

=
( 7
√

2mA(p))Frλ

7
√

2mA(p)
.

Hence (√
−7
p

)
=

( 7
√

2mA(p))Frλ

7
√

2mA(p)
.

Recall now that following Proposition 4.2(b) there is a number D(p) ∈ F ∗
such that A(p) = ππ4

2π
5
3D(p)7. Write T (p) = 2mA(p)(2mD(p))−7; then for

any root x of the polynomial X7−T (p), we have F ( 7
√

2mA(p)) = F (x) and(√
−7
p

)
=
xFrλ

x
.

Suppose xFrλ/x = ζj and let us compute j. Writing x = 1 + λy we have

λ7y7 + 7λ6y6 + 21λ5y5 + 35λ4y4 + 21λ2y2 + 7λy + 1− T (p) = 0.

Denote by R the ring of integers of F ( 7
√

2mA(p)). Using the fact, easy to
prove, that λ7 divides 1 − T (p), it follows from the last equality that y7 +
uy − N ≡ 0 mod λR, where N = −a + 3c − 2d + 3e and u = (1 + ζ)(1 +
ζ + ζ2) · · · (1 + ζ + · · · + ζ5). Thus, since u ≡ −1 mod λ, we have y7 − y −
N ≡ 0 mod λR. From this fact, using the relations y7 ≡ yFrλ mod λR and
ζj = (1 + λy)Frλ/(1 + λy), one can deduce that

ζj ≡ 1 +Nλ mod λ2.

But obviously ζj ≡ 1 − jλ mod λ2, hence j ≡ −N mod 7, and this proves
the proposition when p has degree one or two. When p has degree three or
six, the proof of the proposition is a consequence of already known facts and
therefore is left as an exercise for the reader.
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