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1. Introduction. Values of Dirichlet L-functions at s = 1 have always
attracted great attention due to their central role in number theory. In par-
ticular the prime number theorem for arithmetic progressions relies on the
non-vanishing of L(1, χ) for any non-principal character χ (mod q). More-
over improving the existing lower bounds for |L(1, χ)| (the famous Siegel
bound |L(1, χ)| �ε q

ε) would imply many important consequences.
Various authors have studied the distribution of these values (one can

refer to [5] for a history of the subject including results for other families of L-
functions). In [3] A. Granville and K. Soundararajan studied the distribution
of extreme values of |L(1, χ)|, showing that the proportion of characters χ
(mod q) for which |L(1, χ)| > eγτ equals

exp
(
−e

τ−C1−1

τ
(1 + o(1))

)
,

uniformly in the range 1� τ ≤ log log q − 20, where

(1.1) C1 :=
1�

0

log I0(t)
dt

t2
+
∞�

1

(log I0(t)− t) dt
t2
,

and I0(t) :=
∑∞

n=0(t/2)2n/n!2 is the modified Bessel function of order 0.
In [6] the author studied the distribution of the values L(1, χ) in the com-
plex plane by considering the joint distribution function of |L(1, χ)| and
argL(1, χ) when the norm is large and the argument is bounded, where
argL(1, χ) is defined by continuous variation along the real axis from infin-
ity taking the argument at infinity to be zero.

In this paper we are concerned with the study of the distribution of
extreme values of argL(1, χ) as χ varies over primitive characters modulo
a large prime q. Refining ideas of J. E. Littlewood [7] we first show that
assuming the Generalized Riemann Hypothesis we have (see Corollary 2.6
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below)

(1.2) |argL(1, χ)| ≤ log log log q + C2 + log 2 + o(1),

where

(1.3) C2 := lim
x→∞

(∑
p≤x

arctan
(

1√
p2 − 1

)
− log log x

)
= 0.2937504 < γ.

Moreover we can exhibit extreme values of argL(1, χ) from Theorem 1.2
below.

Corollary 1.1. For any ε > 0 there exists q(ε) > 0 such that if q
is a prime number and q ≥ q(ε), then for δ ∈ {−1, 1}, there are at least
q1−1/(log q)ε non-principal characters χ modulo q for which

(1.4) δ argL(1, χ) ≥ log log log q + C2 − ε.
Therefore we can see that the difference between this result and the con-

ditional bound (1.2) is the constant log 2, and we can ask ourselves which
of these two results corresponds to the true nature of extreme values of
argL(1, χ). This gives another motivation to study the behavior of the dis-
tribution function

Ψq(τ) :=
1

φ(q)
|{χ (mod q), χ 6= χ0 : argL(1, χ) > τ}| for τ > 0.

Remark 1. Concerning the function

Φq(τ) :=
1

φ(q)
|{χ (mod q), χ 6= χ0 : argL(1, χ) < −τ}|

for τ > 0, one can observe that

Φq(τ) = Ψq(τ),

simply because the complex characters χ modulo q occur in pairs, and for
these we have argL(1, χ) = − argL(1, χ) (for real characters χ we have
argL(1, χ) = 0 by the Euler product representation of L(1, χ)). Therefore
all the results obtained for Ψq(τ) hold for Φq(τ).

In [2] P. D. T. A. Elliott studied the distribution of argL(s, χ) in the
half-plane Re(s) > 1/2. Although he considered a larger family (all the non-
principal characters to prime moduli not exceeding Q), his method shows
that

lim
q→∞
q prime

Ψq(τ) = Ψ(τ)

exists and is a continuous function of τ . Moreover he indicated how to com-
pute its characteristic function. In his Ph.D. thesis, W. R. Monach [8] showed
that 1 − Ψ(τ) is the distribution function of a sum of independent random
variables, and used this fact to estimate the tail of this distribution. Indeed
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he proved that for τ ≥ π/2, there exist positive constants a1, a2 > 0 for
which

exp(−ea1eτ ) ≤ Ψ(τ) ≤ exp(−ea2eτ ).

This indicates that Ψq(τ) should decay “triple exponentially” as τ → ∞.
Our first theorem estimates the function Ψq(τ) in a wide range of τ (which
we expect is the full range) and confirms this conjecture. Moreover it also
improves on Monach’s bounds for Ψ(τ).

Theorem 1.2. Let q be a large prime. Uniformly for 1�τ ≤ log log log q
+ C2 − o(1) we have

Ψq(τ) = exp
(
−exp(eτ−C2 − C1 − 1)

eτ−C2

(
1 +O

(
1
eτ/2

)))
.

The same asymptotics also holds for Ψ(τ) but for arbitrary τ .

Remark 2. If the asymptotic for Ψq(τ) were to persist to a slightly
larger range 1 � τ ≤ log log log q + C2 + ε for any ε > 0, this would imply
the conjecture that

max
χ (mod q)
χ 6=χ0

argL(1, χ) = log log log q + C2 + o(1),

min
χ (mod q)
χ 6=χ0

argL(1, χ) = − log log log q − C2 + o(1).

To establish Theorem 1.2, the main idea consists in relating the Laplace
transform of argL(1, χ) with large purely imaginary moments of L(1, χ)
(in this case this approach works better than estimating the moments of
argL(1, χ)). Then we evaluate these imaginary moments (in our case the
moments we need are Mq(−is, is) where s is large positive number; see
(1.5) below for the definition), and use the saddle point method to recover
the asymptotic for the distribution function. Therefore the next step is to
find an asymptotic formula for complex moments of L(1, χ).

Let us first define some notation which will be used throughout this
paper. For z a complex number, we define the zth divisor function dz(n) to
be the multiplicative function such that dz(pa) = Γ (z + a)/Γ (z)a! for any
prime p and any integer a ≥ 0. Then dz(n) is the coefficient of the Dirichlet
series ζ(s)z for Re(s) > 1. Furthermore logj will denote the jth iterated
logarithm, so that log1 n = log n and logj n = log(logj−1 n) for each j ≥ 2.
Let

Sq := {χ (mod q), χ 6= χ0 : χ is non-exceptional},
where we define a character χ to be exceptional if there exists s with Re(s) ≥
1− c/log(q(Im(s) + 2)) and L(s, χ) = 0, for some sufficiently small constant
c > 0. One expects that there is no such a character, but what is known
unconditionally (see [1]) is that these characters, if they exist, must be very
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rare. Indeed each χ must be real, and between any two powers of 2 there is at
most one fundamental discriminant D such that χ =

(
D
·
)
. Since q is prime

in our case, there is at most one such exceptional character of conductor q.
Granville and Soundararajan (unpublished) proved an asymptotic for-

mula for the moments

(1.5) Mq(z1, z2) :=
1

φ(q)

∑
χ∈Sq

L(1, χ)z1L(1, χ)z2 ,

where z1, z2 are complex numbers satisfying |z1|, |z2| ≤ (log q)/(log2 q)3.
Using their method, one can improve this range to (log q)/(50(log2 q)2) (see
Theorem 9.2 of [6]). Their idea consists in using an induction on certain
sums of divisor functions to control the off-diagonal terms of the moments.
Using a different approach (based on zero density estimates for L(s, χ)) we
improve this range to

R(q) :=
(log q)(log4 q)

10(log2 q)(log3 q)
.

Theorem 1.3. Let q be a large prime. Then uniformly for all complex
numbers z1, z2 in the region |z1|, |z2| ≤ R(q), we have

(1.6) Mq(z1, z2) =
∞∑
n=1

dz1(n)dz2(n)
n2

+O

(
exp
(
−(log q)(log4 q)

50 log2 q

))
.

As in [5] and [6], we can compare the distribution of argL(1, χ) to that
of an appropriate probabilistic model. Let {X(p)}p prime be independent
random variables uniformly distributed on the unit circle, and define the
random Euler products L(1, X) :=

∏
p(1−X(p)/p)−1 (these products con-

verge with probability 1). Indeed, one can observe that the main term on
the RHS of (1.6) corresponds to E(L(1, X)z1L(1, X)

z2) (this follows from
Lemma 3.2 below), and that Ψ(τ) = Prob(argL(1, X) > τ) (this has been
proved in [8]).

2. Bounds for argL(1, χ) and logL(s, χ). We begin by proving the
following useful lemma which will be used later in several places.

Lemma 2.1. Let x be a large number, and 0 ≤ α ≤ (log3 x)/(4 log x).
Then for 1 ≤ σ < 4 we have∑

p≤xσ

1
p1−α = (1 + o(1)) log2 x.

Proof. The lower bound follows from the prime number theorem which
implies that ∑

p≤xσ

1
p

= log2 x+O(1).



Extreme values of argL(1, χ) 339

To prove the upper bound we split the sum into two parts. In the range
p ≤ e1/α we use the estimate pα = 1+O(α log p) and the asymptotic formula∑

p≤y(log p)/p = log y +O(1), while in the range e1/α ≤ p ≤ xσ we use the
trivial bound pα ≤ (log2 x)σ/4. Thus we get∑
p≤xσ

1
p1−α ≤

∑
p≤e1/α

1 +O(α log p)
p

+ (log2 x)σ/4
(

log
(

log(xσ)
log(e1/α)

)
+O(1)

)
≤ log2 x− log4 x+ (log2 x)σ/4(log4 x+O(1)) = (1 + o(1)) log2 x,

which completes the proof.

In the next lemma we establish the classical bound for logL(s, χ) on the
line Re(s) = 1 if χ 6= χ0 is a non-exceptional character.

Lemma 2.2. If χ 6= χ0 is a non-exceptional character modulo q, then for
all t ∈ R we have

(2.1) |logL(1 + it, χ)| � log2(q(|t|+ 2)).

Proof. Consider the circles with center s0 = 1 + 1/(log(q(|t| + 2))) + it
and radii r := 1/(log(q(|t| + 2))) < R := (1 + c)/(log(q(|t| + 2))) for an
appropriately small constant c > 0. Then the smaller circle passes through
1 + it. From our assumption on χ we may choose c such that logL(z, χ) is
analytic inside the larger circle, by the classical zero free region of L(z, χ).
For a point z on the larger circle we have the classical bound log |L(z, χ)| ≤
log2(q(|t|+2))+O(1). Thus by the Borel–Carathéodory Theorem we deduce
that

|logL(1 + it, χ)| ≤ 2r
R− r

max
|z−s0|=R

Re(logL(z, χ)) +
R+ r

R− r
|logL(s0, χ)|

� log2(q(|t|+ 2)),

using that |logL(s0, χ)| ≤ log ζ(1 + 1/(log(q(|t| + 2)))) = log2(q(|t| + 2)) +
O(1).

From this lemma we can deduce the classical bound for argL(1, χ).

Corollary 2.3. If χ 6= χ0 (mod q), then

argL(1, χ)� log2 q.

The main ingredient to establish these classical bounds is the zero free
region for L(s, χ). Therefore any improvement will depend on our knowl-
edge of the location of its zeros. Indeed, we will improve the bound (2.1)
(see Corollary 2.5 below) for characters χ modulo q for which L(s, χ) has no
zeros in a larger region inside the critical strip (this assumption is true for
almost all characters by the classical zero density result (2.2)). In particular
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we obtain the bound (1.2) for argL(1, χ) under the GRH. The main ingre-
dient to establish these results is the following lemma which corresponds to
Lemma 8.2 of [4].

Lemma 2.4. Let s = σ + it with σ > 1/2 and |t| ≤ 2q. Let y ≥ 2
be a real number, and let 1/2 ≤ σ0 < σ. Suppose that the rectangle {z :
σ0 < Re(z) ≤ 1, |Im(z) − t| ≤ y + 3} contains no zeros of L(z, χ). Put
σ1 = min((σ + σ0)/2, σ0 + 1/log y). Then

logL(s, χ) =
y∑

n=2

Λ(n)χ(n)
ns log n

+O

(
log q

(σ1 − σ0)2
yσ1−σ

)
.

Corollary 2.5. Let η = (log4 q)/(4 log2 q). Assume that L(z, χ) has no
zeros in the rectangle {z : 5/8 ≤ Re(z) ≤ 1 and |Im(z)| ≤ 2(log q)3}. Then
for any s = σ + it with 1− η ≤ σ ≤ 1 and |t| ≤ (log q)3 we have

|logL(s, χ)| ≤ (1 + o(1)) log3 q.

Furthermore this holds for all but at most q10/11 characters χ modulo q.

Proof. We use Lemma 2.4 with 1 − η ≤ σ ≤ 1, σ0 = 5/8, y = (log q)3

and σ1 = 5/8 + 1/log y. Therefore if L(z, χ) has no zeros in the rectangle
{z : 5/8 ≤ Re(z) ≤ 1 and |Im(z)| ≤ 2(log q)3}, then

|logL(s, χ)| =
∣∣∣∣ (log q)3∑
n=2

Λ(n)χ(n)
ns log n

∣∣∣∣+O( 1
(log q)1/9

)
=
∣∣∣∣ ∑
p≤(log q)3

χ(p)
ps

∣∣∣∣+O(1)

≤
∑

p≤(log q)3

1
p1−η +O(1)�(1 + o(1)) log3 q,

by Lemma 2.1, taking x = log q there. Finally the last statement follows by
taking σ = 5/8 and T = 2(log q)3 in the zero density result of H. L. Mont-
gomery [9] which states that for q ≥ 1, T ≥ 2 and 1/2 ≤ σ ≤ 4/5 we
have

(2.2)
∑

χ (mod q)

N(σ, T, χ)� (qT )3(1−σ)/(2−σ)(log(qT ))9,

where N(σ, T, χ) denotes the number of zeros of L(s, χ) such that Re(s) ≥ σ
and |Im(s)| ≤ T .

Now we prove the bound (1.2) for argL(1, χ) under the Generalized
Riemann Hypothesis.

Corollary 2.6. Assume GRH. Then

|argL(1, χ)| ≤ log3 q + C2 + log 2 + o(1).
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Proof. By Lemma 2.4, the GRH implies that for y = (log q)2(log2 q)6 we
have

logL(1, χ) =
y∑

n=2

Λ(n)χ(n)
n log n

+O

(
1

log2 q

)
.

Therefore extracting the imaginary parts from both sides we get

argL(1, χ) =
∑
p≤y

∞∑
n=1

Im(χ(pn))
pnn

+O

(
1

log2 q

)
.

Now Im(χ(pn)) = sin(n argχ(p)). Then by the proof of Lemma 3.5 below
we know that for all θ ∈ [−π, π],∣∣∣∣ ∞∑

n=1

sin(nθ)
pnn

∣∣∣∣ ≤ arctan
(

1√
p2 − 1

)
.

Thus we deduce that

|argL(1, χ)| ≤
∑
p≤y

arctan
(

1√
p2 − 1

)
+ o(1) = log3 q + C2 + log 2 + o(1).

3. Estimates for sums over divisor functions. We begin by col-
lecting some useful estimates for the Bessel function I0(t).

Lemma 3.1. log I0(t) is a differentiable function with bounded derivative
on [0,+∞) and satisfies

log I0(t) =
{
O(t2) if 0 ≤ t < 1,
t+O(log(t+ 1)) if 1 ≤ t.

Proof. The first estimate follows from the Taylor series expansion I0(t) =∑∞
n=0(t/2)2n/n!2. For the second we use an integral representation of I0(t):

I0(t) =
1
π

π�

0

et cos θ dθ ≤ et.

Furthermore taking ε = 1/t we deduce that

I0(t) ≥ 1
π

ε�

0

et cos θ dθ ≥ ε

π
et cos ε ≥ et

10πt
,

from which the second estimate follows. Finally, since I0(t) is a positive
smooth function on [0,+∞), we see that log I0(t) is differentiable and

|(log I0(t))′| =
∣∣∣∣
	π
0 cos θet cos θ dθ	π

0 e
t cos θ dθ

∣∣∣∣ ≤ 1.

Now we recall some easy bounds for the divisor function dz(n). First we
have

|dz(n)| ≤ d|z|(n) ≤ dk(n)
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for any integer k ≥ |z|. Furthermore for j ∈ N and X > 3 we have

dj(n)e−n/X ≤ ej/X
∑

a1···aj=n
e−(a1+···+aj)/X ,

and so

(3.1)
∞∑
n=1

dj(n)
n

e−n/X ≤
(
e1/X

∞∑
a=1

e−a/X

a

)j
≤ (log(3X))j .

In order to estimate the moments in Theorem 1.3, we have to understand
the behavior of the sums

∞∑
n=1

dz1(n)dz2(n)
n2σ

=
∏
p

( ∞∑
a=0

dz1(pa)dz2(pa)
p2σa

)
for certain z1, z2 ∈ C and σ > 1/2. The first step is to use the following
integral representation for the sum

∑∞
a=0 dz1(pa)dz2(pa)/p2σa.

Lemma 3.2. For all z1, z2 ∈ C and σ > 1/2 we have
∞∑
a=0

dz1(pa)dz2(pa)
p2σa

=
1

2π

π�

−π

(
1− eiθ

pσ

)−z1(
1− e−iθ

pσ

)−z2
dθ.

Proof. We have

1
2π

π�

−π

(
1− eiθ

pσ

)−z1(
1− e−iθ

pσ

)−z2
dθ

=
1

2π

π�

−π

∞∑
a=0

dz1(pa)eiθa

pσa

∞∑
b=0

dz2(pb)e−iθb

pσb
dθ

=
∑
a,b≥0

dz1(pa)dz2(pb)
pσ(a+b)

1
2π

π�

−π
ei(a−b)θ dθ =

∞∑
a=0

dz1(pa)dz2(pa)
p2σa

.

Using this lemma we will prove an upper bound for the following sum
over the divisor function dk(n). This will be one of the ingredients to prove
Theorem 1.3.

Lemma 3.3. Let k be a large real number. For any 0≤α≤ log3 k/(2 log k)
we have

∞∑
n=1

dk(n)2

n2−α ≤ exp((2 + o(1))k log2 k).

Proof. Let σ = 1− α/2, and put r = (2k)1/σ. By Lemma 3.2 we have
∞∑
n=1

dk(n)2

n2−α =
∏
p

(
1

2π

π�

−π

(
1− eiθ

pσ

)−k(
1− e−iθ

pσ

)−k
dθ

)
.
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Now for p >
√
r (which means that p2σ > 2k) we find that

(3.2)
1

2π

π�

−π

(
1− eiθ

pσ

)−k(
1− e−iθ

pσ

)−k
dθ

=
1

2π

π�

−π
exp
(

2k
pσ

cos θ +O

(
k

p2σ

))
dθ = I0

(
2k
pσ

)(
1 +O

(
k

p2σ

))
.

Moreover one can see that

1
2π

π�

−π

(
1− eiθ

pσ

)−k(
1− e−iθ

pσ

)−k
dθ ≤

(
1− 1

pσ

)−2k

.

Hence combining this trivial bound with (3.2), and using Lemmas 3.1 and
2.1, we deduce that

∞∑
n=1

dk(n)2

n2−α ≤ e
o(k)

∏
p≤
√
r

(
1− 1

pσ

)−2k ∏
p>
√
r

I0

(
2k
pσ

)

≤ exp
(

2k
∑
p≤r

1
pσ

+O

(
k +

∑
p<
√
r

log k +
∑
p>r

k2

p2σ

))
≤ exp((2 + o(1))k log2 k),

which completes the proof.

In order to prove Theorem 1.2, we have to estimate certain complex
moments of L(1, χ) which, by Theorem 1.3, are asymptotic to sums over
complex divisor functions. Indeed, an essential step to estimate the distri-
bution functions Ψ(τ) and Ψq(τ) is the following result.

Proposition 3.4. For large s we have
∞∑
n=1

ds/(2i)(n)d−s/(2i)(n)
n2

= exp
(
s log2 s+ C2s+ C1

s

log s
+O

(
s

(log s)2

))
,

where C1 and C2 are defined by (1.1) and (1.3) respectively.

Using Lemma 3.2 one can see that
∞∑
n=1

ds/(2i)(n)d−s/(2i)(n)
n2

=
∏
p

(
1

2π

π�

−π

(
1− e

iθ

p

)−s/(2i)(
1− e

−iθ

p

)s/(2i)
dθ

)
.

The first step in proving Proposition 3.4 is to study the function

gs(θ) :=
(

1− eiθ

p

)−s/(2i)(
1− e−iθ

p

)s/(2i)
as a function of θ on the interval [−π, π]. We prove the following
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Lemma 3.5. For s > 0, the function gs(θ) is a real-valued positive con-
tinuous function of θ on [−π, π]. Furthermore for θp := arccos(1/p) we have

min
θ∈[−π,π]

gs(θ) = gs(−θp) = exp
(
−s arctan

(
1√
p2 − 1

))
,

max
θ∈[−π,π]

gs(θ) = gs(θp) = exp
(
s arctan

(
1√
p2 − 1

))
.

Proof. Let fs(θ) := log gs(θ). Then

fs(θ) = − s

2i
log
(

1− eiθ

p

)
+
s

2i
log
(

1− e−iθ

p

)
=

s

2i

∞∑
n=1

einθ

pnn
− s

2i

∞∑
n=1

e−inθ

pnn
= s

∞∑
n=1

sin(nθ)
pnn

,

which is the Fourier expansion of fs(θ). This implies that fs(θ) is an odd
continuous real-valued function of θ, from which the first assertion of the
lemma follows.

By the absolute and uniform convergence of the Fourier expansion of
fs(θ) we have

f ′s(θ)
s

=
∞∑
n=1

cos(nθ)
pn

= Re
∞∑
n=1

einθ

pn
= Re

(
eiθ

p

1
1− eiθ/p

)
=
p cos θ − 1
|p− eiθ|2

.

Now the roots of the equation p cos θ = 1 are ±θp, and we can see that
f ′s(0) > 0 and f ′s(−π) = f ′s(π) < 0. Therefore, as fs(θ) is odd, we deduce
that

max
θ∈[−π,π]

fs(θ) = fs(θp) and min
θ∈[−π,π]

fs(θ) = fs(−θp) = −fs(θp).

Now

1− eiθp

p
= 1− cos θp

p
− isin θp

p
= 1− 1

p2
− i
√

1− 1/p2

p

=
(

1− 1
p2

)(
1− i√

p2 − 1

)
.

Similarly

1− e−iθp

p
=
(

1− 1
p2

)(
1 +

i√
p2 − 1

)
.

To conclude the proof we note that

fs(θp) =
s

2i

(
log
(

1− e−iθp

p

)
− log

(
1− eiθp

p

))
=

s

2i
log
(

1 + i/
√
p2 − 1

1− i/
√
p2 − 1

)
= s arctan

(
1√
p2 − 1

)
.
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Proof of Proposition 3.4. First we define

h(t) :=
{

log I0(t) if 0 ≤ t < 1,
log I0(t)− t if 1 ≤ t.

For s > 0 let

Ep(s) :=
1

2π

π�

−π

(
1− eiθ

p

)−s/(2i)(
1− e−iθ

p

)s/(2i)
dθ.

Then by Lemma 3.2 we know that
∞∑
n=1

ds/(2i)(n)d−s/(2i)(n)
n2

=
∏
p

Ep(s).

Case 1. p >
√
s. In this case

Ep(s) =
1

2π

π�

−π
exp
(
s

2i
eiθ

p
− s

2i
e−iθ

p
+O

(
s

p2

))
dθ

=
1

2π

π�

−π
exp
(
s

p
sin θ +O

(
s

p2

))
dθ = I0

(
s

p

)(
1 +O

(
s

p2

))
.

Case 2. p ≤
√
s. First by Lemma 3.5 we have

(3.3) Ep(s) ≤ exp
(
s arctan

(
1√
p2 − 1

))
.

Furthermore let ε > 0 be a small number to be chosen later. Then using
Lemma 3.5 again gives

Ep(s) ≥
1

2π

θp+ε�

θp−ε

(
1− eiθ

p

)−s/(2i)(
1− e−iθ

p

)s/(2i)
dθ.

Now if |θ − θp| ≤ ε then one can see that

gs(θ) =
(

1− eiθp +O(ε)
p

)−s/(2i)(
1− e−iθp +O(ε)

p

)s/(2i)
= gs(θp)

(
1 +O

(
sε

p

))
.

Now choose ε = 1/(Bs) where B is a suitably large constant. This implies
that for |θ − θp| ≤ ε we have gs(θ) ≥ 1

2gs(θp), which gives

(3.4) Ep(s)�
1
s

exp
(
s arctan

(
1√
p2 − 1

))
.

Therefore if p ≤
√
s then the bounds (3.3) and (3.4) imply that

logEp(s) = s arctan
(

1√
p2 − 1

)
+O(log s).
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Thus we deduce from Cases 1 and 2 that∑
p

logEp(s) =
∑
p≤
√
s

s arctan
(

1√
p2 − 1

)
+
∑
p>
√
s

log I0

(
s

p

)
+ E1,

where

E1 �
∑
p≤
√
s

log s+
∑
√
s<p

s

p2
� s√

s log s
+
√
s

log s
log s�

√
s.

Now by the prime number theorem we have

(3.5)
∑
p≤x

1
p

= log2 x+ c+O

(
1

(log x)2

)
for some constant c. Hence, as

∑
p>x arctan(1/

√
p2 − 1) − 1/p = O(1/x2),

we deduce that∑
p≤x

arctan
(

1√
p2 − 1

)
= log2 x+ C2 +O

(
1

(log x)2

)
.

Therefore

(3.6)
∑
p

logEp(s)

= s log2(
√
s) + C2s+ s

∑
√
s<p≤s

1
p

+
∑
p>
√
s

h

(
s

p

)
+O

(
s

(log s)2

)

= s log2 s+ C2s+
∑
p>
√
s

h

(
s

p

)
+O

(
s

(log s)2

)
,

where the last estimate follows from (3.5). To complete the proof we only
need to evaluate the sum over h(s/p). To this end we use the prime number
theorem in the form

(3.7) π(t) =
t�

2

du

log u
+O(te−8

√
log t).

First by Lemma 3.1,

(3.8)
∑
p>s3/2

h

(
s

p

)
�

∑
p>s3/2

s2

p2
�
√
s.

Now by (3.7) we have

(3.9)
∑

√
s<p≤s3/2

h

(
s

p

)
=

s3/2�
√
s

h

(
s

t

)
dπ(t) =

s3/2�
√
s

h

(
s

t

)
dt

log t
+ E2,



Extreme values of argL(1, χ) 347

where

E2 � h(
√
s)
√
s e−4

√
log s + h(s−1/2)s3/2e−4

√
log s

+
s3/2�
√
s

s

t2

∣∣∣∣h′(st
)∣∣∣∣te−8

√
log t dt.

Now by Lemma 3.1 we can see that E2 � se−4
√

log s. To estimate the main
term we make the change of variables T = s/t. Hence

(3.10)
s3/2�
√
s

h

(
s

t

)
dt

log t
= s

s1/2�

s−1/2

h(T )
T 2 log(s/T )

dT.

In the range s−1/2 ≤ t ≤ s1/2, we have
1

log(s/t)
=

1
log s

1

1− log t
log s

=
1

log s
+O

(
log t

(log s)2

)
.

Therefore

(3.11)
s1/2�

s−1/2

h(t)
t2 log(s/t)

dt =
1

log s

s1/2�

s−1/2

h(t)
t2

dt+O

(
1

(log s)2

)
,

by Lemma 3.1 using that
	∞
0

h(t) log t
t2

dt� 1. Finally by appealing to Lemma
3.1 again we get

(3.12)
s1/2�

s−1/2

h(t)
t2

dt = C1 +O

(
log s√
s

)
.

Therefore from (3.8)–(3.12) we deduce that∑
p>
√
s

h

(
s

p

)
= C1

s

log s
+O

(
s

(log s)2

)
,

which completes the proof.

4. Complex moments of L(1, χ). To prove Theorem 1.3, an essential
step is to show that L(1, χ)z can be approximated by a very short Dirichlet
polynomial, if L(s, χ) has no zeros in a wide region inside the critical strip.

Proposition 4.1. Assume that L(s, χ) has no zeros inside the rectangle
{s : 5/8 ≤ Re(s) ≤ 1 and |Im(s)| ≤ 2(log q)3}. Then for X = q/log q and
any complex number z such that |z| ≤ R(q) we have

L(1, χ)z =
∞∑
n=1

dz(n)χ(n)
n

e−n/X +O

(
exp
(
−(log q)(log4 q)

8 log2 q

))
.
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Proof. Since 1
2πi

	2+i∞
2−i∞ y

sΓ (s) ds = e−1/y it follows that

1
2πi

2+i∞�

2−i∞
L(1 + s, χ)zΓ (s)Xs ds =

∞∑
n=1

dz(n)χ(n)
n

e−n/X .

We shift the contour to C, which is the path joining

−i∞,−i(log q)3,−η − i(log q)3,−η + i(log q)3,+i(log q)3,+i∞,
where η = (log4 q)/(4 log2 q). We encounter a simple pole at s = 0 which
leaves the residue L(1, χ)z. Using Lemma 2.2 and Stirling’s formula we get

1
2πi

(−i(log q)3�

−i∞
+

+i∞�

i(log q)3

)
L(1 + s, χ)zΓ (s)Xs ds

�
∞�

(log q)3

eO(|z|log2(qt))e−πt/3 dt� 1
q
.

Finally, using Corollary 2.5 along with Stirling’s formula and the fact that
Γ (s) has a simple pole at s = 0, we deduce that

1
2πi

(−η−i(log q)3�

−i(log q)3

+
−η+i(log q)3�

−η−i(log q)3

+
i(log q)3�

−η+i(log q)3

)
L(1 + s, χ)zΓ (s)Xs ds

� exp
(
−π

3
(log q)3 +O(|z| log3 q)

)
+

1
η

(log q)3X−η exp(|z| log3 q +O(|z|))

� exp
(
−(log q)(log4 q)

8 log2 q

)
.

Proof of Theorem 1.3. Let S+
q be the set of characters χ such that L(s, χ)

has no zeros in the rectangle {s : 5/8 ≤ Re(s) ≤ 1 and |Im(s)| ≤ 2(log q)3},
and denote by S−q the complementary subset Sq \ S+

q . Then by the zero
density result (2.2) we know that

(4.1) |S−q | � q10/11.

Our goal is to evaluate

Mq(z1, z2) =
1

φ(q)

∑
χ∈Sq

L(1, χ)z1L(1, χ)z2 .

The strategy is as follows: we split the summation into two parts, the first
over the characters of S+

q and the second over those in S−q . The latter sum
can be trivially bounded using (4.1) and Lemma 2.2. For χ ∈ S+

q , Propo-
sition 4.1 shows that both L(1, χ)z1 and L(1, χ)z2 can be approximated
by very short Dirichlet polynomials. Finally, we average the corresponding
short sums over all characters (the contribution of the characters χ /∈ S+

q
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being negligible) and use the orthogonality relations to compute the main
term.

We have
Mq(z1, z2) = M+

q (z1, z2) +M−q (z1, z2),

where
M±q (z1, z2) =

1
φ(q)

∑
χ∈S±q

L(1, χ)z1L(1, χ)z2 .

By (4.1) and Lemma 2.2 we find that

M−q (z1, z2)� q−1/11 exp(O((|z1|+ |z2|) log2 q))� q−1/12.

Let X = q/log q and put k = max{[|z1|] + 1, [|z2|] + 1}. By Proposition 4.1
we have

(4.2) M+
q (z1, z2)

=
∑
n,m≥1

dz1(n)dz2(m)
nm

e−(m+n)/X 1
φ(q)

∑
χ∈S+

q

χ(n)χ(m) + E3,

where

E3 � exp
(

(1 + o(1))k log3 q −
(log q)(log4 q)

8 log2 q

)
� exp

(
−(log q)(log4 q)

50 log2 q

)
,

by Corollary 2.5. We now extend the main term of the RHS of (4.2) so
as to include all characters modulo q. To this end we use (3.1) and (4.1) to
estimate the contribution of the characters χ /∈ S+

q . Indeed, this contribution
is bounded by

|S−q |+ 2
φ(q)

(∑
n≥1

dk(n)
n

e−n/X
)2

� (log(3X))2k

q1/11
� q−1/12.

Therefore using the orthogonality relations of characters we deduce that

(4.3) Mq(z1, z2)

=
∑
n,m≥1

(mn,q)=1
m≡n (mod q)

dz1(n)dz2(m)
nm

e−(m+n)/X +O

(
exp
(
−(log q)(log4 q)

50 log2 q

))
.

First we estimate the contribution of the diagonal terms m = n. We know
that for all α > 0 we have 1 − e−t ≤ 2tα for all t > 0. Then choosing
α = (log3 k)/(2 log k) we see that the contribution of these terms is

(4.4)
∞∑
n=1

(n,q)=1

dz1(n)dz2(n)
n2

e−2n/X =
∞∑
n=1

(n,q)=1

dz1(n)dz2(n)
n2

+ E4,
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where

E4 � X−α
∞∑
n=1

dk(n)2

n2−α � X−α exp((2 + o(1))k log2 k)

� exp
(
−(log q)(log4 q)

8 log2 q

)
,

by Lemma 3.3. In the sum on the RHS of (4.4) we remove the constraint
(n, q) = 1 at the cost of an error term bounded by

� k2

q2

∞∑
n=1

dk(n)2

n2
� 1

q2
exp((2 + o(1))k log2 k)� 1

q
,

using Lemma 3.3, and the fact that dk(qn) ≤ dk(q)dk(n) = kdk(n).
Furthermore the off-diagonal terms m 6= n satisfy m ≡ n (mod q) and

(mn, q) = 1, which implies that max(m,n) > q. Since X = q/log q we deduce
that the contribution of these terms is bounded by

2
∞∑
n=1

dk(n)
n

e−n/X
(∑
m>q

dk(m)
m

e−m/X
)

� (log(3X))k
√
q

(∑
m>q

dk(m)
m

e−m/(2X)

)
� q−1/4.

Thus we deduce that

Mq(z1, z2) =
∞∑
n=1

dz1(n)dz2(n)
n2

+O

(
exp
(
−(log q)(log4 q)

50 log2 q

))
,

as desired.

5. Estimating the distribution function. First we shall estimate
the Laplace transform of the distribution of argL(1, χ) using our previous
estimates for purely imaginary moments of L(1, χ).

Lemma 5.1. In the range 1� s < 2R(q) we have

Lq(s) :=
∞�

−∞
sesxΨq(x) dx = exp

(
s log2 s+ C2s+ C1

s

log s
+O

(
s

(log s)2

))
.

Proof. First since argL(1, χ) = 0 when χ is a real character, we see that

(5.1) Ψq(τ) =
1

φ(q)
|{χ ∈ Sq : argL(1, χ) > τ}|.
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Therefore we have

Lq(s) =
∞�

−∞
sesx

1
φ(q)

∑
χ∈Sq

argL(1,χ)>x

1 dx =
1

φ(q)

∑
χ∈Sq

argL(1,χ)�

−∞
sesx dx(5.2)

=
1

φ(q)

∑
χ∈Sq

es argL(1,χ) =
1

φ(q)

∑
χ∈Sq

L(1, χ)s/(2i)L(1, χ)−s/(2i),

by the fact that argL(1, χ) = 1
2i(logL(1, χ)−logL(1, χ)).Moreover changing

the order of the sum and integral in equation (5.2) is justified by the fact
that |argL(1, χ)| � log2 q, which follows from Corollary 2.3. Finally the
result follows by combining Theorem 1.3 and Proposition 3.4.

Proof of Theorem 1.2. To estimate Ψq(τ) we use the saddle point method.
Let s be the solution to the equation

(5.3) τ = log2 s+ C2 +
C1 + 1
log s

.

Let ε > 0 be a small number to be chosen later and define

s1 := s(1 + ε), s2 := s(1− ε), τ1 := τ +
ε

log s
, τ2 := τ − ε

log s
.

To prove Theorem 1.2 we will first show that for this particular choice of s
we have

(5.4) Lq(s) =
τ1�

τ2

sesxΨq(x) dx
(

1 +O

(
exp
(
− s

(log s)2

)))
.

To this end we use a variant of Rankin’s trick. Indeed, since s− s2 > 0,
τ2�

−∞
esxΨq(x) dx ≤

τ2�

−∞
e(s−s2)(τ2−x)+sxΨq(x) dx ≤ eεsτ2

∞�

−∞
es2xΨq(x) dx.

Therefore by Lemma 5.1 we have

(5.5)
1
Lq(s)

τ2�

−∞
sesxΨq(x) dx ≤ eεsτ2 sLq(s2)

s2Lq(s)

≤ exp
(
εsτ2 + s2 log2 s2 − s log2 s− εsC2 − εC1

s

log s
+O

(
s

(log s)2

))
.

Now
εsτ2 = εs log2 s+ εC2s+ (εC1 + ε− ε2)

s

log s
,

and
s2 log2 s2 = s(1− ε) log(log s+ log(1− ε))

= (1− ε)s log2 s+ (1− ε) log(1− ε) s

log s
+O

(
s

(log s)2

)
.
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Hence by inserting these two last estimates in (5.5) we deduce that

1
Lq(s)

τ2�

−∞
sesxΨq(x) dx

≤ exp
(

((1− ε) log(1− ε) + ε− ε2)
s

log s
+O

(
s

(log s)2

))
≤ exp

((
−ε

2

2
+O(ε3)

)
s

log s
+O

(
s

(log s)2

))
.

Now we choose ε = A/
√

log s, where A > 0 is a suitably large constant, to
get

(5.6)
1
Lq(s)

τ2�

−∞
sesxΨq(x) dx ≤ exp

(
− s

(log s)2

)
.

Similarly one has
∞�

τ1

esxΨq(x) dx ≤
∞�

τ1

e(s1−s)(x−τ1)+sxΨq(x) dx ≤ e−εsτ1
∞�

−∞
es1xΨq(x) dx,

and using exactly the same method as before we deduce that

(5.7)
1
Lq(s)

∞�

τ1

sesxΨq(x) dx ≤ exp
(
− s

(log s)2

)
.

Therefore by combining inequalities (5.6) and (5.7) we get the estimate
(5.4). Now since Ψq(x) is a non-increasing function we have

Ψq(τ1)
τ1�

τ2

sesx dx ≤
τ1�

τ2

sesxΨq(x) dx ≤ Ψq(τ2)
τ1�

τ2

sesx dx.

Moreover since
τ1�

τ2

sesx dx = exp
(
sτ +O

(
s

(log s)3/2

))
,

by (5.4) and Lemma 5.1 we deduce that

(5.8) Ψq

(
τ +

ε

log s

)
≤ exp

(
− s

log s
+O

(
s

(log s)3/2

))
≤ Ψq

(
τ − ε

log s

)
.

Hence it remains only to solve equation (5.3) in s. Indeed, we have

eτ−C2 = exp
(
C1 + 1
log s

)
log s = log s+ C1 + 1 +O

(
1

log s

)
,

and then
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s = exp(eτ−C2 − C1 − 1)
(

1 +O

(
1
eτ

))
.

Thus by inserting these two last estimates in (5.8) we get

Ψq(τ) = exp
(
−exp(eτ−C2 − C1 − 1)

eτ−C2

(
1 +O

(
1
eτ/2

)))
.

Moreover this last estimate holds uniformly for τ ≤ log3 q+C2−o(1), using
(5.3) and Lemma 5.1.

Finally, concerning the distribution of the random variable argL(1, X),
its Laplace transform is given by

LX(s) =
∞�

−∞
sesxΨ(x) dx = E

(
L(1, X)s/(2i)L(1, X)−s/(2i)

)
=
∞∑
n=1

ds/(2i)(n)d−s/(2i)(n)
n2

= exp
(
s log2 s+ C2s+ C1

s

log s
+O

(
s

(log s)2

))
,

by Proposition 3.4. Therefore using exactly the same approach we deduce
the same estimate for Ψ(τ), thus proving the theorem.
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