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Introduction. In this note we investigate the terms in elliptic divisi-
bility sequences that are divisible by their indices. The analogous problem
has been studied for a number of other types of sequences. For example, the
Fibonacci sequence (Fn)n≥1 satisfies

n |Fn ⇔ n ∈ {1, 5, 12, 24, 25, 36, 48, 60, 72, 96, . . .}.

See [1, 9, 10, 19, 20, 21, 24] for results on index divisibility in the Fibonacci
sequence and in more general Lucas sequences. To cite another example,
composite values of n that divide an−a are called pseudoprimes to the base a.
They have been studied for their intrinsic interest and for applications to
cryptography [2, 11, 12, 14, 23].

In general, for any integer sequence A = (An)n≥1 we define the index
divisibility set of A to be

S(A) = {n ≥ 1 : n |An}.

Our goal is to build S(A) multiplicatively via a directed graph that connects
each element n ∈ S(A) to its (minimal) multiples in S(A). Thus we define
a directed graph by taking the set S(A) to be the set of vertices and by
drawing an arrow from n to m if the following two conditions are true:

(1) n |m with n < m.
(2) If k ∈ S(A) satisfies n | k |m, then k = n or k = m.

In other words, if we partially order S(A) by divisibility, then we draw an
arrow from n to m if n is strictly smaller than m and if there are no elements
of S(A) that are strictly between n and m.
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We denote the set of arrows by Arr(A), and we say that the arrow
(n→ m) has weight m/n. (Smyth [19, Section 8] defines a similar structure,
but he allows only arrows of prime weight, so his graphs may be discon-
nected.)

Definition 1. Let E/Q be an elliptic curve given by a Weierstrass
equation and let P ∈ E(Q) be a nontorsion point. The elliptic divisibility
sequence (EDS) associated to the pair (E,P ) is the sequence of positive
integers D = (Dn)n≥1 obtained by writing

x([n]P ) =
An
D2
n

∈ Q

as a fraction in lowest terms. The EDS is minimal if E is given by a minimal
Weierstrass equation. An EDS is normalized if D1 = 1.

An arbitrary EDS (Dn)n≥1 can be normalized by a change of vari-
ables in the defining Weierstrass equation, in which case the new EDS
is (Dn/D1)n≥1. Note, however, that the normalized sequence may not be
minimal.

We remark that there is an alternative definition of EDS via a nonlinear
recurrence that gives almost the same set of sequences; see Remark 6.2
for further details. We also note that, as its name suggests, an EDS is a
divisibility sequence, i.e.,

m |n ⇒ Dm |Dn.

The arithmetic properties of EDS have been extensively studied as ex-
amples of nontrivial nonlinear recursions that possess enough additional
structure to make them amenable to Diophantine analysis. See for example
Ward’s original papers [25, 26], subsequent work including [5, 7, 8, 18], and
applications of EDS to Hilbert’s 10th problem and to cryptography [3, 6,
13, 22].

Although EDS are defined via a nonlinear process, their underlying struc-
ture comes from the associated elliptic curve. They are thus a natural gen-
eralization of linear recursions such as the Fibonacci and Lucas sequences,
which are associated to the multiplicative group.

Example 0.1. Let D be the EDS

D = (1, 1, 1, 1, 2, 1, 3, 5, 7, 4, 23, 29, 59, 129,
314, 65, 1529, 3689, 8209, 16264, 83313, . . . )

associated to the elliptic curve and point

E : y2 + y = x3 − x, P = (0, 0).

Then

S(D) = {1, 40, 53, 63, 80, 127, 160, 189, 200, 320, 400, 441, 443, . . . }.
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We remark that the sequence D grows very rapidly. Thus the first two non-
trivial elements of S(D) in this example come from

D40 = 40 · 13 526 278 251 270 010,
D53 = 53 · 299 741 133 691 576 877 400 370 757 471.

The reader may have noticed that S(D) contains the primes 53, 127, and 443,
which are the first three anomalous primes for E, i.e., primes satisfying
#E(Fp) = p. This is not a coincidence.

Smyth has given an explicit description of index divisibility for Lucas
sequences. For comparison with our results, we state one of his theorems,
reformulated using the terminology of directed graphs.

Theorem 0.2 (Smyth [19, Theorem 1]). Let a, b ∈ Z, and let L =
(Ln)n≥1 be the associated Lucas sequence of the first kind, i.e., defined by
the recursion

Ln+2 = aLn+1 − bLn, L0 = 0, L1 = 1.

Let ∆ = a2 − 4b and let n ∈ S(L) be a vertex. Then the arrows originating
at n are

{n→ np : p is prime and p |Ln∆} ∪ Ba,b,n,
where

Ba,b,n =


{n→ 6n} if (a, b) ≡ (3,±1) (mod 6) and gcd(6, Ln) = 1,
{n→ 12n} if (a, b) ≡ (±1, 1) (mod 6) and gcd(6, Ln) = 1,
∅ otherwise.

Smyth’s theorem says in particular that at any vertex, there is at most
one outgoing arrow whose weight is not prime. By way of contrast, it turns
out that an EDS vertex may have infinitely many composite-weight outgoing
arrows. These composite-weight arrows are associated to so-called compos-
ite aliquot numbers. A Lucas sequence has at most one composite aliquot
number, while EDS (probably) have infinitely many. This dichotomy can be
traced to the fact that the number #E(Fq) of points on an elliptic curve
over a finite field varies irregularly and is often prime, while the number of
points in the multiplicative group F∗q of a finite field is q − 1.

Definition 2. Let D be an EDS associated to the elliptic curve E.
A list p1, . . . , p` of distinct primes of good reduction for E is an aliquot cycle
for D if

pi+1 = min{r ≥ 1 : pi |Dr} for all 1 ≤ i ≤ `,
where we require p`+1 = p1 to complete the cycle. The associated aliquot
number is the product p1 · · · p`. Note that ` = 1 is allowed in this definition,
but that it is composite aliquot numbers (` ≥ 2) that lead to composite-
weight arrows.
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The index divisibility graph of an EDS is considerably more complicated
than that of a Lucas sequence. We state here a simplified version of Theo-
rem 3.3, which is the main result of this paper. We remark that an analogue
of our main result for EDS associated to singular elliptic curves would give
a version of Smyth’s theorem; see Remark 4.7 for details.

Theorem 0.3. Let D be a minimal regular EDS associated to the el-
liptic curve E/Q and point P ∈ E(Q). (See Section 3 for the definition of
regularity. In particular, every EDS has a regular subsequence.)

(a) If n ∈ S(D) and p is prime and p |Dn, then (n→ np) ∈ Arr(D).
(b) If n ∈ S(D) and d is an aliquot number for D and gcd(n, d) = 1,

then (n→ nd) ∈ Arr(D).
(c) If p ≥ 7 is a prime of good reduction for E and if (n→ np) ∈ Arr(D),

then either p |Dn or p is an aliquot number for D.
(d) If gcd(n, d) = 1 and if (n → nd) ∈ Arr(D) and if d = p1 · · · p` is a

product of ` ≥ 2 distinct primes of good reduction for E satisfying
min pi > (2−1/2` − 1)−2, then d is an aliquot number for D.

We briefly describe the contents of this note. In Section 1 we give some
basic properties of elliptic divisibility sequences. In particular, Lemma 1.2
states fairly delicate divisibility estimates whose origins lie in the formal
group of E. The brief Section 2 gives the definition of aliquot cycles and
aliquot numbers for EDS. Section 3 contains the statement and proof of
Theorem 3.3, which is the main result of this paper. Theorem 3.3, which is
an expanded version of Theorem 0.3, explains how to construct the arrows
that are used to build S(D). This is followed in Section 4 with a number of
remarks and examples related to our main theorem. Section 5 defines aliquot
cycles on an elliptic curve (see [17]) and explains how they are related to
aliquot cycles for an EDS on that curve. Finally, in Section 6, we make some
miscellaneous remarks on general index divisibility sets and on an alternative
definition of EDS.

1. Preliminaries on elliptic divisibility sequences. Let D be a min-
imal EDS associated to an elliptic curve E/Q and point P ∈ E(Q). We
let Disc(E) denote the minimal discriminant of E. For all primes p we have

p |Dn ⇔ [n]P ≡ O (mod p).

Definition 3. We write rn = rn(D) for the rank of apparition of n in D,
which is defined by

rn = min{r ≥ 1 : n |Dr}.

Let E/Spec Z denote the Néron model of E. Then an equivalent definition
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of rn is that it is the smallest value of r ≥ 1 such that

[r]P ≡ O (mod n),

where the congruence takes place in E(Z/nZ).

The following three lemmas contain virtually all of the information about
EDS that we will use in our analysis of EDS index divisibility.

Lemma 1.1. Let D be a minimal EDS associated to an elliptic curve E/Q
and point P ∈ E(Q). Then

n |Dm ⇔ rn |m ⇔ [m]P ≡ O (mod n).

Proof. Immediate from the definitions.

The next lemma describes the growth of p-divisibility for EDS. A direct
corollary is that an EDS is a divisibility sequence.

Lemma 1.2. Let D = (Dn)n≥1 be a minimal EDS, let n ≥ 1, and let p
be a prime satisfying p |Dn.

(a) For all m ≥ 1 we have

ordp(Dmn) ≥ ordp(mDn).

(b) The inequality in (a) is strict,

ordp(Dmn) > ordp(mDn),

if and only if

p = 2 and 2 |m and ord2(Dn) = 1 and
(
E has ordinary or multi-
plicative reduction at 2

)
.

(For the definition of ordinary reduction, see [16, §V.3]. In particu-
lar, E has ordinary reduction at 2 if and only if 2 |#E(F2).)

Proof. The assumption that p |Dn is equivalent to the assertion that
[n]P is in E1(Qp), the kernel of reduction modulo p. We use the standard
isomorphism between E1(Qp) and the formal group Ê(pZp) associated to E
given by

φ : E1(Qp)→ Ê(pZp), (x, y) 7→ −x/y.

Note that this isomorphism is valid even if E has bad reduction at p, in which
case Ê is the formal additive or multiplicative group. (See [16, Chapter IV]
for basic properties of formal groups.)

Writing x([n]P ) = (An/D2
n, Bn/D

3
n), our assumption that p |Dn implies

that p - AnBn, so

(1.1) ordp φ([n]P ) = ordp(−AnDn/Bn) = ordp(Dn).
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Standard properties of formal groups [16, IV.2.3(a), IV.4.4] say that the
multiplication-by-p map has the form

(1.2) [p]Ê(z) = pf(z) + g(zp),

where f, g ∈ Zp[[z]] are power series with no constant term, and f has the
form f(z) = z +O(z2). It follows that for ordp(z) ≥ 1, we have

(1.3) ordp([p]Ê(z)) ≥ ordp(pz).

We write m = pks with p - s. Repeated application of (1.3) gives

(1.4) ordp([pk]Ê(z)) ≥ ordp(pkz).

Further, we have [s]Ê(z) = sz +O(z2), so

(1.5) ordp([spk]Ê(z)) = ordp([pk]Êz).

Combining (1.4) and (1.5) gives

ordp([m]Ê(z)) ≥ ordp(pkz),

with equality if k = 0. Substituting z = φ([n]P ) and using (1.1) gives (a),
and it also gives (b) if p - m.

To prove (b) in general, we assume that p |m. Analyzing (1.2) more
closely, we see that

(1.6) ordp([p]Ê(z)) = ordp(pz) = ordp(z) + 1

unless ordp(pz) = p ordp(z). (Note that ordp(z) ≥ 1.) Since

ordp(pz) = p ordp(z) ⇔ 1 = (p− 1) ordp(z),

we see that (1.6) holds except possibly in the case p = 2 and ordp(z) = 1.
Suppose now that p = 2 and ordp(z) = 1. The formal group law for an

elliptic curve starts [16, §IV.1]

[2]Ê(z) = 2z − a1z
2 − 2a2z

3 + (a3 + a1a2)z4 + · · · ,
where a1, . . . , a6 are Weierstrass coefficients. Hence under the assumption
that ord2(z) = 1, we see that (1.6) fails if and only if

ord2(2z − a1z
2 +O(2z3)) ≥ 3 ⇔ ord2(1− a1z/2) ≥ 1

⇔ ord2(a1) = 0, i.e., a1 ∈ Z∗2.

(The last equivalence follows because z ≡ 2 (mod 4), so 1 − a1z/2 ≡
1− a1 (mod 2).) If E has good reduction modulo 2, then

j(E) ≡ a12
1 /Disc(E) (mod 2),

so [16, Exer. 5.7] gives

ord2(a1) = 0 ⇔ j(E) 6≡ 0 (mod 2) ⇔ E is ordinary mod 2.

On the other hand, if E has bad reduction at 2, then an easy computation
shows that a1 ≡ 1 (mod 2) for multiplicative reduction and a1 ≡ 0 (mod 2)
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for additive reduction. This completes the proof that (1.6) fails if and only if
p = 2 and p |m and ordp(Dn) = 1 and E has either ordinary or multiplicative
reduction. We call this the exceptional case.

Repeated application of (1.6) shows that if we are not in the exceptional
case, then

ordp([pk]Ê(z)) = ordp(z) + k.

In the exceptional case, the first multiplication by [p] gives a strict inequality,
after which we are out of the exceptional case and can apply (1.6), so we
find that

ordp([pk]Ê(z)) = ordp([p]Ê(z)) + k − 1 > ordp(z) + k.

Now using (1.5) and the fact that m = pks with p - s, we get

ordp([m]Ê(z)) > ordp(mz)

in the exceptional case and

ordp([m]Ê(z)) = ordp(mz)

otherwise. Substituting z = φ([n]P ) and using (1.1) proves (b).

The third lemma gives bounds for rp.

Lemma 1.3. Let D be a minimal EDS associated to an elliptic curve E/Q
and point P ∈ E(Q) and let p be a prime. Then

rn |#E(Z/nZ).

In particular, if p is a prime with P ∈ Ens(Fp), then

rp ≤ (
√
p+ 1)2.

If P ∈ Ens(Fp) and E has bad reduction at p, then rp divides p − 1, p + 1,
or p depending respectively on whether the reduction is split multiplicative,
nonsplit multiplicative, or additive.

Proof. The first statement is immediate, since rn is the order of the
point P in the group E(Z/nZ). The estimates for rp follow from the Hasse–
Weil bound #E(Fp) ≤ (

√
p + 1)2 when E has good reduction, and the

explicit description of Ens(Fp) for the three types of bad reduction.

Example 1.4. The minimal EDS associated to

E : y2 + xy = x3 − 2x+ 1 and P = (1, 0)

is the sequence
1, 1, 1, 2, 1, 3, 7, 8, 25, 37, . . . .

Thus D4 = 2 and D8 = 8, so

3 = ord2(D23) > ord2(2D22) = 2.
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The strictness of the inequality in Lemma 1.2(a) corresponds to the excep-
tional case p = 2, m = 2, and n = 4, where we note that ord2(D4) = 1
and #E(F2) = 4, so in particular E has ordinary reduction at 2.

Remark 1.5. More generally, for any integer N ≥ 2 there exists a min-
imal EDS such that

ord2(D2) = ord2(D1) +N.

Here is one construction. Choose an elliptic curve of positive rank having
a rational 2-torsion point T in the formal group Ê(2Z2). Taking a mul-
tiple of a point of infinite order, we can find a rational nontorsion point Q
in Ê(2NZ2). Then the EDS associated to P = Q+T will have ord2(D1) = 1
and ord2(D2) = N + 1. The reason that this only works for the prime p = 2
is because for p ≥ 3, the formal group Ê(Zp) is torsion free; in fact, it is
isomorphic to the additive group Z+

p .

Proposition 1.6. Let D be a minimal EDS.

(a) D is a divisibility sequence.
(b) The set S(D) is closed under multiplication.

Proof. (a) We need to prove that Dm |Dmn. It suffices to prove that

ordp(Dmn) ≥ ordp(Dn) for all primes p,

but this is immediate from Lemma 1.2(a).
(b) Suppose that m,n ∈ S(D) and let p |n. Then p |Dn, so Lemma 1.2(a)

and the assumption that n |Dn give

ordp(Dmn) ≥ ordp(mDn) ≥ ordp(mn).

Reversing the roles of m and n for p |m again gives ordp(Dmn) ≥ ordp(mn).
Hence mn |Dmn, so mn ∈ S(D).

Remark 1.7. If p ≥ 3 and p |D1, then Lemma 1.2(b) with n = 1 says
that ordp(Dm) = ordp(mD1) for all m.

Remark 1.8. Although we will not need this fact, we mention that
elliptic divisibility sequences grow extremely rapidly. Thus if D is associated
to (E,P ), then

lim
n→∞

log |Dn|
n2

= ĥE(P ),

where ĥE(P ) > 0 is the canonical height of P [16, §VIII.9].

2. Aliquot cycles and aliquot numbers for EDS. In this section
we define aliquot cycles and aliquot numbers associated to an EDS.

Definition 4. Let D be an EDS associated to the curve E(Q) and point
P ∈ E(Q). We recall that rn(D) denotes the rank of apparition of n in the
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sequence D; see Section 1. An aliquot cycle (of length `) for D is a sequence
(p1, . . . , p`) of distinct primes of good reduction for E such that

rp1(D) = p2, rp2(D) = p3, . . . , rp`−1
(D) = p`, rp`(D) = p1.

An amicable pair is an aliquot cycle of length two.
If we drop the requirement that E have good reduction, then we call

(p1, . . . , p`) a generalized aliquot cycle.

In our study of index divisibility for EDS, the products of the primes
appearing in each aliquot cycle play a key role, so we give them a name.

Definition 5. Let D be a minimal EDS. We define the set of aliquot
numbers of D to be

A(D) = {p1 · · · p` : (p1, . . . , p`) is an aliquot cycle for D}.
We also define the larger set

Agen(D) = {p1 · · · p` : (p1, . . . , p`) is a generalized aliquot cycle for D}.
Remark 2.1. We observe that an aliquot cycle of length one consists of

a single prime p satisfying rp(D) = p. If p ≥ 7, Hasse’s estimate for #E(Fp)
tells us that

rp(D) = p ⇔ #E(Fp) = p.

Thus in standard terminology, the primes p ≥ 7 in A(D) are exactly the
anomalous primes for the elliptic curve E.

3. Arrows in the index divisibility graph. This section contains
our main results. In Theorem 3.3 we classify the arrows (n→ nd) ∈ Arr(D)
for a large class of EDS, as described in the following definition.

Definition 6. Let D be a minimal EDS associated to the elliptic curve
and point (E,P ). We say that D is 2-irregular if the following five irregularity
conditions are true:

(I1) E has good reduction at 2, (I2) #E(F2) = 4, (I3) r2 = 4,

(I4) D2 is odd, (I5) ord2(D4) = 1.

If any of the conditions (I1)–(I5) is false, then we say that D is 2-regular. If
in addition we have

P ∈ Ens(Fp) for all primes p | Disc(E),

then we simply say that D is regular.

Remark 3.1. Our main result, Theorem 3.3, gives a good description of
the index divisibility graph S(D) for regular EDS. Our decision to restrict
attention to regular EDS represents a compromise between our desires for
generality and conciseness, as well as the need to keep our exposition to a
reasonable length. We remark that much of our analysis goes through for
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nonregular EDS, in the sense that Theorem 3.3 is still true for many (but
generally not all) values of n, and that a long case-by-case analysis would
give a lengthy statement that applies to most (maybe even all) values of n.
In any case, we note that every D = (Dn)n≥1 contains a regular subsequence
D′ = (Dnk)n≥1, and then Theorem 3.3 applies to this subsequence.

We start with a description of the index divisibility set of an EDS that
will be a key tool for our classification. Its proof uses only the formal group
properties of an EDS (Lemma 1.2).

Proposition 3.2. Let D be a minimal regular EDS associated to the
elliptic curve and point (E,P ). Then the following are equivalent :

(a) n |Dn, i.e., n ∈ S(D).
(b) There is some exponent e ≥ 1 such that n |De

n.
(c) Every prime dividing n also divides Dn.
(d) For all primes p, we have p |n⇒ rp |n.

Proof. Statements (b) and (c) are obviously equivalent, and (c) and (d)
are equivalent by Lemma 1.1. It is also clear that (a) implies (b). It remains
to show that (b) implies (a), i.e., that

n |De
n → n |Dn.

It suffices to prove that for all primes p we have

(3.1) p | gcd(n,Dn) ⇒ ordp(Dn) ≥ ordp(n).

So we let p be a prime dividing both n and Dn and we write n = pνk with
p - k and ν ≥ 1. If ν = 1, then (3.1) is obviously true (note p |Dn), so we
may assume that ν ≥ 2.

We consider first the case that p |Dpk. Applying Lemma 1.2(a) to Dn =
Dpν−1·pk, we obtain

ordp(Dn) = ordp(Dpνk) ≥ ordp(pν−1Dpk) ≥ ν = ordp(n).

This shows that (3.1) is true in this case.
We next suppose that p - Dpk, and we will show that either (3.1) is

true or else D is 2-irregular. The assumption that p - Dpk is equivalent to
rp - pk. But we are assuming that p |Dpνk, so we have rp | pνk. It follows that
p2 | rp, which is a very strong condition. In particular, since the regularity
assumption implies that P ∈ Ens(Fp), and since rp is the order of P in E(Fp),
we find that

p2 |#Ens(Fp).
Hence E has nonsingular reduction modulo p, and using the Hasse–Weil
estimate, we further deduce that p = 2 and r2 = #E(F2) = 4. This gives
conditions (I1), (I2), and (I3) in the definition of 2-irregularity. Further, D2

must be odd, since otherwise r2 would divide 2, so we get condition (I4).
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Since 2 |D4, so 2 |D4k, we can apply Lemma 1.2(a) to Dn = D2ν−2·4k to
obtain

ord2(Dn) = ord2(D2νk) ≥ ord2(2ν−2D4k) = ord2(D4k) + ν − 2.

If ord2(D4) ≥ 2, then this implies that ord2(Dn) ≥ ord2(n), so (3.1) is true
and we are done. Otherwise ord2(D4) = 1 and we have verified condition (I5)
for D to be 2-irregular. This is a contradiction, since we have assumed that D
is regular, which completes the proof of Proposition 3.2.

We are now ready to state and prove our main theorem.

Theorem 3.3. Let D be a minimal regular EDS associated to the elliptic
curve and point (E,P ).

(a) Let n ≥ 1. Then

n ∈ S(D) and
(
p |Dn or E has
additive reduction at p

)
⇒ (n→ np) ∈ Arr(D).

(b) Let n ≥ 1 and d ≥ 1. Then

n ∈ S(D) and d ∈ Agen(D) ⇒
(
nd ∈ S(D) and
gcd(d, n) = 1 or d

)
.

Furthermore,

n ∈ S(D) and d ∈ Agen(D) and gcd(d, n) = 1
⇒ (n→ nd) ∈ Arr(D).

(c) Let n ≥ 1 and let p be a prime such that

n ∈ S(D), p - Dn, and (n→ np) ∈ Arr(D).

(1) If E has good reduction at p and #E(Fp) 6= 2p, then p ∈ A(D).
(If p ≥ 7, then we always have #E(Fp) 6= 2p.)

(2) If E has bad reduction at p, then E has additive reduction at p.

(d) Let n ≥ 1 and d ≥ 1 with d composite. Define

t = number of primes p | d such that rp is composite,
p0 = smallest prime divisor of nd.

Suppose that (n → nd) ∈ Arr(D). Then one of the following state-
ments is true:

(i) t = 0 and d ∈ Agen(D).
(ii) t ≥ 1 and

(3.2)
∏
p|d

(
1 +

1
√
p

)2

≥
∏
p|d

#E(Fp)
p

≥ pt0.
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Proof. (a) Suppose first that n ∈ S(D) and p |Dn. Write n = pik with
p - k. Then

ordp(Dnp) ≥ ordp(Dn) + 1 from Lemma 1.2(a)
≥ ordp(n) + 1 since n ∈ S(D), i.e., n |Dn

= i+ 1.

Further, k |n |Dn |Dnp. Hence pi+1k |Dnp, i.e., np |Dnp, so np ∈ S(D). And
since there are no proper divisors between n and np, it follows that the
directed graph S(D) contains the arrow n→ np.

Next we consider the case that n ∈ S(D) and p - Dn and E has additive
reduction. Additive reduction implies that #Ens(Fp) = p, so that rp | p and
p |Dp |Dnp. Meanwhile, n |Dn |Dnp by assumption. Since p - Dn, it must
be that p - n. Hence np |Dnp and np ∈ S(D), from which we conclude that
(n→ np) ∈ Arr(D).

(b) Let d = p1 · · · p` ∈ Agen(D) be a generalized aliquot number for D. We
will show that nd ∈ S(D). First, let p = pi be one of the primes dividing d.
The rank of apparition satisfies rpi = pi+1, where for notational convenience
we let p`+1 = p1. Hence pi |Dpi+1 |Dnd. Next let p be a prime dividing n.
Then p |n |Dn |Dnd. We have shown that any prime p dividing nd satisfies
p |Dnd. By Proposition 3.2, we conclude that nd ∈ S(D).

Now we determine the possible values of gcd(d, n). If pi |n, then since
n ∈ S(D), Proposition 3.2 implies that pi+1 = rpi must divide n. Hence, by
the construction of d, we see that either n is divisible by none of the primes
dividing d, or it is divisible by all of them. Therefore gcd(d, n) = 1 or d.

Suppose now that gcd(d, n) = 1 and that e is a divisor of d such that
ne ∈ S(D). Then by the reasoning of the last paragraph, with n replaced
by ne, we find that gcd(d, ne) = 1 or d. But gcd(d, n) = 1 and e | d, so we
conclude that e = 1 or e = d. Hence (n→ nd) ∈ Arr(D) by definition.

This completes the proof of (b). We also note that some condition such
as gcd(n, d) = 1 is necessary. For example, suppose that (p, q) is an amicable
pair and that p divides Dn. Then there is no arrow from n to npq, because
there are “shorter” arrows n→ np→ npq.

(c) We are given that n ∈ S(D), np ∈ S(D), and p - Dn. Since np ∈ S(D),
Proposition 3.2 implies p |Dnp. We observe that

p - Dn ⇔ [n]P 6≡ O (mod p),
p |Dnp ⇔ [np]P ≡ O (mod p).

Hence under our assumptions, in particular the regularity assumption, we
see that the point [n]P has order exactly p in P ∈ Ens(Fp). Therefore
p |#Ens(Fp).

(c-1) Suppose first that E has good reduction at p, so Ens(Fp) = E(Fp).
We want to show that p ∈ A(D). The assumption that #E(Fp) 6= 2p,
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combined with Hasse’s estimate |p+ 1−#E(Fp)| ≤ 2
√
p, implies that

(3.3) p |#E(Fp) ⇔ #E(Fp) = p.

Since rp |#E(Fp), we see that rp = 1 or rp = p. But rp = 1 implies that
p |D1, contradicting p - Dn. Therefore rp = p, which implies that p ∈ A(D),
i.e., (p) is an aliquot cycle of length one.

(c-2) Next suppose that E has bad reduction at p. It follows from
p |Ens(Fp) that E has additive reduction at p. (If it had multiplicative re-
duction, then Ens(Fp) would contain p±1 points, depending on whether the
reduction is split or nonsplit.)

(d) We first show that gcd(Dn, d) = 1, which in particular implies
that gcd(n, d) = 1, since n |Dn. To see this, suppose to the contrary that
gcd(Dn, d) > 1, and let p be a prime dividing gcd(Dn, d). Since p |Dn, we
know from (a) that (n→ np) ∈ Arr(D). But since p | d, we have the divisibil-
ities n |np |nd, so the fact that n→ np and n→ nd are arrows implies that
either n = np or np = nd. Neither of these is possible, since p ≥ 2, and d is
composite by assumption. This completes the proof that gcd(Dn, d) = 1.

In order to analyze the arrow (n → nd), we associate to the integer d
a directed graph Gd as in the following lemma. The graph Gd classifies the
primes dividing each rank of apparition rp.

Lemma 3.4. Let D be a minimal regular EDS, let n ≥ 1 and d ≥ 1 with
d composite, and assume that (n→ nd) ∈ Arr(D). We construct a directed
graph Gd with vertices and arrows defined as follows:

Ver(Gd) = {primes p such that p | d},
Arr(Gd) = {p→ q : q | d and q | rp}.

(N.B., the graph Gd is entirely distinct from the graph on S(D).)

(a) Every vertex of Gd has an in-arrow.
(b) Every vertex of Gd has an out-arrow.
(c) The graph Gd is connected.

Proof. Let q | d be a prime divisor of d, i.e., q is a vertex of Gd.
(a) We need to show that the vertex q has an in-arrow. Let d′ = d/q.

Since (n → nd) ∈ Arr(D), we know that nd′ /∈ S(D). By Proposition 3.2,
this implies the existence of a prime p |nd′ satisfying rp - nd′. Since rp |nd
by Proposition 3.2, this implies that q | rp, which shows p→ q as required.

(b) We need to show that q has an out-arrow. Since q | d, we have q |Dd

or rq | d. This shows that some prime p | d satisfies p | rq, and thus q → p as
required.

(c) Define d′ to be the part of d supported on primes appearing as vertices
in a connected component G′ of Gd. Then for each prime p | d′, all primes
dividing rp appear in G′ by connectedness. Since rp |nd by the assumption
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that nd ∈ S(D), this implies rp |nd′. This shows that nd′ ∈ S(D), which
contradicts (n→ nd) ∈ Arr(D) unless d′ = 1 or d′ = d. So Gd is connected.

Suppose first that rp is prime for every p | d. We need to prove that
d ∈ Agen(D). By definition, for every arrow (p → q) ∈ Arr(Gd) we have
q | rp, so the assumption that rp is prime implies that rp = q. In particular,
every vertex in the finite directed graph Gd has at most one outgoing arrow.
But Lemma 3.4(b) tells us that every vertex in Gd has at least one outgoing
arrow, and Lemma 3.4(c) says that the graph is connected. It follows that Gd
consists of a single loop,

p1 → p2 → p3 → · · · → pt
Pi

This loop satisfies rpi = pi+1, so by definition (p1, . . . , pt) is a general-
ized aliquot cycle for D, and hence p1 · · · pt ∈ Agen(D). Since we also know
that gcd(d, n) = 1, it follows from part (c) of the theorem that

(n→ np1 · · · pt) ∈ Arr(D).

But np1 · · · pt |nd, so the fact that (n → nd) ∈ Arr(D) implies that d =
p1 · · · pt. Hence d ∈ Agen(D). This completes the proof of part (i).

In order to analyze the case that one or more of the rp are composite,
for each vertex q ∈ Gd we let

InDeg(q) = #{p | d : (p→ q) ∈ Arr(Gd)}
denote the in-degree of q, i.e., the number of arrows pointing in to q; and
similarly OutDeg(q) will denote the out-degree of q. Lemma 3.4 tells us
that InDeg(q) ≥ 1 for all q ∈ Gd. For each p ∈ Gd we know that rp is
divisible by the primes at the tips of the outgoing arrows from p, so we can
factor rp as

rp =
( ∏

(p→q)∈Arr(Gd)

q
)
Mp for some Mp ≥ 1.

Further, from Proposition 3.2, the fact that nd ∈ S(D) and p | d implies
that rp |nd, so every prime divisor of Mp is also a prime divisor of nd.

We now multiply over all p ∈ Gd, i.e., over all p | d, and rearrange the
terms to deduce that∏

p|d

rp =
∏
p|d

( ∏
q|d such that

(p→q)∈Arr(Gd)

q
)
Mp =

(∏
q|d

qInDeg(q)
)(∏

p|d

Mp

)
.

Since InDeg(q) ≥ 1 for every q | d, we can rewrite this as

(3.4)
∏
p|d

rp
p

=
(∏
q|d

qInDeg(q)−1
)(∏

p|d

Mp

)
,
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where the right-hand side is a positive integer. Using the Hasse–Weil bound
(
√
p+ 1)2 ≥ #Ens(Fp) and the fact that rp |#Ens(Fp), we obtain the useful

inequalities

(3.5)
∏
p|d

(
1 +

1
√
p

)2

≥
∏
p|d

#Ens(Fp)
p

≥
(∏
q|d

qInDeg(q)−1
)(∏

p|d

Mp

)
.

We now use (3.5) to derive a bound that depends on the number of
composite rp. (See also Remark 4.2.) Let p0 be the smallest prime divisor
of nd. Then∏

q|d

qInDeg(q)−1 ≥
∏
q|d

p
InDeg(q)−1
0 = p

P
q|d(InDeg(q)−1)

0(3.6)

= p
#Arr(Gd)−#Ver(Gd)
0 = p

P
p|d(OutDeg(p)−1)

0 .

Now consider a prime p ∈ Gd such that rp is composite. If rp is divisible
by two or more primes that also divide d, then OutDeg(p) ≥ 2, so we get
a factor of p0 in (3.6). On the other hand, if there is some q | rp with q - d,
then q |Mp, so we get a factor of q in (3.5). Further, we must have q |n, since
as noted earlier, rp |nd. Thus q ≥ p0. This proves that every composite rp
with p | d contributes a factor to (3.5) that is greater than or equal to p0.
Hence the lower bound in (3.5) is at least pt0, where t is the number of p | d
such that rp is composite.

The following corollary may be compared with Smyth’s result [19, Corol-
lary 2] for Lucas sequences.

Corollary 3.5. Let D be a minimal regular EDS, let n ∈ S(D), and
let m be an integer of the form

m = p1 · · · ps · d1 · · · dt,
where the primes pi and integers di satisfy

pi |Dn and di ∈ Agen(D).

Then nm ∈ S(D).

Proof. This is immediate from Theorem 3.3(a,b) and induction on the
number of factors of m.

4. Remarks on arrow construction. In this section we make a num-
ber of remarks concerning the existence of index divisibility arrows as de-
scribed in Theorem 3.3, and we give examples of nonstandard arrows as
per Theorem 3.3(d-ii). We assume throughout that our EDS is minimal and
regular.

Remark 4.1. Given an element n ∈ S(D), Theorem 3.3 gives two “stan-
dard” ways to create arrows (n→ nd) ∈ Arr(D). First, Theorem 3.3(a) gives
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an arrow n → np for each prime p |Dn. Second, Theorem 3.3(b) gives an
arrow for each aliquot number d ∈ Agen(D) that is prime to n. Conversely,
Theorem 3.3(d) implies that any “nonstandard” arrow satisfies

(4.1)
∏
p|d

(
1 +

1
√
p

)
≥
√

2.

In particular, writing ν(d) for the number of distinct prime divisors of d and
pmin(d) for the smallest prime dividing d, we have

ν(d) ≥
1
2 log 2

log(1 + pmin(d)−1/2)
=

log 2
2

√
pmin(d) +O(1).

Thus if the smallest prime divisor of d is large, then ν(d) will be large, and d
will be enormous. The following brief table uses (4.1) to give the smallest
values of ν(d) and d for various values of pmin(d).

pmin(d) ≥ 10 102 103 104 105

ν(d) ≥ 2 4 12 36 100

d ≥ 143 1.21 · 108 1.56 · 1036 1.80 · 10144 1.85 · 10500

And if Theorem 3.3(d) gives a lower bound for (4.1) that is larger than
√

2,
then the lower bounds for ν(d) and d in terms of pmin(d) will be even larger.

Remark 4.2. The formulas (3.4) and (3.5) derived during the course of
proving Theorem 3.3(d) impose stringent conditions on the allowable values
of d. We used these formulas to derive a general lower bound, but when
analyzing a specific EDS, it is probably best to use them directly. We also
note, although we will not prove, that (3.4) is true even if d is divisible by
primes for which P has singular reduction. Similarly, the following version
of (3.5) is true in general:∏

p|d

#E(Fp)
p

≥
(∏
q|d

qInDeg(q)−1
)(∏

p|d

Mp

)
,

where E is the Néron model of E. Note that if E has bad reduction, then
#E(Fp) = cp#Ens(Fp), where cp is the number of components in the special
fiber above p. In particular, cp ≤ 4 unless the reduction is split multiplicative,
in which case cp = ordp(Disc(E)).

Example 4.3. Continuing with the EDS associated to the elliptic curve
and point from Example 0.1, we have

Disc(E) = 37, #E(F2) = 5, #E(F3) = 7, #E(F5) = 8.

In particular, E has multiplicative reduction at 37 and good reduction else-
where, the point P is in Ens(F37), and #E(Fp) 6= 2p for all primes p. Further,
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since D5 = 2 and D10 = 4, we see that Lemma 1.2(b) is true even for p = 2
and all values of n and k, so we can treat 2 as we do all other primes.

We claim that for all primes p,

p |Dn or p ∈ A(D) ⇔ (n→ np) ∈ Arr(D).

The implication ⇒ follows directly from Theorem 3.3(a,c). Conversely, if
(n→ np) ∈ Arr(D), then either p |Dn, or else Theorem 3.3(c) tells us that
p ∈ A(D). We thus have a precise description of the arrows of prime weight.

Theorem 3.3(d) says that arrows n → nd of composite weight with
d /∈ Agen(D) have d values that either are divisible by small primes or are
huge. Further, examining the proof of Theorem 3.3(d) shows that the prime
divisors of such d must satisfy some fairly stringent conditions. We suspect
that for this example there are no such arrows, i.e.,(

d is prime
and d |Dn

)
or d ∈ Agen(D) ?⇔ (n→ nd) ∈ Arr(D).

Example 4.4. The following example shows that “nonstandard” arrows
exist (cf. Remark 4.1). Let D be the EDS associated to

E : y2 + 2xy + y = x3 + x2 + 7x+ 4 and P = (4, 7).

The curve E is nonsingular at 2, 3, and 5, and

#E(F2) = 3, #E(F3) = 5, #E(F5) = 6.

Further, the point P has exact order 6 in E(F5). Thus r2 = 3, r3 = 5, and
r5 = 6, so

(4.2) 2, 3, 5, 6, 10, 15 /∈ S(D) and 1, 30 ∈ S(D).

Alternatively, we can verify (4.2) directly by explicitly computing the rele-
vant terms of D,

D1 mod 1 = 0, D2 mod 2 = 1, D3 mod 3 = 2, D5 mod 5 = 4,
D6 mod 6 = 4, D10 mod 10 = 3, D15 mod 15 = 3, D30 mod 30 = 0.

It follows from the definition of the directed graph S(D) that (1 → 30) ∈
Arr(D). However, since r5 = 6 is not prime, we have 30 /∈ Agen(D). Thus the
arrow 1→ 30 is not predicted by Theorem 3.3(d-i). This does not contradict
the theorem, of course, since

#E(F2)
2

· #E(F3)
3

· #E(F5)
5

=
3
2
· 5

3
· 6

5
= 3,

so condition (3.2) is satisfied and we are in the situation of Theorem 3.3(d-ii).

Remark 4.5. Generalizing Example 4.4, we sketch how to construct
EDS having nonstandard arrows with arbitrarily large values of d. The proof
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of Theorem 3.3(d) suggests the method. We start with primes p1, . . . , pN and
integers n1, . . . , nN and k1, . . . , kN satisfying

|pi + 1− kini| < 2
√
pi.

Our goal is to find an elliptic curve E/Q and point P ∈ E(Q) such that
#E(Fpi) = kini and rpi = ni for all 1 ≤ i ≤ N .

A theorem of Deuring [4] says that there exists an elliptic curve Ei/Fpi
satisfying

#Ei(Fpi) = kini,

and a result of Rück [15, Theorem 3] says that we can choose Ei so that the
group structure of Ei(Fpi) ensures the existence of a point Pi ∈ Ei(Fp) of
order ni. Making a change of coordinates, we may assume that Pi = (0, 0).

Next we apply the Chinese remainder theorem to the coefficients of the
Weierstrass equations of E1, . . . , En. This gives an elliptic curve E/Q with
(0, 0) ∈ E(Q) that satisfies

E mod pi ∼= Ei, 1 ≤ i ≤ N.
If the Weierstrass equation for E is not globally minimal, then we can change
coordinates to make it minimal without affecting the reduction at p1, . . . , pN ,
since they are primes of good reduction. For simplicity, we will assume that
some ni is divisible by a prime greater than 7, since then Mazur’s theorem
[16, VIII.7.5] ensures that (0, 0) is not a torsion point. We may thus associate
to E and P an elliptic divisibility sequence D = (Dn)n≥1 satisfying

rpi = ni for all 1 ≤ i ≤ N .

Finally, we observe that arbitrarily large nonstandard arrows can be
constructed in this way. We begin with any prime p1, we let p1, . . . , pN be a
list of consecutive primes, and we set

d = p2
1p2p3 · · · pN .

We then find a curve and point whose associated EDS satisfies

rpi = pi+1, 1 ≤ i ≤ N − 1, rpN = p2
1.

If the list of primes is long enough, then the final condition rpN = p2
1 is

allowed by Hasse’s bound, and we can proceed as in the description above
to find a sequence D = (Dn)n≥1 with (1→ d) ∈ Arr(D).

Example 4.6. We use the method described in Remark 4.5 to construct
a nonstandard arrow 1→ d for the moderately large integer

d = 52 · 7 · 11 · 17 = 32725.

We want to construct an elliptic curve E/Q and point P ∈ E(Q) satisfying

(4.3) r5 = 7, r7 = 11, r11 = 17, r17 = 25.
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Then the associated sequence D = (Dn)n≥1 will have (1 → d) ∈ Arr(D),
according to Proposition 3.2.

To do this, we first find elliptic curves E5/F5, E7/F7, E11/F11 and
E17/F17 satisfying

#E5(F5) = 7, #E7(F7) = 11, #E11(F11) = 17, #E17(F17) = 25.

This is possible because the Hasse bound is satisfied in each instance. We
then use the Chinese remainder theorem to find an elliptic curve E with
minimal Weierstrass equation

y2 + y = x3 + x2 − 1 291 874 622 406 186x+ 17 872 226 251 073 822 113 702,

and point
P = (20 751 503, 1 073 344).

(We have moved P away from (0, 0) to make the numbers a bit smaller.)
The associated sequence D = (Dn)n≥1 begins

1, 2 146 689, 286 883 381 041 833 542 301,
60 768 120 452 650 698 495 048 133 538 894 517, . . . .

By construction, (1→ 32725) ∈ Arr(D). Of course, the 32725th term is too
large to print, but the claim can be verified by computation modulo 32725.

For this example, we can verify equation (3.2) in Theorem 3.3(d), which
states

(4.4)
∏
p|d

(
1 +

1
√
p

)2

≥ pt0.

In our case, p0 = 5, t = 1, and the left-hand side exceeds 10.

Remark 4.7. In the definition of EDS, the elliptic curve may be re-
placed with a singular cubic curve as long as P is a nonsingular point, since
Ens(Q) is a group. More precisely, Ens(Q) is either the additive group Q+,
the multiplicative group Q∗, or a subgroup of a quadratic twist of the multi-
plicative group; see [16, III.2.5, Exercise 3.5]. Thus EDS on singular elliptic
curves are closely related to Lucas sequences.

For example, consider the nodal singular cubic curve and point

C : y2 + 3xy + 3y = x3 + 2x2 + x and P = (0, 0).

The associated EDS,

D : 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, . . . ,

consists of the even-indexed Fibonacci numbers. This is exactly the Lucas
sequence generated by

Ln+2 = 3Ln+1 − Ln, L0 = 0, L1 = 1.
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The index divisibility set of D is

S(D) = {1, 5, 6, 12, 18, 24, 25, 30, 36, 48, 54, 55, 60, 72, 84, . . .}.
In the notation of Smyth’s Theorem 0.2, we have

a = 3, b = 1, ∆ = 5, B3,1 = {1→ 6}.
In the language of our paper, 5, 6 ∈ Agen(D), since

r2 = 3, r3 = 2, r5 = 5.

Thus (2, 3) and (5) are generalized aliquot cycles. Notice that the curve C
reduces modulo p to a curve having p, p − 1 or p + 1 nonsingular points
according as p ramifies, splits, or is inert in Q(

√
5).

In general, our Theorem 3.3 and Smyth’s Theorem 0.2 can probably be
combined into a general theorem on (possibly singular) cubic curves. Notice
that Smyth’s set Ba,b may include nonstandard arrows in the case of the
multiplicative group, although the analysis is simpler because #Cns(Fp) ∈
{p, p+1, p−1}. The primes p dividing ∆ = a2 − 4b are the primes for which
the group underlying the Lucas sequence reduces to the additive group F+

p .
They are thus analogous to the primes of additive reduction whose arrows
(n→ np) are described in Theorem 3.3(a,c). We also note that in the multi-
plicative group case we never have r2 = 4, so we are always in the 2-regular
setting.

5. Elliptic aliquot cycles. Let D be an EDS with associated elliptic
curve and point (E,P ), and let (p, q) ∈ A(D) be an amicable pair for D.
Then the point P has order q modulo p, and P has order p modulo q. This
implies that

q |#E(Fp) and p |#E(Fq).
Conversely, if we are given D and (E,P ), and if p and q are distinct primes
of good reduction satisfying

(5.1) #E(Fp) = q and #E(Fq) = p,

then (p, q) is automatically an amicable pair for D.
We note that the conditions (5.1) do not refer to the point P . This leads

to the following definitions.

Definition 7. Let E/Q be an elliptic curve. An aliquot cycle of length `
for E/Q is a list p1, . . . , p` of distinct primes such that E has good reduction
at every pi and

#E(Fp1) = p2, #E(Fp2) = p3, . . . , #E(Fp`−1
) = p`, #E(Fp`) = p1.

An amicable pair for E/Q is an aliquot cycle of length 2.

Remark 5.1. The distribution of amicable pairs and aliquot cycles on
elliptic curves is studied in [17]. In particular, it turns out that elliptic curves
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with complex multiplication behave quite differently from curves without
CM. For the convenience of the reader, we briefly summarize some of the
material in [17].

• If E(Q) contains a nontrivial torsion point, then E has (essentially)
no aliquot cycles. This is clear since E(Q)tors ↪→ E(Fp) for all primes
p - 2 DiscE/Q; cf. [17, Remark 5].
• For any `, there exists an elliptic curve E/Q that has an aliquot cycle of

length `. More generally, for any `1, . . . , `s there exists an elliptic curve
having disjoint aliquot cycles of length `1, . . . , `s [17, Theorem 13].
• Let E/Q be an elliptic curve with complex multiplication and j(E)
6= 0. Then E has no aliquot cycles of length ` ≥ 3 composed of primes
p ≥ 5 [17, Corollary 16].
• Let E/Q be an elliptic curve with j(E) = 0. Then E has no aliquot

cycles of length 3 composed of primes p ≥ 11 [17, Proposition 48].
• Conjecture: Assume that there are infinitely many primes p such that

#E(Fp) is prime. If E does not have CM, then

#{aliquot cycles (p1, . . . , p`) with pi ≤ X} ��
√
X

(logX)`
.

If E has CM, then there is a constant CE > 0 such that

#{amicable pairs (p, q) with p, q ≤ X} ∼ CE
X

(logX)2
.

The next proposition shows that aliquot cycles for an elliptic divisibility
sequence are closely related to aliquot cycles on the associated elliptic curve.

Proposition 5.2. Let D be a minimal EDS, and let (E,P ) be the asso-
ciated elliptic curve E/Q and point P ∈ E(Q).

(a) Let (p1, . . . , p`) be an aliquot cycle for E/Q such that pi - D1 for
all i. Then (p1, . . . , p`) is an aliquot cycle for D.

(b) Let (p1, . . . , p`) be an aliquot cycle for D. Then

(5.2)
∏̀
i=1

#E(Fpi)
pi

< 2 ⇒
(

(p1, . . . , p`) is an
aliquot cycle for E

)
.

In particular,

(5.3) min
1≤i≤`

pi >
1

(21/2` − 1)2
⇒

(
(p1, . . . , p`) is an
aliquot cycle for E

)
(cf. Theorem 3.3(d)).

Proof. (a) If (p1, . . . , p`) is an aliquot cycle for E/Q, then for all i we
know that #E(Fpi) = pi+1 is prime. Since pi+1 - D1, the order of the point P
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in E(Fpi) must equal pi+1. Therefore rpi(D) = pi+1, so the cycle is aliquot
for D.

(b) The proof is similar to the proof of Theorem 3.3(d). We are given
that rpi(D) = pi+1 for all i, or equivalently, the point P has order pi+1 in
the group E(Fpi). Thus for every 1 ≤ i ≤ ` we have

#E(Fpi) = pi+1Mpi for some Mpi ≥ 1.

Multiplying for 1 ≤ i ≤ ` and dividing by p1 · · · p` yields∏̀
i=1

#E(Fpi)
pi

=
∏̀
i=1

Mi.

Thus the assumption that
∏
i #E(Fpi)/pi < 2 implies that Mi = 1 for

every i, so (p1, . . . , p`) is an aliquot cycle for E. This proves (5.2).
To prove (5.3), we use the Hasse–Weil bound #E(Fp) ≤ (

√
p + 1)2 to

obtain ∏̀
i=1

#E(Fpi)
pi

≤
∏̀
i=1

(
1 +

1
√
pi

)2

≤
(

1 +
1

min
i

√
pi

)2`

.

Now a little bit of algebra, combined with (5.2), yields (5.3).

6. Miscellaneous remarks. We conclude with two brief remarks.

Remark 6.1. Recall that a sequence A = (An)n≥1 is called a divisibility
sequence if

m |n ⇒ Am |An.
Examples of divisibility sequences include Lucas sequences of the first kind,
the odd terms of Lucas sequences of the second kind, and elliptic divisibility
sequences. We observe that if A is a divisibility sequence, then

n ∈ S(A) and d |Dn and gcd(n, d) = 1 ⇒ nd ∈ S(A).

In particular, there is a sequence of arrows in Arr(A) satisfying
n→ · · · → nd.

This is one way in which the index divisibility graph of divisibility sequences
exhibits a structure not found for arbitrary sequences. It might be interesting
to see if there are any other general statements that one can make about
the index divisibility graph of general divisibility sequences.

Remark 6.2. A classical alternative definition of an elliptic divisibility
sequence is a sequence of integers W = (Wn)n≥1 defined by four initial
terms (W1,W2,W3,W4) and satisfying the recursion

Wn+mWn−mW
2
r = Wn+rWn−rW

2
m −Wm+rWm−rW

2
n for all n > m > r.

One can show that if the sequence is normalized by W1 = 1 and W2 |W4,
then every term is an integer. Ward [25, 26] was the first to study the arith-
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metic properties of these sequences. Under some nondegeneracy conditions,
he showed that there is an elliptic curve E/Q given by a Weierstrass equa-
tion and a point P ∈ E(Q) such that Wn = ψn(P ), where ψn is the nth
division polynomial for E [16, Exercise 3.7]. (See [25] or [18, Appendix A]
for explicit formulas for E and P in terms of the initial terms of the EDS.)
In particular, if D = (Dn)n≥1 is the EDS associated to (E,P ), then Dn |Wn

for all n ≥ 1. Thus

(6.1) n |Dn ⇒ n |Wn,

so index divisibility for D is a stronger condition than it is for W. Further,
one can show that ordp(Dn) = ordp(Wn) for all primes p at which the
Weierstrass equation has good reduction, so the implication in (6.1) can be
reversed if we ignore primes of bad reduction. This shows that the divisibility
properties of D and W are closely related. We have chosen in this paper to
concentrate on the former.
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