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The universality theorem for class group L-functions
by

HipeEHIKO MisHOU (Ube)

1. Introduction. Throughout this paper, for a set S we denote by #.5
the cardinality of S. Let D be the strip {s=0c+it € C|1/2 <0 <1} and
A be the set of all negative fundamental discriminants —d. Our purpose is to
investigate the functional distribution of a family of class group L-functions
over the imaginary quadratic field Q(v/—d) as —d varies in A. Before stating
our results, we recall some related results on other L-functions. B. Bagchi
[1] and S. M. Gonek [4] independently proved the following result.

THEOREM 1. Let C be a simply connected compact subset of D and f(s)
be a non-vanishing and continuous function on C which is analytic in the
interior of C'. Then for any small positive number € we have

1
liminf" ——#{x (mod ¢) | max|L(s,x) — f(s)| <&} >0,
g—oo g—1 seC

where L(s, x) is the Dirichlet L-function associated with the Dirichlet char-
acter x and liminf’ denotes the limit inferior over prime numbers q.

Theorem 1 asserts that any analytic function can be uniformly approxi-
mated by Dirichlet L-functions associated with suitable Dirichlet characters,
and that the set of such characters has positive lower density. K. M. Eminyan
[3] obtained the same property for a set of Dirichlet L-functions {L(s, x) | x
(mod p™)} where p > 2 is a fixed prime and n — oo. This type of property
for a set of zeta functions is called “universality”.

The author and Nagoshi [5] showed that the universality property also
holds for a family of Dirichlet L-functions associated with quadratic Dirichlet
characters.

THEOREM 2. For a negative fundamental discriminant —d, denote by
X-d(-) = (=) the Kronecker symbol, which is a quadratic Dirichlet char-
acter modulo d. Let §2 be a simply connected bounded region in D which is
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116 H. Mishou

symmetric with respect to the real axis. Let f(s) be an analytic and non-
vanishing function on {2 which is positive on 2 NR, and C be a compact
subset of 2. For X > 0 put Ax ={—-d € A | d < X}. Then for any e >0
we have
1
lim inf M—le{—d € Ay | max |L(s,x—-aq) — f(s)] <e} >0.

X—o0

An analogous statement also holds for positive fundamental discriminants.

In the following, for —d € A, let K be the imaginary quadratic field
Q(v/—d), H(—d) be the ideal class group of K, and h(—d) be the class
number of K. For a class group character x € H (—d), the attached Hecke
L-function is defined by

a
(1) Le(s) =X g (o>,
where a runs over all integral ideals of K other than 0, and Na is the norm
of a. It is well known that the class number h(—d) satisfies

4?7 <. h(—d) < d"?logd,

where the lower bound is due to C. L. Siegel [7]. Therefore the number of
class characters y € H (—d) goes to infinity as d — oc.

Now we state our main result, which is the universality theorem for a
family of class group L-functions.

THEOREM 3. Let {2 be a simply connected bounded region in D which
is symmetric with respect to R. Let f(s) be an analytic and non-vanishing
function on 2 which is positive on RN (2, and C' be a compact subset of (2.
Then for any small positive number € there is a subset Ag C A satisfying the
following conditions:

(1) Ao has positive density in A, namely

i H-deAod= X} 1 11 P
Xooo H{—d€A|d< X} 8 (p—1)

3<p<v
where v = v(f,C,¢) is a positive constant.
(2) We have
1 .
h%i%}fmﬁ{X € H(—d) | rsneaédLK(s,x) — f(s)] <e}>0.
- 0

REMARK. As we compare Theorem 3 with Theorems 1 and 2, it seems
that the natural form of the universality theorem for class group L-functions is

lim inf h(id)ﬁ{x € H(~d) | mas |Lic(s, )~ £(5)] <} > 0.
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However the above form probably does not hold. In general, the proof of the
universality theorem is divided into two steps.

(i) For a given analytic function g(s) there is a Dirichlet polynomial
> p<y @pp~° which uniformly approximates g(s).

(ii) The set of class characters x for which the logarithms of the L-
functions Lk (s, x) uniformly approximate ) _ a,p~® has positive
lower density.

p<v

We have a problem in step (ii). For s > 1 the logarithm of Lx(s, x)
has the Dirichlet series over rational primes

-1
log L (s, x) Z 10g< Ms(zz;gx(p)) +p§5> + (s, x),
() pp

where [(s, x) is an analytic function given by a convergent series in s >
S

1/2. In order to have log Li (s, x) uniformly approximating Zp<u app?®,
all primes p with p < v have to decompose completely in K = Q(v/—d).
Therefore we need to consider the set Ay which is defined in Lemma 2 in
the next section.

Finally we consider the relation between quadratic Dirichlet L-functions
and class group L-functions. Let —d € A and x € H(—d). If x is a real
character, that is, a genus character, we have a decomposition d = dyds
with —dy, —ds € A such that the Kronecker factorization

(1.2) L (s,x) = L(s,x—dy)L(s, X—dy)

holds. If we assume the general Riemann hypothesis for quadratic Dirichlet
L-functions, we could obtain the universality theorem for a family of L-
functions with genus characters.

THEOREM 4. Assume that there exists a quadratic Dirichlet L-function
L(s, x—d,) which satisfies the general Riemann hypothesis. Let 2, f(s) and C
be as in Theorem 2. For any € > 0 there is a subset Ay C A with positive
lower density which has the following property. If a discriminant —d belongs
to Ay, then there is at least one genus character x € H(—d) such that

max [Lg (s, x) — f(s)| <e.
seC
Proof. Since L(s,x_gq, ) is positive on (1/2,1), the product f(s)L(s,x_q,) "

satisfies the same condition as f(s) in Theorem 2. Let As be the set of neg-
ative fundamental discriminants —ds satisfying
€

1.3 L(s,X—a,) — f(s)L(s,x—a,) " < .
( ) I;:leag,(‘ (3 X dz) f(S) (3 X d1) ’ maXseC’L(S,X—dl)‘

By Theorem 2 the set Ao has positive lower density in A. Now we put
Ay = {—=didy € A | —dy € A3}. For —d = —dydy € Ay, there is a genus
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character y € H(—d) for which (1.2) holds. From (1.2) and (1.3), we deduce
the conclusion of Theorem 4. m

2. Lemmas. The first lemma, called the denseness lemma, asserts that
any analytic function can be uniformly approximated by a certain type of
Dirichlet polynomial.

LEMMA 1. Let 2 be as in Theorem 3 and g(s) be an analytic function
on 2 which is real-valued on 2 NR. Let C be a compact subset of 2 and
vy > 3. For any € > 0 there exist v > vy and 8, € [0,1) for each prime p
with p < v which satisfy

2 cos 276 1\ !
_210g<1_cossﬂp+zs)
p p

p<v

max|g(s <e.

seC

Proof. We invoke Proposition 2.4 in [5]. Let y > 0 and g1 (s) be a function
which satisfies the condition in Lemma 1. There exist v > y and 6, € [0,1)
for y < p < v such that

2 cos 27l
ais)— Y0 2ol

(2.1) max .
y<p<v p

seC

Now we take a sufficiently large y > 0 satisfying

2 cos 2m0,, 2 cos 2m0), 1\ !
y<p<v

p® P

<<CZZ 201 <<y1 201<6

k>2p>y

where 01 = mingec o > 1/2. Also we take

(2.3) g1 ( Zlog(l - =+ 1>_1.

p<y
Put 6, = 0 for each prime p with p <y. Then (2.1)-(2.3) imply

2 cos 276 1\ 7!
Zlog<1 e +2s>
p P

p<v

max|g(s) — <2.m

seC

The next lemma follows from the quadratic reciprocity law.
LeEMMA 2 ([B, Lemma 4.2]). For v > 3 define
Ag={-deA[x-alp)=1(B<p<v), —d=1 (mod 8)}.
Then Ay has positive density in A, namely

H{-deAy|d< X} 1 -2

li - S
KXo #{—deAld< X} 8 2(p— 1)

3<p<v
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From the orthogonality of class group characters

1 1 if a is a principal ideal,
2.4 — a) =
24) h(—d) Z x() { 0 otherwise,

x€H(—d)

we obtain the large sieve inequality for class group characters. If an integral
ideal a has no rational integer factors other than 41, then we call a primitive.

LEMMA 3 ([2 Theorem Al]). Let X > 0 and cq € C for integral ideals
a of K. Then

iwin > !cha«wgz{1+o<;;)}2;

x€H(—d) NasX

2
)

Z €Da

@

where Z, denotes summation over the set of primitive ideals, and (l) de-
notes the principal ideal generated by a rational integer .

As a consequence of the orthogonality (2.4), we also obtain the uniform
distribution of class group characters.

LEMMA 4. For v > 3 define Ay as in Lemma 2. If —d € Ay, then each
prime p with p < v splits completely in K :
(2.5) (p)=pp, p#p, Np=p.
Let 0 < 6 < 1/2 and 0, € [0,1) for each prime p with p < v. For —d € Agy
define

A = {xe o [MEX g | <5 <),
where ||z|| = min,ez | — n|. Then
A=) o ar)
dm gy T @T
—d€eAg

where w(v) is the number of rational primes p with p < v.
Proof. By Weyl’s criterion,
: 1 k k
1 ... ) = O
Jm e Z X(Pr - pir)
—de/y XGH(—d)

for any prime ideals pi,...,p, which satisfy Np; = p; and are not conju-
gate to one another and any r-tuple (ki,...,k.) € Z" other than (0,...,0).
Moreover, by the orthogonality (2.4), it is enough to show that for any

—d € Ay with d sufficiently large the ideal p’fl - pkr is not principal. Since
p;) = p;p;, it suffices to show that one of the ideals Fhr L pERe is not prin-
p p pl pr

cipal. Consider the case where all k; are non-negative, that is, a = p’fl - -p]fr
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is integral. If a is a principal ideal, then

14++v—d

a:<a—|—b 5

> (a,b € Z).

Taking the norm of both sides, we have

A
Na:p’f1~--p’,frz<a+2> +Zd.

Since the norm plfl --pkr does not depend on d, if d is sufficiently large
then b = 0 and (a) = p’fl .- p* . However, since p;’s are not conjugate to
one another, such a rational integer a does not exist. m

The class group L-function Lk (s, x) satisfies the functional equation

(26) LK(‘S’X) :H(S’X)LK(lisaX),
where

2r \*r(1—s)
(2.7) O e v

w(x) is the root number with |w(x)| =1 and I'(s) is the Euler I'-function.
From this we can obtain the approximate functional equation.

LEMMA 5. Letz,y >0, 0<f<a<2and0<y<2 Forf<o<a«
we have

LK(S,X) = ZSM
=1
where
X(a) _ )Z(Cl)
S = Nas’ So = H(S7X> Nal—s’
Na<lzx Na<y
a Na 2
si= 3 meo(-(3) )
Na>z
1 w1+ w/2) x(a)
Si=gm T D g
(=) Nosz
1 Ww (1 +w/2) X(a)
S5 = g ) T HETe) O e de,
3) Nezy
1 w1+ w/2) x(a)
So === | e = Hs +w) Y oy dw.

(—a) Na>y
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Proof. For X > 0 we have
-X? _ L —w
(2.8) e = | x
(1)
Combining (1.1) and (2.8) yields
Na\? 1 ra 2
x(0) exp(— (a) ) — S Lk (s —I—w,x)xw7< + v/ )dw.

- 211

I'l+w/2) dw.

Nas T w
a 1
We move the contour on the right hand side from Rw = 1 to Rw = —a, to
obtain
2
a Na
29 k= ¥ Nden(-(37) ) +s
Nas x
Na<z
1 I'(1 2
- — S LK(s+w,x)wadw.
2mi w
(=a)
Moving the contour in (2.8) from Rw = 1 to Rw = —~, we obtain
1 (1 2
e X =14 S X*wwdw.
27 w

(=7)
Therefore the first term on the right hand side of (2.9) is
2
x(a) Na
2.1 — — = .
(2.10) NaseXp< <:c)> S1+ 5
Na<lzx

By the functional equation (2.6), the third term on the right hand side of
(2.9) is

1 1 2
- S Ly (s +w, X)mww dw
2mi (o) w
1 wl (1+w/2) x(a)
(—a) Na<y
Moving the contour from Rw = —«a to Rw = 3 yields
1 (1 2
(2.11) 5 S LK(s—i-w,x)wadw:Sz—F&%—S@.
(—«

From (2.9)—(2.11), the approximate functional equation follows. m
Lastly we quote the following lemma.

LEMMA 6 ([5, Lemma 2.5]). Let C' and C' be compact subsets in C such
that C' is contained in the interior of C'. There exists a positive constant
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a(C,C") with the following property. If an analytic function f(s) on C' sat-
isfies the estimate
Wirs)Pdodt < A
o
with some A > 0, then
max [£(s)| < a(C, CWA.

3. Approximation by truncated Euler product. For ¢ > 1 the
class group L-function has the Euler product

K\$, X) = S Nps )
where p runs over all prime ideals of K. For z > 0 we consider the truncated

Euler product
Lk(s,x,2) = H 1—X<p) o
K5, X ot Nps .
Pz

Now we prove that if z is sufficiently large, then for almost all characters x €
H(—d) the attached L-functions Lg(s,x) can be uniformly approximated
by the truncated Euler products Lk (s, x, z).

PrROPOSITION 1. Let € > 0, z > 0 and C be a compact subset of D.
Define a set of characters

B(~d) = {x € H(~d) | max|log Li(s, x) — log Lic(s, x. 2)| < £}
where the logarithm of Ly (s,x) is defined as the analytic continuation of

the series .
S X*(p)
k=1 p

along the path [o + it,2 + it]. For any small positive numbers € and €1 there

1 a positive constant zy > 0 such that for z > zy and any sufficiently large
d we have

1B(—d)

h(—d)

Proof. Let C' be a simply connected compact subset in D such that C

is contained in the interior of C’. We estimate the second moment

I = 1 Z SS |Li(s,x) - Lr(s,x,2)" ! = 1> do dt.

h(—d
(=d) Glac

>1—e.

Let 0y = mingecr o > 1/2 and § be a positive number with § < (o1 —1/2).
In Lemma 5 we take z = d'/?79, 3y = d/?*% and o > 1 + ¢,. Applying
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Lemma 5 and the Cauchy—Schwarz inequality, we have

6
(3.1) 1<y 1L,
=1
where
Il:h Z S S1 - Lic(s,x,2) ™" = 1> do dt,
I = ( Z g 1S; - Lic(s,x, 2) " Wdodt (2<i<6).
xefl

First we calculate I;. By the definition of S} and Lk (s, x, z) we have

Sl'LK(87X7’Z):1+ Z X](\?)Cu

PR
z<Na<lzz'

where 2/ < 2% and ¢, are numbers satisfying |cq] < Na®? for arbitrarily
small g5 > 0. It follows from Lemma 3 that

x(a)cq 2
Z Nas

1
x€H(—d) C¢" z<Na<zz'
/
1 -0 N 1-201+
= (”duz)NZ N <o (L+d )70,
a>z

Next we calculate I3. From the Stirling formula

(3-3) D@+ iy)| < (L4 [y))*2e7 ™2 (Jy| — 00),
we obtain
(3.4) |H(s,x)| < d* 27 |t|'72%.
From (3.4) and Lemma 3, it follows that

1—204 1 X(a) ?

¢ x€H(~d) No<y
o 1 o —
Lz 0 d T <1 i dl/2> D Narmer e AT
Na<y

Here we remark that

1 1 1 1
2015+2—O'1<U1<U1—2>+2—O'1=(O'1—1)<0'1—> < 0.
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As above, applying Lemma 3 and the estimates (3.3) and (3.4), we obtain
(3.6) I3, I <, o d(1/2=8)(1-201)+e2
(3.7) I5, I < cr dV/2o1t20104e2
From (3.1), (3.2) and (3.5)—(3.7) it follows that
[ <o 217200%9 4 0, (@70 4 /290200 +er | gl/2-01420154ez)

Now we take zg > 0 such that

2
1—201+e2 €€l
<l e=—==<).
%0 <2a<c, 0’))

where a(C, C") is the constant given by Lemma 6. For z > zy and sufficiently
large d we have

1 _ el 2
- L L 1_qp2 &)
" X%(j_d)gcgw ko) L) = 1P dodr < (5l

By Lemma 6, we obtain

1 . 1
(38) M Z Igleacgc ’LK(S,X) . LK<87X7Z) — 1’ < 5551.
XEH(—d)

Put
B/(~d) = {x € H(~d) | max|Lic(5,x)  Lic(s,x,2) " = 1] < e}.
Then (3.8) implies the estimate
tB'(=d)
h(=d)

As e¥ — 1 = z for sufficiently small positive x, this completes the proof of
Proposition 1. =

>1—eq.

PROPOSITION 2. Let C be a compact subset of D and € be a small positive
number. There is a positive constant vy which has the following property. Let
v>uwy, 2>, 0<d<1/2and b, €[0,1) for each prime p with p < v. For
these parameters take the subsets Ay C A of Lemma 2 and A(—d) C H(—d)

of Lemma 4. Define
Z o <1_X(F‘)>_1‘ }
g Nps <ep.

V< Np<lz

max
seC

A(—d) = {x € A(—d)

Then
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Proof. Let C’ be a simply connected compact subset of D such that C
is contained in the interior of C’. We take a positive number v sufficiently
large such that

1 € 2
1—201+eo -
(3:9) Yo <3 <a(C, C/)) ’

where 01 = mingecr o > 1/2, a(C, ") is the constant in Lemma 6, and 9
denotes an arbitrarily small positive number. Let v > 1y and z > v. We

calculate the second moment
x(P)\
1 I = 1 jERALLEA
(3.10) >l (1o 1Y)
v<Np<z

YEA(—d) C’

1)2
do dt.

Applying the estimate log(1 — z)~! = x + O(]z|?), we have

31y I<e Y. > ’;Vfgs)

XEA(—d) C' 'v<Np<z

2
do dt + $A(—d) - 217200 Fe2,

In order to remove the condition “x € A(—d)” from the first term in (3.11),
we construct a continuous characteristic function of A(—d). Let §; > 0 be
a small number satisfying 0 < 6 +d; < 1/2. Let £ : R — R be a continuous
periodic function with period 1 which satisfies

1 (|2 <9),

_ 7@ 0+
36 5t
0 0+ < |z| <1/2).

(6 < |z <5 +6),

Define &, : H(—d) — R by

_ arg x(p)
(3.12) 00 = [T (ME o).

p<v

Then for all x € H(—d) we have
(3.13) 0<&MX)* <600 <,
in particular for x € A(—d),
(3.14) &) =&(()° =1.
Let >, cz cne(nx) be the Fourier expansion of £(z). The constant term is

1/2
(3.15) co= | &x)d=25+54.
—1/2
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We index all prime ideals with Np < v as p1,...,p,, where r = 7(v). By
the definition (3.12), &, (x) has the series expansion

H(Z% pi)e(=nitp))
=Y e zn, )Xol B = Y cax(a)

(n1,...sn r) a

Since the series ), cpe(nz) is uniformly convergent on R, there is a constant
M > 0 such that for any x € H(—d),

. 1 1/2
600~ Y enxto)| < {507}
Na<M
From (3.12)—(3.14) and (3.16) it follows that for any s € C’,

2 2
RO D O D B 2

XEA(—d)'v<Np<z xeH (—d) v<Np<z

< Y Y Y | e ¥ | ¢ )

er( d) Na<M 1/<Np<z xefl(fd) v<Np<z

(3.16)

By Lemma 3, for sufficiently large d we have
2
X(p) ! s 1 (V) 1—201+
(317 > | D> Npe| < { > el +5(20) h(—d)y'—271te2,
XEA(—d)'v<Np<z Na<M
Taking into account (3.13) and (3.15), we obtain

(3.18) Z ’Ca|2<2‘0a| = hm N Z & (x

Na<M XGH( d)

1 (v
< Jim s S el =" =20+ 61",

Now we choose 01 sufficiently small such that (26 4 0;)"®) + %(25)”(”) <
2(26)*™). Combining (3.9), (3.11), (3.17) and (3.18), we obtain

GUREDYNIIDY 1og(1_>]<v(§3>

XEA(—d) C" 'v<Np<z
< Lncayoy e (£ 2
1 a(C,C") )

do dt
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o dt < <a(c€c*f))2}

AN L)
—d€eg

Define

S 10g<1—>;v(§2)_1

A (—d) = {xeA<—d>
V< Np<z

))

C/

Then from Lemma 4 and (3.19), it follows that

In view of Lemma 6, this completes the proof of Proposition 2. u

4. Proof of Theorem 3. Assume that {2, f(s) and C satisfy the con-
ditions in Theorem 3. Let v9 > 0 be the constant in Proposition 2. Since
f(s) is positive on 2 N R, the logarithm of f(s) satisfies the condition in
Lemma 1. Therefore there exist v > 1 and 6, € [0, 1) for each prime p with
p < v such that

(4.1) max <e.
€

2cos27m0, 1\ !
log f(s Zlog(l—cojosﬂ—k%>

p<v p

Let Ag be the subset given by Lemma 2. From the decomposition (2.5), for
z > v and —d € Ay it follows that

o e ) = o1 XWP)\ "
(42) 1 gLK( » X ) N;Zl g(l NpS)

9 1\! ~1
_Zlog< COS?gX(p)—i—Z?Q,S) + Z log<1—>]<\7(52) .

p<v v<Np<z

By continuity, there is a small constant § > 0 such that if

6, — argﬁ(iﬂ)” <5

for each p with p < v then

2 cos 2m0, 1\ !
> log(1- Y o=

p<v p

2 1\t
_ Zlog( cos a;gX(p) 4 28)

p<v p

4.3
(4.3) max

<e€.

For € and g1 = %(25)7’(”) we take a positive constant zy as in Proposition 1.
Let z > max{zg,v}. For the above parameters taking the subsets A(—d) of
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Lemma 4, B(—d) of Proposition 1 and A’(—d) of Proposition 2, we have

.. ﬁ(A/(_d) N B(_d)) 1 w(v) 1 (V)
h‘gl—e’%}f h(—d) > 2(2(5) 4(25) > 0.
- 0

Furthermore for any y € A’(—d) N B(—d) the inequalities

(4.4) max llog Lk (s,x) —log Li(s,x,2)| <e,
-1
x(p)
4.5 1 1-
5 wa| 3 we(1-50) <=
v<Np<z

and (4.3) hold. Combining (4.1)—(4.5) we obtain
max [log Lx (s, x) — log f(s)] < 4e.
This completes the proof of Theorem 3.
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