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1. Introduction. Let Fp be the field of residue classes modulo a prime
number p and A,B be two nonempty subsets of Fp. For any binary oper-
ation � on Fp, define A � B = {a � b : a ∈ A, b ∈ B}. From the work of
Bourgain, Katz, and Tao [5] and Bourgain, Glibichuk, and Konyagin [4], we
know that if |A| ≤ pδ for some δ < 1, then one has the so-called sum-product
estimate

max{|A+A|, |AA|} & |A|1+ε

for some ε = ε(δ) > 0. This result has found many applications in various
areas of mathematics (see e.g. [1, 2, 4, 5, 14]) and it is natural to ask for
quantitative relationships between δ and ε in certain ranges of |A|.

In [12] Hart, Iosevich and Solymosi (HIS) developed incidence theory
between points and hyperbolas in F2

p via Kloosterman sum estimates, and
obtained

max{|A+A|, |AA|} & min{|A|2/3p1/3, |A|3/2p−1/4}.
This led to the first concrete value of ε for |A| > p1/2. In [19] Vu generalized
the HIS estimate via spectral graph theory by classifying all polynomials
P (x1, x2) such that

max{|A+A|, |P (A,A)|} & min{|A|2/3p1/3, |A|3/2p−1/4}.
Recently Vu’s result was reproved by Hart, Shen and the author [13] via
Fourier analytical methods.

In [9] Garaev improved the HIS estimate to

max{|A+A|, |AA|} & min{|A|1/2p1/2, |A|2p−1/2}.
This is an optimal estimate up to the implied constant in the range |A| >
p2/3. In [18] Solymosi applied spectral graph theory to show among many
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others a similar bound

|A+ f(A)| & min{|A|1/2p1/2, |A|2p−1/2}
for a class of functions f of which polynomials with integer coefficients and
degrees greater than one are members. The Garaev–Solymosi type estimate
was further studied in [13] via Fourier analytical methods. In particular, it
was shown that for ⊕,⊗ ∈ {+,×} one has

max{|g(A)⊕B|, |h(A)⊗ C|} & min{|A|1/2p1/2, |A| |B|1/2|C|1/2p−1/2}
for two classes of polynomials g and h depending on the choices of ⊕ and ⊗.
This result is analogous to the work done by Elekes, Nathanson and Ruzsa
[7] in the real numbers.

For the case |A| ≤ p1/2, Garaev [8] used combinatorial methods to obtain

max{|A+A|, |AA|} &
|A|15/14

(log2 |A|)2/7
.

This kind of estimate was refined several times (see e.g. [3, 15, 16, 17]), and
currently the best results are due to Bourgain and Garaev [3] giving

(1.1) max{|A−A|, |AA|} &
|A|13/12

(log2 |A|)4/11
,

and Shen [16, 17] giving

(1.2) max{|A±A|, |AA|} &
|A|13/12

(log2 |A|)C

for some C > 0. With a technique of Chang [6], we can completely drop the
logarithmic terms in both (1.1) and (1.2). The main results of this paper
are as follows.

Theorem 1.1. Suppose A ⊂ Fp with |A| ≤ p1/2. Then

max{|A±A|, |AA|} & |A|13/12.

Theorem 1.2. Suppose A ⊂ Fp with |A| ≥ p1/2. Then

max{|A±A|, |AA|} ' min{|A|13/12(|A|/p0.5)1/12, |A|(p/|A|)1/11}.
From Theorems 1.1 and 1.2 we know that if |A| ≤ p0.52, then

max{|A±A|, |AA|} & |A|13/12.

Assuming this fact, it was shown in [13] that for |A| ≤ p1/2 one has

|A+A2| & |A|147/146, where A2 , {a2 : a ∈ A}.

2. Preliminaries. Throughout this paper A will denote a fixed non-
empty subset of Fp. Whenever E and F are quantities we use E . F or
F & E to mean E ≤ CF , and E / F or F ' E to mean E ≤ C̃(log |A|)αF ,
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where the constants C, C̃ and α are universal (i.e. independent of A and p)
and may vary from line to line. Moreover, E ∼ F means both E . F
and F . E. Given � ∈ {+,×}, for Y, Z ⊂ Fp we denote by E�(Y,Z) the
�-energy between Y and Z, that is,

E�(Y,Z) =
∑
x∈Y

∑
y∈Y
|(x� Z) ∩ (y � Z)|.

The Cauchy–Schwarz inequality implies that E�(Y,Z) ≥ |Y |2|Z|2/|Y � Z|.
In the following we will state some preliminary lemmas. Lemma 2.1 may

be found in [16, 17], while Lemma 2.2 in [11, 15]. Lemma 2.3, following from
the work of Glibichuk and Konyagin [10] on additive properties of product
sets, was proved in [3, 8].

Lemma 2.1. SupposeB1, B2⊂Fp. Then there exist . min{|B1+B2|/|B2|,
|B1 −B2|/|B2|} translates of B2 such that the union of these copies covers
(in cardinality) 99% of B1.

Lemma 2.2. Suppose B0, B1, . . . , Bk ⊂ Fp. Given any ε ∈ (0, 1), there
exist a universal constant Ck,ε and an X ⊂ B0 with |X| ≥ (1− ε)|B0| such
that

|X +B1 + · · ·+Bk| ≤ Ck,ε ·
( k∏
i=1

|B0 +Bi|
|B0|

)
· |X|.

Lemma 2.3. Suppose A1 ⊂ Fp with A1−A1
A1−A1

( Fp. Then |A1| ≤ 2p1/2 and
for given ⊕ ∈ {+,−}, there exist a, b, c, d ∈ A1 such that for any A′ ⊂ A1

with |A′| ≥ 0.5|A1|,

|(b− a)A′ ⊕ (b− a)A′ + (d− c)A′| & |A1|2.

Lemma 2.4. Suppose A1 ⊂ Fp with A1−A1
A1−A1

= Fp. Then there exist
a, b, c, d ∈ A1 such that for any A′ ⊂ A1 with |A′| ≥ 0.5|A1|,

|(b− a)A′ + (d− c)A′| & min{|A1|2, p}.

Proof. There exists a ξ ∈ F∗p = Fp\{0} (cf. formula (11) in [4] with
G = F∗p) such that

E+(A1, ξA1) ≤ |A1|2 +
|A1|4

p− 1
.

Since A1−A1
A1−A1

= Fp, we can write ξ = d−c
b−a for some a, b, c, d ∈ A1. Thus

|A′ + ξA′| ≥ |A′|4

E+(A′, ξA′)
≥ |A′|4

E+(A1, ξA1)
&

|A1|4

E+(A1, ξA1)
& min{|A1|2, p}.

This proves the lemma.
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3. Proofs of the main results

Proof of Theorem 1.1. Choose arbitrarily ⊕ ∈ {+,−}. Applying Lemma
2.2 with B0 = · · · = B3 = A and ε = 0.5, one can find a subset Z ⊂ A with
|Z| ≥ 0.5|A| such that

(3.1) |Z ⊕A⊕A⊕A| .
(
|A⊕A|
|A|

)3

|Z| ∼ |A⊕A|
3

|A|2
.

By the pigeonhole principle there exists an element z0 ∈ Z so that

(3.2)
E×(Z,Z)
|Z|

≤
∑
z∈Z
|z0Z ∩ zZ|.

For each j ≤ dlog2 |Z|e, let Zj be the set of all z ∈ Z for which |z0Z ∩ zZ| ∈
Nj , where N1 = {1, 2}, N2 = {3, 4}, N3 = {5, 6, 7, 8}, N4 = {9, 10, 11, 12, 13,
14, 15, 16}, . . . . Define js = max{j : |Zj | ∈ Ns} for each s ≤ dlog2 |Z|e
(assume max ∅ = 0). Clearly,

(3.3)
∑
z∈Z
|z0Z ∩ zZ| ∼

dlog2 |Z|e∑
j=1

2j |Zj | ∼
∑

s : js≥1

2js2s.

Note also that ∑
s : js≥1

2js2s ≤ ( max
s : js≥1

2js20.75s)
dlog2 |Z|e∑
s=1

20.25s(3.4)

. (max
j

2j |Zj |0.75) · |Z|0.25.

Combining (3.2)–(3.4) with E×(Z,Z) ≥ |Z|4/|ZZ| & |A|4/|AA| we get

(3.5)
|A|11

|AA|4
. max

j
16j |Zj |3.

Next choose a j0 ≤ dlog2 |Z|e so that

(3.6) 16j0 |Zj0 |3 = max
j

16j |Zj |3.

According to the assumption |A| ≤ p1/2, we have |Zj0 | ≤ p1/2. Hence apply-
ing either Lemma 2.3 or Lemma 2.4 one can find a, b, c, d ∈ Zj0 such that
for any E ⊂ Zj0 with |E| ≥ 0.5|Zj0 |,

(3.7) |Zj0 |2 . |(b− a)E ⊕ (b− a)E + (d− c)E|.

By Lemma 2.1, there exist

.
|−aZj0 ⊕ (−aZ ∩ z0Z)|

|aZ ∩ z0Z|
.
|A⊕A|

2j0
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translates of aZ ∩ z0Z such that the union of these copies covers 99% of
−aZj0 , say covers −aF1 where F1 ⊂ Zj0 with |F1| ≥ 0.99|Zj0 |; there exist

.
|bZj0 ⊕ (bZ ∩ z0Z)|
|⊕(bZ ∩ z0Z)|

.
|A⊕A|

2j0

translates of ⊕(bZ ∩ z0Z) such that the union of these copies can cover 99%
of bZj0 , say covers bF2 where F2 ⊂ Zj0 with |F2| ≥ 0.99|Zj0 |; there exist

.
|−cZj0 ⊕ (−cZ ∩ z0Z)|
|⊕(cZ ∩ z0Z)|

.
|A⊕A|

2j0

translates of ⊕(cZ ∩ z0Z) such that the union of these copies covers 99% of
−cZj0 , say covers −cF3 where F3 ⊂ Zj0 with |F3| ≥ 0.99|Zj0 |; there exist

.
|dZj0 ⊕ (dZ ∩ z0Z)|
|⊕(dZ ∩ z0Z)|

.
|A⊕A|

2j0

translates of ⊕(dZ ∩ z0Z) such that the union of these copies covers 99%
of dZj0 , say covers dF4 where F4 ⊂ Zj0 with |F4| ≥ 0.99|Zj0 |. Letting F =
F1 ∩ F2 ∩ F3 ∩ F4, we have |F | ≥ 0.8|Zj0 | and

(3.8) |−aF + bF − cF + dF | .
(
|A⊕A|

2j0

)4

· |z0Z ⊕ z0Z ⊕ z0Z ⊕ z0Z|.

By Lemma 2.2, there exists a subset Ẽ ⊂ F with |Ẽ| ≥ 0.8|F | ≥ 0.5|Zj0 |
such that

(3.9) |(b− a)Ẽ ⊕ (b− a)F + (d− c)F |

.
|F ⊕ F |
|F |

· |(b− a)F + (d− c)F |.

Combining (3.1), (3.7), (3.8), (3.9) with |F ⊕ F |/|F | . |A⊕A|/|Zj0 | we get

(3.10) 16j0 |Zj0 |3 .
|A⊕A|8

|A|2
.

Combining (3.5), (3.6) and (3.10) gives

|A⊕A|8|AA|4 & |A|13.

This concludes the proof of Theorem 1.1.

Proof of Theorem 1.2. Choose arbitrarily ⊕ ∈ {+,−}. Suppose A ⊂ Fp
with |A| ≥ p1/2. Similar to the proof of Theorem 1.1, there exist a subset
Z ⊂ A with |Z| ≥ 0.5|A| such that

|Z ⊕ Z ⊕ Z ⊕ Z| . |A⊕A|
3

|A|2
,
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and a fixed element z0 ∈ Z so that∑
z∈Z
|z0Z ∩ zZ| ≥

|Z|3

|ZZ|
&
|A|3

|AA|
.

For each j ≤ dlog2 |Z|e, let Zj be the set of all z ∈ Z for which |z0Z ∩ zZ|
∈ Nj . Choose some j0 ≤ dlog2 |Z|e so that

2j0 |Zj0 | '
|A|3

|AA|
.

There are two cases to consider.
(i) Suppose |Zj0 | ≤ 2p0.5. Similar to the proof of Theorem 1.1 one can

establish

16j0 |Zj0 |3 .
|A⊕A|8

|A|2
.

Consequently,
|A|12

|AA|4
/ 16j0 |Zj0 |4 .

|A⊕A|8

|A|2
· p0.5,

which yields

(3.11) |A⊕A|8|AA|4 '
|A|14

p0.5
.

(ii) Suppose |Zj0 | > 2p0.5. By Lemma 2.3 we have A1−A1
A1−A1

= Fp. By
Lemma 2.4 one can find a, b, c, d ∈ Zj0 such that for any E ⊂ Zj0 with
|E| ≥ 0.5|Zj0 |,

p . |(b− a)E + (d− c)E|.

Similar to the proof of Theorem 1.1 one can find a subset Ẽ ⊂ Zj0 with
|Ẽ| ≥ 0.5|Zj0 | such that

|(b− a)Ẽ + (d− c)Ẽ| .
(
|A⊕A|

2j0

)4

· |A⊕A|
3

|A|2
.

Consequently,

p .

(
|A⊕A|

2j0

)4

· |A⊕A|
3

|A|2
.

Thus
|A|8

|AA|4
≤ |A|12

|AA|4|Zj0 |4
/ 16j0 .

|A⊕A|7

p|A|2
,

which yields

(3.12) |A⊕A|7|AA|4 ' |A|10p.

Thus Theorem 1.2 follows from (3.11) and (3.12).
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