Second moments of holomorphic Hilbert modular forms and subconvexity

by
Henry H. Kim (Toronto and Seoul)

We have two results in this note. First, we generalize the result of Sarnak Sa] to holomorphic Hilbert cusp forms (not necessarily newforms) over a totally real number field of degree n by applying the technique of Titchmarsh [Ti] and obtain the average version of the second moments. Second, by applying the technique of [PSa, we obtain the subconvexity bound in t aspect.

We recall some facts on Hilbert cusp forms from [G, §1.9]: Let F be a totally real number field. Let $[F: \mathbb{Q}]=n$. Let \mathfrak{o} be the ring of integers and \mathfrak{n} be an ideal. Let

$$
\Gamma=\Gamma(\mathfrak{n})=\left\{\gamma \in \mathrm{GL}^{+}(2, \mathfrak{o}): \gamma \equiv 1_{2} \bmod \mathfrak{n}\right\}
$$

Let f be a Hilbert cusp form with respect to Γ of weight $k=(k, \ldots, k)$, where k is a positive integer. Let $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathcal{H}^{n}$. Let $\Lambda=\{u \in F$: $\left.\left(\begin{array}{cc}1 & u \\ 0 & 1\end{array}\right) \in \Gamma\right\}$. Then f has the Fourier expansion

$$
f(z)=\sum_{\xi \in \Lambda^{*}} a(\xi) N(\xi)^{(k-1) / 2} e^{2 \pi i \operatorname{Tr}(\xi z)}
$$

where Tr is the \mathbb{C}-linear extension to $\mathbb{C}^{n} \rightarrow \mathbb{C}$ of the Galois trace $F \rightarrow \mathbb{Q}$, and $\Lambda^{*}=\{u \in F: \operatorname{Tr}(u \Lambda) \subset \mathfrak{o}\}$.

Let $T=\mathbb{R}_{+}^{n}$, and $\chi: T \rightarrow \mathbb{C}^{\times}$be a continuous group homomorphism which is trivial on the two subgroups

$$
\Delta=\left\{(y, \ldots, y) \in \mathbb{R}_{+}^{n}: y>0\right\}, \quad U=\left\{\eta \in T: \eta \in \mathfrak{o}^{\times}, \eta \equiv 1 \bmod \mathfrak{n}\right\}
$$

We write

$$
T / U \simeq\left\{\left(y_{1}, \ldots, y_{n}\right): y_{1} \cdots y_{n}=1\right\} / U \times\left\{\left(r^{1 / n}, \ldots, r^{1 / n}\right): r>0\right\}
$$

Then by the units theorem, the first factor is compact. Choose a compact set X in T of representatives of the first factor, and identify $\left(r^{1 / n}, \ldots, r^{1 / n}\right)$ with

[^0]$r^{1 / n}$. Then we can write any element $\left(y_{1}, \ldots, y_{n}\right) \in T / U$ as $\left(y_{1}, \ldots, y_{n}\right)=$ $x r^{1 / n}$ for some $x \in X$.

Here χ is a character of X, and we can write

$$
\chi(y)=\chi\left(y_{1}, \ldots, y_{n}\right)=\prod_{j} y_{j}^{i \nu_{j}}
$$

where $\nu_{j} \in \mathbb{R}$ and $\nu_{1}+\cdots+\nu_{n}=0$.
For simplicity, we assume that $\mathfrak{n}=\mathfrak{o}$. Then $\Lambda=\mathfrak{o}$ and $\Lambda^{*}=\mathfrak{d}^{-1}$, where \mathfrak{d} is the different of F. In this case, we can write down ν_{j} 's explicitly in terms of fundamental units: Let u_{1}, \ldots, u_{n-1} be fundamental units. Since U is the image of the map $\mathfrak{o}^{\times} \rightarrow T$ given by $u \mapsto\left(u^{(1)}, \ldots, u^{(n)}\right),\left|u_{j}^{(1)}\right|^{i \nu_{1}} \cdots\left|u_{j}^{(n)}\right|^{i \nu_{n}}=1$ for each $j=1, \ldots, n-1$, namely, for $m_{1}, \ldots, m_{n-1} \in \mathbb{Z}$,

$$
\left(\nu_{1}, \ldots, \nu_{n}\right)\left(\begin{array}{cccc}
1 & \log \left|u_{1}^{(1)}\right| & \cdots & \log \left|u_{n-1}^{(1)}\right| \\
\vdots & \vdots & \cdots & \vdots \\
1 & \log \left|u_{1}^{(n)}\right| & \cdots & \log \left|u_{n-1}^{(n)}\right|
\end{array}\right)=\left(0,2 \pi m_{1}, \ldots, 2 \pi m_{n-1}\right)
$$

Hence for $\xi \in \mathfrak{d}^{*}, \chi(\xi)=\prod_{j=1}^{n}\left|\frac{\xi^{(j)}}{N(\xi)^{1 / n}}\right|^{i \nu_{j}}$.
Define the L-function

$$
L(s, f, \chi)=\sum_{\xi \bmod U} a(\xi) \chi(\xi) N(\xi)^{-s}
$$

Then we have the following integral representation:

$$
\begin{aligned}
\Lambda(s, f, \chi) & =L(s, f, \chi) \prod_{j=1}^{n}(2 \pi)^{-\left(s+(k-1) / 2+i \nu_{j}\right)} \Gamma\left(s+\frac{k-1}{2}+i \nu_{j}\right) \\
& =\int_{T / U} f(i y) \bar{\chi}(y) y^{s+(k-1) / 2} d^{\times} y
\end{aligned}
$$

where $d^{\times} y=\frac{d y_{1} \cdots d y_{n}}{y_{1} \cdots y_{n}}$. If f is an eigenfunction with eigenvalue $\lambda \in\{ \pm 1, \pm i\}$ for the map $f \mapsto f^{\sharp}=\left.f\right|_{k} J$, where $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, then we have the functional equation

$$
\Lambda(s, f, \chi)=\lambda i^{n k} \Lambda(1-s, f, \bar{\chi})
$$

1. Average of second moments. We write

$$
\Lambda(s, f, \chi)=\int_{0}^{\infty} \int_{X} f\left(i r^{1 / n} x\right) \bar{\chi}(x) r^{s+(k-1) / 2} d^{\times} x \frac{d r}{r}
$$

By Mellin inversion, we have

$$
\int_{X} f\left(i r^{1 / n} x\right) \bar{\chi}(x) d^{\times} x=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \Lambda(s, f, \chi) r^{-s-(k-1) / 2} d s
$$

The above equation is valid by substituting r with z with $\operatorname{Re}\left(z^{1 / n}\right)>0$, i.e.,

$$
\int_{X} f\left(i z^{1 / n} x\right) \bar{\chi}(x) d^{\times} x=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \Lambda(s, f, \chi) z^{-s-(k-1) / 2} d s
$$

Since $L(s, f, \chi)$ is entire, we can move the contour to $\operatorname{Re}(s)=\sigma, 0<\sigma<1$. We will set $z^{1 / n}=r^{1 / n} e^{i(\pi / 2-\delta)}$. Then

$$
\begin{aligned}
\int_{X} f\left(i z^{1 / n} x\right) & \bar{\chi}(x) d^{\times} x \\
& =\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \Lambda(s, f, \chi) e^{-i(s+(k-1) / 2) n(\pi / 2-\delta)} r^{-s-(k-1) / 2} d s
\end{aligned}
$$

Hence $r^{(k-1) / 2} \int_{X} f\left(i z^{1 / n} x\right) \bar{\chi}(x) d^{\times} x$ and $\Lambda(s, f, \chi) e^{-i(s+(k-1) / 2) n(\pi / 2-\delta)}$ are Mellin transforms and by Parseval's formula,

$$
\int_{0}^{\infty}\left|\int_{X} f\left(i z^{1 / n} x\right) \bar{\chi}(x) d^{\times} x\right|^{2} r^{k+2 \sigma-2} d r=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\Lambda(\sigma+i t, f, \chi)|^{2} e^{t n \pi-2 \delta t} d t
$$

Now, $c(\chi)=\int_{X} f\left(i z^{1 / n} x\right) \bar{\chi}(x) d^{\times} x$ is the Fourier coefficient of $f\left(i z^{1 / n} x\right)=$ $\sum_{\chi} c(\chi) \chi(x)$. By Parseval's formula,

$$
\sum_{\chi}\left|\int_{X} f\left(i z^{1 / n} x\right) \bar{\chi}(x) d^{\times} x\right|^{2}=\int_{X}\left|f\left(i z^{1 / n} x\right)\right|^{2} d^{\times} x
$$

Therefore, we have

$$
\begin{align*}
& \sum_{\chi} \frac{1}{2 \pi} \int_{-\infty}^{\infty}|\Lambda(\sigma+i t, f, \chi)|^{2} e^{t n \pi-2 \delta t} d t \tag{1.1}\\
&=\int_{0}^{\infty} \int_{X}\left|f\left(i z^{1 / n} x\right)\right|^{2} r^{k+2 \sigma-2} d^{\times} x d r
\end{align*}
$$

Set $\sigma=1 / 2$.
We first analyze the RHS of (1.1). We write $\int_{0}^{\infty}=\int_{0}^{1}+\int_{1}^{\infty}$. By the functional equation, we see that $\int_{0}^{1}=\int_{1}^{\infty}$. We write

$$
\int_{1}^{\infty}=\int_{1}^{(\sin \delta)^{-n}}+\int_{(\sin \delta)^{-n}}^{\infty}
$$

If $r>(\sin \delta)^{-n}$, then $r^{1 / n} \sin \delta>1$, and $\left|f\left(i z^{1 / n} x\right)\right| \ll e^{-c(x) r^{1 / n} \sin \delta}$ for a constant $c(x)$ depending only on x. Then

$$
\int_{(\sin \delta)^{-n}}^{\infty} \ll \int_{(\sin \delta)^{-n}}^{\infty} r^{k-1} e^{-2 c(x) r^{1 / n} \sin \delta} d r=O\left((\sin \delta)^{-n k}\right)
$$

For $\int_{1}^{(\sin \delta)^{-n}}$, we use the fact that $y^{k}|f(z)|^{2}<C$ for some constant C [G, p. 24]. Then $\left|f\left(i z^{1 / n} x\right)\right|^{2} \ll c(x, k) r^{-k}(\sin \delta)^{-n k}$ for some constant $c(x, k)$, depending only on x, k. Hence

$$
\int_{1}^{(\sin \delta)^{-n}} \ll(\sin \delta)^{-n k} \int_{1}^{(\sin \delta)^{-n}} r^{-1} d r=O\left((\sin \delta)^{-n k} \log \frac{1}{\sin \delta}\right) .
$$

Therefore,

$$
\text { RHS of }(1.1) \ll(\sin \delta)^{-n k} \log \frac{1}{\sin \delta} \text {. }
$$

Next we analyze the LHS of (1.1). By a change of variables,

$$
\int_{-\infty}^{0}|\Lambda(1 / 2+i t, f, \chi)|^{2} e^{t n \pi-2 \delta t} d t=\int_{0}^{\infty}|\Lambda(1 / 2-i t, f, \chi)|^{2} e^{-t n \pi+2 \delta t} d t
$$

By Stirling's formula, if $k>1$,

$$
\left|\Gamma\left(k / 2-i t+i \nu_{j}\right)\right|^{2}=2 \pi\left|t-\nu_{j}\right|^{k-1} e^{-\pi\left|t-\nu_{j}\right|}\left(1+O\left(\left|t-\nu_{j}\right|^{-1}\right)\right) .
$$

If $k=1$,

$$
\left|\Gamma\left(1 / 2-i t+i \nu_{j}\right)\right|^{2}=2 \pi e^{-\pi\left|t-\nu_{j}\right|}+O\left(e^{-3 \pi\left|t-\nu_{j}\right|}\right)
$$

Let $\|\chi\|=\max \left|\nu_{j}\right|$ and $\|m\|=\max \left|m_{j}\right|$. Then clearly $\|\chi\| \ll\|m\|$ and $\|m\| \ll\|\chi\|$. By the convexity bound, $|L(1 / 2-i t, f, \chi)| \ll \prod_{j=1}^{n}\left|t-\nu_{j}\right|^{k / 2+\epsilon}$ for any $\epsilon>0$.

Let $R=\|\chi\|$. Then since $\left|t-\nu_{j}\right| \leq t+R$ for $t \geq 0$,

$$
\begin{aligned}
\int_{R}^{\infty}|\Lambda(1 / 2-i t, f, \chi)|^{2} e^{-t n \pi+2 \delta t} d t & \ll \int_{R}^{\infty}(t+R)^{2 n k-n+2 n \epsilon} e^{-2 t(\pi n-\delta)} d t \\
& \ll R^{2 n k-n+2 n \epsilon} e^{-2 R(n-\delta)} .
\end{aligned}
$$

If $t \leq R$, then since $\left|t-\nu_{j}\right| \geq\left|\nu_{j}\right|-t$, we have

$$
\begin{aligned}
\int_{0}^{R}|\Lambda(1 / 2-i t, f, \chi)|^{2} e^{-t n \pi+2 \delta t} d t & \ll \int_{0}^{R}(t+R)^{2 n k-n+2 n \epsilon} e^{2 \delta t} e^{-\pi\left(\left|\nu_{1}\right|+\cdots+\left|\nu_{n}\right|\right)} d t \\
& \ll R^{2 n k-n+1+2 n \epsilon} e^{2 \delta R} e^{-\pi\left(\left|\nu_{1}\right|+\cdots+\left|\nu_{n}\right|\right)}
\end{aligned}
$$

Here $\left|\nu_{1}\right|+\cdots+\left|\nu_{n}\right|-2 \delta R / \pi \geq c R / \pi$ for some constant $c>0$ if we take δ very small. Therefore

$$
\int_{0}^{\infty}|\Lambda(1 / 2-i t, f, \chi)|^{2} e^{-t n \pi+2 \delta t} d t \ll R^{2 n k-n+1+2 n \epsilon} e^{-c^{\prime} R}
$$

for some constant $c^{\prime}>0$. For each positive integer l, let $N(l)$ be the number
of χ 's such that $l-1 \leq\|\chi\|<l$. Then $N(l) \ll l^{n-1}$. So

$$
\sum_{\chi} \int_{0}^{\infty}|\Lambda(1 / 2-i t, f, \chi)|^{2} e^{-t n \pi+2 \delta t} d t \ll \sum_{l=1}^{\infty} l^{2 n k+2 n \epsilon} e^{-c^{\prime} l}=O(1)
$$

Hence on the left hand side of (1.1), the sum of the integrals $\int_{-\infty}^{0}$ is $O(1)$. So as $\delta \rightarrow 0+$,

$$
\sum_{\chi} \int_{0}^{\infty}|\Lambda(1 / 2+i t, f, \chi)|^{2} e^{t n \pi-2 \delta t} d t=O\left(\delta^{-n k} \log \frac{1}{\delta}\right)
$$

By [Ti, p. 157], this is equivalent to:

$$
\sum_{\chi} \int_{0}^{T}|\Lambda(1 / 2+i t, f, \chi)|^{2} e^{\pi n t} d t=O\left(T^{n k} \log T\right)
$$

as $T \rightarrow \infty$. By integration by parts, we have

$$
\sum_{\chi} \int_{0}^{T}|\Lambda(\sigma+i t, f, \chi)|^{2} t^{-n k+n} e^{\pi n t} d t=O\left(T^{n} \log T\right)
$$

Letting $M(\chi, t)=t^{-n k+n} e^{\pi t n} \prod_{j=1}^{n}\left|\Gamma\left(k / 2+i t+i \nu_{j}\right)\right|^{2}$, we have proved
Theorem 1.1. As $T \rightarrow \infty$,

$$
\sum_{\chi} \int_{0}^{T}|L(1 / 2+i t, f, \chi)|^{2} M(\chi, t) d t=O\left(T^{n} \log T\right)
$$

When $\chi=1, M(1, t) \sim 1 /(2 \pi)^{n}$, and so
Corollary 1.2. As $T \rightarrow \infty$,

$$
\int_{0}^{T}|L(1 / 2+i t, f)|^{2} d t=O\left(T^{n} \log T\right)
$$

Now we can prove a result analogous to [Sa].
Theorem 1.3. As $T \rightarrow \infty$, for any constant $\alpha<1 / 2$,

$$
\begin{equation*}
\sum_{\|\chi\| \leq \alpha T} \int_{T / 2}^{T}|L(1 / 2+i t, f, \chi)|^{2} d t=O\left(T^{n} \log T\right) \tag{1.2}
\end{equation*}
$$

Proof. By Stirling's formula,

$$
M(\chi, t)=\prod_{j=1}^{n} e^{\pi\left(t-\left|t+\nu_{j}\right|\right)}\left(\frac{\left|t+\nu_{j}\right|}{t}\right)^{k-1}\left(1+O\left(\left|t+\nu_{j}\right|^{-1}\right)\right)
$$

If $\|\chi\| \leq \alpha T$ and $t \geq T / 2$, then $\left|t+\nu_{j}\right|=t+\nu_{j} \geq(1-2 \alpha) t$. Hence, $M(\chi, t) \gg 1$. Therefore,

$$
\sum_{\|\chi\| \leq \alpha T} \int_{T / 2}^{T}|L(1 / 2+i t, f, \chi)|^{2} d t \ll \sum_{\chi} \int_{0}^{T}|L(1 / 2+i t, f, \chi)|^{2} M(\chi, t) d t
$$

Our result follows.
REmark 1.4. In [D, p. 214], it is claimed that the above estimate would imply the estimate

$$
\sum_{\|\chi\| \leq T} \int_{0}^{T}|L(1 / 2+i t, f, \chi)|^{2} d t=O\left(T^{n} \log T\right)
$$

However, we do not see how it is possible.
2. Subconvexity at the critical line. As the referee pointed out, the L-function of an arbitrary holomorphic Hilbert cusp form is a finite linear combination of L-functions of holomorphic newforms with coefficients being bounded on the critical line (cf. [BH, p. 11]; any holomorphic Hilbert cusp form f is a finite linear combination of $R_{\mathrm{t}} h$, where R_{t} is the shift operator with an ideal \mathfrak{t}, and h is a newform; now $L\left(s, R_{\mathfrak{t}} h\right)=N(\mathfrak{t})^{s} L(s, h)$). So for our purpose of obtaining a subconvexity bound in t-aspect, we can assume that f is a newform, i.e., an eigenform of all Hecke operators. In this case, f is attached to a cuspidal representation of $\mathrm{GL}_{2}(F) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)$, and we can use the result in [H].

In equation (1.2), by taking one term, we have $\int_{0}^{T}\left|L\left(1 / 2+i t, f, \chi_{0}\right)\right|^{2} d t=$ $O_{\chi_{0}}\left(T^{n} \log T\right)$ for a fixed χ_{0}. This implies $L\left(1 / 2+i t, f, \chi_{0}\right)=O_{\chi_{0}}\left(|t|^{n / 2+\epsilon}\right)$. This is the convexity bound. We want to prove

Theorem 2.1. For a fixed χ_{0},

$$
L\left(1 / 2+i t, f, \chi_{0}\right)=O_{\chi_{0}}\left(|t|^{n / 2-7 / 216+\epsilon}\right)
$$

By considering $f \otimes \chi_{0}$ instead of f, we assume that $\chi_{0}=1$. We follow PSa] closely. Recall the definition of analytic conductor due to [IS]:

$$
C=C(t)=\frac{1}{(2 \pi)^{2 n}} \prod_{j=1}^{n}|(k / 2+i t)(k / 2+1+i t)|
$$

We use the uniform approximate functional equation due to Harcos: Theorem 2.5 of [H] implies, for any $\epsilon>0$,

$$
\begin{aligned}
L(1 / 2+i t, f)= & \sum_{\xi} \frac{a(\xi)}{N(\xi)^{1 / 2+i t}} V\left(\frac{N(\xi)}{\sqrt{C}}\right)+i^{n k} \lambda \sum_{\xi} \frac{\overline{a(\xi)}}{N(\xi)^{1 / 2-i t}} V\left(\frac{N(\xi)}{\sqrt{C}}\right) \\
& +O_{\epsilon, V}\left(\eta^{-1} C^{1 / 4+\epsilon}\right)
\end{aligned}
$$

Here λ is a complex number of absolute value 1 , and $V:(0, \infty) \rightarrow \mathbb{C}$ is a smooth function, independent of t, with the functional equation $V(x)+$ $V(1 / x)=1$ and derivatives decaying faster than any negative power of x as $x \rightarrow \infty$, and

$$
\eta=\min _{j=1, \ldots, n}\{|k / 2+i t|,|k / 2+1+i t|\} .
$$

Now for any χ, we define a "fake" L-value (this idea is due to the referee):

$$
\begin{align*}
\tilde{L}(1 / 2+i t, f, \chi)= & \sum_{\xi} \frac{a(\xi) \chi(\xi)}{N(\xi)^{1 / 2+i t}} V\left(\frac{N(\xi)}{\sqrt{C}}\right) \tag{2.1}\\
& +i^{n k} \lambda \sum_{\xi} \frac{\overline{a(\xi)} \chi^{-1}(\xi)}{N(\xi)^{1 / 2-i t}} V\left(\frac{N(\xi)}{\sqrt{C}}\right)
\end{align*}
$$

We reduce the size of averaging in (1.2): namely, we show, for $T^{101 / 108} \leq$ $H \leq T$ and $\epsilon>0$,

$$
\int \sum|\tilde{L}(1 / 2+i t, f, \chi)|^{2} d t \ll\left(T^{n-1} H\right)^{1+\epsilon}
$$

where the integral and sum are over the domain $T-H \leq\left|\nu_{j}+i t\right| \leq T+H$ for $j=1, \ldots, n$, and χ is given by ν_{1}, \ldots, ν_{n}. Let $H=T^{101 / 108}$, and take one term corresponding to $\chi=1$. Here $\tilde{L}(1 / 2+i t, f)$ and $L(1 / 2+i t, f)$ differ by the error term $O_{\epsilon, V}\left(\eta^{-1} C^{1 / 4+\epsilon}\right)$, and it gives rise to $O\left(T^{n-2+\epsilon}\right)$. Hence we have

$$
\begin{equation*}
\int_{T-\log ^{2} T}^{T+\log ^{2} T}|L(1 / 2+i t, f)|^{2} d t \ll T^{n-7 / 108+\epsilon} . \tag{2.2}
\end{equation*}
$$

By a standard argument (for example, see [Go, p. 294] or [Iv, (7.2)]), this implies Theorem 2.1. At the end of the paper, we give an outline of how the mean-value estimate (2.2) implies the pointwise estimate in Theorem 2.1.

As in CPSS, we introduce a smooth dyadic partition of the identity on $(0, \infty)$ by $1=\sum_{\alpha=-\infty}^{\infty} g\left(x / 2^{\alpha / 2}\right)$ with $g(x)$ a smooth function with support in $[1,2]$. Let $X_{\alpha}=2^{\alpha / 2}$. Then the first term on the right hand side of (2.1) can be written as

$$
\sum_{\xi} \sum_{\alpha=-1}^{\infty} \frac{a(\xi) \chi(\xi)}{N(\xi)^{1 / 2+i t}} V\left(\frac{N(\xi)}{\sqrt{C}}\right) g\left(\frac{N(\xi)}{X_{\alpha}}\right)
$$

If we set $W_{X}(x)=\sqrt{X / x} x^{-i t} V(x / \sqrt{C}) g(x / X)$, then the above becomes

$$
\sum_{\alpha=-1}^{\infty} \frac{1}{\sqrt{X_{\alpha}}} S_{X_{\alpha}}(t, \chi)
$$

where $S_{X}(t, \chi)=\sum_{\xi} a(\xi) \chi(\xi) W_{X}(N(\xi))$. Then (2.1) can be written as

$$
\tilde{L}(1 / 2+i t, f, \chi)=\sum_{\alpha=-1}^{\infty} \frac{S_{X_{\alpha}}(t, \chi)}{\sqrt{X_{\alpha}}}+i^{n k} \lambda \sum_{\alpha=-1}^{\infty} \frac{\overline{S_{X_{\alpha}}(t, \chi)}}{\sqrt{X_{\alpha}}}
$$

If we take r so that $X_{r} \leq C^{1 / 2+\epsilon}<X_{r+1}$, then

$$
\tilde{L}(1 / 2+i t, f, \chi)=\sum_{\alpha=-1}^{r} \frac{S_{X_{\alpha}}(t, \chi)}{\sqrt{X_{\alpha}}}+i^{n k} \lambda \sum_{\alpha=-1}^{r} \frac{\overline{S_{X_{\alpha}}(t, \chi)}}{\sqrt{X_{\alpha}}}+O\left(C^{-M}\right)
$$

for some positive constant M. Note that the length of the sum is $r+2$, and $r \ll \log C \ll r+1$. So it is enough to show that

$$
\begin{equation*}
\int \sum\left|S_{X}(t, \chi)\right|^{2} d t \ll X\left(T^{n-1} H\right)^{1+\epsilon} \tag{2.3}
\end{equation*}
$$

for $T^{101 / 108} \leq H \leq T$, where the sum and integral are over the domain $T-H \leq\left|\nu_{j}+i t\right| \leq T+H$ for $j=1, \ldots, n$, and $X \leq C^{1 / 2+\epsilon} \leq T^{n+\epsilon}$.

In order to apply the Poisson summation formula, recall the map

$$
u \mapsto\left(\log \left|u^{(1)}\right|, \ldots, \log \left|u^{(n)}\right|\right) \quad \text { for } u \in F^{\times}
$$

The image of $\mathfrak{o}_{+}^{\times}$is a lattice Γ in $P=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{1}+\cdots+x_{n}=0\right\} \simeq$ \mathbb{R}^{n-1}. We identify χ with $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$. Then $\chi(\xi)=e^{2 \pi i(\log \xi, \nu)}$, where $\log \xi=\left(\log \xi^{(1)}, \ldots, \log \xi^{(n)}\right)$, and $(\log \xi, \nu)=\sum_{j=1}^{n} \nu_{j} \log \xi^{(j)}$. Then by the definition of χ, the set of χ^{\prime} s is the dual lattice Γ^{\prime} of Γ.

Let $\psi\left(x_{1}, \ldots, x_{n}\right)$ be a non-negative function on P such that $\psi\left(I_{1}\right)=1$ and the support of ψ is in I_{2}; here $I_{1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in P:\left|x_{i}\right| \leq 1\right\}$, $I_{2}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in P:\left|x_{i}\right| \leq 2\right\}$. Then the left hand side of (2.3) is less than

$$
A=\sum_{\chi} \int_{-\infty}^{\infty} \psi\left(\frac{\left|\nu_{1}+i t\right|-T}{H}, \ldots, \frac{\left|\nu_{n}+i t\right|-T}{H}\right)\left|S_{X}(t, \chi)\right|^{2} d t
$$

Hence we need to show that

$$
A \ll X\left(T^{n-1} H\right)^{1+\epsilon} \quad \text { for } T^{\frac{101}{18} n /(7 n-1)} \leq H \leq T
$$

We write

$$
\begin{align*}
A= & X \sum_{\xi, \eta} \frac{a(\xi) \overline{a(\eta)}}{(N(\xi) N(\eta))^{1 / 2}} g\left(\frac{N(\xi)}{X}\right) g\left(\frac{N(\eta)}{X}\right) \tag{2.4}\\
& \times \int_{-\infty}^{\infty}\left(\frac{N(\xi)}{N(\eta)}\right)^{i t} V\left(\frac{N(\xi)}{\sqrt{C}}\right) V \overline{\left(\frac{N(\eta)}{\sqrt{C}}\right)} \\
& \times\left(\sum_{\chi} \psi\left(\frac{\left|\nu_{1}+i t\right|-T}{H}, \ldots, \frac{\left|\nu_{n}+i t\right|-T}{H}\right) \chi(\xi) \overline{\chi(\eta)}\right) d t
\end{align*}
$$

We apply the Poisson summation formula in χ :

$$
\begin{align*}
\sum_{\chi} \psi\left(\frac{\left|\nu_{1}+i t\right|-T}{H}, \ldots,\right. & \left.\frac{\left|\nu_{n}+i t\right|-T}{H}\right) \chi(\xi) \overline{\chi(\eta)} \tag{2.5}\\
= & \sum_{\gamma \in \Gamma} \int_{P} \psi\left(\frac{\left|x_{1}+i t\right|-T}{H}, \ldots, \frac{\left|x_{n}+i t\right|-T}{H}\right) \\
& \times e^{2 \pi i \sum_{i=1}^{n} x_{i}\left(\log \xi^{(i)}-\log \eta^{(i)}\right)-2 \pi i(\gamma, x)} d x
\end{align*}
$$

Since $x_{1}+\cdots+x_{n}=0$ in P, we write the integral as

$$
\begin{aligned}
\int_{P} \psi\left(\frac{\left|x_{1}+i t\right|-T}{H}\right. & \left., \ldots, \frac{\left|x_{n}+i t\right|-T}{H}\right) e^{2 \pi i \sum_{i=1}^{n} x_{i}\left(\log \xi^{(i)}-\log \eta^{(i)}\right)-2 \pi i(\gamma, x)} d x \\
= & \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \psi\left(\frac{\left|x_{1}+i t\right|-T}{H}, \ldots, \frac{\left|x_{n}+i t\right|-T}{H}\right) \\
& \times e^{2 \pi i\left(x, \log \xi-\log \eta-\gamma-\left(\log \xi^{(n)}-\log \eta^{(n)}-\gamma^{(n)}\right)\right)} d x_{1} \cdots d x_{n-1}
\end{aligned}
$$

where $\log \xi-\log \eta-\gamma-\left(\log \xi^{(n)}-\log \eta^{(n)}-\gamma^{(n)}\right)=\left(\log \xi^{(1)}-\log \eta^{(1)}-\gamma^{(1)}-\right.$ $\left(\log \xi^{(n)}-\log \eta^{(n)}-\gamma^{(n)}\right), \ldots, \log \xi^{(n-1)}-\log \eta^{(n-1)}-\gamma^{(n-1)}-\left(\log \xi^{(n)}-\right.$ $\left.\log \eta^{(n)}-\gamma^{(n)}\right)$).

By the change of variables, the integral becomes

$$
H^{n-1} \hat{\psi}_{T, H, t}\left(H\left(\log \xi-\log \eta-\gamma-\left(\log \xi^{(n)}-\log \eta^{(n)}-\gamma^{(n)}\right)\right)\right)
$$

where $\psi_{T, H, t}\left(y_{1}, \ldots, y_{n-1}\right)=\psi\left(\left|i t / H+y_{1}\right|-T / H, \ldots,\left|i t / H+y_{n}\right|-T / H\right)$, and $y_{n}=-\left(y_{1}+\cdots+y_{n-1}\right)$. By integration by parts,

$$
\hat{\psi}_{T, H, t}\left(y_{1}, \ldots, y_{n-1}\right) \ll(\|y\|+1)^{-N}
$$

for any $N \geq 1$, where $\|y\|=\min \left\{\left|y_{1}\right|, \ldots,\left|y_{n-1}\right|\right\}$. Since $\xi, \eta \in \mathfrak{d} / \mathfrak{o}_{+}^{\times}$, we can choose ξ, η so that $\log \xi-\log \eta$ is in the fundamental domain of Γ in P. Hence in (2.5), only the term $\gamma=0$ is significant. That is,

$$
\begin{aligned}
& \sum_{\chi} \psi\left(\frac{\left|\nu_{1}+i t\right|-T}{H}, \ldots, \frac{\left|\nu_{n}+i t\right|-T}{H}\right) \chi(\xi) \overline{\chi(\eta)} \\
&=\int_{P} \psi\left(\frac{\left|x_{1}+i t\right|-T}{H}, \ldots, \frac{\left|x_{n}+i t\right|-T}{H}\right) e^{2 \pi i \sum_{i=1}^{n} x_{i}\left(\log \xi^{(i)}-\log \eta^{(i)}\right)} d x \\
& \quad+O\left(H^{-N}\right)
\end{aligned}
$$

Plugging this into (2.4), we have

$$
\begin{align*}
A= & X \sum_{\xi, \eta} \frac{a(\xi) \overline{a(\eta)}}{(N(\xi) N(\eta))^{1 / 2}} g\left(\frac{N(\xi)}{X}\right) g\left(\frac{N(\eta)}{X}\right) \tag{2.6}\\
& \times \int_{-\infty}^{\infty}\left(\frac{N(\xi)}{N(\eta)}\right)^{i t} V\left(\frac{N(\xi)}{\sqrt{C}}\right) \overline{V\left(\frac{N(\eta)}{\sqrt{C}}\right)}
\end{align*}
$$

$\times \int_{P} \psi\left(\frac{\left|x_{1}+i t\right|-T}{H}, \ldots, \frac{\left|x_{n}+i t\right|-T}{H}\right) e^{2 \pi i \sum_{i=1}^{n} x_{i}\left(\log \xi^{(i)}-\log \eta^{(i)}\right)} d x d t$

+ small error.
Note that $(N(\xi) / N(\eta))^{i t}=e^{i t \sum_{i=1}^{n}\left(\log \xi^{(i)}-\log \eta^{(i)}\right)}$. So the above integral is

$$
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \psi\left(\frac{\left|x_{1}+i t\right|-T}{H}, \ldots, \frac{\left|x_{n}+i t\right|-T}{H}\right) V\left(\frac{N(\xi)}{\sqrt{C}}\right) \overline{V\left(\frac{N(\eta)}{\sqrt{C}}\right)}
$$

$\times e^{2 \pi i\left(x, \log \xi-\log \eta-\gamma-\left(\log \xi^{(n)}-\log \eta^{(n)}-\gamma^{(n)}\right)\right)+i t \sum_{i=1}^{n}\left(\log \xi^{(i)}-\log \eta^{(i)}\right)} d x_{1} \cdots d x_{n-1} d t$.
Set $t / H=t^{\prime}, x_{i} / H=y_{i}$. Then the above integral is $H^{n} \hat{\phi}_{T, H}$, where
$\hat{\phi}_{T, H}=\hat{\phi}_{T, H}\left(H\left(\log \xi^{(1)}-\log \eta^{(1)}-\log \xi^{(n)}+\log \eta^{(n)}\right), \ldots\right.$,

$$
\left.H\left(\log \xi^{(n-1)}-\log \eta^{(n-1)}-\log \xi^{(n)}+\log \eta^{(n)}\right), \frac{H}{2 \pi}(\log N(\xi)-\log N(\eta))\right)
$$

and $\phi_{T, H}\left(y_{1}, \ldots, y_{n-1}, t^{\prime}\right)=\psi\left(\left|y_{1}+i t^{\prime}\right|-T / H, \ldots,\left|y_{n}+i t^{\prime}\right|-T / H\right) \times$ $V(N(\xi) / \sqrt{C}) \overline{V(N(\eta) / \sqrt{C})}$. Repeated integration by parts shows that

$$
\hat{\phi}_{T, H}\left(u_{1}, \ldots, u_{n-1}, u_{n}\right) \ll(T / H)^{n-1}(1+\|u\|)^{-N}
$$

for any $N \geq 1$, where $\|u\|=\min \left\{\left|u_{1}\right|, \ldots,\left|u_{n-1}\right|,\left|u_{n}\right|\right\}$. Hence if $\delta>0$ is arbitrarily small, the contribution to (2.6) of the terms with

$$
\begin{aligned}
\min \left\{\left|\log \xi^{(i)}-\log \eta^{(i)}-\log \xi^{(n)}+\log \eta^{(n)}\right|\right. & (i=1, \ldots, n-1) \\
& |\log N(\xi)-\log N(\eta)|\} \gg H^{\delta-1}
\end{aligned}
$$

is negligible. Also $N(\xi), N(\eta)$ are of size X. Hence $|N(\xi)-N(\eta)| \ll X H^{\delta-1}$. Also

$$
\begin{aligned}
\left|\log \xi^{(i)}-\log \eta^{(i)}-\log \xi^{(n)}+\log \eta^{(n)}\right| & \ll H^{\delta-1} \\
|\log N(\xi)-\log N(\eta)| & \ll H^{\delta-1}
\end{aligned}
$$

implies that $\left|\log \xi^{(i)}-\log \eta^{(i)}\right| \ll H^{\delta-1}$ for each $i=1, \ldots, n$. So $\left|\xi^{(i)}-\eta^{(i)}\right| \ll$ $H^{\delta-1}\left|\eta^{(i)}\right|$ for each i. Therefore $\prod_{i=1}^{n}\left|\xi^{(i)}-\eta^{(i)}\right| \ll X H^{n \delta-n}$. Hence (2.7) $\quad A=X H^{n} \sum_{N(\xi-\eta) \ll X H^{n \delta-n}} \frac{a(\xi) \overline{a(\eta)}}{(N(\xi) N(\eta))^{1 / 2}} g\left(\frac{N(\xi)}{X}\right) g\left(\frac{N(\eta)}{X}\right) \hat{\phi}_{T, H}$
with small error. The contribution to (2.6) of the diagonal $\xi=\eta$ is

$$
X H^{n} \sum_{\xi} \frac{|a(\xi)|^{2}}{N(\xi)} g\left(\frac{N(\xi)}{X}\right)^{2} \hat{\phi}_{T, H}(0)
$$

Here

$$
\begin{aligned}
\hat{\phi}_{T, H}(0)= & \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \psi\left(\left|y_{1}+i t^{\prime}\right|-T / H, \ldots,\left|y_{n}+i t^{\prime}\right|-T / H\right) \\
& \times V\left(\frac{N(\xi)}{\sqrt{C}}\right) \overline{V\left(\frac{N(\eta)}{\sqrt{C}}\right)} d y_{1} \cdots d y_{n-1} d t^{\prime} \ll(T / H)^{n-1}
\end{aligned}
$$

Also by Rankin-Selberg convolution,

$$
\sum_{N(\xi) \leq X^{1+\epsilon}} \frac{|a(\xi)|^{2}}{N(\xi)}=O\left(X^{\epsilon}\right)
$$

Therefore, the diagonal contribution to (2.7) is

$$
X\left(T^{n-1} H\right)^{1+\epsilon}
$$

For the off-diagonal terms, let $\xi-\eta=h$. Then $N(h) \ll X H^{n \delta-n}$. We estimate the sum for each h : Let

$$
S(h)=\sum_{\eta} \frac{a(\eta+h) \overline{a(\eta)}}{(N(\eta+h) N(\eta))^{1 / 2}} g\left(\frac{N(\eta+h)}{X}\right) g\left(\frac{N(\eta)}{X}\right) \hat{\phi}_{T, H}
$$

Now we have $N(\eta+h)=N(\eta)+O\left(X H^{\delta-1}\right)$, and $\log \xi^{(i)}-\log \eta^{(i)}=$ $\log \left(1+h^{(i)} / \eta^{(i)}\right)=h^{(i)} / \eta^{(i)}+O\left(H^{2 \delta-2}\right)$. We can see easily that

$$
\begin{equation*}
\frac{\partial^{i_{1}+\cdots+i_{n}}}{\partial u_{1}^{i_{1}} \cdots \partial u_{n}^{i_{n}}} \hat{\phi}_{T, H}\left(u_{1}, \ldots, u_{n-1}, u_{n}\right) \ll(T / H)^{n-1+i_{1}+\cdots+i_{n}} . \tag{2.8}
\end{equation*}
$$

Hence

$$
\hat{\phi}_{T, H}=\hat{\phi}_{T, H}\left(H \frac{h}{\eta}\right)+O\left((T / H)^{n} H^{2 \delta-1}\right)
$$

where

$$
\begin{aligned}
\hat{\phi}_{T, H}\left(H \frac{h}{\eta}\right)= & \hat{\phi}_{T, H}\left(H\left(\frac{h^{(1)}}{\eta^{(1)}}-\frac{h^{(n)}}{\eta^{(n)}}\right), \ldots\right. \\
& \left.H\left(\frac{h^{(n-1)}}{\eta^{(n-1)}}-\frac{h^{(n)}}{\eta^{(n)}}\right), \frac{H}{2 \pi}\left(\frac{h^{(1)}}{\eta^{(1)}}+\cdots+\frac{h^{(n)}}{\eta^{(n)}}\right)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
S(h) \tag{2.9}
\end{equation*}
$$

$$
=\sum_{\eta} \frac{a(\eta+h) \overline{a(\eta)}}{N(\eta)} g\left(\frac{N(\eta)}{X}\right)^{2} \hat{\phi}_{T, H}\left(H \frac{h}{\eta}\right)\left(1+O\left((T / H)^{n} H^{2 \delta-1}\right)\right)
$$

Let $s=\left(s_{1}, \ldots, s_{n}\right)$ and use the notation $y^{s}=y_{1}^{s_{1}} \cdots y_{n}^{s_{n}}$ for $y=$ $\left(y_{1}, \ldots, y_{n}\right)$. Also for each $i=1, \ldots, n$, let $\eta^{(i)}=X^{1 / n} y_{i}$. Let

$$
B_{h, T, X}(s)=\int_{0}^{\infty} \cdots \int_{0}^{\infty} g\left(y_{1} \cdots y_{n}\right)^{2} \hat{\phi}_{T, H}\left(H \frac{h}{X^{1 / n} y}\right) y^{s} \frac{d y}{y}
$$

$$
D_{f}(s, h)=\sum_{\eta} \frac{a(\eta+h) \overline{a(\eta)}}{\eta^{s}} .
$$

For $-1 \leq \sigma_{j} \leq 2$, we integrate by parts N times, where $N=i_{1}+\cdots+i_{n}$, and using (2.8), we obtain

$$
B_{h, T, X}\left(\sigma_{j}+i t\right) \ll(T / H)^{N+n-1+\epsilon} \prod_{j=1}^{n}\left(1+\left|t_{j}\right|\right)^{-i_{j}} .
$$

Recall the following.
Theorem 2.2 ([PSS] $). D_{f}(s, h)$ has an analytic continuation to $\operatorname{Re}\left(s_{j}\right)$ $>11 / 18$, and for $s_{j}=\sigma_{j}+i t_{j}$,

$$
D_{f}(s, h) \ll N(h)^{1 / 9+\epsilon} \prod_{j=1}^{n}\left|h^{(j)}\right|^{1 / 2-\sigma_{j}}\left(1+\left|t_{j}\right|\right)^{3+\epsilon} .
$$

Proof. In [CPSS, Theorem 1.3], it is proved that the Dirichlet series

$$
D\left(s, \alpha_{1}, \alpha_{2}, h\right)=\sum_{\alpha_{1}, \alpha_{2}, \alpha_{1}-\alpha_{2}=h} \frac{a\left(\alpha_{1}\right) \overline{a\left(\alpha_{2}\right)}}{\left(\alpha_{1}+\alpha_{2}\right)^{s}}\left(\frac{\left(\alpha_{1} \alpha_{2}\right)^{1 / 2}}{\alpha_{1}+\alpha_{2}}\right)^{k-1}
$$

extends analytically as a function of several variables $s=\left(s_{1}, \ldots, s_{n}\right), s_{j}=$ $\sigma_{j}+i t_{j}$ to the region $\sigma_{j}>1 / 2+1 / 9$, and in this region

$$
D\left(s, \alpha_{1}, \alpha_{2}, h\right) \ll N(h)^{1 / 9+\epsilon} \prod_{j=1}^{n}\left|h^{(j)}\right|^{1 / 2-\sigma_{j}}\left(1+\left|t_{j}\right|\right)^{3+\epsilon} .
$$

It is easy to see that this implies our result.
By multi-variable inverse Mellin transform, we have

$$
g\left(y_{1} \cdots y_{n}\right)^{2} \hat{\phi}_{T, H}\left(H \frac{h}{X^{1 / n} y}\right)=\frac{1}{(2 \pi i)^{n}} \int_{\operatorname{Re}\left(s_{1}\right)=2} \cdots \int_{\operatorname{Re}\left(s_{n}\right)=2} B_{h, H, X}(s) y^{-s} d s
$$

Hence we can write the main term of (2.9) as follows:

$$
\begin{aligned}
& \sum_{\eta} \frac{a(\eta+h) \overline{a(\eta)}}{N(\eta)} g\left(\frac{N(\eta)}{X}\right)^{2} \hat{\phi}_{T, H}\left(H \frac{h}{\eta}\right) \\
& \quad=\frac{1}{(2 \pi i)^{n}} \int_{\operatorname{Re}\left(s_{1}\right)=2} \cdots \int_{\operatorname{Re}\left(s_{n}\right)=2} D_{f}(s+1, h)\left(X^{1 / n}\right)^{s_{1}+\cdots+s_{n}} B_{h, H, X}(s) d s .
\end{aligned}
$$

Now we move the contour to $\operatorname{Re}\left(s_{j}\right)=-7 / 18+\epsilon_{1}$, where ϵ_{1} is arbitrarily small. Then

$$
\begin{aligned}
& S(h) \ll \\
& \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} X^{-7 / 18}(T / H)^{n-1+i_{1}+\cdots+i_{n}+\epsilon} N(h)^{\epsilon} \prod_{j=1}^{n}\left(1+\left|t_{j}\right|\right)^{-i_{j}+3+\epsilon} d t_{1} \cdots d t_{n} .
\end{aligned}
$$

Take $i_{j}=5$ for each $j=1, \ldots, n$. Then

$$
S(h) \ll X^{-7 / 18}(T / H)^{6 n-1+\epsilon} N(h)^{\epsilon}
$$

Now sum over h in (2.7). Then the off-diagonal contribution to A is

$$
\ll X H^{n}\left(X H^{n \delta-n}\right)^{1+\epsilon} X^{-7 / 18}(T / H)^{6 n-1+\epsilon} \ll X^{29 / 18+\epsilon} T^{6 n-1+\epsilon} H^{-6 n+1} .
$$

Since $X \leq T^{n+\epsilon}$, it satisfies the desired bound $O\left(X\left(T^{n-1} H\right)^{1+\epsilon}\right)$ as long as

$$
H \geq T^{101 / 108}
$$

This concludes the proof of (2.3).
We give an outline of how the mean-value estimate (2.2) implies the pointwise estimate in Theorem 2.1. We do it for general L-functions. We merely imitate the argument for the Riemann zeta function in [Iv, (7.2)]: Let $L(s)$ be a Dirichlet series which converges absolutely for $\operatorname{Re}(s) \gg 0$, and has a meromorphic continuation to all of \mathbb{C} with pole only at $s=1$, and satisfies the functional equation

$$
\Lambda(s)=L(s) Q^{s} \prod_{j=1}^{m} \Gamma\left(a_{j} s+b_{j}\right), \quad \Lambda(s)=\omega \overline{\Lambda(1-\bar{s})}
$$

where Q, a_{j} are positive real numbers and ω, b_{j} are complex numbers with $\operatorname{Re}\left(b_{j}\right) \geq 0$ and $|\omega|=1$. Then we prove, for k a fixed positive integer and $T / 2 \leq t \leq 2 T$,

$$
\begin{equation*}
|L(1 / 2+i t)|^{k} \ll(\log T)\left(1+\int_{-\log ^{2} T}^{\log ^{2} T}|L(1 / 2+i(t+v))|^{k} e^{-|v|} d v\right) \tag{2.10}
\end{equation*}
$$

where the implied constant depends only on k, Λ. Let $L(s)^{k}=\sum_{n=1}^{\infty} a(n) n^{-s}$, and $c=1 / \log T$. By using the fact that

$$
e^{-x}=\frac{1}{2 \pi i} \int_{1-i \infty}^{1+i \infty} \Gamma(s) x^{-s} d s
$$

we have

$$
\frac{1}{2 \pi i} \int_{1-i \infty}^{1+i \infty} \Gamma(w) L(1 / 2+c+i t+w)^{k} d w=\sum_{n=1}^{\infty} a(n) e^{-n} n^{-1 / 2-c-i t} \ll 1
$$

Moving the contour to $\operatorname{Re}(w)=-c$ and using Stirling's formula $\Gamma(\pm c \pm i v)$ $\ll e^{-|v|}(c+|v|)^{-1}$, we have, for $T / 3 \leq t \leq 3 T$,

$$
L(1 / 2+c+i t)^{k} \ll 1+\int_{-\infty}^{\infty}|L(1 / 2+i(t+v))|^{k} e^{-|v|}(c+|v|)^{-1} d v
$$

By the functional equation,

$$
\begin{aligned}
|L(1 / 2-c+i t)| & \ll|L(1 / 2+c+i t)| \prod_{j=1}^{m}|t|^{2 a_{j} c} \\
& \ll\left(T^{c}\right)^{2 \sum_{j=1}^{m} a_{j}}|L(1 / 2+c+i t)| \ll|L(1 / 2+c+i t)|
\end{aligned}
$$

since $T^{c}=e$. On the other hand, by the residue theorem,

$$
L(1 / 2+i t)^{k}=\frac{1}{2 \pi i} \int_{C} L(1 / 2+i t+z)^{k} \Gamma(z) d z
$$

where C is the rectangle with vertices $\pm c \pm i \log ^{2} T$. By Stirling's formula, the integrals over horizontal sides of C are $o(1)$ as $T \rightarrow \infty$. By using the above estimate,

$$
\begin{aligned}
|L(1 / 2+i t)|^{k} \ll 1 & +\int_{-\log ^{2} T}^{\log ^{2} T} e^{-|u|}(c+|u|)^{-1} \\
& \times\left(1+\int_{-\infty}^{\infty}|L(1 / 2+i t+i(u+v))|^{k}(c+|v|)^{-1} e^{-|v|} d v\right) d u
\end{aligned}
$$

By using the estimate $\int_{-\log ^{2} T}^{\log ^{2} T} e^{-|u|}(c+|u|)^{-1} d u \ll \log T$, and making the substitution $x=u+v$, we have

$$
\begin{aligned}
|L(1 / 2+i t)|^{k} \ll \log T+ & \int_{-\infty}^{\infty}|L(1 / 2+i t+i x)|^{k} \\
& \times\left(\int_{-\infty}^{\infty} e^{-|u|-|x-u|}(c+|u|)^{-1}(c+|x-u|)^{-1} d u\right) d x
\end{aligned}
$$

Ivić [Iv, p. 173] showed that

$$
\int_{-\infty}^{\infty} e^{-|u|-|x-u|}(c+|u|)^{-1}(c+|x-u|)^{-1} d u \ll e^{-|x|} \log T
$$

Using convexity bound, one can show easily

$$
\begin{aligned}
& \int_{\log ^{2} T}^{\infty}|L(1 / 2+i t+i x)|^{k} e^{-|x|} d x=o(1) \\
& \int_{-\infty}^{-\log ^{2} T}|L(1 / 2+i t+i x)|^{k} e^{-|x|} d x=o(1) .
\end{aligned}
$$

This proves (2.10).
REmARK 2.3. Diaconu and Garrett [DG] have more general results over arbitrary number fields. In our special case, we give a very short proof by using the technique of [Ti] and [PSa].

Acknowledgments. I thank P. Sarnak who suggested to use [PSa] for the subconvexity bound and provided the crucial Theorem 2.2 which is contained in the preprint [PPSS]. Thanks are due to the referee who read the paper very carefully and pointed out many oversights. Without his/her help, this paper could not have been finished. In particular, the idea of using "fake" L-values in the proof of Theorem 2.1 is due to the referee.

This research was partially supported by an NSERC grant.

References

[BH] V. Blomer and G. Harcos, Twisted L-functions over number fields and Hilbert's eleventh problem, Geom. Funct. Anal. 20 (2010), 1-52.
[CPSS] J. Cogdell, I. Piatetski-Shapiro and P. Sarnak, Estimates on the critical line for Hilbert modular L-functions and applications I, preprint.
[DG] A. Diaconu and P. Garrett, Subconvexity bounds for automorphic L-functions, J. Inst. Math. Jussieu 9 (2010), 95-124.
[D] W. Duke, Some problems in multidimensional analytic number theory, Acta Arith. 52 (1989), 203-228.
[G] P. Garrett, Holomorphic Hilbert Modular Forms, Brooks/Cole, 1990.
[Go] A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), 278-295.
[H] G. Harcos, Uniform approximate functional equation for principal L-function, Int. Math. Res. Notices 2002, 923-932; Erratum, ibid. 2004, 659-660.
[Iv] A. Ivić, The Riemann Zeta-Function; Theory and Applications, Dover Publ., 1985.
[IS] H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L-functions, in: GAFA 2000 (Tel Aviv, 1999), Birkhäuser, 2000, 705-741.
[PSa] Y. Petridis and P. Sarnak, Quantum unique ergodicity for $S L_{2}(\mathcal{O}) \backslash \mathbb{H}^{3}$ and estimates for L-functions, J. Evolution Equations 1 (2001), 277-290.
[Sa] P. Sarnak, Fourth moments of Grössencharakteren zeta functions, Comm. Pure Appl. Math. 38 (1985), 167-178.
[Ti] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ., 1951.

Henry H. Kim
Department of Mathematics
University of Toronto
Toronto, ON M5S 2E4, Canada
and
Korea Institute for Advanced Study
Seoul, Korea
E-mail: henrykim@math.toronto.edu

[^0]: 2010 Mathematics Subject Classification: Primary 11F41; Secondary 11M41.
 Key words and phrases: Hilbert cusp forms, second moments, subconvexity.

