The universality theorem for class group L-functions

by

HIDEHIKO MISHOU (Ube)

1. Introduction. Throughout this paper, for a set S we denote by $\sharp S$ the cardinality of S. Let D be the strip $\{s = \sigma + it \in \mathbb{C} \mid 1/2 < \sigma < 1\}$ and Λ be the set of all negative fundamental discriminants -d. Our purpose is to investigate the functional distribution of a family of class group L-functions over the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$ as -d varies in Λ . Before stating our results, we recall some related results on other L-functions. B. Bagchi [1] and S. M. Gonek [4] independently proved the following result.

Theorem 1. Let C be a simply connected compact subset of D and f(s) be a non-vanishing and continuous function on C which is analytic in the interior of C. Then for any small positive number ε we have

$$\liminf_{q \to \infty}' \frac{1}{q-1} \sharp \{ \chi \pmod{q} \mid \max_{s \in C} |L(s,\chi) - f(s)| < \varepsilon \} > 0,$$

where $L(s,\chi)$ is the Dirichlet L-function associated with the Dirichlet character χ and \liminf' denotes the limit inferior over prime numbers q.

Theorem 1 asserts that any analytic function can be uniformly approximated by Dirichlet L-functions associated with suitable Dirichlet characters, and that the set of such characters has positive lower density. K. M. Eminyan [3] obtained the same property for a set of Dirichlet L-functions $\{L(s,\chi) \mid \chi \pmod{p^n}\}$ where p > 2 is a fixed prime and $n \to \infty$. This type of property for a set of zeta functions is called "universality".

The author and Nagoshi [5] showed that the universality property also holds for a family of Dirichlet L-functions associated with quadratic Dirichlet characters.

Theorem 2. For a negative fundamental discriminant -d, denote by $\chi_{-d}(\cdot) = \left(\frac{\cdot}{-d}\right)$ the Kronecker symbol, which is a quadratic Dirichlet character modulo d. Let Ω be a simply connected bounded region in D which is

²⁰¹⁰ Mathematics Subject Classification: Primary 11M06.

Key words and phrases: Hecke L-function, class group character, universality.

symmetric with respect to the real axis. Let f(s) be an analytic and non-vanishing function on Ω which is positive on $\Omega \cap \mathbb{R}$, and C be a compact subset of Ω . For X > 0 put $\Lambda_X = \{-d \in \Lambda \mid d \leq X\}$. Then for any $\varepsilon > 0$ we have

$$\liminf_{X \to \infty} \frac{1}{\sharp \Lambda_X} \sharp \{ -d \in \Lambda_X \mid \max_{s \in C} |L(s, \chi_{-d}) - f(s)| < \varepsilon \} > 0.$$

An analogous statement also holds for positive fundamental discriminants.

In the following, for $-d \in \Lambda$, let K be the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$, H(-d) be the ideal class group of K, and h(-d) be the class number of K. For a class group character $\chi \in \widehat{H}(-d)$, the attached Hecke L-function is defined by

(1.1)
$$L_K(s,\chi) = \sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{N\mathfrak{a}^s} \quad (\Re s > 1),$$

where \mathfrak{a} runs over all integral ideals of K other than 0, and $N\mathfrak{a}$ is the norm of \mathfrak{a} . It is well known that the class number h(-d) satisfies

$$d^{1/2-\varepsilon} \ll_{\varepsilon} h(-d) \ll d^{1/2} \log d,$$

where the lower bound is due to C. L. Siegel [7]. Therefore the number of class characters $\chi \in \widehat{H}(-d)$ goes to infinity as $d \to \infty$.

Now we state our main result, which is the universality theorem for a family of class group L-functions.

THEOREM 3. Let Ω be a simply connected bounded region in D which is symmetric with respect to \mathbb{R} . Let f(s) be an analytic and non-vanishing function on Ω which is positive on $\mathbb{R} \cap \Omega$, and C be a compact subset of Ω . Then for any small positive number ε there is a subset $\Lambda_0 \subset \Lambda$ satisfying the following conditions:

(1) Λ_0 has positive density in Λ , namely

$$\lim_{X \to \infty} \frac{\sharp \{-d \in \Lambda_0 \mid d \le X\}}{\sharp \{-d \in \Lambda \mid d \le X\}} = \frac{1}{8} \prod_{3 \le p \le \nu} \frac{p}{2(p-1)},$$

where $\nu = \nu(f, C, \varepsilon)$ is a positive constant.

(2) We have

$$\liminf_{\substack{d\to\infty\\-d\in A_0}}\frac{1}{h(-d)}\sharp\{\chi\in\widehat{H}(-d)\mid \max_{s\in C}|L_K(s,\chi)-f(s)|<\varepsilon\}>0.$$

Remark. As we compare Theorem 3 with Theorems 1 and 2, it seems that the natural form of the universality theorem for class group L-functions is

$$\liminf_{d \to \infty} \frac{1}{h(-d)} \sharp \{ \chi \in \widehat{H}(-d) \mid \max_{s \in C} |L_K(s, \chi) - f(s)| < \varepsilon \} > 0.$$

However the above form probably does not hold. In general, the proof of the universality theorem is divided into two steps.

- (i) For a given analytic function g(s) there is a Dirichlet polynomial ∑_{p≤ν} a_pp^{-s} which uniformly approximates g(s).
 (ii) The set of class characters χ for which the logarithms of the L-
- (ii) The set of class characters χ for which the logarithms of the L-functions $L_K(s,\chi)$ uniformly approximate $\sum_{p\leq\nu} a_p p^{-s}$ has positive lower density.

We have a problem in step (ii). For $\Re s > 1$ the logarithm of $L_K(s,\chi)$ has the Dirichlet series over rational primes

$$\log L_K(s,\chi) = \sum_{\substack{p \ (p) = \mathfrak{p}\bar{\mathfrak{p}}}} \log \left(1 - \frac{2\cos(\arg\chi(\mathfrak{p}))}{p^s} + \frac{1}{p^{2s}}\right)^{-1} + l(s,\chi),$$

where $l(s,\chi)$ is an analytic function given by a convergent series in $\Re s > 1/2$. In order to have $\log L_K(s,\chi)$ uniformly approximating $\sum_{p\leq \nu} a_p p^{-s}$, all primes p with $p\leq \nu$ have to decompose completely in $K=\mathbb{Q}(\sqrt{-d})$. Therefore we need to consider the set Λ_0 which is defined in Lemma 2 in the next section.

Finally we consider the relation between quadratic Dirichlet L-functions and class group L-functions. Let $-d \in \Lambda$ and $\chi \in \widehat{H}(-d)$. If χ is a real character, that is, a genus character, we have a decomposition $d = d_1 d_2$ with $-d_1, -d_2 \in \Lambda$ such that the Kronecker factorization

(1.2)
$$L_K(s,\chi) = L(s,\chi_{-d_1})L(s,\chi_{-d_2})$$

holds. If we assume the general Riemann hypothesis for quadratic Dirichlet L-functions, we could obtain the universality theorem for a family of L-functions with genus characters.

THEOREM 4. Assume that there exists a quadratic Dirichlet L-function $L(s, \chi_{-d_1})$ which satisfies the general Riemann hypothesis. Let Ω , f(s) and C be as in Theorem 2. For any $\varepsilon > 0$ there is a subset $\Lambda_1 \subset \Lambda$ with positive lower density which has the following property. If a discriminant -d belongs to Λ_1 , then there is at least one genus character $\chi \in \widehat{H}(-d)$ such that

$$\max_{s \in C} |L_K(s, \chi) - f(s)| < \varepsilon.$$

Proof. Since $L(s,\chi_{-d_1})$ is positive on (1/2,1), the product $f(s)L(s,\chi_{-d_1})^{-1}$ satisfies the same condition as f(s) in Theorem 2. Let Λ_2 be the set of negative fundamental discriminants $-d_2$ satisfying

(1.3)
$$\max_{s \in C} |L(s, \chi_{-d_2}) - f(s)L(s, \chi_{-d_1})^{-1}| < \frac{\varepsilon}{\max_{s \in C} |L(s, \chi_{-d_1})|}.$$

By Theorem 2 the set Λ_2 has positive lower density in Λ . Now we put $\Lambda_1 = \{-d_1d_2 \in \Lambda \mid -d_2 \in \Lambda_2\}$. For $-d = -d_1d_2 \in \Lambda_1$, there is a genus

character $\chi \in \widehat{H}(-d)$ for which (1.2) holds. From (1.2) and (1.3), we deduce the conclusion of Theorem 4.

2. Lemmas. The first lemma, called the denseness lemma, asserts that any analytic function can be uniformly approximated by a certain type of Dirichlet polynomial.

LEMMA 1. Let Ω be as in Theorem 3 and g(s) be an analytic function on Ω which is real-valued on $\Omega \cap \mathbb{R}$. Let C be a compact subset of Ω and $\nu_0 \geq 3$. For any $\varepsilon > 0$ there exist $\nu \geq \nu_0$ and $\theta_p \in [0,1)$ for each prime p with $p \leq \nu$ which satisfy

$$\max_{s \in C} \left| g(s) - \sum_{p \le \nu} \log \left(1 - \frac{2\cos 2\pi\theta_p}{p^s} + \frac{1}{p^{2s}} \right)^{-1} \right| < \varepsilon.$$

Proof. We invoke Proposition 2.4 in [5]. Let y > 0 and $g_1(s)$ be a function which satisfies the condition in Lemma 1. There exist $\nu > y$ and $\theta_p \in [0, 1)$ for $y \leq p \leq \nu$ such that

(2.1)
$$\max_{s \in C} \left| g_1(s) - \sum_{\nu$$

Now we take a sufficiently large y > 0 satisfying

(2.2)
$$\sum_{y
$$\ll_C \sum_{k > 2} \sum_{p > \nu} \frac{1}{p^{2\sigma_1}} \ll y^{1 - 2\sigma_1} < \varepsilon,$$$$

where $\sigma_1 = \min_{s \in C} \sigma > 1/2$. Also we take

(2.3)
$$g_1(s) = g(s) - \sum_{s \le s} \log \left(1 - \frac{2}{p^s} + \frac{1}{p^{2s}} \right)^{-1}.$$

Put $\theta_p = 0$ for each prime p with $p \leq y$. Then (2.1)–(2.3) imply

$$\max_{s \in C} \left| g(s) - \sum_{p \le \nu} \log \left(1 - \frac{2\cos 2\pi\theta_p}{p^s} + \frac{1}{p^{2s}} \right)^{-1} \right| < 2\varepsilon. \blacksquare$$

The next lemma follows from the quadratic reciprocity law.

LEMMA 2 ([5, Lemma 4.2]). For $\nu \geq 3$ define

$$\Lambda_0 = \{-d \in \Lambda \mid \chi_{-d}(p) = 1 \ (3 \le p \le \nu), \ -d \equiv 1 \ (\text{mod } 8)\}.$$

Then Λ_0 has positive density in Λ , namely

$$\lim_{X \to \infty} \frac{\sharp \{-d \in \Lambda_0 \mid d \le X\}}{\sharp \{-d \in \Lambda \mid d \le X\}} = \frac{1}{8} \prod_{3 \le p \le \nu} \frac{p}{2(p-1)}.$$

From the orthogonality of class group characters

(2.4)
$$\frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \chi(\mathfrak{a}) = \begin{cases} 1 & \text{if } \mathfrak{a} \text{ is a principal ideal,} \\ 0 & \text{otherwise,} \end{cases}$$

we obtain the large sieve inequality for class group characters. If an integral ideal \mathfrak{a} has no rational integer factors other than ± 1 , then we call \mathfrak{a} primitive.

LEMMA 3 ([2, Theorem A1]). Let X > 0 and $c_{\mathfrak{a}} \in \mathbb{C}$ for integral ideals \mathfrak{a} of K. Then

$$\frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \left| \sum_{N \mathfrak{a} \leq X} c_{\mathfrak{a}} \chi(\mathfrak{a}) \right|^2 = \left\{ 1 + O\left(\frac{X}{d^{1/2}}\right) \right\} \sum_{\mathfrak{a}}' \left| \sum_{(l)} c_{(l)\mathfrak{a}} \right|^2,$$

where \sum' denotes summation over the set of primitive ideals, and (l) denotes the principal ideal generated by a rational integer l.

As a consequence of the orthogonality (2.4), we also obtain the uniform distribution of class group characters.

LEMMA 4. For $\nu \geq 3$ define Λ_0 as in Lemma 2. If $-d \in \Lambda_0$, then each prime p with $p \leq \nu$ splits completely in K:

(2.5)
$$(p) = \mathfrak{p}\bar{\mathfrak{p}}, \quad \mathfrak{p} \neq \bar{\mathfrak{p}}, N\mathfrak{p} = p.$$

Let $0 < \delta < 1/2$ and $\theta_p \in [0,1)$ for each prime p with $p \le \nu$. For $-d \in \Lambda_0$ define

$$A(-d) = \left\{ \chi \in \widehat{H}(-d) \mid \left\| \frac{\arg \chi(\mathfrak{p})}{2\pi} - \theta_p \right\| < \delta \ (p \le \nu) \right\},\,$$

where $||x|| = \min_{n \in \mathbb{Z}} |x - n|$. Then

$$\lim_{\substack{d \to \infty \\ d \in A_0}} \frac{\sharp A(-d)}{h(-d)} = (2\delta)^{\pi(\nu)},$$

where $\pi(\nu)$ is the number of rational primes p with $p \leq \nu$.

Proof. By Weyl's criterion,

$$\lim_{\substack{d \to \infty \\ -d \in \Lambda_0}} \frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \chi(\mathfrak{p}_1^{k_1} \cdots \mathfrak{p}_r^{k_r}) = 0$$

for any prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ which satisfy $N\mathfrak{p}_i = p_i$ and are not conjugate to one another and any r-tuple $(k_1, \ldots, k_r) \in \mathbb{Z}^r$ other than $(0, \ldots, 0)$. Moreover, by the orthogonality (2.4), it is enough to show that for any $-d \in A_0$ with d sufficiently large the ideal $\mathfrak{p}_1^{k_1} \cdots \mathfrak{p}_r^{k_r}$ is not principal. Since $(p_i) = \mathfrak{p}_i \bar{\mathfrak{p}}_i$, it suffices to show that one of the ideals $\mathfrak{p}_1^{\pm k_1} \cdots \mathfrak{p}_r^{\pm k_r}$ is not principal. Consider the case where all k_i are non-negative, that is, $\mathfrak{a} = \mathfrak{p}_1^{k_1} \cdots \mathfrak{p}_r^{k_r}$

is integral. If a is a principal ideal, then

$$\mathfrak{a} = \left(a + b \frac{1 + \sqrt{-d}}{2}\right) \quad (a, b \in \mathbb{Z}).$$

Taking the norm of both sides, we have

$$N\mathfrak{a} = p_1^{k_1} \cdots p_r^{k_r} = \left(a + \frac{b}{2}\right)^2 + \frac{b^2}{4}d.$$

Since the norm $p_1^{k_1} \cdots p_r^{k_r}$ does not depend on d, if d is sufficiently large then b=0 and $(a)=\mathfrak{p}_1^{k_1}\cdots\mathfrak{p}_r^{k_r}$. However, since \mathfrak{p}_i 's are not conjugate to one another, such a rational integer a does not exist. \blacksquare

The class group L-function $L_K(s,\chi)$ satisfies the functional equation

(2.6)
$$L_K(s,\chi) = H(s,\chi)L_K(1-s,\bar{\chi}),$$

where

(2.7)
$$H(s,\chi) = w(\chi) \left(\frac{2\pi}{\sqrt{d}}\right)^{2s-1} \frac{\Gamma(1-s)}{\Gamma(s)},$$

 $w(\chi)$ is the root number with $|w(\chi)|=1$ and $\Gamma(s)$ is the Euler Γ -function. From this we can obtain the approximate functional equation.

LEMMA 5. Let $x,y>0,\ 0<\beta<\alpha<2$ and $0<\gamma<2.$ For $\beta<\sigma<\alpha$ we have

$$L_K(s,\chi) = \sum_{i=1}^6 S_i,$$

where

$$S_{1} = \sum_{N\mathfrak{a} \leq x} \frac{\chi(\mathfrak{a})}{N\mathfrak{a}^{s}}, \quad S_{2} = H(s,\chi) \sum_{N\mathfrak{a} \leq y} \frac{\bar{\chi}(\mathfrak{a})}{N\mathfrak{a}^{1-s}},$$

$$S_{3} = \sum_{N\mathfrak{a} > x} \frac{\chi(\mathfrak{a})}{N\mathfrak{a}^{s}} \exp\left(-\left(\frac{N\mathfrak{a}}{x}\right)^{2}\right),$$

$$S_{4} = \frac{1}{2\pi i} \int_{(-\gamma)} x^{w} \frac{\Gamma(1+w/2)}{w} \sum_{N\mathfrak{a} \leq x} \frac{\chi(\mathfrak{a})}{N\mathfrak{a}^{s+w}} dw,$$

$$S_{5} = -\frac{1}{2\pi i} \int_{(\beta)} x^{w} \frac{\Gamma(1+w/2)}{w} H(s+w,\chi) \sum_{N\mathfrak{a} \leq y} \frac{\bar{\chi}(\mathfrak{a})}{N\mathfrak{a}^{1-s-w}} dw,$$

$$S_{6} = -\frac{1}{2\pi i} \int_{(-\alpha)} x^{w} \frac{\Gamma(1+w/2)}{w} H(s+w,\chi) \sum_{N\mathfrak{a} > y} \frac{\bar{\chi}(\mathfrak{a})}{N\mathfrak{a}^{1-s-w}} dw.$$

Proof. For X > 0 we have

(2.8)
$$e^{-X^2} = \frac{1}{2\pi i} \int_{(1)} X^{-w} \frac{\Gamma(1+w/2)}{w} dw.$$

Combining (1.1) and (2.8) yields

$$\sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{N\mathfrak{a}^s} \exp\left(-\left(\frac{N\mathfrak{a}}{x}\right)^2\right) = \frac{1}{2\pi i} \int_{(1)} L_K(s+w,\chi) x^w \frac{\Gamma(1+w/2)}{w} dw.$$

We move the contour on the right hand side from $\Re w = 1$ to $\Re w = -\alpha$, to obtain

(2.9)
$$L_K(s,\chi) = \sum_{N\mathfrak{a} \le x} \frac{\chi(\mathfrak{a})}{N\mathfrak{a}^s} \exp\left(-\left(\frac{N\mathfrak{a}}{x}\right)^2\right) + S_3$$
$$-\frac{1}{2\pi i} \int_{(-\alpha)} L_K(s+w,\chi) x^w \frac{\Gamma(1+w/2)}{w} dw.$$

Moving the contour in (2.8) from $\Re w = 1$ to $\Re w = -\gamma$, we obtain

$$e^{-X^2} = 1 + \frac{1}{2\pi i} \int_{(-\gamma)} X^{-w} \frac{\Gamma(1+w/2)}{w} dw.$$

Therefore the first term on the right hand side of (2.9) is

(2.10)
$$\sum_{N \neq \sigma} \frac{\chi(\mathfrak{a})}{N\mathfrak{a}^s} \exp\left(-\left(\frac{N\mathfrak{a}}{x}\right)^2\right) = S_1 + S_4.$$

By the functional equation (2.6), the third term on the right hand side of (2.9) is

$$-\frac{1}{2\pi i} \int_{(-\alpha)} L_K(s+w,\chi) x^w \frac{\Gamma(1+w/2)}{w} dw$$

$$= S_6 - \frac{1}{2\pi i} \int_{(-\alpha)} x^w \frac{\Gamma(1+w/2)}{w} H(s+w,\chi) \sum_{N\mathfrak{a} \le y} \frac{\bar{\chi}(\mathfrak{a})}{N\mathfrak{a}^{1-s-w}} dw.$$

Moving the contour from $\Re w = -\alpha$ to $\Re w = \beta$ yields

(2.11)
$$-\frac{1}{2\pi i} \int_{(-\alpha)} L_K(s+w,\chi) x^w \frac{\Gamma(1+w/2)}{w} dw = S_2 + S_5 + S_6.$$

From (2.9)–(2.11), the approximate functional equation follows.

Lastly we quote the following lemma.

LEMMA 6 ([5, Lemma 2.5]). Let C and C' be compact subsets in $\mathbb C$ such that C is contained in the interior of C'. There exists a positive constant

a(C,C') with the following property. If an analytic function f(s) on C' satisfies the estimate

$$\iint_{C'} |f(s)|^2 \, d\sigma \, dt < A$$

with some A > 0, then

$$\max_{s \in C} |f(s)| < a(C, C')\sqrt{A}.$$

3. Approximation by truncated Euler product. For $\sigma > 1$ the class group L-function has the Euler product

$$L_K(s,\chi) = \prod_{\mathfrak{p}} \left(1 - \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s}\right)^{-1},$$

where \mathfrak{p} runs over all prime ideals of K. For z > 0 we consider the truncated Euler product

$$L_K(s, \chi, z) = \prod_{N\mathfrak{p} \le z} \left(1 - \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s}\right)^{-1}.$$

Now we prove that if z is sufficiently large, then for almost all characters $\chi \in \widehat{H}(-d)$ the attached L-functions $L_K(s,\chi)$ can be uniformly approximated by the truncated Euler products $L_K(s,\chi,z)$.

Proposition 1. Let $\varepsilon > 0$, z > 0 and C be a compact subset of D. Define a set of characters

$$B(-d) = \{ \chi \in \widehat{H}(-d) \mid \max_{s \in C} |\log L_K(s, \chi) - \log L_K(s, \chi, z)| < \varepsilon \}$$

where the logarithm of $L_K(s,\chi)$ is defined as the analytic continuation of the series

$$\sum_{k=1}^{\infty} \sum_{\mathfrak{p}} \frac{\chi^{k}(\mathfrak{p})}{kN\mathfrak{p}^{ks}} \quad (\sigma > 1)$$

along the path $[\sigma + it, 2 + it]$. For any small positive numbers ε and ε_1 there is a positive constant $z_0 > 0$ such that for $z > z_0$ and any sufficiently large d we have

$$\frac{\sharp B(-d)}{h(-d)} > 1 - \varepsilon_1.$$

Proof. Let C' be a simply connected compact subset in D such that C is contained in the interior of C'. We estimate the second moment

$$I = \frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \iint_{C'} |L_K(s,\chi) \cdot L_K(s,\chi,z)^{-1} - 1|^2 d\sigma dt.$$

Let $\sigma_1 = \min_{s \in C'} \sigma > 1/2$ and δ be a positive number with $\delta < \frac{1}{2}(\sigma_1 - 1/2)$. In Lemma 5 we take $x = d^{1/2-\delta}$, $y = d^{1/2+\delta}$ and $\alpha > 1 + \sigma_1$. Applying Lemma 5 and the Cauchy–Schwarz inequality, we have

$$(3.1) I \le \sum_{i=1}^{6} I_i,$$

where

$$I_{1} = \frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \iint_{C'} |S_{1} \cdot L_{K}(s, \chi, z)^{-1} - 1|^{2} d\sigma dt,$$

$$I_{i} = \frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \iint_{C'} |S_{i} \cdot L_{K}(s, \chi, z)^{-1}|^{2} d\sigma dt \quad (2 \le i \le 6).$$

First we calculate I_1 . By the definition of S_1 and $L_K(s,\chi,z)$ we have

$$S_1 \cdot L_K(s, \chi, z) = 1 + \sum_{z < N \mathfrak{a} \le xz'} \frac{\chi(\mathfrak{a})c_{\mathfrak{a}}}{N\mathfrak{a}^s},$$

where $z' \ll z^z$ and $c_{\mathfrak{a}}$ are numbers satisfying $|c_{\mathfrak{a}}| \ll N\mathfrak{a}^{\varepsilon_2}$ for arbitrarily small $\varepsilon_2 > 0$. It follows from Lemma 3 that

$$(3.2) I_{1} = \frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \iiint_{z < N \mathfrak{a} \le xz'} \frac{\chi(\mathfrak{a}) c_{\mathfrak{a}}}{N \mathfrak{a}^{s}} \bigg|^{2} d\sigma dt$$

$$\ll_{C'} \left(1 + \frac{xz'}{d^{1/2}} \right) \sum_{N \mathfrak{a} \ge z} \frac{1}{N \mathfrak{a}^{2\sigma_{1} - \varepsilon_{2}}} \ll_{C'} (1 + d^{-\delta}z') z^{1 - 2\sigma_{1} + \varepsilon_{2}}.$$

Next we calculate I_2 . From the Stirling formula

(3.3)
$$|\Gamma(x+iy)| \ll (1+|y|)^{x-1/2} e^{-\pi|y|/2} \quad (|y| \to \infty),$$

we obtain

(3.4)
$$|H(s,\chi)| \ll d^{1-2\sigma}|t|^{1-2\sigma}$$
.

From (3.4) and Lemma 3, it follows that

$$(3.5) I_{2} \ll_{z,C'} d^{1-2\sigma_{1}} \iint_{C'} \left\{ \frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \left| \sum_{N\mathfrak{a} \leq y} \frac{\bar{\chi}(\mathfrak{a})}{N\mathfrak{a}^{1-s}} \right|^{2} \right\} d\sigma dt$$

$$\ll_{z,C'} d^{1-2\sigma_{1}} \left(1 + \frac{y}{d^{1/2}} \right) \sum_{N\mathfrak{a} \leq y} \frac{1}{N\mathfrak{a}^{2-2\sigma_{1}}} \ll_{z,C'} d^{2\sigma_{1}\delta + 1/2 - \sigma_{1} + \varepsilon_{2}}.$$

Here we remark that

$$2\sigma_1\delta + \frac{1}{2} - \sigma_1 < \sigma_1\left(\sigma_1 - \frac{1}{2}\right) + \frac{1}{2} - \sigma_1 = (\sigma_1 - 1)\left(\sigma_1 - \frac{1}{2}\right) < 0.$$

As above, applying Lemma 3 and the estimates (3.3) and (3.4), we obtain

(3.6)
$$I_3, I_4 \ll_{z,C'} d^{(1/2-\delta)(1-2\sigma_1)+\varepsilon_2}$$

(3.7)
$$I_5, I_6 \ll_{z,C'} d^{1/2-\sigma_1+2\sigma_1\delta+\varepsilon_2}.$$

From (3.1), (3.2) and (3.5)–(3.7) it follows that

$$I \ll_{z,C'} z^{1-2\sigma_1+\varepsilon_2} + O_z(d^{-\delta} + d^{(1/2-\delta)(1-2\sigma_1)+\varepsilon_2} + d^{1/2-\sigma_1+2\sigma_1\delta+\varepsilon_2}).$$

Now we take $z_0 > 0$ such that

$$z_0^{1-2\sigma_1+\varepsilon_2} < \left(\frac{\varepsilon\varepsilon_1}{2a(C,C')}\right)^2,$$

where a(C, C') is the constant given by Lemma 6. For $z > z_0$ and sufficiently large d we have

$$\frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \iint\limits_{C'} |L_K(s,\chi) \cdot L_K(s,\chi,z)^{-1} - 1|^2 \, d\sigma \, dt < \left(\frac{\varepsilon \varepsilon_1}{2a(C,C')}\right)^2.$$

By Lemma 6, we obtain

(3.8)
$$\frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \max_{s \in C} |L_K(s, \chi) \cdot L_K(s, \chi, z)^{-1} - 1| < \frac{1}{2} \varepsilon \varepsilon_1.$$

Put

$$B'(-d) = \{ \chi \in \widehat{H}(-d) \mid \max_{s \in C} |L_K(s, \chi) \cdot L_K(s, \chi, z)^{-1} - 1| < \varepsilon \}.$$

Then (3.8) implies the estimate

$$\frac{\sharp B'(-d)}{h(-d)} > 1 - \varepsilon_1.$$

As $e^x - 1 \approx x$ for sufficiently small positive x, this completes the proof of Proposition 1. \blacksquare

PROPOSITION 2. Let C be a compact subset of D and ε be a small positive number. There is a positive constant ν_0 which has the following property. Let $\nu > \nu_0$, $z > \nu$, $0 < \delta < 1/2$ and $\theta_p \in [0,1)$ for each prime p with $p \leq \nu$. For these parameters take the subsets $\Lambda_0 \subset \Lambda$ of Lemma 2 and $A(-d) \subset \widehat{H}(-d)$ of Lemma 4. Define

$$A'(-d) = \left\{ \chi \in A(-d) \left| \max_{s \in C} \left| \sum_{u \le N\mathfrak{p} \le z} \log \left(1 - \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s} \right)^{-1} \right| < \varepsilon \right\}.$$

Then

$$\liminf_{\substack{d \to \infty \\ -d \in A_0}} \frac{\sharp A'(-d)}{h(-d)} > \frac{1}{2} (2\delta)^{\pi(\nu)}.$$

Proof. Let C' be a simply connected compact subset of D such that C is contained in the interior of C'. We take a positive number ν_0 sufficiently large such that

(3.9)
$$\nu_0^{1-2\sigma_1+\varepsilon_2} < \frac{1}{4} \left(\frac{\varepsilon}{a(C,C')} \right)^2,$$

where $\sigma_1 = \min_{s \in C'} \sigma > 1/2$, a(C, C') is the constant in Lemma 6, and ε_2 denotes an arbitrarily small positive number. Let $\nu > \nu_0$ and $z > \nu$. We calculate the second moment

(3.10)
$$I = \sum_{\chi \in A(-d)} \iint_{\nu < N\mathfrak{p} \le z} \log \left(1 - \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s} \right)^{-1} \Big|^2 d\sigma dt.$$

Applying the estimate $\log(1-x)^{-1} = x + O(|x|^2)$, we have

$$(3.11) I \ll_{C'} \sum_{\chi \in A(-d)} \iint_{C'} \left| \sum_{\nu < N\mathfrak{p} \le z} \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s} \right|^2 d\sigma dt + \sharp A(-d) \cdot \nu^{2(1-2\sigma_1)+\varepsilon_2}.$$

In order to remove the condition " $\chi \in A(-d)$ " from the first term in (3.11), we construct a continuous characteristic function of A(-d). Let $\delta_1 > 0$ be a small number satisfying $0 < \delta \pm \delta_1 < 1/2$. Let $\xi : \mathbb{R} \to \mathbb{R}$ be a continuous periodic function with period 1 which satisfies

$$\xi(x) = \begin{cases} 1 & (|x| \le \delta), \\ -\frac{|x|}{\delta_1} + \frac{\delta + \delta_1}{\delta_1} & (\delta < |x| \le \delta + \delta_1), \\ 0 & (\delta + \delta_1 < |x| \le 1/2). \end{cases}$$

Define $\xi_{\nu}: \widehat{H}(-d) \to \mathbb{R}$ by

(3.12)
$$\xi_{\nu}(\chi) = \prod_{p < \nu} \xi \left(\frac{\arg \chi(\mathfrak{p})}{2\pi} - \theta_p \right).$$

Then for all $\chi \in \widehat{H}(-d)$ we have

$$(3.13) 0 \le \xi_{\nu}(\chi)^2 \le \xi_{\nu}(\chi) \le 1,$$

in particular for $\chi \in A(-d)$,

(3.14)
$$\xi_{\nu}(\chi) = \xi_{\nu}(\chi)^2 = 1.$$

Let $\sum_{n\in\mathbb{Z}} c_n e(nx)$ be the Fourier expansion of $\xi(x)$. The constant term is

(3.15)
$$c_0 = \int_{-1/2}^{1/2} \xi(x) \, dx = 2\delta + \delta_1.$$

We index all prime ideals with $N\mathfrak{p} \leq \nu$ as $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$, where $r = \pi(\nu)$. By the definition (3.12), $\xi_{\nu}(\chi)$ has the series expansion

$$\xi_{\nu}(\chi) = \prod_{i=1}^{r} \left(\sum_{n_{i}} c_{n_{i}} \chi^{n_{i}}(\mathfrak{p}_{i}) e(-n_{i}\theta_{p_{i}}) \right)$$

$$= \sum_{(n_{1},\dots,n_{r})} c_{n_{1}} \cdots c_{n_{r}} e\left(-\sum_{i=1}^{r} n_{i}\theta_{p_{i}} \right) \chi(\mathfrak{p}_{1}^{n_{1}} \cdots \mathfrak{p}_{r}^{n_{r}}) = \sum_{\mathfrak{a}}' c_{\mathfrak{a}} \chi(\mathfrak{a}).$$

Since the series $\sum_n c_n e(nx)$ is uniformly convergent on \mathbb{R} , there is a constant M > 0 such that for any $\chi \in \widehat{H}(-d)$,

(3.16)
$$\left| \xi_{\nu}(\chi) - \sum_{N\mathfrak{q} < M}' c_{\mathfrak{q}} \chi(\mathfrak{q}) \right| < \left\{ \frac{1}{2} (2\delta)^{\pi(\nu)} \right\}^{1/2}.$$

From (3.12)–(3.14) and (3.16) it follows that for any $s \in C'$,

$$\sum_{\chi \in A(-d)} \left| \sum_{\nu < N\mathfrak{p} \le z} \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s} \right|^2 \le \sum_{\chi \in \widehat{H}(-d)} \left| \xi_{\nu}(\chi) \sum_{\nu < N\mathfrak{p} \le z} \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s} \right|^2 \\
\ll \sum_{\chi \in \widehat{H}(-d)} \left| \sum_{N\mathfrak{a} \le M} \sum_{\nu < N\mathfrak{p} \le z} \frac{c_{\mathfrak{a}}}{N\mathfrak{p}^s} \chi(\mathfrak{a}\mathfrak{p}) \right|^2 + \frac{1}{2} (2\delta)^{\pi(\nu)} \sum_{\chi \in \widehat{H}(-d)} \left| \sum_{\nu < N\mathfrak{p} \le z} \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s} \right|^2.$$

By Lemma 3, for sufficiently large d we have

$$(3.17) \quad \sum_{\chi \in A(-d)} \left| \sum_{\nu < N\mathfrak{p} \leq z} \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s} \right|^2 \ll \left\{ \sum_{N\mathfrak{a} \leq M}' |c_{\mathfrak{a}}|^s + \frac{1}{2} (2\delta)^{\pi(\nu)} \right\} h(-d) \nu^{1 - 2\sigma_1 + \varepsilon_2}.$$

Taking into account (3.13) and (3.15), we obtain

(3.18)
$$\sum_{N \mathfrak{a} \leq M}' |c_{\mathfrak{a}}|^{2} \leq \sum_{\mathfrak{a}} |c_{\mathfrak{a}}|^{2} = \lim_{d \to \infty} \frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \xi_{\nu}(\chi)^{2}$$
$$\leq \lim_{d \to \infty} \frac{1}{h(-d)} \sum_{\chi \in \widehat{H}(-d)} \xi_{\nu}(\chi) = c_{0}^{\pi(\nu)} = (2\delta + \delta_{1})^{\pi(\nu)}.$$

Now we choose δ_1 sufficiently small such that $(2\delta + \delta_1)^{\pi(\nu)} + \frac{1}{2}(2\delta)^{\pi(\nu)} < 2(2\delta)^{\pi(\nu)}$. Combining (3.9), (3.11), (3.17) and (3.18), we obtain

$$(3.19) \qquad \sum_{\chi \in A(-d)} \iiint_{\nu < N\mathfrak{p} \le z} \log \left(1 - \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s} \right)^{-1} \Big|^2 d\sigma dt$$

$$< \frac{1}{4} h(-d) (2\delta)^{\pi(\nu)} \left(\frac{\varepsilon}{a(C, C')} \right)^2.$$

Define

$$A''(-d) = \left\{ \chi \in A(-d) \left| \iint_{C'} \left| \sum_{\nu < N\mathfrak{p} < z} \log \left(1 - \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s} \right)^{-1} \right|^2 d\sigma \, dt < \left(\frac{\varepsilon}{a(C,C')} \right)^2 \right\}.$$

Then from Lemma 4 and (3.19), it follows that

$$\liminf_{\substack{d \to \infty \\ -d \in A_0}} \frac{\sharp A''(-d)}{h(-d)} > \frac{1}{2} (2\delta)^{\pi(\nu)}.$$

In view of Lemma 6, this completes the proof of Proposition 2.

4. Proof of Theorem 3. Assume that Ω , f(s) and C satisfy the conditions in Theorem 3. Let $\nu_0 > 0$ be the constant in Proposition 2. Since f(s) is positive on $\Omega \cap \mathbb{R}$, the logarithm of f(s) satisfies the condition in Lemma 1. Therefore there exist $\nu > \nu_0$ and $\theta_p \in [0,1)$ for each prime p with $p \leq \nu$ such that

(4.1)
$$\max_{s \in C} \left| \log f(s) - \sum_{p \le \nu} \log \left(1 - \frac{2 \cos 2\pi \theta_p}{p^s} + \frac{1}{p^{2s}} \right)^{-1} \right| < \varepsilon.$$

Let Λ_0 be the subset given by Lemma 2. From the decomposition (2.5), for $z > \nu$ and $-d \in \Lambda_0$ it follows that

$$(4.2) \qquad \log L_K(s,\chi,z) = \sum_{N\mathfrak{p} \le z} \log \left(1 - \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s}\right)^{-1}$$

$$= \sum_{p \le \nu} \log \left(1 - \frac{2\cos\arg\chi(\mathfrak{p})}{p^s} + \frac{1}{p^{2s}}\right)^{-1} + \sum_{\nu < N\mathfrak{p} \le z} \log \left(1 - \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s}\right)^{-1}.$$

By continuity, there is a small constant $\delta > 0$ such that if

$$\left\| \theta_p - \frac{\arg \chi(\mathfrak{p})}{2\pi} \right\| < \delta$$

for each p with $p \leq \nu$ then

$$(4.3) \qquad \max_{s \in C} \left| \sum_{p \le \nu} \log \left(1 - \frac{2 \cos 2\pi \theta_p}{p^s} + \frac{1}{p^{2s}} \right)^{-1} - \sum_{p \le \nu} \log \left(1 - \frac{2 \cos \arg \chi(\mathfrak{p})}{p^s} + \frac{1}{p^{2s}} \right)^{-1} \right| < \varepsilon.$$

For ε and $\varepsilon_1 = \frac{1}{4}(2\delta)^{\pi(\nu)}$ we take a positive constant z_0 as in Proposition 1. Let $z > \max\{z_0, \nu\}$. For the above parameters taking the subsets A(-d) of

Lemma 4, B(-d) of Proposition 1 and A'(-d) of Proposition 2, we have

$$\lim_{\substack{d \to \infty \\ -d \in A_0}} \inf_{b} \frac{\sharp (A'(-d) \cap B(-d))}{h(-d)} > \frac{1}{2} (2\delta)^{\pi(\nu)} - \frac{1}{4} (2\delta)^{\pi(\nu)} > 0.$$

Furthermore for any $\chi \in A'(-d) \cap B(-d)$ the inequalities

(4.4)
$$\max_{s \in C} |\log L_K(s, \chi) - \log L_K(s, \chi, z)| < \varepsilon,$$

(4.5)
$$\max_{s \in C} \left| \sum_{\nu < N\mathfrak{p} \le z} \log \left(1 - \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s} \right)^{-1} \right| < \varepsilon,$$

and (4.3) hold. Combining (4.1)–(4.5) we obtain

$$\max_{s \in C} |\log L_K(s, \chi) - \log f(s)| < 4\varepsilon.$$

This completes the proof of Theorem 3.

Acknowledgements. The author would like to thank the referee for the comments and suggestions.

References

- [1] B. Bagchi, The statistical behavior and universality properties of the Riemann zetafunction and other allied Dirichlet series, Ph.D. Thesis, Indian Statistical Institute, Calcutta, 1981.
- [2] W. Duke, J. Friedlander and H. Iwaniec, Class group L-functions, Duke Math. J. 79 (1995), 1–56.
- K. M. Eminyan, χ-universality of the Dirichlet L-function, Mat. Zametki 47 (1990),
 no. 6, 132–137 (in Russian); English transl.: Math. Notes 47 (1990), 618–622.
- [4] S. M. Gonek, Analytic properties of zeta and L-functions, Thesis, Univ. of Michigan, 1979.
- [5] H. Mishou and H. Nagoshi, Functional distribution of $L(s, \chi_d)$ with real characters and denseness of quadratic class numbers, Trans. Amer. Math. Soc. 358 (2006), 4343–4366
- [6] H. Nagoshi, On the universality for L-functions attached to Maass forms, Analysis (Munich) 25 (2005), 1–22.
- [7] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83–86.

Hidehiko Mishou

Ube National College of Technology

2-14-1 Tokiwadai

Ube-city, Yamaguchi, 755-8555, Japan

E-mail: mishou@ube-k.ac.jp