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The universality theorem for class group L-functions
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1. Introduction. Throughout this paper, for a set S we denote by ]S
the cardinality of S. Let D be the strip {s = σ + it ∈ C | 1/2 < σ < 1} and
Λ be the set of all negative fundamental discriminants −d. Our purpose is to
investigate the functional distribution of a family of class group L-functions
over the imaginary quadratic field Q(

√
−d) as −d varies in Λ. Before stating

our results, we recall some related results on other L-functions. B. Bagchi
[1] and S. M. Gonek [4] independently proved the following result.

Theorem 1. Let C be a simply connected compact subset of D and f(s)
be a non-vanishing and continuous function on C which is analytic in the
interior of C. Then for any small positive number ε we have

lim inf ′
q→∞

1
q − 1

]{χ (mod q) | max
s∈C
|L(s, χ)− f(s)| < ε} > 0,

where L(s, χ) is the Dirichlet L-function associated with the Dirichlet char-
acter χ and lim inf ′ denotes the limit inferior over prime numbers q.

Theorem 1 asserts that any analytic function can be uniformly approxi-
mated by Dirichlet L-functions associated with suitable Dirichlet characters,
and that the set of such characters has positive lower density. K. M. Eminyan
[3] obtained the same property for a set of Dirichlet L-functions {L(s, χ) | χ
(mod pn)} where p > 2 is a fixed prime and n→∞. This type of property
for a set of zeta functions is called “universality”.

The author and Nagoshi [5] showed that the universality property also
holds for a family of Dirichlet L-functions associated with quadratic Dirichlet
characters.

Theorem 2. For a negative fundamental discriminant −d, denote by
χ−d(·) =

( ·
−d
)

the Kronecker symbol, which is a quadratic Dirichlet char-
acter modulo d. Let Ω be a simply connected bounded region in D which is
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symmetric with respect to the real axis. Let f(s) be an analytic and non-
vanishing function on Ω which is positive on Ω ∩ R, and C be a compact
subset of Ω. For X > 0 put ΛX = {−d ∈ Λ | d ≤ X}. Then for any ε > 0
we have

lim inf
X→∞

1
]ΛX

]{−d ∈ ΛX | max
s∈C
|L(s, χ−d)− f(s)| < ε} > 0.

An analogous statement also holds for positive fundamental discriminants.

In the following, for −d ∈ Λ, let K be the imaginary quadratic field
Q(
√
−d), H(−d) be the ideal class group of K, and h(−d) be the class

number of K. For a class group character χ ∈ Ĥ(−d), the attached Hecke
L-function is defined by

(1.1) LK(s, χ) =
∑

a

χ(a)
Nas

(<s > 1),

where a runs over all integral ideals of K other than 0, and Na is the norm
of a. It is well known that the class number h(−d) satisfies

d1/2−ε �ε h(−d)� d1/2 log d,

where the lower bound is due to C. L. Siegel [7]. Therefore the number of
class characters χ ∈ Ĥ(−d) goes to infinity as d→∞.

Now we state our main result, which is the universality theorem for a
family of class group L-functions.

Theorem 3. Let Ω be a simply connected bounded region in D which
is symmetric with respect to R. Let f(s) be an analytic and non-vanishing
function on Ω which is positive on R∩Ω, and C be a compact subset of Ω.
Then for any small positive number ε there is a subset Λ0 ⊂ Λ satisfying the
following conditions:

(1) Λ0 has positive density in Λ, namely

lim
X→∞

]{−d ∈ Λ0 | d ≤ X}
]{−d ∈ Λ | d ≤ X}

=
1
8

∏
3≤p≤ν

p

2(p− 1)
,

where ν = ν(f, C, ε) is a positive constant.
(2) We have

lim inf
d→∞
−d∈Λ0

1
h(−d)

]{χ ∈ Ĥ(−d) | max
s∈C
|LK(s, χ)− f(s)| < ε} > 0.

Remark. As we compare Theorem 3 with Theorems 1 and 2, it seems
that the natural form of the universality theorem for class groupL-functions is

lim inf
d→∞

1
h(−d)

]{χ ∈ Ĥ(−d) | max
s∈C
|LK(s, χ)− f(s)| < ε} > 0.
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However the above form probably does not hold. In general, the proof of the
universality theorem is divided into two steps.

(i) For a given analytic function g(s) there is a Dirichlet polynomial∑
p≤ν app

−s which uniformly approximates g(s).
(ii) The set of class characters χ for which the logarithms of the L-

functions LK(s, χ) uniformly approximate
∑

p≤ν app
−s has positive

lower density.

We have a problem in step (ii). For <s > 1 the logarithm of LK(s, χ)
has the Dirichlet series over rational primes

logLK(s, χ) =
∑
p

(p)=pp̄

log
(

1− 2 cos(argχ(p))
ps

+
1
p2s

)−1

+ l(s, χ),

where l(s, χ) is an analytic function given by a convergent series in <s >
1/2. In order to have logLK(s, χ) uniformly approximating

∑
p≤ν app

−s,
all primes p with p ≤ ν have to decompose completely in K = Q(

√
−d).

Therefore we need to consider the set Λ0 which is defined in Lemma 2 in
the next section.

Finally we consider the relation between quadratic Dirichlet L-functions
and class group L-functions. Let −d ∈ Λ and χ ∈ Ĥ(−d). If χ is a real
character, that is, a genus character, we have a decomposition d = d1d2

with −d1,−d2 ∈ Λ such that the Kronecker factorization

(1.2) LK(s, χ) = L(s, χ−d1)L(s, χ−d2)

holds. If we assume the general Riemann hypothesis for quadratic Dirichlet
L-functions, we could obtain the universality theorem for a family of L-
functions with genus characters.

Theorem 4. Assume that there exists a quadratic Dirichlet L-function
L(s, χ−d1) which satisfies the general Riemann hypothesis. Let Ω, f(s) and C
be as in Theorem 2. For any ε > 0 there is a subset Λ1 ⊂ Λ with positive
lower density which has the following property. If a discriminant −d belongs
to Λ1, then there is at least one genus character χ ∈ Ĥ(−d) such that

max
s∈C
|LK(s, χ)− f(s)| < ε.

Proof. Since L(s,χ−d1) is positive on(1/2,1), the productf(s)L(s,χ−d1)
−1

satisfies the same condition as f(s) in Theorem 2. Let Λ2 be the set of neg-
ative fundamental discriminants −d2 satisfying

(1.3) max
s∈C
|L(s, χ−d2)− f(s)L(s, χ−d1)−1| < ε

maxs∈C |L(s, χ−d1)|
.

By Theorem 2 the set Λ2 has positive lower density in Λ. Now we put
Λ1 = {−d1d2 ∈ Λ | −d2 ∈ Λ2}. For −d = −d1d2 ∈ Λ1, there is a genus
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character χ ∈ Ĥ(−d) for which (1.2) holds. From (1.2) and (1.3), we deduce
the conclusion of Theorem 4.

2. Lemmas. The first lemma, called the denseness lemma, asserts that
any analytic function can be uniformly approximated by a certain type of
Dirichlet polynomial.

Lemma 1. Let Ω be as in Theorem 3 and g(s) be an analytic function
on Ω which is real-valued on Ω ∩ R. Let C be a compact subset of Ω and
ν0 ≥ 3. For any ε > 0 there exist ν ≥ ν0 and θp ∈ [0, 1) for each prime p
with p ≤ ν which satisfy

max
s∈C

∣∣∣∣g(s)−
∑
p≤ν

log
(

1− 2 cos 2πθp
ps

+
1
p2s

)−1∣∣∣∣ < ε.

Proof. We invoke Proposition 2.4 in [5]. Let y > 0 and g1(s) be a function
which satisfies the condition in Lemma 1. There exist ν > y and θp ∈ [0, 1)
for y ≤ p ≤ ν such that

(2.1) max
s∈C

∣∣∣∣g1(s)−
∑
y<p≤ν

2 cos 2πθp
ps

∣∣∣∣ < ε.

Now we take a sufficiently large y > 0 satisfying

(2.2)
∑
y<p≤ν

∣∣∣∣2 cos 2πθp
ps

− log
(

1− 2 cos 2πθp
ps

+
1
p2s

)−1∣∣∣∣
�C

∑
k≥2

∑
p>y

1
p2σ1

� y1−2σ1 < ε,

where σ1 = mins∈C σ > 1/2. Also we take

(2.3) g1(s) = g(s)−
∑
p≤y

log
(

1− 2
ps

+
1
p2s

)−1

.

Put θp = 0 for each prime p with p ≤ y. Then (2.1)–(2.3) imply

max
s∈C

∣∣∣∣g(s)−
∑
p≤ν

log
(

1− 2 cos 2πθp
ps

+
1
p2s

)−1∣∣∣∣ < 2ε.

The next lemma follows from the quadratic reciprocity law.

Lemma 2 ([5, Lemma 4.2]). For ν ≥ 3 define

Λ0 = {−d ∈ Λ | χ−d(p) = 1 (3 ≤ p ≤ ν), −d ≡ 1 (mod 8)}.
Then Λ0 has positive density in Λ, namely

lim
X→∞

]{−d ∈ Λ0 | d ≤ X}
]{−d ∈ Λ | d ≤ X}

=
1
8

∏
3≤p≤ν

p

2(p− 1)
.



Universality theorem for L-functions 119

From the orthogonality of class group characters

(2.4)
1

h(−d)

∑
χ∈ bH(−d)

χ(a) =

{
1 if a is a principal ideal,
0 otherwise,

we obtain the large sieve inequality for class group characters. If an integral
ideal a has no rational integer factors other than ±1, then we call a primitive.

Lemma 3 ([2, Theorem A1]). Let X > 0 and ca ∈ C for integral ideals
a of K. Then

1
h(−d)

∑
χ∈ bH(−d)

∣∣∣ ∑
Na≤X

caχ(a)
∣∣∣2 =

{
1 +O

(
X

d1/2

)}∑′

a

∣∣∣∑
(l)

c(l)a

∣∣∣2,
where

∑′
denotes summation over the set of primitive ideals, and (l) de-

notes the principal ideal generated by a rational integer l.

As a consequence of the orthogonality (2.4), we also obtain the uniform
distribution of class group characters.

Lemma 4. For ν ≥ 3 define Λ0 as in Lemma 2. If −d ∈ Λ0, then each
prime p with p ≤ ν splits completely in K:

(2.5) (p) = pp̄, p 6= p̄, Np = p.

Let 0 < δ < 1/2 and θp ∈ [0, 1) for each prime p with p ≤ ν. For −d ∈ Λ0

define

A(−d) =
{
χ ∈ Ĥ(−d)

∣∣∣∣ ∥∥∥∥argχ(p)
2π

− θp
∥∥∥∥ < δ (p ≤ ν)

}
,

where ‖x‖ = minn∈Z |x− n|. Then

lim
d→∞
−d∈Λ0

]A(−d)
h(−d)

= (2δ)π(ν),

where π(ν) is the number of rational primes p with p ≤ ν.

Proof. By Weyl’s criterion,

lim
d→∞
−d∈Λ0

1
h(−d)

∑
χ∈ bH(−d)

χ(pk11 · · · p
kr
r ) = 0

for any prime ideals p1, . . . , pr which satisfy Npi = pi and are not conju-
gate to one another and any r-tuple (k1, . . . , kr) ∈ Zr other than (0, . . . , 0).
Moreover, by the orthogonality (2.4), it is enough to show that for any
−d ∈ Λ0 with d sufficiently large the ideal pk11 · · · pkr

r is not principal. Since
(pi) = pip̄i, it suffices to show that one of the ideals p±k11 · · · p±kr

r is not prin-
cipal. Consider the case where all ki are non-negative, that is, a = pk11 · · · pkr

r
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is integral. If a is a principal ideal, then

a =
(
a+ b

1 +
√
−d

2

)
(a, b ∈ Z).

Taking the norm of both sides, we have

Na = pk11 · · · p
kr
r =

(
a+

b

2

)2

+
b2

4
d.

Since the norm pk11 · · · pkr
r does not depend on d, if d is sufficiently large

then b = 0 and (a) = pk11 · · · p
kr
r . However, since pi’s are not conjugate to

one another, such a rational integer a does not exist.

The class group L-function LK(s, χ) satisfies the functional equation

(2.6) LK(s, χ) = H(s, χ)LK(1− s, χ̄),

where

(2.7) H(s, χ) = w(χ)
(

2π√
d

)2s−1Γ (1− s)
Γ (s)

,

w(χ) is the root number with |w(χ)| = 1 and Γ (s) is the Euler Γ -function.
From this we can obtain the approximate functional equation.

Lemma 5. Let x, y > 0, 0 < β < α < 2 and 0 < γ < 2. For β < σ < α
we have

LK(s, χ) =
6∑
i=1

Si,

where

S1 =
∑
Na≤x

χ(a)
Nas

, S2 = H(s, χ)
∑
Na≤y

χ̄(a)
Na1−s ,

S3 =
∑
Na>x

χ(a)
Nas

exp
(
−
(
Na

x

)2)
,

S4 =
1

2πi

�

(−γ)

xw
Γ (1 + w/2)

w

∑
Na≤x

χ(a)
Nas+w

dw,

S5 = − 1
2πi

�

(β)

xw
Γ (1 + w/2)

w
H(s+ w,χ)

∑
Na≤y

χ̄(a)
Na1−s−w dw,

S6 = − 1
2πi

�

(−α)

xw
Γ (1 + w/2)

w
H(s+ w,χ)

∑
Na>y

χ̄(a)
Na1−s−w dw.
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Proof. For X > 0 we have

(2.8) e−X
2

=
1

2πi

�

(1)

X−w
Γ (1 + w/2)

w
dw.

Combining (1.1) and (2.8) yields∑
a

χ(a)
Nas

exp
(
−
(
Na

x

)2)
=

1
2πi

�

(1)

LK(s+ w,χ)xw
Γ (1 + w/2)

w
dw.

We move the contour on the right hand side from <w = 1 to <w = −α, to
obtain

LK(s, χ) =
∑
Na≤x

χ(a)
Nas

exp
(
−
(
Na

x

)2)
+ S3(2.9)

− 1
2πi

�

(−α)

LK(s+ w,χ)xw
Γ (1 + w/2)

w
dw.

Moving the contour in (2.8) from <w = 1 to <w = −γ, we obtain

e−X
2

= 1 +
1

2πi

�

(−γ)

X−w
Γ (1 + w/2)

w
dw.

Therefore the first term on the right hand side of (2.9) is

(2.10)
∑
Na≤x

χ(a)
Nas

exp
(
−
(
Na

x

)2)
= S1 + S4.

By the functional equation (2.6), the third term on the right hand side of
(2.9) is

− 1
2πi

�

(−α)

LK(s+ w,χ)xw
Γ (1 + w/2)

w
dw

= S6 −
1

2πi

�

(−α)

xw
Γ (1 + w/2)

w
H(s+ w,χ)

∑
Na≤y

χ̄(a)
Na1−s−w dw.

Moving the contour from <w = −α to <w = β yields

(2.11) − 1
2πi

�

(−α)

LK(s+ w,χ)xw
Γ (1 + w/2)

w
dw = S2 + S5 + S6.

From (2.9)–(2.11), the approximate functional equation follows.

Lastly we quote the following lemma.

Lemma 6 ([5, Lemma 2.5]). Let C and C ′ be compact subsets in C such
that C is contained in the interior of C ′. There exists a positive constant
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a(C,C ′) with the following property. If an analytic function f(s) on C ′ sat-
isfies the estimate � �

C′

|f(s)|2 dσ dt < A

with some A > 0, then

max
s∈C
|f(s)| < a(C,C ′)

√
A.

3. Approximation by truncated Euler product. For σ > 1 the
class group L-function has the Euler product

LK(s, χ) =
∏
p

(
1− χ(p)

Nps

)−1

,

where p runs over all prime ideals of K. For z > 0 we consider the truncated
Euler product

LK(s, χ, z) =
∏
Np≤z

(
1− χ(p)

Nps

)−1

.

Now we prove that if z is sufficiently large, then for almost all characters χ ∈
Ĥ(−d) the attached L-functions LK(s, χ) can be uniformly approximated
by the truncated Euler products LK(s, χ, z).

Proposition 1. Let ε > 0, z > 0 and C be a compact subset of D.
Define a set of characters

B(−d) = {χ ∈ Ĥ(−d) | max
s∈C
|logLK(s, χ)− logLK(s, χ, z)| < ε}

where the logarithm of LK(s, χ) is defined as the analytic continuation of
the series

∞∑
k=1

∑
p

χk(p)
kNpks

(σ > 1)

along the path [σ+ it, 2 + it]. For any small positive numbers ε and ε1 there
is a positive constant z0 > 0 such that for z > z0 and any sufficiently large
d we have

]B(−d)
h(−d)

> 1− ε1.

Proof. Let C ′ be a simply connected compact subset in D such that C
is contained in the interior of C ′. We estimate the second moment

I =
1

h(−d)

∑
χ∈ bH(−d)

� �

C′

|LK(s, χ) · LK(s, χ, z)−1 − 1|2 dσ dt.

Let σ1 = mins∈C′ σ > 1/2 and δ be a positive number with δ < 1
2(σ1− 1/2).

In Lemma 5 we take x = d1/2−δ, y = d1/2+δ and α > 1 + σ1. Applying



Universality theorem for L-functions 123

Lemma 5 and the Cauchy–Schwarz inequality, we have

(3.1) I ≤
6∑
i=1

Ii,

where

I1 =
1

h(−d)

∑
χ∈ bH(−d)

� �

C′

|S1 · LK(s, χ, z)−1 − 1|2 dσ dt,

Ii =
1

h(−d)

∑
χ∈ bH(−d)

� �

C′

|Si · LK(s, χ, z)−1|2 dσ dt (2 ≤ i ≤ 6).

First we calculate I1. By the definition of S1 and LK(s, χ, z) we have

S1 · LK(s, χ, z) = 1 +
∑

z<Na≤xz′

χ(a)ca
Nas

,

where z′ � zz and ca are numbers satisfying |ca| � Naε2 for arbitrarily
small ε2 > 0. It follows from Lemma 3 that

I1 =
1

h(−d)

∑
χ∈ bH(−d)

� �

C′

∣∣∣∣ ∑
z<Na≤xz′

χ(a)ca
Nas

∣∣∣∣2 dσ dt(3.2)

�C′

(
1 +

xz′

d1/2

) ∑
Na>z

1
Na2σ1−ε2 �C′ (1 + d−δz′)z1−2σ1+ε2 .

Next we calculate I2. From the Stirling formula

(3.3) |Γ (x+ iy)| � (1 + |y|)x−1/2e−π|y|/2 (|y| → ∞),

we obtain

(3.4) |H(s, χ)| � d1−2σ|t|1−2σ.

From (3.4) and Lemma 3, it follows that

I2 �z,C′ d1−2σ1

� �

C′

{
1

h(−d)

∑
χ∈ bH(−d)

∣∣∣∣ ∑
Na≤y

χ̄(a)
Na1−s

∣∣∣∣2} dσ dt(3.5)

�z,C′ d1−2σ1

(
1 +

y

d1/2

) ∑
Na≤y

1
Na2−2σ1

�z,C′ d2σ1δ+1/2−σ1+ε2 .

Here we remark that

2σ1δ +
1
2
− σ1 < σ1

(
σ1 −

1
2

)
+

1
2
− σ1 = (σ1 − 1)

(
σ1 −

1
2

)
< 0.
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As above, applying Lemma 3 and the estimates (3.3) and (3.4), we obtain

I3, I4 �z,C′ d(1/2−δ)(1−2σ1)+ε2 ,(3.6)

I5, I6 �z,C′ d1/2−σ1+2σ1δ+ε2 .(3.7)

From (3.1), (3.2) and (3.5)–(3.7) it follows that

I �z,C′ z1−2σ1+ε2 +Oz(d−δ + d(1/2−δ)(1−2σ1)+ε2 + d1/2−σ1+2σ1δ+ε2).

Now we take z0 > 0 such that

z1−2σ1+ε2
0 <

(
εε1

2a(C,C ′)

)2

,

where a(C,C ′) is the constant given by Lemma 6. For z > z0 and sufficiently
large d we have

1
h(−d)

∑
χ∈ bH(−d)

� �

C′

|LK(s, χ) · LK(s, χ, z)−1 − 1|2 dσ dt <
(

εε1

2a(C,C ′)

)2

.

By Lemma 6, we obtain

(3.8)
1

h(−d)

∑
χ∈ bH(−d)

max
s∈C
|LK(s, χ) · LK(s, χ, z)−1 − 1| < 1

2
εε1.

Put

B′(−d) = {χ ∈ Ĥ(−d) | max
s∈C
|LK(s, χ) · LK(s, χ, z)−1 − 1| < ε}.

Then (3.8) implies the estimate

]B′(−d)
h(−d)

> 1− ε1.

As ex − 1 � x for sufficiently small positive x, this completes the proof of
Proposition 1.

Proposition 2. Let C be a compact subset of D and ε be a small positive
number. There is a positive constant ν0 which has the following property. Let
ν > ν0, z > ν, 0 < δ < 1/2 and θp ∈ [0, 1) for each prime p with p ≤ ν. For
these parameters take the subsets Λ0 ⊂ Λ of Lemma 2 and A(−d) ⊂ Ĥ(−d)
of Lemma 4. Define

A′(−d) =
{
χ ∈ A(−d)

∣∣∣∣ max
s∈C

∣∣∣∣ ∑
ν<Np≤z

log
(

1− χ(p)
Nps

)−1∣∣∣∣ < ε

}
.

Then

lim inf
d→∞
−d∈Λ0

]A′(−d)
h(−d)

>
1
2

(2δ)π(ν).
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Proof. Let C ′ be a simply connected compact subset of D such that C
is contained in the interior of C ′. We take a positive number ν0 sufficiently
large such that

(3.9) ν1−2σ1+ε2
0 <

1
4

(
ε

a(C,C ′)

)2

,

where σ1 = mins∈C′ σ > 1/2, a(C,C ′) is the constant in Lemma 6, and ε2

denotes an arbitrarily small positive number. Let ν > ν0 and z > ν. We
calculate the second moment

(3.10) I =
∑

χ∈A(−d)

� �

C′

∣∣∣∣ ∑
ν<Np≤z

log
(

1− χ(p)
Nps

)−1∣∣∣∣2 dσ dt.
Applying the estimate log(1− x)−1 = x+O(|x|2), we have

(3.11) I �C′
∑

χ∈A(−d)

� �

C′

∣∣∣∣ ∑
ν<Np≤z

χ(p)
Nps

∣∣∣∣2 dσ dt+ ]A(−d) · ν2(1−2σ1)+ε2 .

In order to remove the condition “χ ∈ A(−d)” from the first term in (3.11),
we construct a continuous characteristic function of A(−d). Let δ1 > 0 be
a small number satisfying 0 < δ ± δ1 < 1/2. Let ξ : R→ R be a continuous
periodic function with period 1 which satisfies

ξ(x) =


1 (|x| ≤ δ),

−|x|
δ1

+
δ + δ1

δ1
(δ < |x| ≤ δ + δ1),

0 (δ + δ1 < |x| ≤ 1/2).

Define ξν : Ĥ(−d)→ R by

(3.12) ξν(χ) =
∏
p≤ν

ξ

(
argχ(p)

2π
− θp

)
.

Then for all χ ∈ Ĥ(−d) we have

(3.13) 0 ≤ ξν(χ)2 ≤ ξν(χ) ≤ 1,

in particular for χ ∈ A(−d),

(3.14) ξν(χ) = ξν(χ)2 = 1.

Let
∑

n∈Z cne(nx) be the Fourier expansion of ξ(x). The constant term is

(3.15) c0 =
1/2�

−1/2

ξ(x) dx = 2δ + δ1.
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We index all prime ideals with Np ≤ ν as p1, . . . , pr, where r = π(ν). By
the definition (3.12), ξν(χ) has the series expansion

ξν(χ) =
r∏
i=1

(∑
ni

cniχ
ni(pi)e(−niθpi)

)
=

∑
(n1,...,nr)

cn1 · · · cnre
(
−

r∑
i=1

niθpi

)
χ(pn1

1 · · · p
nr
r ) =

∑′

a

caχ(a).

Since the series
∑

n cne(nx) is uniformly convergent on R, there is a constant
M > 0 such that for any χ ∈ Ĥ(−d),

(3.16)
∣∣∣ξν(χ)−

∑′

Na≤M
caχ(a)

∣∣∣ < {1
2

(2δ)π(ν)

}1/2

.

From (3.12)–(3.14) and (3.16) it follows that for any s ∈ C ′,∑
χ∈A(−d)

∣∣∣∣ ∑
ν<Np≤z

χ(p)
Nps

∣∣∣∣2 ≤ ∑
χ∈ bH(−d)

∣∣∣∣ξν(χ)
∑

ν<Np≤z

χ(p)
Nps

∣∣∣∣2

�
∑

χ∈ bH(−d)

∣∣∣∣ ∑′

Na≤M

∑
ν<Np≤z

ca
Nps

χ(ap)
∣∣∣∣2 +

1
2

(2δ)π(ν)
∑

χ∈ bH(−d)

∣∣∣∣ ∑
ν<Np≤z

χ(p)
Nps

∣∣∣∣2.
By Lemma 3, for sufficiently large d we have

(3.17)
∑

χ∈A(−d)

∣∣∣∣ ∑
ν<Np≤z

χ(p)
Nps

∣∣∣∣2 � { ∑′

Na≤M
|ca|s+

1
2

(2δ)π(ν)

}
h(−d)ν1−2σ1+ε2 .

Taking into account (3.13) and (3.15), we obtain∑′

Na≤M
|ca|2 ≤

∑
a

|ca|2 = lim
d→∞

1
h(−d)

∑
χ∈ bH(−d)

ξν(χ)2(3.18)

≤ lim
d→∞

1
h(−d)

∑
χ∈ bH(−d)

ξν(χ) = c
π(ν)
0 = (2δ + δ1)π(ν).

Now we choose δ1 sufficiently small such that (2δ + δ1)π(ν) + 1
2(2δ)π(ν) <

2(2δ)π(ν). Combining (3.9), (3.11), (3.17) and (3.18), we obtain

(3.19)
∑

χ∈A(−d)

� �

C′

∣∣∣∣ ∑
ν<Np≤z

log
(

1− χ(p)
Nps

)−1∣∣∣∣2 dσ dt
<

1
4
h(−d)(2δ)π(ν)

(
ε

a(C,C ′)

)2

.
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Define

A′′(−d) =
{
χ∈A(−d)

∣∣∣∣ � �
C′

∣∣∣∣ ∑
ν<Np≤z

log
(

1−χ(p)
Nps

)−1∣∣∣∣2 dσ dt < ( ε

a(C,C ′)

)2}
.

Then from Lemma 4 and (3.19), it follows that

lim inf
d→∞
−d∈Λ0

]A′′(−d)
h(−d)

>
1
2

(2δ)π(ν).

In view of Lemma 6, this completes the proof of Proposition 2.

4. Proof of Theorem 3. Assume that Ω, f(s) and C satisfy the con-
ditions in Theorem 3. Let ν0 > 0 be the constant in Proposition 2. Since
f(s) is positive on Ω ∩ R, the logarithm of f(s) satisfies the condition in
Lemma 1. Therefore there exist ν > ν0 and θp ∈ [0, 1) for each prime p with
p ≤ ν such that

(4.1) max
s∈C

∣∣∣∣log f(s)−
∑
p≤ν

log
(

1− 2 cos 2πθp
ps

+
1
p2s

)−1∣∣∣∣ < ε.

Let Λ0 be the subset given by Lemma 2. From the decomposition (2.5), for
z > ν and −d ∈ Λ0 it follows that

(4.2) logLK(s, χ, z) =
∑
Np≤z

log
(

1− χ(p)
Nps

)−1

=
∑
p≤ν

log
(

1− 2 cos argχ(p)
ps

+
1
p2s

)−1

+
∑

ν<Np≤z
log
(

1− χ(p)
Nps

)−1

.

By continuity, there is a small constant δ > 0 such that if∥∥∥∥θp − argχ(p)
2π

∥∥∥∥ < δ

for each p with p ≤ ν then

(4.3) max
s∈C

∣∣∣∣∑
p≤ν

log
(

1− 2 cos 2πθp
ps

+
1
p2s

)−1

−
∑
p≤ν

log
(

1− 2 cos argχ(p)
ps

+
1
p2s

)−1∣∣∣∣ < ε.

For ε and ε1 = 1
4(2δ)π(ν) we take a positive constant z0 as in Proposition 1.

Let z > max{z0, ν}. For the above parameters taking the subsets A(−d) of
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Lemma 4, B(−d) of Proposition 1 and A′(−d) of Proposition 2, we have

lim inf
d→∞
−d∈Λ0

](A′(−d) ∩B(−d))
h(−d)

>
1
2

(2δ)π(ν) − 1
4

(2δ)π(ν) > 0.

Furthermore for any χ ∈ A′(−d) ∩B(−d) the inequalities

max
s∈C
|logLK(s, χ)− logLK(s, χ, z)| < ε,(4.4)

max
s∈C

∣∣∣∣ ∑
ν<Np≤z

log
(

1− χ(p)
Nps

)−1∣∣∣∣ < ε,(4.5)

and (4.3) hold. Combining (4.1)–(4.5) we obtain

max
s∈C
|logLK(s, χ)− log f(s)| < 4ε.

This completes the proof of Theorem 3.

Acknowledgements. The author would like to thank the referee for
the comments and suggestions.

References

[1] B. Bagchi, The statistical behavior and universality properties of the Riemann zeta-
function and other allied Dirichlet series, Ph.D. Thesis, Indian Statistical Institute,
Calcutta, 1981.

[2] W. Duke, J. Friedlander and H. Iwaniec, Class group L-functions, Duke Math. J. 79
(1995), 1–56.

[3] K. M. Eminyan, χ-universality of the Dirichlet L-function, Mat. Zametki 47 (1990),
no. 6, 132–137 (in Russian); English transl.: Math. Notes 47 (1990), 618–622.

[4] S. M. Gonek, Analytic properties of zeta and L-functions, Thesis, Univ. of Michigan,
1979.

[5] H. Mishou and H. Nagoshi, Functional distribution of L(s, χd) with real characters
and denseness of quadratic class numbers, Trans. Amer. Math. Soc. 358 (2006), 4343–
4366.

[6] H. Nagoshi, On the universality for L-functions attached to Maass forms, Analysis
(Munich) 25 (2005), 1–22.
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