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1. Introduction. Beginning with the work of Osgood, Vojta, and Lang,
it has been observed that many statements in Nevanlinna theory closely re-
semble statements in Diophantine approximation. Qualitatively, in the sim-
plest case, holomorphic curves in a variety X should correspond to infinite
sets of integral points on X. A detailed dictionary between Nevanlinna the-
ory and Diophantine approximation has been developed by Vojta [13]. This
correspondence has been influential, inspiring conjectures and results in both
subjects.

Relatively recently, a p-adic analogue of Nevanlinna theory and value
distribution theory has been developed, and many analogous results proven.
Similar to the correspondence between classical Nevanlinna theory and Dio-
phantine approximation, we discuss here a correspondence between p-adic
Nevanlinna theory and certain Diophantine statements over the integers Z
or the rational numbers Q. Roughly speaking, at least for certain classes of
varieties, a nonconstant p-adic analytic map into a variety X should cor-
respond to an infinite set of Z-integral points on X. We discuss this in
the next section, making some observations towards a precise formulation.
While we lack such a precise formulation in general, this correspondence
already appears to be useful in suggesting both results and proofs of state-
ments concerning p-adic analytic maps and integral points on varieties. We
illustrate this in the last section, giving several examples of parallel p-adic
and arithmetic results. Aside from their illustrative purpose, some of these
results may be of independent interest.
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2. A correspondence. We begin with a motivating example. A basic
fact that separates the theory of p-adic entire functions from its complex
counterpart is the following:

Theorem 2.1. A p-adic entire function without zeros (over Cp) is con-
stant.

Here Cp denotes the completion of the algebraic closure of the field of
p-adic numbers Qp. In the classical analogy (Vojta’s dictionary) between
value distribution theory and arithmetic, an entire function without zeros
is analogous to an infinite set of units in some ring of integers. Thus, to
obtain a Diophantine analogue of p-adic entire functions, it is natural that
we consider only rings of integers which contain finitely many units, i.e., Z
or the (classical) ring of integers of an imaginary quadratic field. In a more
geometric way, we may rephrase Theorem 2.1 as:

Theorem 2.2A. There are no nonconstant analytic maps from Cp to
Gm = A1 \ {0}.

To give an arithmetic counterpart to this theorem, we introduce a bit of
notation. Let X be an affine variety over a number field k. Let S be a finite
set of places of k containing the archimedean places and let Ok,S denote the
ring of S-integers of k. We define a set R ⊂ X(k) to be a set of Ok,S-integral
points on X if there exists an affine embedding φ : X ↪→ An such that
φ(R) ⊂ X ∩An(Ok,S). With this terminology, the arithmetic counterpart to
Theorem 2.2A is the following theorem:

Theorem 2.2B. There exists an infinite set of Ok,S-integral points on
Gm if and only if Ok,S is neither Z nor the ring of integers of an imaginary
quadratic field.

Thus, there is a dichotomy between Ok,S-integral points with |S| = 1 and
Ok,S-integral points with |S| > 1. While the general case of integral points
(|S| > 1) corresponds to classical holomorphic curves, we would like to make
the case that nonconstant p-adic analytic maps to a variety behave similarly
to infinite sets of Z-integral points on the variety (or integral points over the
ring of integers of an imaginary quadratic field). Actually, to obtain a more
precise analogy, one must impose some natural restrictions on the varieties
considered, as we now discuss.

Firstly, note that there is also a notion of integral points for arbitrary
varieties. For instance, for a projective variety X over Q, the Z-integral
points on X are just the rational points X(Q). In this case, however, X(Z) =
X(ZS) = X(Q), where S is any finite set of places of Q containing the
archimedean place. Since we do not expect any correspondence with p-adic
analytic maps to hold for ZS-integral points (|S| > 1), it is not surprising
that the above correspondence fails for projective varieties. Indeed, there
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exist elliptic curves over Q with infinitely many rational points, while every
analytic map from Cp to an elliptic curve is constant. Thus, it is reasonable
to restrict our correspondence to affine varieties (or varieties close to affine
varieties).

Another difficulty is illustrated by a curve such as C : x2 − 2y2 = 1.
Over Q, we have C ∼= Gm. However, as is well-known, C, which is defined by
a so-called Pell equation, does admit infinitely many Z-integral points, while
by Theorem 2.2A, it does not admit a nonconstant analytic map from Cp. In
an attempt to understand this phenomenon, we note an equivalent definition
for Ok,S-integral points on an affine variety X over k:

Definition 2.3. Let X be an affine variety over k. A set R ⊂ X(k) is a
set of Ok,S-integral points if and only if for every regular function φ in the
ring of regular functions O(X) on X (over k), there exists a constant α ∈ k∗
such that αφ(R) ⊂ Ok,S .

Now let C̃ be the projective closure of C defined in the projective plane
by x2 − 2y2 = z2. Then C has two points at infinity, given in homogeneous
coordinates by P± = (±

√
2, 1, 0). Every regular function on C over Q has

a pole at both P+ and P− on C̃. Over Q(
√

2), however, there are regular
functions on C with a pole only at, say, P+ on C̃. Thus, in view of Defini-
tion 2.3, one might view the problem here as being that C does not have
enough regular functions over Q to have a good notion of Z-integral points,
at least for our purposes.

Given k = Q or an imaginary quadratic field and a nonsingular affine
variety X over k, a hypothesis that will appear (implicitly) throughout Sec-
tion 3 that is related to avoiding the above phenomenon is the following:

(∗) There exists a nonsingular projective closure X̃ of X such that every
(geometric) irreducible component of X̃ \X is defined over k.

If an affine variety X over k satisfies (∗), it is easy to see that O(X)⊗ k =
O(Xk), where Xk = X ×k k (in fact, the converse also holds). It is in this
sense that the curve C did not have “enough” regular functions over Q (i.e.,
O(C)⊗Q 6= O(CQ)).

Define X to be arithmetically Ok,S-hyperbolic if any set of Ok,S-integral
points on X is finite. We define X to be Cp-hyperbolic if every analytic map
from Cp to X is constant. For curves, the condition (∗) yields a sufficient
hypothesis under which our correspondence holds:

Theorem 2.4. Let k = Q or an imaginary quadratic field. If X is an
affine curve over k satisfying (∗) then X is Cp-hyperbolic if and only if X
is arithmetically Ok-hyperbolic.

This follows from Theorems 2.2A and 2.2B, Siegel’s theorem, and the
nonarchimedean analogue of Picard’s theorem. In higher dimensions, the
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condition (∗) is probably necessary to obtain a nice correspondence, but it
is no longer sufficient. Although it is not clear what exactly the right con-
ditions in higher dimensions should be, in Section 3 we give several higher-
dimensional results demonstrating the correspondence between p-adic ana-
lytic maps and Ok-integral points (k = Q or an imaginary quadratic field).

Quantitatively, along the lines of the condition (∗), it appears that p-adic
Nevanlinna theory statements can be made to correspond to Diophantine
approximation statements where one restricts to looking at Q-rational num-
bers approximating Q-rational divisors. We give an example of this in Sec-
tion 3.1. In Section 3.2, we discuss generalizations of Berkovich’s Picard
theorem to higher-dimensional varieties, and their arithmetic analogues. In
Section 3.3, we recall some results concerning the degeneration of p-adic
analytic maps into the complements of hypersurface divisors in nonsingular
projective varieties, and establish their arithmetic analogues. In particular,
we give necessary and sufficient conditions for P2\{D1∪D2} to be arithmeti-
cally Ok-hyperbolic when k = Q or an imaginary quadratic field and D1 and
D2 are nonsingular projective curves in P2 intersecting transversally. This
result has its own interest in the study of ternary form (homogeneous poly-
nomial in three variables) equations. For example, it is fundamental to study
when a ternary form F (X,Y, Z) ∈ Z[X,Y, Z] has infinitely many solutions
in Z3 satisfying F (X,Y, Z) = 1. We refer to [3] for an introduction and more
general statements. We should also mention that all the statements for Cp

hold for any algebraically closed field of arbitrary characteristic, complete
with respect to a nonarchimedean absolute value.

3. Some examples of the correspondence

3.1. Second Main Theorems. We first give some basic notation and
definitions in p-adic Nevanlinna theory. Let h(z) =

∑∞
j=0 ajz

j be an entire
function on Cp. For each r ≥ 0, we define

|h|r := sup
j
|aj |rj = sup{|h(z)| : z ∈ Cp with |z| ≤ r}

= sup{|h(z)| : z ∈ Cp with |z| = r}.

Let f : Cp → PN (Cp) be a nonconstant analytic curve in projective space.
Let f̃ = (f0, . . . , fN ) be a reduced representative of f , where f0, . . . , fN
are entire functions on Cp without common zeros, at least one of which is
nonconstant.

The Nevanlinna characteristic function Tf (r) is defined by Tf (r) =
log ‖f‖r, where ‖f‖r = max{|f0|r, . . . , |fN |r}. The above definition of Tf (r)
is independent, up to an additive constant, of the choice of the reduced
representation of f .
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Let D be a hypersurface in PN (Cp) of degree d. Let Q be a homogeneous
polynomial in N+1 variables with coefficients in Cp defining D. We consider
the entire function Q ◦ f = Q(f0, . . . , fN ) on Cp. If Q ◦ f 6≡ 0, then the
proximity function with respect to D is defined by

mf (r,D) = mf (r,Q) = log
‖f‖dr
|Q ◦ f |r

.

Note that up to a constant term, mf (r,D) is independent of the choice of
defining form Q.

Let X ⊂ PN be a projective variety over a field K of dimension n.
A collection of hypersurfaces D1, . . . , Dq ⊂ PN over K is said to be in
general position with X if for each 1 ≤ l ≤ n+ 1 and each choice of indices
i1 < · · · < il, each irreducible component of

Di1(K̄) ∩ · · · ∩Dil(K̄) ∩X(K̄)

has codimension l in X, so in particular is empty when l = n+ 1. A p-adic
Second Main Theorem was proven by Ru in [11] for the case of projective
space and by An in [1] for arbitrary projective varieties.

Theorem 3.1A (An, Ru). Let X ⊂ PN be a projective subvariety of
dimension n ≥ 1 over Cp. Let D1, . . . , Dq be hypersurfaces in PN in general
position with X. Let f : Cp → X be a nonconstant analytic map whose
image is not completely contained in any of the hypersurfaces D1, . . . , Dq.
Then, for any positive real number r,

q∑
j=1

mf (r,Dj)
degDj

≤ nTf (r) +O(1),

where O(1) is a constant independent of r.

As noted in [11], in contrast to the case of classical Nevanlinna theory, the
p-adic Second Main Theorem follows from the p-adic First Main Theorem.
We now prove a Diophantine analogue of the p-adic Second Main Theorem.
As in the p-adic case, the theorem follows essentially from the “Diophantine
First Main Theorem” (the definition of the height as a sum of local heights
and the equivalence, up to an additive constant, of heights associated to
linearly equivalent divisors).

We first recall some basic definitions in Diophantine geometry. Let k
be a number field. We have a set Mk of absolute values (or places) of k
consisting of one place for each prime ideal p of Ok, one place for each real
embedding σ : k → R, and one place for each pair of conjugate embeddings
σ, σ : k → C. Let kv denote the completion of k with respect to v ∈Mk. We
normalize our absolute values so that |p|v = p−[kv :Qp]/[k:Q] if v corresponds to
p and p | p, and |x|v = |σ(x)|[kv :R]/[k:Q] if v corresponds to an embedding σ.
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For a point P = (x0, . . . , xn) ∈ Pn(k) we define the height of P to be

h(P ) =
∑
v∈Mk

log max{|x0|v, . . . , |xn|v}.

This is the analogue of the Nevanlinna characteristic function. It follows from
the product formula that h(P ) is independent of the choice of homogeneous
coordinates for P . It is also easy to see that the height is independent of the
choice of k.

Let D be a hypersurface over k in PN of degree d. Let Q be a homoge-
neous polynomial over k in N+1 variables defining D. Let x = (x0, . . . , xN )
be a representation of P ∈ X(k) and let ‖x‖v = max0≤j≤N |xj |v. Let ‖Q‖v
be the maximum absolute value of the coefficients of Q with respect to
v ∈Mk. We define a local Weil function for D at v by

λD,v(P ) = log
‖x‖dv · ‖Q‖v
|Q(x)|v

for P 6∈ D (Q(x) 6= 0). This is clearly independent of the choice of the
coordinates of P and the choice of Q.

If S is a finite set of places of k, we let mS(P,D) =
∑

v∈S λD,v(P )
be a sum of local Weil functions, the Diophantine analogue of the proxi-
mity function in Nevanlinna theory. When S = {∞}, the unique archi-
medean place of Q or an imaginary quadratic field, we will just write
m∞(P,D).

With this notation, we now give the Diophantine approximation ana-
logue of Theorem 3.1A.

Theorem 3.1B. Let k = Q or an imaginary quadratic field. Let X ⊂ PN
be a projective subvariety of dimension n ≥ 1 over k. Let D1, . . . , Dq be
hypersurfaces in PN defined over k and in general position with X. Then
there exists an effectively computable real constant C, depending only on
D1, . . . , Dq, such that

q∑
j=1

m∞(P,Dj)
degDj

≤ nh(P ) + C for all P ∈ X(k) \
⋃q
j=1Dj.

Proof. Let Qj be a homogeneous polynomial in N+1 variables of degree
dj with coefficients in k defining Dj . Let d be the least common multiple of
d1, . . . , dq and Gj = Q

d/dj

j . Then degGj = d for all j. Let x = (x0, . . . , xN )
be a representation of P ∈ X(k) \

⋃q
j=1Dj . Then we have

m∞(P,Dj) = log
‖x‖dj

∞ · ‖Qj‖∞
|Qj(x)|∞

.
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For every nonarchimedean place v, it is clear that λD,v(P ) ≥ 0. It follows
easily from this and the product formula that

m∞(P,Dj) ≤ djh(P ) + h(Qj)(1)

where h(Qj) =
∑

v∈Mk
log ‖Qj‖v. The assertion then holds trivially if q ≤ n.

Therefore, we only need to consider when q ≥ n+ 1.
For a fixed P = x = (x0, . . . , xN ) ∈ X(k) \

⋃q
j=1Dj , by rearranging the

indices if necessary, we may assume that

|G1(x)|∞ ≤ · · · ≤ |Gq(x)|∞.(2)

Since D1, . . . , Dq are in general position with X,

X ∩ {G1 = 0, . . . , Gn+1 = 0} = ∅.
Applying Hilbert’s Nullstellensatz to the ideal generated by the forms defin-
ing X and {Q1, . . . , Qn+1}, we see that for any integer l, 0 ≤ l ≤ N , there
is an integer ml ≥ d such that

xml
l =

n+1∑
j=1

Al,j(x)Gj(x) on X(k),

where Al,j are homogeneous polynomials with coefficients in k of degree
ml − d. Then

|xl|ml
∞ ≤ c‖x‖ml−d

∞ max
1≤j≤n+1

|Gj(x)|∞,

where c is a positive constant that depends only on the coefficients of theAl,j .
Therefore,

‖x‖d∞ ≤ c max
1≤j≤n+1

|Gj(x)|∞.

From our assumption (2), we have

log
‖x‖d∞
|Gj(x)|∞

≤ log c for j = n+ 1, . . . , q.

Thus,

d

q∑
j=1

m∞(P,Dj)
dj

=
q∑
j=1

log
‖x‖d∞
|Gj(x)|∞

+
q∑
j=1

d

dj
log ‖Qj‖∞

≤
n∑
j=1

log
‖x‖d∞
|Gj(x)|∞

+
q∑
j=1

d

dj
log ‖Qj‖∞ + (q − n) log c

≤ d

dj

n∑
j=1

m∞(P,Dj) +
q∑

j=n+1

d

dj
log ‖Qj‖∞ + (q − n) log c

≤ ndh(P ) + C,
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where C = (q − n)
(
log c + max1≤j≤q

d
dj

log ‖Qj‖∞
)
+nmax1≤j≤q

d
dj
h(Qj)

by (1). Because the right hand side of the inequality no longer depends
on the arrangement of the indices (2), dividing both sides through by d
gives the theorem for all P ∈ X(k)\

⋃q
j=1Dj . We note that it is well-known

that the effectiveness follows from any effective version of Hilbert’s Nullstel-
lensatz and the method of Masser–Wüstholz [8].

As corollaries of Theorems 3.1A and 3.1B, we obtain:

Corollary 3.2A. Let X ⊂ PN be a projective subvariety of dimension
n ≥ 1 over Cp. Let D1, . . . , Dq be hypersurfaces in Pn in general position
with X. If q ≥ n+ 1, then X \

⋃q
i=1Di is Cp-hyperbolic.

Corollary 3.2B. Let k = Q or an imaginary quadratic field. Let
X ⊂ PN be a projective subvariety of dimension n ≥ 1 over k. Let D1, . . . , Dq

be hypersurfaces in Pn defined over k and in general position with X. If
q ≥ n+ 1, then X \

⋃q
i=1Di is arithmetically Ok-hyperbolic.

A generalization of these corollaries is given in the next section.

3.2. Varieties with many components at infinity. Berkovich’s Pi-
card theorem may be viewed as stating that any analytic map from Cp to
a projective curve omitting two points must be constant. A generalization
of this result to higher dimensions was recently given by Lin and Wang [7].
We will prove a refinement of [7]. Before stating the theorem, we introduce
some more notation and definitions.

Let D be a divisor on a nonsingular projective variety X over a field k.
For a nonzero rational function φ ∈ k(X), we let div(φ) denote the divisor
associated to φ. Then we let L(D) = {φ ∈ k(X) : div(φ) + D ≥ 0} and
h0(D) = dimH0(X,O(D)) = dimL(D). If h0(nD) = 0 for all n > 0 then
we let κ(D) = −∞. Otherwise, we define the Kodaira–Iitaka dimension of
D to be the integer κ(D) such that there exist positive constants c1 and c2
with

c1n
κ(D) ≤ h0(nD) ≤ c2nκ(D)

for all sufficiently divisible n > 0. We define a divisor D on X to be big if
κ(D) = dimX.

Theorem 3.3A. Let X be a nonsingular projective variety over Cp. Let
D1, . . . , Dm be effective divisors on X with empty intersection. Let D =∑m

i=1Di.

(a) If κ(Di) > 0 for all i, then the image of an analytic map f : Cp →
X \D is contained in a proper subvariety of X.

(b) If Di is big for all i, then there exists a proper Zariski-closed subset
Z ⊂ X such that the image of any analytic map f : Cp → X \D is
contained in Z.
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(c) If Di is ample for all i, then there is no nonconstant analytic map
from Cp to X \D.

The arithmetic analogue of Theorem 3.3A is implicit in the proof of
a more general result proved in [6] using a higher-dimensional version of
“Runge’s method”.

Theorem 3.3B (Levin). Let k = Q or an imaginary quadratic field. Let
X be a nonsingular projective variety over k. Let D1, . . . , Dm be effective
divisors on X, defined over k, with empty intersection. Let D =

∑m
i=1Di.

(a) If κ(Di) > 0 for all i, then any set R of Ok-integral points on X \D
is contained in a proper Zariski-closed subset of X.

(b) If Di is big for all i, then there exists a proper Zariski-closed subset
Z ⊂ X such that for any set R of Ok-integral points on X \D, the
set R \ Z is finite.

(c) If Di is ample for all i, then all sets R of Ok-integral points on X \D
are finite.

Furthermore, as shown in [6], in each of the above cases, the integral
points can be effectively computed.

We will give a proof of Theorem 3.3A following the idea of Levin [6] in
the arithmetic situation. First, we need the following lemma.

Lemma 3.4. Let X be a nonsingular projective variety over Cp. Let
φ1, . . . , φm ∈ Cp(X) be rational functions on X without a common pole.
Then there exists a constant λ such that

min
1≤i≤m

|φi(P )| ≤ λ for all P ∈ X(Cp).

Proof. Since φ1, . . . , φm have no common pole, we may take a finite
affinoid covering U such that for each affinoid subdomain U in U there is
at least one φi, 1 ≤ i ≤ m, which is regular on U . Since a regular function
on an affinoid subdomain is bounded, we can find a constant λU such that
min1≤i≤m |φi(P )| ≤ λU for all P ∈ U . As U is a finite affinoid covering, the
assertion of the lemma holds by taking λ = maxU∈U λU .

Proof of Theorem 3.3A. We first prove (a). Since κ(Di) > 0 for all i,
there exists a nonconstant rational function φi ∈ Cp(X) such that the poles
of φi lie in the support of Di. Since the intersection of the supports of
D1, . . . , Dm is empty, φ1, . . . , φm have no common pole. By Lemma 3.4,
there exists a constant λ such that

min
1≤i≤m

|φi(P )| ≤ λ(3)

for all P ∈ X(Cp). Let f be an analytic map from Cp to X \ D. Then
φ1 ◦ f, . . . , φm ◦ f are analytic functions. If φi ◦ f is constant for some 1 ≤
i ≤ m, then this algebraic relation implies that the image of f is contained
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in a proper algebraic subset of X. Therefore, we may assume all the φi ◦ f
are nonconstant analytic functions. A classical result on the growth modulus
of nonarchimedean analytic functions (cf. [10, Section 6.1.4]) shows that for
all r ≥ 0 except a discrete subset of [0,∞),

sup
|z|=r
|φi(f(z))| = |φi(f(w))| for all |w| = r.(4)

Since there are only a finite number of φi’s,

sup
|z|=r
|φi(f(z))| = |φi(f(w))| for all |w| = r and 1 ≤ i ≤ m

for all r ≥ 0 except a discrete subset of [0,∞). For such r, we can easily
deduce that

min
1≤i≤m

sup
|z|=r
|φi(f(z))| = sup

|z|=r
min

1≤i≤m
|φi(f(z))|.(5)

By (3), we have

min
1≤i≤m

|φi(f(z))| ≤ λ(6)

for all z ∈ Cp. This gives an upper bound for the right hand side of (5).
On the other hand, since each of the φi(f(z)) is a nonconstant analytic
function, the left hand side of (5) tends to infinity as r grows to infinity,
giving a contradiction. We conclude that the image of f is contained in a
proper algebraic set.

We now prove (b). Since Di is big for all i, we may choose a sufficiently
large integer N such that for each i the map ΦNDi associated to L(NDi)
is birational onto its image, and an isomorphism onto its image outside of
a proper Zariski-closed subset Zi ⊂ X. Let Z =

⋃m
i=1 Zi. For each i, let

φi,1, . . . , φi,l(NDi) be a basis of L(NDi). We may take

ΦNDi = (φi,1, . . . , φi,l(NDi)).

Let f be a nonconstant analytic map from Cp to X \D. Suppose that the
image of f is not a subset of Z. Since f is not constant, there exist at least two
distinct points P and Q in the image of f but not in Z. As for each i the map
ΦNDi is one-to-one outside of Z, we have ΦNDi(P ) 6= ΦNDi(Q). Therefore,
there exists some 1 ≤ ji ≤ l(NDi) such that φi,ji(P ) 6= φi,ji(Q). Since P and
Q are two distinct points in the image of f , this shows that for each i, φi,ji ◦f
is not constant. Since the poles of φi,ji lie in Di, φ1,j1 , . . . , φm,jm have no
common pole. We can repeat the arguments in (a) to reach a contradiction
and conclude that the image of f must be contained in Z.

The proof of (c) follows from the proof of (b) since Zi is empty when Di

is ample.
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3.3. Complements of hypersurface divisors. In [2], An, Wang, and
Wong studied the degeneration of p-adic analytic maps into the complements
of hypersurface divisors in nonsingular projective varieties. They proved:

Theorem 3.5A (An, Wang, Wong). Let X be a nonsingular projective
subvariety of PN of dimension n. Let P1, . . . , Pq be nonconstant homoge-
neous polynomials in N + 1 variables. Let Di = X ∩ {Pi = 0}, 1 ≤ i ≤ q,
be divisors of X in general position. Let f be an analytic map from Cp to
X \

⋃q
i=1Di. Then the image of f is contained in a subvariety of X of codi-

mension min{n+ 1, q}− 1 in X. In particular, f is algebraically degenerate
if q ≥ 2, and X \

⋃q
i=1Di is Cp-hyperbolic if q ≥ n+ 1.

We now prove an arithmetic analogue.

Theorem 3.5B. Let k = Q or an imaginary quadratic field. Let X be a
nonsingular projective subvariety of PN of dimension n defined over k. Let
P1, . . . , Pq be nonconstant homogeneous polynomials over k in N + 1 vari-
ables. Let Di = X∩{Pi = 0}, 1 ≤ i ≤ q, be divisors of X in general position.
Let R be a set of Ok-integral points of X \

⋃q
i=1Di. Then R is contained in

a finite union of subvarieties of X of codimension min{n+ 1, q} − 1 in X.
In particular, R is algebraically degenerate if q ≥ 2, and X \

⋃q
i=1Di is

arithmetically Ok-hyperbolic if q ≥ n+ 1.

Proof. When q ≥ n + 1, the result follows from Corollary 3.2B or The-
orem 3.3B(c). Therefore, we only need to consider when q ≤ n. It fol-
lows from the definition of integral points that for some constant α ∈ k∗,
α(Pi/P1)(R) ⊂ Ok, i = 1, . . . , q. Similarly, there is a constant β ∈ k∗ such
that β(P1/Pi)(R) ⊂ Ok, i = 1, . . . , q. It follows that (P1/Pi)(R) lies in a
finite number of cosets of O∗k in k∗ for i = 1, . . . , q. Since O∗k is finite, this
implies that R lies in a finite union of closed subsets of the form Pi−ciP1 = 0,
ci ∈ k∗, i = 1, . . . , q. The rest of the proof now proceeds as in [2].

An, Wang, and Wong proved more precise results on complements of
hypersurface divisors in projective space.

Theorem 3.6 (An, Wang, Wong). Let D1, . . . , Dn be nonsingular hyper-
surfaces in Pn intersecting transversally. Then Pn \

⋃n
i=1Di is Cp-hyperbolic

if degDi ≥ 2 for each 1 ≤ i ≤ n.

We obtain both a mild improvement to this theorem, and an arithmetic
version. Before stating the two theorems, we make a convenient definition.

Definition 3.7. Let D be a hypersurface of degree d in Pn. A nonsin-
gular point x of D is said to be a maximal inflexion point if there exists a
line intersecting D at x with multiplicity d.
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Theorem 3.8A. Let D1, . . . , Dn be nonsingular hypersurfaces in Pn. As-
sume that D1, . . . , Dn intersect transversally and degD1 ≤ · · · ≤ degDn.
Then Pn\

⋃n
i=1Di is Cp-hyperbolic if either of the following conditions holds:

(i) degD1 ≥ 2,
(ii) degD1 = 1, degDn ≥ 3, and D1 does not simultaneously intersect

D2, . . . , Dn at a point that is a maximal inflexion point of each of
D2, . . . , Dn.

Theorem 3.8B. Let k = Q or an imaginary quadratic field. Let
D1, . . . , Dn be nonsingular hypersurfaces defined over k in Pn. Assume that
D1, . . . , Dn intersect transversally and degD1 ≤ · · · ≤ degDn. When degD1

≤ 2, if p ∈
⋂n
i=1Di(k̄) and [k(p) : k] = 2, then we assume further that k = Q

and k(p) is an imaginary quadratic field. Then Pn\
⋃n
i=1Di is arithmetically

Ok-hyperbolic if either of the following conditions holds:

(i) degD1 ≥ 2,
(ii) degD1 = 1, degDn ≥ 3, and D1 does not simultaneously intersect

D2, . . . , Dn at a point that is a maximal inflexion point of each of
D2, . . . , Dn.

We will only give the proof of Theorem 3.8B, as the proof of Theo-
rem 3.8A follows from obvious modifications (and simplifications) of this
proof.

Proof. Suppose D1, . . . , Dn satisfy either condition (i) or condition (ii).
Let R be a set of Ok-integral points on Pn \

⋃n
i=1Di. By Theorem 3.5B,

R lies on a finite union of curves in Pn. We note that if a curve C is
minimally defined over a proper finite extension of k, then the Ok-integral
points of C will lie in the intersection of C and its conjugate curves over k
and hence the number is finite. Now, let C be any (irreducible) projective
curve over k in Pn. Then it suffices to show that C \

⋃n
i=1Di contains only

finitely many Ok-integral points. By Siegel’s theorem, this will be true if
#C ∩

⋃n
i=1Di > 2. So we can assume that C ∩

⋃n
i=1Di consists of either a

single point {p} or two distinct points {p, q}. We use throughout (implicitly)
a higher-dimensional version of Noether’s formula for intersection numbers
(e.g., [5, Th. 12.4]).

Suppose first that C ∩
⋃n
i=1Di consists of a single point {p}, which must

be k-rational. Suppose that C is not a line in Pn. Then mp(C) ≤ deg(C)− 1,
where mp(C) is the multiplicity of C at p (otherwise one could find a hy-
perplane in Pn intersecting C in > degC points, counting multiplicities).
Let X be the blow-up of Pn at p with exceptional divisor E (∼= Pn−1)
and let C̃ be the strict transform of C, and D̃i the strict transform of Di,
i = 1, . . . , n. Since each divisor Di is smooth at p and mp(C)mp(Di) =
mp(C) ≤ deg(C)− 1 < deg(C) deg(Di), it follows that each D̃i must inter-
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sect C̃ at some point on X lying above p. Since the Di intersect transversally,⋂n
i=1 D̃i ∩E = ∅. Thus, there must be at least two points on C̃ lying above

p (#(C̃ ∩ E) ≥ 2). If there are strictly more than two such points, then
by looking at a normalization of C, Siegel’s theorem implies that C \ {p}
contains only finitely many integral points. On the other hand, if there are
exactly two points p̃1, p̃2 on C̃ lying above p, then p̃1 and p̃2 must both
be k-rational, as from the above, {p̃1} = C̃ ∩ D̃i for some i, and C̃ and D̃i

are both defined over k. Then Theorem 3.3B(c) (applied to a normalization
of C) implies that C \ {p} contains only finitely many Ok-integral points. If
C is a line and degD1 ≥ 2, then again, for every i, D̃i and C̃ must intersect
and we can use the above argument. If C is a line and degD1 = 1, then
the assumption on maximal inflexion points in (ii) implies that C cannot
intersect

⋃n
i=1Di in a single point.

Now suppose that C ∩
⋃n
i=1Di consists of two points {p, q}. If p and q

are k-rational, then C \{p, q} contains only finitely many Ok-integral points
by Theorem 3.3B(c). So we can assume that [k(p) : k] = 2, and p and q are
conjugate, lying in a quadratic extension of k. Note that {p, q} ⊂

⋂n
i=1Di(k̄),

since otherwise C would intersect
⋃n
i=1Di in a third point. If degD1 ≤ 2,

then by assumption, k = Q and k(p) is an imaginary quadratic field. Hence,
in this case, C\{p, q} contains only finitely many Ok-integral points. Finally,
suppose that degD1 ≥ 3. Consider the blow-up X of Pn at p as before.
If there is more than one point on C̃ lying above p, then as in previous
arguments, C \ {p, q} contains only finitely many integral points by Siegel’s
theorem. So suppose that there is a unique point p̃ on C̃ lying above p. As
in our previous argument, transversality implies that some D̃i does not pass
through p̃. Thus, the contribution to the intersection number (C,Di) from
the intersection at p is mp(C). By using the Galois action of k(p)/k, we
deduce similarly that the contribution to (C,Di) from the intersection at q
is mq(C). So (C,Di) = mp(C) + mq(C) ≤ 2 degC. Since degDi ≥ 3, this
yields a contradiction.

The n = 2 case of Theorem 3.8A was proved by An, Wang, and Wong
in [2]. In fact, in this case they also proved the converse.

Theorem 3.9A (An, Wang, Wong). Let D1 and D2 be nonsingular pro-
jective curves in P2. Assume that D1 and D2 intersect transversally and
degD1 ≤ degD2. Then P2 \ {D1 ∪D2} is Cp-hyperbolic if and only if either
degD1, degD2 ≥ 2 or degD1 = 1, degD2 ≥ 3 and D1 does not intersect D2

at any maximal inflexion point.

Similarly, we can give a complete characterization of when P2\{D1∪D2}
is arithmeticallyOk-hyperbolic, where k = Q or an imaginary quadratic field
and D1 and D2 are curves over k intersecting transversally.
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Theorem 3.9B. Let k = Q or an imaginary quadratic field. Let D1 and
D2 be nonsingular projective curves defined over k in P2. Assume that D1

and D2 intersect transversally and degD1 ≤ degD2. Then P2 \ {D1 ∪D2}
is arithmetically Ok-hyperbolic if and only if one of the following holds:

(i) degD1 ≥ 3.
(ii) degD1 = 2, and if there exists p ∈ D1(k̄)∩D2(k̄) with [k(p) : k] = 2

such that the line through p and its conjugate point q only intersects
D1 and D2 at p and q, then we assume further that k = Q and k(p)
is an imaginary quadratic field.

(iii) degD1 = 1, degD2 = 2, D1(k̄) ∩D2(k̄) = {p, q}, k = Q, and k(p)
is an imaginary quadratic field.

(iv) degD1 = 1, degD2 ≥ 3, D1 does not intersect D2 at any k-rational
maximal inflexion point, and if there exists p ∈ D1(k̄)∩D2(k̄) with
[k(p) : k] = 2 and a conic C intersecting with D1 ∪ D2 only at p
and its conjugate point, then we assume that either

(a) k = Q and k(p) is an imaginary quadratic field, or
(b) C has no k-rational point.

In the p-adic case, we have the following for generic curves.

Corollary 3.10A. If D1 and D2 are two generic curves in P2(Cp) with
degD1 + degD2 ≥ 4, then P2 \ {D1 ∪D2} is Cp-hyperbolic.

For the arithmetic case, we need to introduce Serre’s thin sets (cf. [12])
for a similar statement. We will use the following definitions from [4]. Let
K be a field and let n be a positive integer. Let T be a subset of the affine
space Kn. The set T is called a basic thin set of the first type if there exists
a nonzero polynomial F (t) ∈ K[t] (where t = (t1, . . . , tn)) such that (τ) ∈ T
if and only if F (τ) = 0. The set T is a basic thin set of the second type if
there exists a K-irreducible polynomial F (t,X) ∈ K[t,X] with degX F ≥ 2
such that (τ) ∈ T if and only if the specialized polynomial F (τ ,X) has a
root in K. The set T is called thin if it is contained in a finite union of basic
thin sets. We recall the following basic fact.

Lemma 3.11. If F (t,X) ∈ K[t,X] is an irreducible polynomial over
K(t), then there exists a thin set T ⊂ Kn such that F (τ ,X) is irreducible
over K if τ /∈ T .

Proof. See [12, Section 9.2, Propositions 1 and 2] or [4, Theorem 2.2.]

Definition 3.12. Let D1 and D2 be two curves in P2 over a field K, and
let P1 and P2 be their defining polynomials of degrees d1 and d2 respectively.
We may write P1 =

∑
I aIU

I where I runs through the set of (i0, i1, i2)
with i0 + i1 + i2 = d1 and U I = Xi0Y i1Zi2 , and write P2 =

∑
J bJW

J

where J runs through the set of (j0, j1, j2) with j0 + j1 + j2 = d2 and
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W J = Xj0Y j1Zj2 . We can associate to the two curves D1 and D2 the point
(. . . , aI , . . . , bJ , . . .) ∈ KM , where M =

(
d1+2

2

)
+
(
d2+2

2

)
. We say that a

statement is true for two general curves D1 and D2 over k if, after fixing the
degrees d1 and d2, the set of points (. . . , aI , . . . , bJ , . . .) ∈ KM corresponding
to the curves D1 and D2 satisfying the statement contains the complement
of a thin set of KM .

Corollary 3.10B. Let k = Q or an imaginary quadratic field. If D1

and D2 are two general curves in P2 over k with degD1 + degD2 ≥ 4, then
P2 \ {D1 ∪D2} is arithmetically Ok-hyperbolic.

Proof of Theorem 3.9B. First, assume that one of (i), (ii), (iii), or (iv)
holds. We need to show that P2 \{D1∪D2} is arithmetically Ok-hyperbolic.
Let Pi, i = 1, 2, be irreducible homogeneous polynomials in three variables
over k such that Di = [Pi = 0]. Let di = degPi and d be the least common
multiple of d1 and d2. Let R be a set of Ok-integral points of P2 \{D1∪D2}.
It follows from the proof of Theorem 3.5B that R lies in a finite union of
closed subsets defined by the form

P
d/d2
2 − cP d/d11 , c ∈ k∗.(7)

Let A be an irreducible factor of this polynomial over k[X,Y, Z]. If the curve
C = [A = 0] is (geometrically) reducible, then the k-rational points of C
are contained in the intersection of the components of C, and hence the
number of points in C(k) is finite. Therefore, we may assume that the curve
C = [A = 0] is (geometrically) irreducible. Then it suffices to show that
C \ {D1 ∪D2} contains only finitely many Ok-integral points.

We first make an observation. If p ∈ C ∩ {D1 ∪ D2}, then it follows
from (7) that p ∈ D1 ∩ D2. Since D1 and D2 are smooth and intersect
transversally, and as A is a factor of (7), the local expansions of P1 and P2

around p indicate that (i) when d1 = d2, C is smooth at p and C intersects
D1 and D2 transversally; (ii) when d1 < d2, C intersects D2 at p tangentially
and does not have a common tangent with D1 at p.

We now return to our assertions. By Siegel’s theorem, we only need to
consider the case when C intersects D1 ∪D2 in either a single point or two
points. Assume that C ∩ (D1 ∪D2) = {p}. From our observation, C and D1

do not have any common tangent at p. Together with the assumption that
D1 is smooth, we have

(C,D1)p = mp(C),(8)

where (C,D1)p is the intersection multiplicity of C and D1 at p and mp(C) is
the multiplicity of C at p. On the other hand, Bézout’s theorem implies that

(C,D1)p = degC · d1.(9)

Since mp(C) ≤ degC and equality only holds when C is a line, (8) and (9)
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imply that d1 = 1 and C is a line. When d1 = 1, we only need to consider
when d2 ≥ 3. Since, in this case, we have assumed that p is not a maxi-
mal inflexion point of D2, it follows that C intersects D2 at a second point,
contrary to our assumptions.

We next consider the case when C∩(D1∪D2) consists of exactly two dis-
tinct points, say p and q. If both points are k-rational, then C\{p, q} contains
only finitely many Ok-integral points by Theorem 3.3B(c). Therefore, we
may assume that [k(p) : k] ≥ 2. Since C and Di are over k, it is easy to verify
that k(p) = k(q) and [k(p) : k] = 2 (otherwise, C ∩ (D1 ∪D2) would contain
more than two points). If d1 = d2, our geometric observation implies that p
and q are smooth points on C and C intersects D1 and D2 transversally at
p and q. Therefore, (C,Di)p = (C,Di)q = 1 and Bézout’s theorem implies
that di · degC = 2. This shows that d1 = d2 = 2 and degC = 1. In this
case, we have assumed that k = Q and k(p) = k(q) is imaginary quadratic.
Therefore, C \ {p, q} contains only finitely many Ok-integral points by The-
orem 3.3B(c). If d1 < d2, similarly to (8), we have (C,D1)p = mp(C) and
(C,D1)q = mq(C). Together with Bézout’s theorem, this yields

d1 · degC = mp(C) +mq(C) ≤ 2 · degC,(10)

and equality holds only if C is a line. Hence, we have either (i) d1 = 1, or
(ii) d1 = 2, and C is a line. In the second case, we have also assumed that
k = Q and k(p) = k(q) is imaginary quadratic. Therefore, in the second case,
C\{p, q} contains only finitely many Ok-integral points by Theorem 3.3B(c).
It remains to consider the case when d1 = 1. In this case, since C is a com-
ponent of the curve defined by P2−cP d21 and D2 is a smooth curve, we have
mp(C) = mq(C) = 1. Therefore, (10) implies that degC = 2. For d2 ≥ 2,
C \ {p, q} contains only finitely many Ok-integral points since, in this case,
we have assumed that either k = Q and k(p) = k(q) is imaginary quadratic
or C has no k-rational points (and d2 ≥ 3).

For the converse part, we need to consider the following cases:

(a) d1 = d2 = 1,
(b) d1 = 1, d2 = 2, and D1 ∩D2 consists of two k-rational points,
(c) d1 = 1, d2 ≥ 3 and D1 intersects D2 at a k-rational maximal inflexion

point of D2,
(d) there is a point p ∈ D1 ∩ D2 with [k(p) : k] = 2 and either k is

imaginary quadratic or k = Q and k(p) is real quadratic, and

(i) d1 = 1, d2 = 2, or
(ii) d1 = 1, d2 ≥ 3, and there is a conic C intersecting D2 only at p

and its conjugate point and moreover C(k) is not empty, or
(iii) d1 = 2, and the line L passing through p and its conjugate point

q only intersects D1 ∩D2 at p and q.
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A regular function on P2 \ {D1 ∪ D2} is of the form G[X,Y, Z]/(Pn1
1 Pn2

2 )
where G[X,Y, Z] is a homogeneous polynomial over k of degree n1d1 +n2d2.
Let T be a k-linear transformation in P2 and R a set of Ok-integral points
on P2 \ {D1 ∪D2}. It follows from Definition 2.3 that T (R) is also a set of
Ok-integral points on P2 \ {DT

1 ∪DT
2 }, where DT

1 and DT
2 are the images of

D1 and D2, respectively, under the transformation T .
In (a), (b) and (c), the intersection of D1 and D2 contains a k-rational

point p. Then we can take a linear transformation over k and assume that
p = (0, 0, 1), P1 = X, and the tangent line of D2 at p = (0, 0, 1) is Y = 0.
Then P2 = Y in case (a), P2 = Y G(X,Y, Z) + aXd2 , where a ∈ k∗ and
G(X,Y, Z) is a homogeneous polynomial over k of degree d2−1, in cases (b)
and (c). It is easy to check that for any m ∈ Z, P1(1, 1,m) = P2(1, 1,m) = 1
in case (a) and P1(1, 0,m) = 1 and P2(1, 0,m) = a 6= 0 in cases (b) and (c).
Therefore, P2 \ {D1 ∪D2} is not arithmetically Ok-hyperbolic.

For the three cases in (d), we may make k-linear transformations and
assume that p = [0, α, 1] where α /∈ k and α2 = u ∈ Ok. We recall that
the Pell equation Y 2 − uZ2 = 1 has infinitely many integer solutions in Ok
when k is imaginary quadratic or when k = Q and Q(α) is real quadratic (cf.
Theorem 4 in [9]). Let {(yi, zi)} be an infinite set of Ok-integral solutions
to this Pell equation.

For case (i), we may again assume that P1 = X. We also note that a conic
over k passing though p must be of the form Y 2−uZ2+X(aX+bY +cZ) = 0.
Therefore, we may make a linear transformation such that P2 = Y 2 − uZ2

+ aX2, a ∈ k∗. Then P1(1, yi, zi) = 1 and P2(1, yi, zi) = 1 + a, which is not
zero if a 6= −1. If a = −1, we have P1(1, 2yi, 2zi) = 1 and P1(1, 2yi, 2zi) = 3.
Therefore, P2 \ {D1 ∪D2} is not arithmetically Ok-hyperbolic.

For case (ii), we may again assume that P1 = X and the equation of the
conic C intersecting D1∪D2 at p and q is Q(X,Y, Z) = Y 2−uZ2+aX2 = 0,
a ∈ k. Since C intersects D2 only at p and its conjugate q, P2 is of the form
cXd + Q(X,Y, Z)G(X,Y, Z) where G(X,Y, Z) is a polynomial over k and
c ∈ k∗. Since C(k) 6= ∅ and C intersects D1 = [X = 0] only at p and q, we
may assume there exists a k-rational point (1, y, z)∈C(k), i.e. y2−uz2 =−a.
Since the norm map k(α)→ k is multiplicative, it is easy to verify that the
norm of (yi +αzi)(y+αz) = yiy+uziz+αziy+αyiz equals −a. Therefore,
(yiy + uziz)2 − u(ziy + yiz)2 + a = 0. Then P1(1, yiy + uziz, ziy + yiz) = 1
and P2(1, yiy + uziz, ziy + yiz) = c 6= 0. Therefore, P2 \ {D1 ∪ D2} is not
arithmetically Ok-hyperbolic.

For case (iii), we can also assume similarly that P1 = Y 2 − uZ2 + aX2,
a ∈ k∗, and the line L passing through p and q is defined by X = 0.
Since the line L intersects D1 ∩ D2 only at p and q, P2 is of the form
(Y 2−uZ2)d2/2 +XG(X,Y, Z), where G(X,Y, Z) is a polynomial over k and
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d2 is an even integer. Then P1(0, yi, zi) = 1 and P2(0, yi, zi) = 1. Therefore,
P2 \ {D1 ∪D2} is not arithmetically Ok-hyperbolic.

Proof of Corollary 3.10B. It is clear that the geometric conditions given
in Theorem 3.9B hold for two general curves. Therefore, we only need to
consider the algebraic assumptions for (ii) and (iv) in Theorem 3.9B. For (ii),
we may make a k-linear transformation and assume that the line through p
and q is given by X = 0. Then D1 is defined by

P1 = a1Y
2 + a2Y Z + a3Z

2 +X(a4X + a5Y + a6Z),

and p and q are solutions of a1Y
2+a2Y Z+a3Z

2 = 0. SinceD2 only intersects
[X = 0] at p and q, the polynomial defining D2 must be the form

P2 = b1(a1Y
2 + a2Y Z + a3Z

2)d2/2 +XG(X,Y, Z)

where b1 6= 0 and d2 must be even. Clearly, the coefficients of D1 and D2

satisfy some algebraic equations which give a basic thin set of the first type.
We now consider (iv) in Theorem 3.9B. We may make a k-linear trans-

formation and assume that D1 = [X = 0]. Then, to find intersection points
of D1 and D2, we consider P2(0, Y, 1) = anY

n + · · · + a1Y + a0. Clearly, it
is an irreducible polynomial over k(an, . . . , a0), and hence by Lemma 3.11,
τnY

n + · · ·+ τ1Y + τ0 is irreducible over k for (τ0, . . . , τn) ∈ kn+1 outside a
thin set. Since the degree of D2 is at least 3, this easily shows that for any
intersection point p ∈ D1(k̄) ∩D2(k̄), we have [k(p) : k] = degD2 ≥ 3 if D1

and D2 are general curves in P2.
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