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1. Introduction. In [9], Green and Tao proved the following celebrated
theorem now bearing their name:

Theorem 1 (Green–Tao). The primes contain arithmetic progressions
of arbitrary length. Furthermore, the same conclusion is true for any set of
primes of positive relative upper density.

Subsequently, other variants of this theorem have been proved. Tao
and Ziegler [20] proved the generalization for polynomial progressions a +
p1(d), . . . , a + pk(d), where pi ∈ Z[x] and pi(0) = 0. Tao [19] proved the
analog in the Gaussian integers. It is well known that the integers and the
polynomials over a finite field share a lot of similarities in many aspects rele-
vant to arithmetic combinatorics. Therefore, it is natural, as Green and Tao
did, to suggest that the analog of this theorem should hold in the setting of
function fields:

Conjecture 1. For any finite field F, the monic irreducible polynomials
in F[t] contain affine spaces of arbitrarily high dimension.

We will confirm this conjecture. More precisely, we will prove:

Theorem 2 (Green–Tao for function fields). Let Fq be a finite field
over q elements. Then for any k > 0, we can find polynomials f, g ∈ Fq[t],
g 6= 0, such that the polynomials f + Pg, where P runs over all polynomi-
als P ∈ Fq[t] of degree less than k, are all irreducible. Furthermore, such
configurations can be found in any set of irreducible polynomials of positive
relative upper density.

Here we define the upper density of a set A ⊂ Fq[t] to be

d(A) = lim
N→∞

#{f ∈ A : deg(f) < N}
qN

,
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and the relative upper density of A in the set P of all irreducible polynomials
to be

dP(A) = lim
N→∞

#{f ∈ A : deg(f) < N}
#{f ∈ P : deg(f) < N}

.

The conjecture then follows since the monic polynomials have positive den-
sity in all the polynomials.

Our arguments follow Green–Tao’s very closely. In many places the adap-
tation to the Fq[t] setting is immediate, so we will often omit the proof and
refer the reader to Green–Tao’s original paper. The readers interested in
details can find the unabridged version of this paper at [11]. We have also
chosen to incorporate some modifications that considerably simplify some
major steps in the original arguments. Therefore, the paper may prove to
be helpful to those who want to understand the ideas of the proof of Green–
Tao’s theorem.

2. Notation and outline of the proof

2.1. Notation. Throughout the paper, we will be working with a fixed
field Fq on q elements, where q is a prime power. Let Fq[t] be the ring of
polynomials with coefficients in Fq. Let Fq(t) be the quotient ring of Fq[t],
i.e. Fq(t) = {f/g : f, g ∈ Fq[t], g 6= 0}. The value of k will be kept fixed
throughout the paper.

Denote by GN the set of all polynomials in Fq[t] of degree less than N .
A priori, GN is an additive group. We also, for eachN , fix a monic irreducible
polynomial fN ∈ Fq[t]. Then the additive group GN can be endowed with a
field structure isomorphic to FqN , the field on qN elements, via multiplication
modulo fN . The need for the field structure arises in the same way as when
we convert {1, . . . , N} into ZN , the main reason being that we can freely
perform divisions. Let K = |Gk| = qk, the number of polynomials of degree
less than k. Let us call a set {f + Pg : P ∈ Gk} a k-configuration. If g 6= 0
then it is called a nontrivial k-configuration. A k-configuration in GN is
necessarily a k-configuration in FqN , but not vice versa.

For a nonzero polynomial f ∈ Fq[t] define the norm of f to be |f | =
qdeg(f). Also, let |0| = 0. Then the norm |·| defines a distance on Fq[t]. Often,
when dealing with the wraparound effect, we will make use of cylinder sets.
A cylinder set of radius r is simply the set of all f ∈ Fq[t] whose distance
to a given point is at most r. The cylinder sets are the analog of intervals
in R, with the more pleasant property that for any two cylinder sets, either
they are disjoint or one is contained in the other.

If φ is a function on a finite set A, we write E(φ(x) |x ∈ A), or Ex∈Aφ(x),
or simply EAφ to denote the expectation of φ on A, in other words the
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average value of φ on A. We denote the inner product of two functions φ, ψ
on A as 〈φ, ψ〉 = Ex∈Aφ(x)ψ(x).

For two quantities A,B, we write A = O(B), or A � B, or B � A if
there is an absolute constant C such that |A| ≤ CB. If A and B are functions
of the same variable x, we write A = ox→∞(B) if A/B tends to 0 as x tends
to infinity. If the constant C (respectively, the rate of convergence of A/B)
depends on a parameter, e.g. m, then we write A = Om(B) (respectively,
A = om;x→∞). Dependence on fixed quantities such as q or k will often
be omitted. Most of the time we will be dealing with functions of N , and
when it is clear we will remove it from the notation. Thus O(1) stands for
a bounded quantity (independent of N) and o(1) stands for a function that
goes to 0 as N tends to infinity.

2.2. Outline of the proof. The starting point of Green–Tao is Sze-
merédi’s theorem, which states that any set of integers of positive density
contains arbitrarily long arithmetic progressions. Actually, they needed a
stronger form of Szemerédi’s theorem, obtained by incorporating an argu-
ment known as Varnavides’s trick [21]. In the setting of function fields, an
analog of Szemerédi’s theorem is readily available [2], [1]. Coupled with the
Varnavides argument, this gives the following result, which we will prove in
Section 3:

Theorem 3 (Szemerédi for function fields). For every δ > 0, there exists
a constant c(δ) > 0 such that, for every function φ : FqN → R with 0 ≤
φ(x) ≤ 1 for all x and E(φ |FqN ) ≥ δ, we have E(

∏
P∈Gk φ(f + Pg) | f, g ∈

FqN ) ≥ c(δ).
Following Green and Tao, our next step is a transference principle, which

allows us to generalize Szemerédi’s theorem to larger classes of functions φ,
not necessarily bounded. Let us call a function ν : GN → R a measure.
A pseudorandom measure is a measure satisfying two technical conditions
(to be defined later in Section 4), called the linear forms condition and the
correlation condition.

Theorem 4 (Green–Tao–Szemerédi for function fields). Let ν : FqN →
R be a pseudorandom measure. Then for every δ > 0, there exists a constant
c′(δ) > 0 such that, for every function φ : FqN → R with 0 ≤ φ(f) ≤ ν(f)
for all f and E(f |FqN ) ≥ δ, we have E(

∏
P∈Gk φ(f + Pg) | f, g ∈ FqN ) ≥

c′(δ)− o(1).

This is obtained by means of a decomposition result, namely any function
φ bounded by a pseudorandom measure can be decomposed as φ = φ1 +φ2,
where φ1 is a nonnegative, bounded function whose average is bounded from
below, and φ2 is uniform in the sense that it is small in a norm (the Gowers
norm to be defined later) that is relevant to counting k-configurations. Thus
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the contribution of f2 to E(
∏
P∈Gk φ(f + Pg) | f, g ∈ FqN ) is small, so that

the latter is close to E(
∏
P∈Gk φ1(f + Pg) | f, g ∈ FqN ), which is bounded

from below by the usual Szemerédi theorem. The proof of the decomposition
result in Green–Tao [9] and later in [20] is quite involved. Recently Gow-
ers [5] and Reingold–Trevisan–Tulsiani–Vadhan [14], [15] have found much
simpler proofs of this result, the main tool being the Hahn–Banach theo-
rem. Moreover, their formulations of the result are very general and directly
applicable to our setting of function fields.

Once Theorem 4 is established, the final step is to show that ν can be
constructed in such a way that ν majorizes functions supported on irre-
ducible polynomials, such as (variants of) the von Mangoldt function Λ,
where

Λ(f) =
{

deg(P ) if f = cP k, where P is irreducible and c ∈ Fq,
0 otherwise.

To this end, in Section 7 we will adapt the truncated divisor sum of Goldston
and Yıldırım from their work on short gaps between primes [3].

Theorem 5 (Goldston–Yıldırım for function fields). For any A ⊂ P
such that dP(A) > 0, there exist a constant δ > 0, a pseudorandom measure
ν : FqN → R, a function φ : FqN → R and W, b ∈ FqN such that the following
are true for infinitely many N :

• φ is 0 outside of {h ∈ GN : Wh+ b ∈ A}.
• 0 ≤ φ ≤ ν.
• E(φ |FqN ) ≥ δ.
• ‖φ‖∞ � N .

Remarks. The introduction of W , known as the “W -trick” and first
used by Green in [7], is quite common in this situation in arithmetic combi-
natorics, when we want to transfer results about dense sets to the primes.
We will need the irreducible polynomials to be distributed sufficiently uni-
formly in congruence classes, and for this purpose, we will take W to be a
product of small irreducible polynomials.

Proof of Theorem 2 using Theorems 4 and 5. Suppose N is such that the
conclusions of Theorem 5 holds. We partition GN into qk disjoint cylinder
sets Ci of radius qN−k, so that |f1−f2| < qN−k for any two polynomials f1, f2

in the same cylinder set. There must be a cylinder set Ci on which the average
of φ is at least δ. Let ψ = φ1Ci . Applying Theorem 4 to the function ψ,
we have E(

∏
P∈Gk ψ(f + Pg) | f, g ∈ FqN ) ≥ c′(δ/qk)− o(1). Because of the

bound on the magnitude of φ, the contribution of the products corresponding
to trivial k-configurations is o(1). Thus for N sufficiently large, ψ is nonzero
on some nontrivial k-configuration {f+Pg : P ∈ Gk} ⊂ FqN . A priori, this is
a k-configuration in FqN . By the definition of ψ, f+Pg ∈ Ci for every P ∈ Gk.
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In particular qN−k > |(f + g) − f | = |g|, so that the above k-configuration
is indeed a k-configuration in GN . Thus {W (f + Pg) + b : P ∈ Gk} is a
nontrivial k-configuration that lies entirely in A, since ψ is supported in
{h ∈ GN : Wh+ b ∈ A}.

Remarks. The techniques here not only give infinitely many k-configur-
ations, but also show that the number of such configurations is� q2N/NK ,
which is of correct magnitude in the context of the Hardy–Littlewood con-
jecture on tuples of primes. We remark that while more algebraic methods
can generate configurations of irreducibles, e.g. the analog of the twin prime
conjecture ([12, Theorem 4]), such methods do not give the correct bound
(up to a constant).

The next sections are organized as follows. In Section 3 we establish
Theorem 3. In Section 4, we define the machinery of Green–Tao including
pseudorandom measures, Gowers norms and dual functions. In Section 5, we
prove the decomposition result mentioned earlier. In Section 6, we introduce
arithmetic functions in Fq[t]. We give in Section 7 the construction of a mea-
sure ν that majorizes the irreducible polynomials. Section 8 is devoted to es-
tablishing the pseudorandomness of ν, thus finishing our proof of Theorem 2.

3. Szemerédi’s theorem in function fields. As we mentioned in the
last section, we need an analog of Szemerédi’s theorem in Fq[t], namely that
we can find nontrivial k-configurations inside any subset of Fq[t] of positive
upper density:

Proposition 1. Let δ > 0. Then for N sufficiently large, N ≥ N0 =
N0(q, k, δ), in every subset A of size δqN of GN , we can find polynomials
f, g ∈ Fq[t], g 6= 0, such that f + Pg ∈ A for every polynomial P ∈ Gk.

There are at least two ways to see this. It is an immediate consequence
of a far more general result of Bergelson–Leibman–McCutcheon [1]:

Theorem 6 (Polynomial Szemerédi for countable integral domains). Let
K be a countable integral domain, M be a finitely generated K-module, and
p1, . . . , pn be polynomials K → M such that pi(0) = 0 for every i. Then
for any set A ⊂ M of upper Banach density d∗(A) > 0, there exist d ∈ K,
d 6= 0, and a ∈M such that a+ pi(d) ∈ A for every i = 1, . . . , n.

When K = M = Fq[t] and p1, . . . , pn are the linear polynomials g 7→ Pg,
where P ∈ Gk, then we have the desired result. Proposition 1 can also
be proved using the density Hales–Jewett theorem [2] (1). For the details,
see [11].

(1) These two approaches are not unrelated. In fact, the Hales–Jewett density theorem
is one of the ingredients in the proof of the Bergelson–Leibman–McCutcheon theorem.
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A Varnavides argument [21] shows that not only is there such a k-
configuration, but there are in fact many of them:

Proposition 2. Let δ > 0. Then there is a constant c(δ) > 0 such that,
for N sufficiently large, in every subset A of size δqN of GN , we can find
at least c(δ)q2N k-configurations.

Proof. Let m = N0(q, k, δ/2), where N0 is the function of Proposition 1,
and suppose N ≥ m. We claim that among the q2N−m m-configurations
in GN , there are at least (δ/2)q2N−2m on which the density of A is at
least δ/2. Indeed, let us count the number of pairs (V, h) where V is an
m-configuration in GN and h ∈ A ∩ V . On the one hand, since for every
given point in GN there are qN−m m-configurations in GN containing it,
the number of such pairs is δqNqN−m = δq2N−m. Each k-configuration V on
which the density of A is at most δ/2 contributes at most (δ/2)qmq2N−2m =
(δ/2)q2N−m pairs. Thus the contribution of those V on which the density of
A is at least δ/2 is at least δq2N−m− (δ/2)q2N−m = (δ/2)q2N−m. Therefore,
the number of m-configurations V on which the density of A is ≥ δ/2 is at
least (δ/2)q2N−2m.

From the definition of m, each such m-configuration (with the exception
of at most qN trivial m-configurations) contains a nontrivial k-configuration.
Any given k-configuration is counted at most qm−k times. Thus the number
of nontrivial k-configurations in GN is at least qk−m((δ/2)q2N−m − qN )�δ

q2N , as desired.

From this, Theorem 3 easily follows.

Proof of Theorem 3. Suppose E(φ |GN ) ≥ δ. Let B ⊂ GN be the set on
which φ ≥ δ/2. Then |B| + (δ/2)(qN − |B|) ≥ δqN , so that |B| ≥ (δ/2)qN .
Proposition 2 implies that B contains at least c(δ/2)q2N k-configurations.
Thus E(

∏
P∈Gk φ(f + Pg) | f, g ∈ FqN ) ≥ (δ/2)kc(δ/2).

Remark. In contrast with the usual Szemerédi theorem for the integers,
where we have a quantitative proof due to Gowers [4], [5], the proof of the
Bergelson–Leibman–McCutcheon theorem uses ergodic theory and therefore
does not give any bound of c(δ) in terms of δ. As for the density Hales–Jewett
theorem, very recently, researchers in the Polymath collaborative project
initiated by Gowers managed to find combinatorial proofs [13], from which
some bounds might be extracted, but still far weaker than what is known
for the integers. Thus we do not seek to find a bound for the first occurrence
in the irreducible polynomials of the configurations {f + Pg : P ∈ Gk}.

4. Pseudorandom measures, Gowers norms, and Gowers anti-
uniformity. In this section we will introduce the machinery necessary for
our proof of the generalized Szemerédi theorem (Theorem 3). At this stage
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there are hardly any differences between the function field setting and the
integer setting, and the proofs are almost identical, so we will skip the proofs
and refer the reader to the unabridged version of this paper [11], or Sections
3, 5, 6 of Green–Tao’s original paper [9].

4.1. Pseudorandom measures. A measure is a function (2) ν : FqN →
[0,∞). A pseudorandom measure is a measure satisfying the two conditions
defined below:

Definition 1 (Linear forms condition). We say that a measure ν :
FqN → [0,∞) satisfies the (m0, n0, k0)-linear forms condition if whenever we
have m ≤ m0 linear forms in n ≤ n0 variables ψ1, . . . , ψm : (FqN )n → GN

of the form ψi(f) =
∑n

j=1 Lijfi + bi such that all the coefficients Lij are
in the set (3) {f/g : f, g ∈ Gk0}, and no two of the vectors (Lij)1≤j≤n,
i = 1, . . . ,m, are proportional, then we have

E(ν(ψ1(f)) · · · ν(ψm(f)) | f ∈ (FqN )n) = 1 + oN→∞(1).

In particular, if ν satisfies the linear forms condition then E(ν(f) | f ∈
GN ) = 1 + o(1). Note that we require the oN→∞(1) to be uniform in all
choices of b1, . . . , bm ∈ FqN .

Definition 2 (Correlation condition). We say that a measure ν : FqN →
[0,∞) satisfies the l0-correlation condition if whenever we have l ≤ l0 linear
forms of the form f + h1, . . . , f + hl with h1, . . . , hl ∈ FqN , then

E(ν(f + h1) · · · ν(f + hl) | f ∈ FqN ) ≤
∑

1≤i≤j≤q
τ(hi − hj)

where τ is a function GN → R+ such that E(τ(f)p | f ∈ FqN ) = Op(1) for
every p > 1.

The point is that the function τ is not necessarily bounded as N tends
to infinity, but its Lp-norm is always bounded.

Definition 3 (Pseudorandom measures). A measure ν : FqN → ∞ is
called k-pseudorandom if it satisfies the (K2K−1, 3K − 4, k)-linear forms
condition and the 2K−1-correlation condition (recall that K = qk).

Remark. The exact values of the parameters m0, n0, k0, l0 are not too
important. However, it is essential in the construction that these values are
finite. From now on we will refer to k-pseudorandom measures as pseudo-
random measures.

(2) More precisely, it is a family {νN}N∈Z+ such that for each N , νN is a function
from FqN → R.

(3) Note that this set can be embedded in FqN for every N ≥ k0. Of course, the
embedding depends on our choice of the irreducible polynomial fN underlying FqN .
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Lemma 1. If ν is pseudorandom, then so is ν1/2 = (ν + 1)/2. More
generally, for any 0 < α < 1, να = (1− α)ν + α is also pseudorandom.

In practice we will be dealing with ν1/2 and ν1/4.

4.2. Gowers norms. One efficient tool in counting linear patterns is
Gowers norms. The Gowers norms have been first used by Gowers in his
proof of Szemerédi’s theorem [4], [5]. They have a counterpart in ergodic
theory, known as the Host–Kra seminorm [10].

Definition 4 (Gowers norm). Let G be a finite abelian group, and φ
a complex-valued function defined on G. For ω = (ω1, . . . , ωd) ∈ {0, 1}d, let
|ω| = ω1 + · · ·+ ωd. Also, let C be the complex conjugation. We define the
dth Gowers norm of φ to be

‖φ‖Ud(G) =
(
Ex,h1,...,hk∈G

∏
ω∈{0,1}d

C |ω|φ(x+ ω1h1 + · · ·+ ωdhd)
)1/2d

.

Alternatively, the Gowers norms ‖ · ‖Ud(G) can be defined recursively as
follows:

‖φ‖U1(G) = |E(φ |G)|, ‖φ‖2d+1

Ud+1(G) = E(‖φ · φt‖2
d

Ud(G) | t ∈ G),

where φt is the function φt(x) = φ(t + x). The following facts about the
Gowers norms are standard and the proofs can be found in [9] or [8]:

Proposition 3.

• Suppose φω, for ω ∈ {0, 1}d, are 2d functions G→ C. Then

E
( ∏
ω∈{0,1}d

φω(x+ ω1h1 + · · ·+ ωdhd)
)
≤

∏
ω∈{0,1}d

‖φω‖Ud(G).

• For every φ, the sequence ‖φ‖Ud(G), d = 1, 2, . . . , is an increasing
sequence. In particular for every d ≥ 1, ‖φ‖Ud(G) ≥ ‖φ‖U1(G) =
|E(φ |G)|.
• For every d ≥ 2, ‖ · ‖Ud(G) is indeed a norm on CG, the space of

complex functions on G.

Henceforth, if the context is clear, we will assume G = FqN and omit the
group in the notation of the Gowers norm. In practice we will be dealing with
the UK−1 norm, whereK = qk. Our first observation is that a pseudorandom
measure is close to the uniform measure in the UK−1 norm.

Lemma 2. Let ν be a pseudorandom measure on FqN . Then ‖ν−1‖UK−1

= o(1). Consequently, ‖ν‖UK−1 = 1 + o(1).

As mentioned before, Gowers norms are effective in counting linear pat-
terns, as witnessed by the following:
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Proposition 4 (Generalized von Neumann (4)). Suppose ν is pseudo-
random. Let (φP )P∈Gk be functions bounded in absolute value by ν. Then

E
( ∏
P∈Gk

φP (f + Pg)
∣∣∣ f, g ∈ FqN

)
≤ min

P
‖φP ‖UK−1 + oN→∞(1).

Corollary 1. If the φP are bounded by 3 + ν then

E
( ∏
P∈Gk

φP (f + Pg)
∣∣∣ f, g ∈ FqN

)
≤ 4K min

P
‖φP ‖UK−1 + oN→∞(1).

4.3. Gowers anti-uniformity

Definition 5. For a real function φ on FqN , define its Ud dual function
Ddφ by

Ddφ = E
( ∏
ω∈{0,1}d, ω 6=0

φ(x+ ω1h1 + · · ·+ ωdhd)
∣∣∣ x, h1, . . . , hd ∈ FqN

)
.

From a functional analytic point of view Ddφ may be regarded as a “sup-
port functional” of φ, with the difference that Dφ is not linear. From now
on we will be working with the UK−1 dual functions. We will be particularly
interested in the dual functions of functions bounded by a pseudorandom
measure ν. It can be shown that the dual functions have the following prop-
erties:

Proposition 5.

• 〈φ,Ddφ〉 = ‖φ‖2d
Ud(G)

.
• If 0 ≤ φ ≤ ν, then 〈φ,DK−1φ〉 = 1 + o(1).
• For every m there is a constant C(m) such that if 0 ≤ φ1, . . . , φm ≤ ν,

then
‖DK−1φ1 · · · DK−1φm‖∗UK−1 ≤ C(m)

where ‖ ·‖∗
UK−1 is the dual norm of ‖ ·‖UK−1 (defined in the usual way,

‖f‖∗
UK−1 = sup{|〈f, g〉| : ‖g‖UK−1 ≤ 1}).

Remarks. The third property is by far the most important property of
the dual functions, and perhaps surprising, since m is not bounded, while
the number of forms in the linear forms condition and correlation condi-
tion is bounded. However, this comes from the fact that the exponent p of
the function τ in the correlation condition is not bounded. In Reingold–
Trevisan–Tulsiani–Vadhan’s language this means that ν is indistinguishable
from the uniform measure according to the family {DK−1φ1 · · · DK−1φm :
0 ≤ φi ≤ ν}.

(4) Green and Tao call this type of inequalities generalized von Neumann theorems
to emphasize their connection with the classical von Neumann theorem in ergodic theory.
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5. A decomposition and a transference principle. In this section
we reproduce Gowers’ proof [6] of Green–Tao’s structure theorem and use
the latter to derive Theorem 4. The reader is however referred to the original
paper for a survey about the interplay between decomposition results and
the use of the Hahn–Banach theorem in arithmetic combinatorics.

We first forget for a moment the definitions of Gowers norms and dual
functions, but instead axiomatize their properties in Proposition 5. Consider
a finite set G and let RG be the set of all real functions on G with the inner
product 〈f, g〉 = Ex∈Gf(x)g(x).

Definition 6. We say that a norm ‖ ·‖ on RG is a quasi-algebra predual
norm with respect to a convex, compact set F ⊂ RG if there is a function
c : R+ → R+, a function C : Z+ → R+, and an operator D : RG → RG such
that the following hold:

• 〈f,Df〉 ≤ 1 for every f ∈ F .
• 〈f,Df〉 ≥ c(ε) for every f ∈ F with ‖f‖ ≥ ε.
• ‖Df1 · · · Dfm‖∗ ≤ C(m), where ‖ · ‖∗ is the dual norm of ‖ · ‖.
• The set {Df : f ∈ F} is compact and spans RG.

The reason why ‖ · ‖ is called a quasi-algebra predual norm is that the
dual norm ‖ · ‖∗ is “close” to being an algebra norm (this will be made
precise in Lemma 4). The application we have in mind is when G = FqN ,
‖ · ‖ is the (normalized) UK−1 Gowers norm, the Df are the (normalized)
UK−1 dual functions, and F is the space of nonnegative functions bounded
by a pseudorandom measure ν.

Associated to the norm ‖ · ‖, we will also consider the norm ‖g‖BAC =
max{|〈g,Df〉| : f ∈ F} and its dual ‖ · ‖∗BAC (since the set {Df : f ∈ F}
is compact, ‖ · ‖BAC is indeed a norm). Here BAC stands for Basic Anti-
uniform Correlation. Thus ‖ · ‖ and ‖ · ‖BAC are equivalent in the sense that
if f ∈ F and ‖f‖ ≥ ε then ‖f‖BAC ≥ c(ε). The following gives a simple
characterization of the ‖ · ‖∗BAC norm.

Lemma 3. ‖f‖∗BAC = inf{
∑k

i=1 |λi| : f =
∑k

i=1 λiDfi, f1, . . . , fk ∈ F}.
Proof. This is [6, Corollary 3.5], and can also be proven using Farkas’

lemma [17, Section 1.16] (which is another incarnation of the Hahn–Banach
theorem!).

We now see that the name “quasi-algebra predual” is justified by the
following:

Lemma 4. If ψ ∈ RG is such that ‖ψ‖∗BAC ≤ 1, then ‖ψm‖∗ ≤ C(m).
More generally, for any polynomial P , ‖P (ψ)‖∗ ≤ C(P ) for some constant
C(P ) depending on P alone.

Proof. This is [6, Lemma 4.7].
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Specializing to the case where F is the set of all nonnegative functions
bounded by a function ν ∈ RG, we claim that any function from F can be
written as the sum of a bounded function and another function small under
‖ · ‖. This was essentially the key result in the paper of Green and Tao [9].
The slight generalization given here was later given in the paper of Tao and
Ziegler [20]:

Theorem 7 (Green–Tao structure theorem). For every η > 0, there is
ε = ε(η, C, c) > 0 such that the following holds: Let ν be a measure on G
such that ‖ν − 1‖ < ε, EGν ≤ 1 + η, and all properties in Definition 6 hold
for F = {f : 0 ≤ f ≤ ν}. Then every function f ∈ F can be decomposed as
f = g + h, where 0 ≤ g ≤ 1 + η and ‖h‖ ≤ η.

Proof. Suppose such a decomposition does not exist. Since ‖h‖BAC ≤
c(η) implies ‖h‖ ≤ η, this implies that f cannot be expressed as the sum of
elements from two convex sets X1 = {0 ≤ g ≤ 1 + η} and X2 = {‖h‖BAC ≤
c(η)} in RG.

Claim 1. There is a function ψ ∈ RG such that 〈f, ψ〉 > 1, but 〈g, ψ〉 ≤ 1
and 〈h, ψ〉 ≤ 1 for all g ∈ X1 and h ∈ X2.

Proof. Let X = X1 + X2; then X is convex and closed. We invoke the
following form of the Hahn–Banach theorem: if f /∈ X, then there is a linear
functional 〈·, ψ〉 on RG such that 〈f, ψ〉 > 1 and 〈g, ψ〉 ≤ 1 for every g ∈ X.
Since X1 and X2 both contain 0, they are contained in X and the claim
follows.

The condition 〈g, ψ〉≤1 for every g∈X1 implies that EGψ+≤1/(1 + η),
where ψ+(x) = max(0, ψ(x)). The condition 〈h, ψ〉 ≤ 1 for every h ∈ X2

implies that ‖ψ‖∗BAC ≤ c(η)−1.

Claim 2. For any η′ > 0, there is a polynomial P = P (η, η′, C, c) and a
constant R = R(η, η′, C, c) such that ‖Pψ − ψ+‖∞ ≤ η′ and ‖Pψ‖∗ ≤ R.

Proof. Since ‖ψ‖∗BAC ≤ c(η)−1, by Lemma 4 we have ‖ψ‖∗ ≤ C1 =
C(1)c(η)−1. By Weierstrass’ approximation theorem, there is a polynomial
P (x) = anx

n + · · · + a0 such that |P (x) − max(0, x)| ≤ η′ for every x ∈
[−C1, C1]. Then clearly ‖Pψ−ψ+‖∞ ≤ η′. The claim that ‖Pψ‖∗ is bounded
(independently of ψ) follows from Lemma 4.

We now have 1 < EGfψ+ ≤ EGνψ+. We split the latter as

EGνψ+ = EGψ+ + EG(ν − 1)Pψ + EG(ν − 1)(ψ+ − Pψ).

Also, |EG(ν − 1)Pψ| ≤ ‖ν − 1‖ ‖Pψ‖∗ ≤ εR and

|EGν(ψ+ − Pψ)| ≤ (EGν)‖Pψ − ψ+‖∞ ≤ η′(1 + η).

Thus 1 ≤ 1/(η + 1) + η′(1 + η) + εR. If we fix a small value of η′ (e.g.
η′ = η/12 will do), then this is a contradiction for ε small enough.
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Let us now formulate the result in the setting of Gowers norms and
pseudorandom measures on FqN :

Corollary 2. Let ν be a pseudorandom measure on FqN . Then for
every η > 0, for N sufficiently large, every function φ on FqN such that
0 ≤ φ ≤ ν can be decomposed as φ = φ1 + φ2, where 0 ≤ φ1 ≤ 2 + η and φ2

is uniform in the sense that ‖φ2‖UK−1 ≤ η.

Proof. If 0 ≤ φ ≤ ν, then 0 ≤ φ/2 ≤ ν1/2 = (ν + 1)/2. We already know
that ν1/2 is also pseudorandom. Let G = FqN and F be the space of all
nonnegative functions bounded by ν1/2. Let us check that the normalized
Gowers UK−1 norm ‖φ‖ = 1

2‖φ‖UK−1 is quasi-algebra predual with respect
to F , where Dφ = 1

2DK−1φ. Thanks to Proposition 5, the first three con-
ditions in Definition 6 are met. The only thing left to check is the fourth
condition, that the set of dual functions Dφ spans RG. Note that if φ is a
point mass, then Dφ is also a point mass (at the same point). Since ν1/2 is
pointwise positive (5), {Dφ : φ ∈ F} contains masses at every point of G,
hence spans RG. By Theorem 7, there is ε = ε(η) > 0 such that we have a
decomposition φ/2 = φ1 + φ2, where 0 ≤ φ1 ≤ 1 + η/2 and ‖φ2‖UK−1 ≤ η/2
as soon as EGν1 ≤ 1 + η and ‖ν1 − 1‖ ≤ ε. But this is always true since ν1

is a pseudorandom measure. Such a decomposition for φ/2 gives the desired
decomposition for φ.

With this in hand, we can now prove Theorem 4:

Proof of Theorem 4 using the Green–Tao structure theorem. We know
that for every η > 0, for N sufficiently large (depending on η), every function
φ bounded by a pseudorandom measure on FqN can be decomposed as φ =
φ1 + φ2, where 0 ≤ φ1 ≤ 2 + η and ‖φ2‖UK−1 ≤ η. In particular |Eφ2| ≤ η,
so that if Eφ ≥ δ, then Eφ1 ≥ δ − η. Write

E
( ∏
P∈Gk

φ(f + Pg)
∣∣∣ f, g ∈ FqN

)
= E

( ∏
P∈Gk

φ1(f + Pg)
∣∣∣ f, g ∈ FqN

)
+ (2K − 1 other terms).

The other terms are of the form E(
∏
P∈Gk φP (f + Pg) | f, g ∈ FqN ) where

each φP is φ1 or φ2, and not all φP are equal to φ1.
Since φ1 is pointwise bounded by 2 + η and φ2 is pointwise bounded

by max(ν, 2 + η) ≤ 3 + ν in absolute value, by Corollary 1, these terms
are at most 4K‖φ2‖UK−1 + o(1) in absolute value. On the other hand, by
Theorem 3,

E
( ∏
P∈Gk

φ1(f + Pg)
∣∣∣ f, g ∈ FqN

)
≥ (2 + η)Kc

(
δ − η
2 + η

)
.

(5) This is the sole reason why we work with ν1/2 rather than with ν.
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Hence

E
( ∏
P∈Gk

φ(f +Pg)
∣∣∣ f, g ∈ FqN

)
≥ (2 +η)Kc

(
δ − η
2 + η

)
− (2K −1)4Kη− o(1).

By choosing η appropriately small, the main term on the right hand side is
positive, so that there is a positive constant c′(δ) such that

E
( ∏
P∈Gk

φ(f + Pg)
∣∣∣ f, g ∈ FqN

)
≥ c′(δ)− o(1)

for every function φ on FqN bounded by a pseudorandom measure.

6. Elementary arithmetic in Fq[t]. We assume from now on that
symbols involving the letter P (such as P, P ′, or Pi) will stand for monic,
irreducible polynomials. Every f ∈ Fq[t] can be uniquely written as f =
cPα1

1 · · ·Pαmm , where c ∈ Fq and αi ∈ Z+. We can now introduce arithmetic
functions on Fq[t]:

• The Euler totient function Φ(f) is the number of polynomials of degree
less than deg(f) which are relatively prime to f . Then we have the
following formula for Φ(f) in terms of the prime factorization of f :

Φ(f) = |f |
∏
P |f

(
1− 1
|P |

)
=

m∏
i=1

|Pαi+1
i | − 1
|Pi| − 1

.

• The Möbius function

µ(f) =
{

(−1)m if αi = 1 for every i = 1, . . . ,m,
0 otherwise.

• The von Mangoldt function

Λ(f) =
{

deg(f) if m = 1,
0 otherwise.

• d(f), the number of monic divisors of f . We have the formula

d(f) =
m∏
i=1

(αi + 1).

• For d1, . . . , dm ∈ Fq[t], di 6= 0, denote by [d1, . . . , dm] the least common
divisor of d1, . . . , dm, in other words, the polynomial of smallest degree
that is divisible by di for every i = 1, . . . ,m (which is defined up to
multiplication by an element of Fq \ {0}).

The zeta function ζq of Fq[t] is defined by

ζq(s) =
∑

f monic

1
|f |s
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for any s ∈ C such that <s > 1. We have the following closed form for the
zeta function:

ζq(s) =
1

1− q1−s for <s > 1.

Thus it can be analytically continued on the whole plane, with a simple pole
at s = 1 with residue 1/log q. Similarly to the Riemann zeta function, ζq
admits a factorization as an Euler product:

ζq(s) =
∏
P

(
1− 1
|P |

)−1

.

We have the following analogs of the prime number theorem and Dirich-
let’s theorem on primes in arithmetic progressions in function fields [16].
Note that the error terms are much better than their integer counterparts,
thanks to the Riemann hypothesis for curves over a finite field [16].

Proposition 6.

• Let πq(N) be the number of irreducible polynomials of degree N in
Fq[t]. Then

πq(N) = (q − 1)
qN

N
+O

(
qN/2

N

)
.

• Let a, r ∈ Fq[t] be relatively prime, and deg(m) > 0. Let πq(N ; a, r) be
the number of irreducible polynomials of degree N in Fq[t] which are
congruent to r (modulo a). Then

πq(N ; a, r) = (q − 1)
1

Φ(m)
qN

N
+O

(
qN/2

N

)
.

We will need the following two lemmas in our construction of the function
τ in the correlation condition.

Lemma 5 (Divisor bound). Let f ∈ Fq[t] with deg(f) = N . Then

d(f) ≤ qOq(N/logN).

Proof. If f has the factorization f = c
∏m
i=1 P

αi
i , then we have d(f) =∏m

i=1(αi + 1). Therefore,

d(f)
|f |ε

=
m∏
i=1

αi + 1
|Pi|εα

,

where ε is to be chosen later, possibly depending on f . Note that if deg(Pi) ≥
1/ε, then

αi + 1
|Pi|εαi

≤ αi + 1
qαi

≤ 1.
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If deg(Pi) < 1/ε, then

αi + 1
|Pi|εαi

≤ αi + 1
qεαi

≤ q2
√
αi

qεαi
≤ q1/ε.

Since the second case can occur for at most q1/ε values of Pi, we have
d(f)
qNε

≤ (q1/ε)q
1/ε

= qNε+
1
ε
q1/ε .

Thus d(f) ≤ qNε+(1/ε)q1/ε for every ε > 0. If we choose ε = 1/logN , then we
obtain d(f) ≤ qOq(N/logN), as required.

Lemma 6. Let S be a finite set of irreducible polynomials in Fq[t]. Then
for every K,

exp
(∑
P∈S

1
|P |

)
= OK

(∑
P∈S

logK |P |
|P |

)
.

Proof. The proof is identical to that of [20, Lemma E.1].

In our proof of the Goldston–Yıldırım estimates (Propositions 7–9) in the
next sections, we will be concerned with Euler products in several variables,
i.e. of the form

∏
P (1−

∑n
j=1 cP,j/|P |1+sj ), as <sj > 0 and sj → 0 uniformly.

The following lemma gives an asymptotic formula for such Euler products.

Lemma 7. Let P range over monic irreducible polynomials in Fq[t]. For
every P let cP,1, . . . , cP,n be real numbers such that |cP,j | ≤ 1 and cP,j = cj
for P outside a finite set S. Let s1, . . . , sn ∈ C be such that <sj > 0 and
sj = o(1) uniformly. Then∏
P

(
1−

n∑
j=1

cP,j
|P |1+sj

)
= G(1 + on(1))

∏
P∈S

(
1 +On

(
1
|P |

)) n∏
j=1

(sj log q)cj

where G =
∏
P (1−

∑n
j=1 cP,j/|P |)(1− 1/|P |)−(c1+···+cn).

Note that the On and on depend only on n and the rate s1, . . . , sn → 0
and not on the exceptional set S.

Proof. The proof goes along the lines of [18, Lemma 1.2].

7. A pseudorandom measure that majorizes the irreducible
polynomials. In this section we prove Theorem 5 by constructing a pseu-
dorandom measure ν. The proof of its pseudorandomness is however deferred
to the next section. For simplicity we assume that A = P; the construction
in this particular case extends to the general case with ease. Throughout
this whole section and the next two, polynomials denoted by the letter d
(such as d, d′ or di) will stand for monic polynomials.

Let us fix once and for all:
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• R = αN , where α is a small constant depending only on k.
• w = w(N), a function tending sufficiently slowly to infinity. We may

take w(N)� logN .
• W =

∏
deg(P )<ω P . We have W (t) = tq

w − t, so that (6) deg(W )� N .
We will see that eventually we can take w to be a large number, hence
W to be a large degree polynomial.
• χ : R → R a smooth function (7) supported on [−1, 1] such that
χ(0) > 0 and

	∞
0 (χ′(x))2 dx = 1.

• ΛR(f) =
∑

d|f, deg(d)<R µ(d)χ(deg(d)/R), the Goldston–Yıldırım divi-
sor sum.
• ν(f) = R(Φ(W )/|W |)ΛR(Wf + 1)2. (8)

Proof of Theorem 5 under the assumption that ν is pseudorandom. No-
tice that if f is irreducible and deg(f) ≥ R then ΛR(f) = χ(0) = 1. For
f ∈ GN let

φ(f) =

{
χ(0)2Φ(W )

|W |
R if Wf + b is irreducible and deg(Wf + b) ≥ R,

0 otherwise.

Then clearly 0 ≤ φ ≤ ν and ‖φ‖∞ � N . Using the prime number theorem
in Fq[t] (Proposition 6), with the observation that N + deg(W ) increases at
most linearly in N , we can verify that EGNφ(f) is bounded from below.

The only thing missing from the conclusions of Theorem 5 is to check
that ν is indeed a pseudorandom measure, i.e. it satisfies the linear forms
condition and the correlation condition. This will be done in the next section.
In order to do so, we will need estimates on sums of the form

∑
ΛR(ψ1) · · ·

ΛR(ψn) where the ψi are linear forms. The following proposition shows how
to deal with sums of this kind.

Proposition 7 (Goldston–Yıldırım estimates). Let J1, . . . , Jn ∈ Fq[t],
not necessarily distinct. Let r be the number of distinct elements in {J1, . . . ,
Jn}. Also, for every monic, irreducible P ∈ Fq[t], let αP be the num-
ber of distinct residue classes modulo P occupied by J1, . . . , Jn. Put ∆ =
∆(J1, . . . , Jn) =

∏
(Ji − Ji′), where the product is taken over all couples

(6) The introduction of W , alluded to earlier as the W -trick, is meant to absorb small
irreducible polynomials arising in the linear forms condition. Except for this technical
reason, for the most part we can go through the arguments pretending that W = 1
without losing the general idea.

(7) Goldston–Yıldırım used a truncated sum corresponding to χ(x) = max(1− |x|, 0).
As observed by Tao [18], the use of a smooth function allows us to perform Fourier analysis.

(8) In the general case, ν(f) = RΦ(W )
|W | ΛR(Wf + b)2 for some b appropriately chosen

by the pigeonhole principle.
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(Ji, Ji′) such that Ji 6= Ji′. Then as N →∞,

(1)
∑
f∈GN

ΛR(f + J1) · · ·ΛR(f + Jn) = CGH(1 + on(1))qN
(

log q
R

)r
where C is a computable constant (not depending on N, J1, . . . , Jn but only
on the multiplicities of the Ji and χ), G is the “arithmetical factor”∏
P (1− 1/|P |)−r(1− αP /|P |), and H =

∏
P |∆(1 +On(1/|P |)).

Remarks. This proposition illustrates how the Goldston–Yıldırım
method works. We will not apply this proposition directly (since we will be
incorporating the W -trick), but rather its variants (Propositions 8 and 9),
for which only minor modifications are needed.

Proof of Proposition 7. The proof goes along the lines of [18, Section 2],
so we will outline the ideas briefly. Writing out the definition of ΛR, we see
that the left hand side of (1) is

(2)
∑

d1,...,dn∈GN

( n∏
i=1

µ(di)χ
(

deg(di)
R

)) ∑
f∈GN

1di|f+Ji ∀i=1,...,n.

Note that since χ is supported on [−1, 1], the summation over d1, . . . , dn ∈
GN is the same as the summation over d1, . . . , dn ∈ GR. Also, because of
the appearance of the function µ, only squarefree di are involved. Suppose
R is sufficiently small compared to N , say nR < N . Then (2) is equal to

(3) qN
∑

d1,...,dn

g(d1, . . . , dn)
|[d1, . . . , dn]|

k∏
i=1

µ(di)χ
(

deg(di)
R

)
where g(d1, . . . , dn) is the number of solutions in Gdeg([d1,...,dn]) of the system
of congruences f + Ji ≡ 0 (mod di) for every i = 1, . . . , k.

Write (9)

χ(x) =
∞�

−∞
q−(1+it)xψ(t) dt,

where ψ is rapidly decreasing, i.e. ψ(t) = OA((1 + |t|)−A) for every A. An
easy calculation shows that for every m = 1, . . . , n, we have

χ

(
deg(dm)

R

)
=

√
R�

−
√
R

|dm|−(1+itm)/Rψ(tm) dtm +OA(|dm|−1/RR−A).

(9) The appearance of q here is for mere aesthetic reasons.
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We split the expression (3) into a main term of

qN
∑

d1,...,dn

g(d1, . . . , dn)
|[d1, . . . , dn]|

n∏
m=1

µ(dm)

√
R�

−
√
R

|dm|−(1+itm)/Rψ(tm) dtm

plus an error term, which is

(4) qN
∑

d1,...,dn

g(d1, . . . , dn)
|[d1, . . . , dn]|

OA(R−A|d1 · · · dn|−1/R)

�A q
NR−A

∑
d1,...,dn

|d1 · · · dn|−1/R

|[d1, . . . , dn]|
.

It is easy to see that when A ≥ n, the error term (4) is o(qN ). Consequently,
the sum in (3) converges absolutely.

Therefore, it suffices to show that

∑
d1,...,dn

g(d1, . . . , dn)
[d1, . . . , dn]

k∏
m=1

µ(dm)
k∏

m=1

√
R�

−
√
R

|dm|−(1+itm)/Rψ(tm) dtm

= CGH(1 + on(1))
(

log q
R

)r
.

Note that all of our expressions are in terms of R, and we have eliminated the
role of N . We now switch the orders of the sums and the integral (which is
legitimate since the sum is absolutely convergent) and the expression under
the integration.

Lemma 8. For every I ⊂ {1, . . . , n}, I 6= ∅, let cI = 1 if Ji = Ji′ for
every i, i′ ∈ I, and 0 otherwise. Then for every t1, . . . , tn ∈ [−

√
R,
√
R] we

have

(5)
∑

d1,...,dn

g(d1, . . . , dn)
[d1, . . . , dn]

n∏
m=1

µ(dm)|dm|−(1+itm)/R

= GH(1 + oR→∞(1))
(

log q
R

)r ∏
I⊂{1,...,n}, I 6=∅

(∑
m∈I

(1 + itm)
)(−1)|I|+1cI

.

Proof. Recall that in the expression on the left hand side of (5), only
square-free d1, . . . , dn are involved. We note that g(d1, . . . , dn) only takes
two values, 0 or 1. More precisely, by the Chinese remainder theorem,
g(d1, . . . , dn) =

∏
P cP,{i:P |di}, where the cP,I are “local factors” defined

by cP,I = ]{deg(f) < deg(P ) : P | f + Ji for every i ∈ I} for every I ⊂
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{1, . . . , n}, I 6= ∅. We have the following explicit formula:

cP,I =
{

1 if Ji ≡ Ji′ (mod P ) for every i, i′ ∈ I,
0 otherwise.

Let S be the set of all irreducible divisors of ∆. Then for P outside of S, we
have cP,I = cI . The left hand side of (5) factors as∏

P

(
1−

∑
I⊂{1,...,n}, I 6=∅

(−1)|I|+1 cP,I

|P |1+
P
m∈I (1+itm)/R

)
.

An application of Lemma 7 gives the desired asymptotic form for this prod-
uct.

By integrating over all t1, . . . , tn ∈ [−
√
R,
√
R], the estimate (1) easily

follows, with

C =
∞�

−∞
· · ·

∞�

−∞

∏
I⊂{1,...,k}, I 6=∅

(∑
m∈I

(1 + itm)
)(−1)|I|+1cI

k∏
m=1

ψ(tm) dt1 · · · dtk.

This expression can be simplified a little. Let a1, . . . , ar be the multiplicities
of J1, . . . , Jn. Then C =

∏
sCas , where

(6)

Ca =
∞�

−∞
· · ·

∞�

−∞

∏
I⊂{1,...,a}, I 6=∅

(∑
m∈I

(1 + itm)
)(−1)|I|+1 a∏

m=1

ψ(tm) dt1 · · · dta.

In our applications we will be able to compute these constants explicitly in
terms of χ.

8. The correlation condition and the linear forms condition

8.1. The correlation condition. As mentioned before, we will need a
variant of Proposition 7:

Proposition 8. Let J1, . . . , Jn ∈ Fq[t], not necessarily distinct. Let ∆ =
∆(J1, . . . , Jn) be as in Proposition 7. Then we have the asymptotic formula

(7)
∑
f∈GN

ΛR(W (f + J1) + 1) · · ·ΛR(W (f + Jn) + 1)

= CGH(1 + on(1))qN
(

log q
R

)r
where

G =
∏

deg(P )<w

(
1− 1
|P |

)−r ∏
deg(P )≥w

(
1− αP
|P |

)(
1− 1
|P |

)−r
,
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H =
∏
P |∆

(
1 +On

(
1
|P |

))
,

and C is the same constant as in Proposition 7.

Proof. The proof follows the lines of that of Proposition 7. The only dif-
ference is that we have a different formula for local factors cP,I = ]{deg(f) <
deg(P ) : P |W (f + Ji) + 1 ∀i ∈ I}: for any I ⊂ {1, . . . , n}, I 6= ∅, we have

cP,I =
{

1 if deg(P ) ≥ w and Ji ≡ Ji′ (mod P ) for every i, i′ ∈ I,
0 otherwise.

By incorporating this change into the proof, we will find the desired expres-
sion for G.

Proof of the correlation condition. We are interested in expressions of
the form

E(ν(f + h1) · · · ν(f + hl) | f ∈ GN )

where h1, . . . , hl ∈ GN and the number l of forms is bounded by l0 which
depends only on k. Recall that our goal is to find a function τ on GN such
that

(8) E(ν(f + h1) · · · ν(f + hl) | f ∈ GN ) ≤
∑

1≤i≤j≤l
τ(hi − hj).

Moreover, for every 1 ≤ p <∞,

(9) E(τ(f)p) = Op(1).

In the event where two of the hi are equal, we bound the left hand
side of (8) by ‖ν‖l∞ = qO(N/logN), thanks to Lemma 5. If we choose τ(0) =
qO(N/logN) then clearly the inequality (8) is satisfied. Moreover, since
qO(N/logN) = Oε(qNε) for every ε > 0, the addition of qO(N/logN) to τ(0)
does not affect the boundedness of E(τp) for every p > 1. Therefore, we
have to find a function τ ∈ Lp for every p > 1 so that the inequality (8) is
satisfied when all the hi are distinct. From the definition of ν, we have

E(ν(f + h1) · · · ν(f + hl) | f ∈ GN )

= Rl
(
Φ(W )
|W |

)l
E(ΛR(W (f + h1) + 1)2 · · ·ΛR(W (f + hl) + 1)2 | f ∈ GN ).

Thanks to Proposition 8, we know that

E(ΛR(W (f + h1) + 1)2 · · ·ΛR(W (f + hl) + 1)2 | f ∈ GN )

= CGH(1 + o(1))
(

log q
R

)l
,
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where

G =
∏

deg(P )<w

(
1− 1
|P |

)−l ∏
deg(P )≥w

(
1− l

|P |

)(
1− 1
|P |

)−l

=
(
Φ(W )
W

)−l ∏
deg(P )≥w

(
1− l

|P |

)(
1− 1
|P |

)−l
=
(
Φ(W )
W

)−l
(1 + o(1)).

Let us compute C explicitly. In this case, each hi has multiplicity 2,
hence (6) gives

C =
( ∞�

−∞

∞�

−∞

(1 + it1)(1 + it2)
2 + it1 + it2

ψ(t1)ψ(t2) dt1 dt2

)l
=
(∞�

0

log q
( ∞�
−∞

q−(1+it)xψ(t) dt
)2)l

=
(∞�

0

log q
(
χ′(x)
log q

)2

dx

)l
= (log q)−l.

Therefore, E(ν(f + h1) · · · ν(f + hl) | f ∈ GN ) = (1 + o(1))H. Recall that
H =

∏
P |∆(1 + Ol(1/|P |)), where ∆ =

∏
1≤i≤j≤m(hi − hj). Let us bound

(1 + o(1))H by exp(M
∑

P |∆ 1/|P |), where M is a constant depending only
on l0, hence on k.

For f 6= 0, put τ(f) = exp(K
∑

P |f 1/|P |) for K sufficiently large de-
pending on M . Then clearly the inequality (8) is satisfied. The only thing
left is to verify (9). By Lemma 6 we have

E(τ(f)p |GN ) = E
(

exp
(
pK

∑
P |f

1
|P |

) ∣∣∣∣ f ∈ GN

)

�K,p E
(∑
P |f

logKp |P |
|P |

∣∣∣∣ f ∈ GN

)
.

For every P , the number of f ∈ GN that are divisible by P is at most
qN/|P |. Thus

E
(∑
P |f

logKp |P |
|P |

∣∣∣∣ f ∈ GN

)
≤ 1
qN

∑
P

qN

|P |
logKp |P |
|P |

=
∑
P

logKp |P |
|P |2

= OK,p(1)

as required.

8.2. The linear forms condition. For the linear forms condition, the
following variant of Proposition 7 is needed:
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Proposition 9. Let ψ1, . . . , ψm be nonzero linear forms (GN )n → Fq[t],
not necessarily distinct, of the form ψi(f) =

∑n
j=1 Lijfj + bi for every f =

(f1, . . . , fn) ∈ (GN )n, where

• m ≤ m0 and n ≤ n0, where m0, n0 are constants depending on k,
• Lij , bi ∈ Fq[t] and deg(Lij) < w/2 for every i, j,
• for any i, i′ ∈ {1, . . . ,m}, the vectors (Lij)nj=1 and (Li′j)nj=1 are either

nonproportional (over Fq(t)), or identical and ψi = ψi′.

Let r be the number of distinct forms among ψ1, . . . , ψm. Then (assuming
that R = αN and α is sufficiently small depending only on m0, n0) we have
the following asymptotic formula as N →∞:

(10)
∑

f∈(GN )n

ΛR(Wψ1(f) + 1) · · ·ΛR(Wψm(f) + 1)

= C(1 + o(1))
(
Φ(W )
W

)−r( log q
R

)r
qNn

where C is a computable constant (depending only on χ and the multiplicities
of the ψi).

Proof. We skip the proof since it is similar to that of Proposition 7. Note
that similarly to the constant C in Proposition 7, C factors as

∏r
s=1Cas ,

where a1, . . . , ar are multiplicities of the ψi, and

Ca =
∞�

−∞
· · ·

∞�

−∞

∏
I⊂{1,...,a}, I 6=∅

(∑
j∈I

(1 + itj)
)(−1)|I|+1 a∏

j=1

ψ(tj) dt1 · · · dta.

Proof of the linear forms condition. We are interested in expressions of
the form

E(ν(ψ1(f)) · · · ν(ψm(f)) | f ∈ (FqN )n)

where ψi(f) =
∑n

j=1 Lijfj + bi is a linear form in n variables, m ≤ m0,
n ≤ n0, no two homogeneous parts are proportional, and the coefficients Lij
are in the set {P/Q : deg(P ),deg(Q) < k}. Recall that we want to bound
these expressions by 1 + o(1). By the definition of ν, the above expression
is equal to

(11)
(
Φ(W )
|W |

)m
RmE(ΛR(Wψ1(f)+1)2 · · ·ΛR(Wψm(f)+1)2 | f ∈ (FqN )n).

Our first reduction is to replace the assumption that all the coefficients
Lij are in {f/g | f, g ∈ Gk} by Lij ∈ GM for some sufficiently large M
depending on k. Indeed, via a change of variables f 7→ (

∏
h∈Gk, hmonic h)f ,

the ψi become linear forms with coefficients in Fq[t] and of degrees still
bounded,

deg
( ∏
h∈Gk, hmonic

h
)

+ k =
k−1∑
d=1

dqd + k = M.
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We are tempted to apply Proposition 9 right away. However, a priori
the ψi are linear forms from (FqN )n to FqN , which are different from the
linear forms Ψi from (Fq[t])n to Fq[t] given by the same formula Ψi(f) =∑n

j=1 Lijfj + bi for every f = (f1, . . . , fn) ∈ (Fq[t])n. More precisely, ψi(f) is
the residue of Ψi(f) upon division by fN , the irreducible polynomial under-
lying FqN . To remedy this, let us divide (Fq[t])n into qnM “boxes” such that
for f , f ′ in the same box B, we have maxi |fi − f ′i | < qN−M (in other words,
each box is a product of cylinder sets of radius qM in Fq[t]). Then for f , f ′

in the same box, we have Ψi(f)− Ψi(f ′) < qN−M+M = qN . This means that
the residues of Ψi(f) and Ψi(f) upon division by fN are the same. In other
words, for any box B, we have a formula

ψi(f) = Ψi,B(f) =
n∑
j=1

Lijfj + bi,B

for every f ∈ B, and bi,B depends only on the box B. We now rewrite the
expression (11) as(
Φ(W )
|W |

)m
Rm

1
qnM

∑
B

E(ΛR(Wψ1,B(f)+1)2 · · ·ΛR(Wψm,B(f)+1)2 | f ∈B).

Note that for N sufficiently large, we have deg(Lij) < M < w/2. For each
box B, Proposition 9 tells us that

E(ΛR(Wψ1,B(f) + 1)2 · · ·ΛR(Wψm,B(f) + 1)2 | f ∈ B)

= C(1 + o(1))
(
Φ(W )
W

)−m( log q
R

)m
.

Similarly to the calculations in the proof of the correlation condition, we see
that C = (log q)m. Summing this up over all the qM boxes yields the linear
forms condition.
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[11] T.H.Lê,Green–Taotheoreminfunctionfields,unabridgedversion, arXiv:0908.2642v2.
[12] P. Pollack, Simultaneous prime specializations of polynomials over finite fields, Proc.

London Math. Soc. (3) 97 (2008), 545–567.
[13] D. H. J. Polymath, A new proof of the density Hales–Jewett theorem, arXiv:0910.3926.
[14] O. Reingold, L. Trevisan, M. Tulsiani and S. Vadhan, Dense subsets of pseudoran-

dom sets, Technical Report TR08-045, ECCC, 2008.
[15] —, —, —, —, New proofs of the Green–Tao–Ziegler dense model theorem: An expo-

sition, arXiv:0806.0381v1.
[16] M. Rosen, Number Theory in Function Fields, Grad. Texts in Math. 210, Springer,

New York, 2002.
[17] T. Tao, Structure and Randomness: Pages from Year One of a Mathematical Blog,

Amer. Math. Soc., 2008.
[18] —, A remark on Goldston–Yıldırım correlation estimates, preprint.
[19] —, The Gaussian primes contain arbitrarily shaped constellations, J. Anal. Math.

99 (2006), 109–176.
[20] T. Tao and T. Ziegler, The primes contain arbitrarily long polynomial progressions,

Acta Math. 201 (2008), 213–305.
[21] P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959),

358–360.
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