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1. Introduction. Let Fq be a finite field with q elements and denote
by Fq((T−1)) the field of formal Laurent series. For f ∈ Fq((T−1)) let |f | =
qdeg f be the valuation induced by the generalized degree function. Set

L = {f ∈ Fq((T−1)) : |f | < 1}.
Then, with the restriction of | · | to L, L is a compact topological group.
Hence, there exists a (unique) translation-invariant probability measure,
which will be denoted by m.

We are interested in the Diophantine approximation problem

(1)
∣∣∣∣f − P

Q

∣∣∣∣ < 1
qn+ln

, degQ = n, Q monic, (P,Q) = 1,

where f ∈ L, P,Q ∈ Fq[T ] with Q 6= 0, and ln is a sequence of non-negative
integers (subsequently, we will use (·, ·) to denote the gcd, whereas 〈·, ·〉 will
be used for pairs).

Concerning the number of solutions of (1), Inoue and Nakada [5] proved
the following 0-1 law: the number of solutions is either finite or infinite for
almost all f ∈ L, the latter holding if and only if

∞∑
n=0

qn−ln =∞.

Moreover, the method of proof in [5] also gives a quantitative result under
one additional assumption on ln: if ln ≥ n, then the number of solutions
of (1) with degQ ≤ N is given by

(1− q−1)Ψ(N) +O(Ψ(N)1/2(logΨ(N))3/2+ε),

where ε > 0 is an arbitrary small constant and Ψ(N) :=
∑

n≤N q
n−ln .
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The purpose of this note is to prove generalizations of the above two
results to multidimensional Diophantine approximation. Therefore, consider

(2)
∣∣∣∣fj − Pj

Q

∣∣∣∣ < 1

qn+l
(j)
n

, degQ = n, Q monic, (Pj , Q) = 1, j = 1, . . . , d,

where (f1, . . . , fd) ∈ L × · · · × L, Pj , Q ∈ Fq[T ] with Q 6= 0, j = 1, . . . , d,
and l

(j)
n , j = 1, . . . , d, are sequences of non-negative integers. Moreover, set

ln :=
∑d

j=1 l
(j)
n .

Then the first result above has the following extension to the multidi-
mensional setting.

Theorem 1. The number of solutions of (2) is either finite or infinite
for almost all (f1, . . . , fd) ∈ L× · · · × L, the latter holding if and only if

(3)
∞∑
n=0

qn−ln =∞.

Moreover, also the second result admits an extension to higher dimen-
sions.

Theorem 2. Assume that ln ≥ n. Then, for almost all (f1, . . . , fd), the
number of solutions of (2) with degQ ≤ N is given by

c0Ψ(N) +O(Ψ(N)1/2+ε),

where ε > 0 is an arbitrarily small constant, Ψ(N) :=
∑

n≤N q
n−ln, and

c0 :=
∑

Q1 monic

· · ·
∑

Qd monic

µ(Q1)
|Q1|

· · · µ(Qd)
|Qd|

1
|lcm(Q1, . . . , Qd)|

> 0.

Here, µ(·) denotes the Möbius function on Fq[T ].

Remark 1. The constant c0 will already appear in the proof of Theo-
rem 1. In particular, we will show the claim about the positivity already in
the next section (see the proof of Lemma 1 below).

Remark 2. Observe that the error term in the above result for d = 1 is
weaker than the corresponding one in the result of Inoue and Nakada. The
reason for this is that our method is completely different from the approach
used by the latter two authors (it is not obvious how to generalize their
approach to higher dimensions).

Notation. We will use [D1, . . . , Dd] to denote the lcm of the polynomi-
als D1, . . . , Dd. All sums will be over monic polynomials. Logarithms in
this paper just take on values ≥ 1, i.e. loga x should be interpreted as
max{loga x, 1}. We will use both Landau’s notation f(x) = O(g(x)) and
Vinogradov’s notation f(x)�g(x). Finally, ε will denote an arbitrarily small
positive number whose value might change from one appearance to the next.



Simultaneous Diophantine approximation 163

2. Proof of Theorem 1. First, note that the necessity of (3) for the
number of solutions of (2) being infinite follows from a standard application
of the Borel–Cantelli lemma. Hence, we only have to focus on the sufficiency
part. For this purpose, we use a slight extension of the d-dimensional Duffin–
Schaeffer theorem for formal Laurent series due to Inoue [4].

Theorem 3 (Inoue). Consider

(4)
∣∣∣∣fj−PjQ

∣∣∣∣ < 1

qn+l
(j)
Q

, degQ = n, Q monic, (Pj , Q) = 1, j = 1, . . . , d,

where (f1, . . . , fd) ∈ L × · · · × L, Pj, j = 1, . . . , d, Q with Q 6= 0, and l
(j)
Q ,

j = 1, . . . , d, are sequences of non-negative integers. Assume that∑
Q

q−l
(1)
Q −···−l

(j)
Q =∞

and that for infinitely many N ,∑
degQ≤N

q−l
(1)
Q −···−l

(j)
Q < C

∑
degQ≤N

q−l
(1)
Q −···−l

(j)
Q ϕ(Q)d/|Q|d,

where C is some positive constant. Then (4) has infinitely many solutions
for almost all (f1, . . . , fd) ∈ L× · · · × L.

Remark 3. Note that the result in [4] is just stated for the special case
l
(1)
Q = · · · = l

(d)
Q . An inspection of the proof, however, shows that the result

continues to hold for different approximation functions in every coordinate.

Before we can apply this result, we need a technical lemma.

Lemma 1. We have∑
degQ=n

ϕ(Q)d = c0q
n(d+1) +O(qn(d+ε)),

where c0 is as in Theorem 2 and ϕ(·) is Euler’s totient function.

Proof. Note that∑
degQ=n

ϕ(Q)d = qnd
∑

degQ=n

(∑
D|Q

µ(D)
|D|

)d
= qnd

∑
degQ=n

∑
D1|Q

· · ·
∑
Dd|Q

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

= qnd
∑

degD1≤n
· · ·

∑
degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

∑
[D1,...,Dd]|Q, degQ=n

1.
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The last sum becomes∑
[D1,...,Dd]|Q,degQ=n

1 =
{
qn/|[D1, . . . , Dd]| if deg[D1, . . . , Dd] ≤ n,
0 otherwise.

Consequently,

(5)
∑

degQ=n

ϕ(Q)d

= qn(d+1)
∑

degD1≤n
· · ·

∑
degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

+O
(
qnd
( ∑

degD≤n

1
|D|

)d)

= qn(d+1)
∑

degD1≤n
· · ·

∑
degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

+O(ndqnd).

Next, observe that∣∣∣∣ ∑
degD1≤n

· · ·
∑

degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

− c0

∣∣∣∣
≤

∑
degD>n

∑
[D1,...,Dd]=D

1
|D1 · · ·Dd| · |D|

≤
∑

degD>n

ω(D)d

|D|2
,

where ω(D) denotes the number of monic divisors of D. Since ω(D) =
O(|D|ε) for arbitrarily small ε > 0 (this is proved as for integers; see page
296 in [1]), we obtain∑

degD>n

ω(D)d

|D|2
�

∞∑
l=n+1

ql(εd−1) � qn(εd−1).

So, we have∑
degD1≤n

· · ·
∑

degDd≤n

µ(D1)
|D1|

· · · µ(Dd)
|Dd|

1
|[D1, . . . , Dd]|

= c0 +O(qn(−1+ε)).

Plugging this into (5) yields the claimed expansion.
What is left to show is that c0 > 0. Therefore, observe that∑
degQ=n

ϕ(Q)d ≥
∑

deg I=n

ϕ(I)d = (qn − 1)d
∑

deg I=n

1� (qn − 1)dqn/n,

where the second and third sum runs over all irreducible polynomials and
the last bound is well-known. Hence, c0 > 0 as claimed.
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Remark 4. For d = 1, note that

c0 =
∑
Q

µ(Q)
|Q|2

=
∏
I

(
1− 1
|I|2

)
=
(∑

Q

1
|Q|2

)−1

= 1− 1
q
.

In this situation even more is known, namely,∑
degQ=n

ϕ(Q) =
(

1− 1
q

)
q2n.

For a proof of the latter claim see e.g. [5].

Now, we can prove our first main result.

Proof of Theorem 1. As already mentioned before, we only have to show
that (3) is sufficient for the number of solutions of (2) to be infinite. For this
purpose, we just have to check the two conditions in Inoue’s result. First,
note that since

l
(1)
Q + · · ·+ l

(d)
Q = ldegQ,

we have ∑
degQ≤N

q−ldeg Q =
∑
n≤N

qn−ln

and ∑
degQ≤N

q−ldeg Qϕ(Q)d/|Q|d =
∑
n≤N

q−nd−ln
∑

degQ=n

ϕ(Q)d

= c0

∑
n≤N

qn−ln +O
(∑
n≤N

qεn−ln
)
.

Moreover, by Cauchy’s inequality∑
n≤N

qεn−ln �
(∑
n≤N

qn−ln
)1/2

.

Hence, both conditions are satisfied and our result follows from Inoue’s re-
sult.

3. Proof of Theorem 2. We start with a technical lemma.

Lemma 2. We have ∑
deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|

� qnε.
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Proof. First note that∑
deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|

≤
∑

deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|1−ε

≤
∑

deg(D1),...,deg(Dd)≤n

|([D1, . . . , Dd−1], Dd)|1−ε

|[D1, . . . , Dd−1]|1−ε · |Dd|1−ε
.

Next we change the order of summation to obtain∑
deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|1−ε

≤
∑

degD≤n

∑
D|[D1,...,Dd−1], degDi≤n

1
|[D1, . . . , Dd−1]|1−ε

∑
D|Dd, degDd≤n

(
|D|
|Dd|

)1−ε

≤
∑

degD≤n

∑
D|[D1,...,Dd−1], degDi≤n

1
|[D1, . . . , Dd−1]|1−ε

∑
degQ≤n

1
|Q|1−ε

� qnε
∑

deg(D1),...,deg(Dd−1)≤n

1
|[D1, . . . , Dd−1]|1−ε

∑
D|[D1,...,Dd−1]

1

= qnε
∑

deg(D1),...,deg(Dd−1)≤n

ω([D1, . . . , Dd−1])
|[D1, . . . , Dd−1]|1−ε

.

Now, as before, we use the estimate ω(D) = O(|D|ε) for all sufficiently
small ε. Hence,∑

deg(D1),...,deg(Dd)≤n

1
|[D1, . . . , Dd]|1−ε

� qnε
∑

deg(D1),...,deg(Dd−1)≤n

1
|[D1, . . . , Dd]|1−2ε

.

Iterating this result proves the claim.

Now, we turn to the proof of Theorem 2. For this purpose, we extend
an approach due to Harman (see proof of Theorem 4.4 starting on page 109
in [3]) to higher dimensions.

We first need some notation. Let Γ1(N) = blogq Ψ(N)2c and Γ2(N) =
blogq Ψ(N)4c. Moreover, consider the following approximation problem:
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Q

∣∣∣∣ < 1

qn+l
(j)
n

, degQ = n, Q monic,

Dj | (Pj , Q), deg(Pj , Q) ≤ Γ2(N), j = 1, . . . , d,
(6)

where D1, . . . , Dd are fixed monic polynomials. For fixed (f1, . . . , fd) and Q
denote by s(Q;D1, . . . , Dd) the number of solutions of (6).

We gather some properties of s(Q;D1, . . . , Dd) needed below.

Lemma 3. We have

E
( ∑
M1<n≤M2

∑
degQ=n, [D1,...,Dd]|Q

s(Q;D1, . . . , Dd)
)

� 1
|D1 · · ·Dd| · |[D1, . . . , Dd]|

∑
M1<n≤M2

qn−ln

and

E
( ∑
M1<n≤M2

∑
degQ=n, [D1,...,Dd]|Q

(
s(Q;D1, . . . , Dd)−

1
|D1 · · ·Dd|

· 1
qln

))2

� Γ2(N)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

∑
M1<n≤M2

qn−ln

for all M1 ≤M2.

Proof. Both properties are easy extensions of the corresponding proper-
ties from the case d = 1 (see Propositions 3 and 4 in [2]). For the reader’s
convenience, we recall the proof of the first property.

Therefore, observe that s(Q;D1, . . . , Dd) ≤ s∗(Q;D1, . . . , Dd) where the
latter denotes the number of solutions of (6) with the upper bound on the
gcd removed. Of course, s∗(Q;D1, . . . , Dd) = 0 if [D1, . . . , Dd] - Q.

Now, for [D1, . . . , Dd] |Q, note that s∗(Q;D1, . . . , Dd) = 1A (1A denotes
an indicator random variable) with

A =
⋃

Pj |Dj , degPj<n, 1≤j≤d

B(P1/Q; q−n−l
(1)
n )× · · · ×B(Pd/Q; q−n−l

(d)
n ),

where B(f ; q−n) denotes the open ball with center f and radius q−n and
the above union is disjoint. Since

(m× · · · ×m)(B(P1/Q; q−n−l
(1)
n )× · · · ×B(Pd/Q; q−n−l

(d)
n )) = q−dn−ln

and consequently

m(A) =
1

|D1 · · ·Dd|
q−ln ,

the result follows from elementary properties of the mean.
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Next, we prove the following proposition for the number of solutions
of (6).

Proposition 1. For almost all (f1, . . . , fd), the number of solutions
of (6) with degQ ≤ N is given by

1
|D1 · · ·Dd| · |[D1, . . . , Dd]|

Ψ(N) + E(N ;D1, . . . , Dd),

where the second term satisfies∑
deg(D1),...,deg(Dd)≤Γ1(N)

E(N ;D1, . . . , Dd) = O(Ψ(N)1/2+ε)

with ε > 0 an arbitrarily small constant.

Proof. First note that it suffices to prove our claim for the case where
Ψ(N) → ∞ as N → ∞ (otherwise, the result is an easy consequence of
the Borel–Cantelli lemma). Next, denote by Nk the largest integer with
Ψ(Nk) < k. It is easy to see that we only have to prove the result for the
subsequence Nk.

We are going to need some notation. First, put

k =
l∑

j=0

aj2j , al 6= 0, aj ∈ {0, 1} ∀j.

Define

S(k) =
{

(i,m) : ai = 1, m =
l∑

j=i+1

aj2j−i
}
.

Moreover, let

ut = ut(i,m) = max{n ∈ N : Ψ(n) < (m+ t)2i},

where t ∈ {0, 1}. Finally, with the notation of Lemma 3, put

E(i,m;D1, . . . , Dd)

=
∑

u0<n≤u1

∑
degQ=n, [D1,...,Dd]|Q

(
s(Q;D1, . . . , Dd)−

1
|D1 · · ·Dd|

· 1
qln

)
.

Then we obviously have

E(Nk;D1, . . . , Dd) =
∑

(i,m)∈S(k)

E(i,m;D1, . . . , Dd).
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Now, set

E(l) :=
∑

deg(D1),...,deg(Dd)≤Γ1(N
2l+1 )

|D1 · · ·Dd|

×
∑

0≤i≤l,m<2l−i+1

E(i,m;D1, . . . , Dd)2.

Then, with the estimate of Lemma 3,

EE(i,m;D1, . . . , Dd)2 � Γ2(N2l+1)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

∑
u0<n≤u1

qn−ln ,

we obtain

E(l)� 2ll2
∑

deg(D1),...,deg(Dd)≤Γ1(N
2l+1 )

1
|[D1, . . . , Dd]|

� 2l(1+ε̄),

where the last step follows from Lemma 2 and ε̄ will be chosen below. This
in turn implies that

P (E(l) ≥ 2l(1+ε))� 1
2l(ε−ε̄)

,

where we choose ε̄ < ε. Hence, the Borel–Cantelli lemma yields

E(l) < 2l(1+ε) a.s.

for l large enough.
Finally consider∑
deg(D1),...,deg(Dd)≤Γ1(Nk)

E(Nk;D1, . . . , Dd)

≤
( ∑

deg(D1),...,deg(Dd)≤Γ1(Nk)

1
|D1 · · ·Dd|

∑
(i,m)∈S(k)

1
)1/2

· (E(r))1/2

� 2l(1/2+ε)ld+1 � 2l(1/2+ε).

From this the assertion follows.

Now, we can prove our second main result.

Proof of Theorem 2. As in the proof of the proposition, we can assume
that Ψ(N)→∞ as N →∞. Then we again choose Nk as the largest integer
with Ψ(Nk) < k. As before, it is easy to see that it suffices to prove our
claim for the sequence Nk.

Next, we introduce the notation S(Nk;D1, . . . , Dd) for the number of
solutions of (6) with degQ≤Nk (here, (f1, . . . , fd) is fixed). Then, by an in-
clusion-exclusion argument, the number of solutions of (2) with degQ≤Nk
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is given by ∑
deg(D1),...,deg(Dd)≤Γ2(Nk)

µ(D1) · · ·µ(Dd)S(Nk;D1, . . . , Dd),

where µ(·) denotes the Möbius function. We split the sum into two parts
A and B according to whether there is a Di with degDi > Γ1(Nk) or not,
respectively.

First, we will consider A. Note that

E|A| ≤
∑

deg(D1),...,deg(Dd)≤Γ2(Nk)
degDi>Γ1(Nk) for some i

ES(Nk;D1, . . . , Dd)

� Ψ(Nk)
∑

deg(D1),...,deg(Dd)≤Γ2(Nk)
degDi>Γ1(Nk) for some i

1
|D1 · · ·Dd|

1
|[D1, . . . , Dd]|

� Ψ(Nk)
( ∑

degD1>Γ1(Nk)

1
|D1|2

)

×
( ∑

degD2≤Γ2(Nk)

1
|D2|

)
· · ·
( ∑

degDd≤Γ2(Nk)

1
|Dd|

)

� (logΨ(Nk))d−1

Ψ(Nk)
,

where we have used Lemma 3. Consequently,

P (|A| > (logΨ(Nk))d+1)� 1
Ψ(Nk)(logΨ(Nk))2

� 1
k(log k)2

.

Hence, the Borel–Cantelli lemma implies that for almost all (f1, . . . , fd),

A = O((logΨ(Nk))d+1).

So, in view of our claimed result, the main contribution will come from B.
Here, we can use the above proposition to obtain

B = Ψ(Nk)
∑

deg(D1),...,deg(Dd)≤Γ1(Nk)

µ(D1) · · ·µ(Dd)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

+O(Ψ(Nk)1/2+ε).

Now, as in the proof of Lemma 1,∑
deg(D1),...,deg(Dd)≤Γ1(Nk)

µ(D1) · · ·µ(Dd)
|D1 · · ·Dd| · |[D1, . . . , Dd]|

= c0 + Ψ(Nk)ε−2.

Combining all the estimates proves the claimed result.
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