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On the sum of two integral squares in
quadratic fields Q(

√
±p)
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1. Introduction. Gauss first determined which integers can be written
as a sum of two integral squares. Niven [5] determined which integers can
be written as a sum of two integral squares for the imaginary quadratic field
Q(
√
−1). Nagell further studied the question in [3] and [4] for the twenty

quadratic fields Q(
√
d), where

d = ±2,±3,±5,±7,±11,±13,±19,±43,±67,±163.

His method essentially depends on the fact that the class number of the field
Q(
√
d,
√
−d) is 1 when d is one of the above integers. However, this method

does not apply to general quadratic fields. Recently, Harari [1] showed that
the Brauer–Manin obstruction is the only obstruction to existence of integral
points of a scheme over the ring of integers of a number field whose generic
fiber is a principal homogeneous space of a torus. However, the Brauer–
Manin obstruction given in [1] is not constructive and one cannot use that
result to determine the existence of integral points for the scheme. Fei Xu
and the author gave another, constructive proof of that result in [6] and [7].
In this paper we apply the method of [6] to the quadratic fields Q(

√
p) and

Q(
√
−p) with p prime.

The notation and terminology are standard if not explained. Let F be
a number field, oF the ring of integers of F , ΩF the set of all primes in F ,
and ∞ the set of all infinite primes in F . For simplicity, we write p < ∞
for p ∈ ΩF \ ∞. Let Fp be the completion of F at p, and oFp be the local
completion of oF at p for each p ∈ ΩF . Write oFp = Fp for p ∈ ∞. We also
denote the adele ring (resp. the idele ring) of F by AF (resp. IF ), and set

F∞ =
∏
p∈∞

Fp.
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Suppose that −1 is not a square in F . Let E = F (
√
−1) and let T be

the torus
R1
E/F (Gm) = Ker[RE/F (Gm,E)→ Gm,F ],

where R denotes Weil’s restriction (see [2, p. 211]). Denote by λ the embed-
ding from T to RE/F (Gm,E). Obviously λ induces a natural group homo-
morphism

λE : T (AF )→ IE .

Let Xα be the affine scheme over oF defined by the equation x2 + y2

= α for a non-zero integer α ∈ oF . The generic fiber of Xα is a principal
homogeneous space of the torus T . The equation x2 + y2 = α is solvable
over oF if and only if Xα(oF ) 6= ∅.

Definition 1.1. LetK/E be a finite abelian extension. Let ψK/E : IE →
Gal(K/E) be the Artin map. We say that α satisfies the Artin condition
of K if there is∏

p≤∞
(xp, yp) ∈

∏
p≤∞

Xα(oFp) such that ψK/E

(
fE

[∏
p≤∞

(xp, yp)
])

= 1

where 1 is the identity element of Gal(K/E) and fE :
∏

p≤∞Xα(oFp)→ IE
is defined by

fE [(xp, yp)] =
{

(xp + yp

√
−1, xp − yp

√
−1) if p splits in E/F ,

xp + yp

√
−1 otherwise.

By class field theory, it is a necessary condition for Xα(oF ) 6= ∅ that α
satisfies the Artin condition of K. In fact there is a finite abelian extension
K/E, independent of α, such that the Artin condition of K is also sufficient
for Xα(oF ) 6= ∅ (see [6]).

Let T be the group scheme over oF defined by x2 + y2 = 1, which is an
integral model of T . Since T is separated over oF , we can view T(oFp) as a
subgroup of T (Fp). Furthermore, the following result is proved in [6].

Proposition 1.2. Let K/E be a finite abelian extension such that the
group homomorphism λ̃E induced by λE,

λ̃E : T (AF )/T (F )
∏
p≤∞

T(oFp)→ IE/E∗NK/E(IK)

is well-defined and injective, where well-defined means

λE

(
T (F )

∏
p≤∞

T(oFp)
)
⊂ E∗NK/E(IK).

Then Xα(oF ) 6= ∅ if and only if α satisfies the Artin condition of K.

In this paper, we mainly prove the following result.
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Theorem 1.3. Let p be a prime number and F the quadratic field Q(
√
p)

or Q(
√
−p). Then the diophantine equation x2 + y2 = α is solvable over oF

if and only if α satisfies the Artin condition of HL, where HL is the ring
class field corresponding to the order L = oF + oF

√
−1.

2. The sum of two squares in imaginary quadratic fields. Let d
be a square-free positive integer with d ≥ 2. Let F = Q(

√
−d), oF be the

integral ring of F and E = F (
√
−1). One takes the order L = oF + oF

√
−1

inside E. Let HL be the ring class field corresponding to the order L.

Proposition 2.1. Suppose one of the following conditions holds:

(1) The equation x2 + y2 = −1 has an integral solution in oF .
(2) The equation x2 + y2 = −1 has no local integral solutions at a place

of F .

Then the diophantine equation x2 + y2 = α is solvable over oF if and only
if α satisfies the Artin condition of HL.

Proof. (1) First we assume d 6= 3. Let p be a place of F , and Lp be the
p-adic completion of L inside Ep = E⊗FFp. Recalling that T = R1

E/F (Gm,F )
and T is the scheme defined by the equation x2 + y2 = 1, we have

T (F ) = {β ∈ E∗ : NE/F (β) = 1}, T(oFp) = {β ∈ L×p : NEp/Fp
(β) = 1}.

Since the ring class field HL of the order L corresponds to the open
subgroup E∗(

∏
p≤∞ L

×
p ) of IE by class field theory, the natural group ho-

momorphism

λ̃E : T (AF )/T (F )
∏
p≤∞

T(oFp)→ IE/E∗
∏
p≤∞

L×p

is well-defined. By Proposition 1.2, we only need to show λ̃E is injective.
Suppose there are

β ∈ E∗ and i ∈ E∗∞
∏
p<∞

L×p

such that βi ∈ T (AE). Then

NE/F (βi) = NE/F (β)NE/F (i) = 1

and
NE/F (β) ∈ F ∗ ∩

∏
p<∞

o×Fp
= {±1}.

If NE/F (β) = 1, one concludes that NE/F (β) = NE/F (i) = 1, so

β ∈ T (F ) and i ∈
∏
p≤∞

T(oFp).

Hence βi ∈ T (F )
∏

p≤∞T(oFp).
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If NE/F (β) 6= 1, then NE/F (β) = NE/F (i) = −1. Thus x2 + y2 = −1 has
local integral solutions at every local place of F . By assumption, x2+y2 = −1
has an integral solution (x0, y0) in oF . Let

ζ = x0 + y0

√
−1 and γ = βζ, j = i/ζ.

Then βi = γj and NE/F (γ) = NE/F (j) = 1, so

γ ∈ T (F ) and j ∈
∏
p≤∞

T(oFp).

Hence βi = γj ∈ T (F )
∏

p≤∞T(oFp). Therefore λ̃E is injective.
(2) If d = 3, then o×F = 〈±1, ζ3〉, where ζ3 is a primitive 3rd root of unity.

Since ζ3 = ζ4
3 is a square, the proof for this case is similar.

In the rest of this section we consider the case that d is a prime. First
we need the following result that can be found in [8].

Proposition 2.2. Let p be a prime.

(1) If p ≡ 1 mod 4, then x2 − py2 = −1 is solvable over Z.
(2) If p ≡ −1 mod 8, then x2 − py2 = 2 is solvable over Z.
(3) If p ≡ 3 mod 8, then x2 − py2 = −2 is solvable over Z.

Now we can prove the following lemma.

Lemma 2.3. Let p be a prime and F = Q(
√
−p).

(1) If p ≡ −1 mod 8, then x2 + y2 = −1 is not solvable over oFp, where
p | 2.

(2) If p 6≡ −1 mod 8, then x2 + y2 = −1 is solvable over oF .

Proof. (1) If p ≡ −1 mod 8, then 2 splits into p1 and p2 in the field F/Q.
So the Hilbert symbol satisfies

(−1,−1)p1 = (−1,−1)p2 = −1.

Therefore the equation x2 + y2 = −1 is not solvable over oFp1
or oFp2

.
If p ≡ 1 mod 4 or p = 2, then x2 − py2 = −1 has an integral solution

(x0, y0) in Z by Proposition 2.2. Hence x2
0 + (y0

√
−p)2 = −1.

If p ≡ 3 mod 8, then x2 − py2 = −2 has an integral solution (x0, y0) in
Z by Proposition 2.2. It is easy to see that x0, y0 ≡ 1 mod 2. So

x0 ± y0
√
−p

2
∈ oF and

(
x0 + y0

√
−p

2

)2

+
(
x0 − y0

√
−p

2

)2

= −1.

From Proposition 2.1 and Lemma 2.3, we obtain the following result.

Theorem 2.4. Let p be a prime number and F = Q(
√
−p). Let HL be

the ring class field corresponding to the order L = oF + oF
√
−1. Then the

diophantine equation x2+y2 = α is solvable over oF if and only if α satisfies
the Artin condition of HL.
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Remark 2.5. It is possible that the equation x2 + y2 = α satisfies the
Hasse principle for any non-zero integer α ∈ oF even if the ring class field
HL is not trivial. For example, let p = 23, 31, 47, 59, 71 and F = Q(

√
−p).

Then HL is not trivial and the equation x2 + y2 = α satisfies the Hasse
principle for any non-zero integer α ∈ oF . The reason is that HL = EH for
the above p, where E = F (

√
−1) and H is the Hilbert class field of F . If

x2 +y2 = α has local solutions for every place, then α automatically satisfies
the Artin condition of HL by class field theory.

Now we use Theorem 2.4 to give an explicit example. Let F = Q(
√
−79).

Write NF/Q(α) = 2s179s2pe11 · · · p
eg
g for any α ∈ oF . Let D(n) = {p1, . . . , pg}

and h(x) = x3 − 307x+ 1772. Denote

D1 =
{
p ∈ D(n) :

(
79
p

)
=
(
−1
p

)
= 1

and h(x) ≡ 0 mod p is not solvable
}
,

D2 =
{
p ∈ D(n) :

(
79
p

)
= −

(
−1
p

)
= 1

and h(x) ≡ 0 mod p is not solvable
}
.

It is easy to see that ei is even when pi ∈ D2.

Example 2.6. Let F = Q(
√
−79) and let α be an integer in F . With

the above notation, x2 + y2 = α is solvable over oF if and only if

(1) x2 + y2 = α has integral solutions at every place of F ,
(2)

∑
pi∈D1

ei +
∑
pi∈D2

ei/2 6= 1.

3. The sum of two squares in real quadratic fields. Let d be a
square-free positive integer and F = Q(

√
d). Let oF be the ring of integers

of F , ε the fundamental unit of oF , and ε = a + b
√
d with a, b > 0. Let

E = F (
√
−1). One takes the order L = oF + oF

√
−1 inside E. Let HL be

the ring class field corresponding to the order L.

Proposition 3.1. Suppose one of the following conditions holds:

(1) x2 + y2 = ε has an integral solution in oF .
(2) x2 + y2 = ε has no local integral solutions at a place of F .

Then the diophantine equation x2 + y2 = α is solvable over oF if and only
if α satisfies the Artin condition of HL.

Proof. Let p be a place of F , and Lp be the p-adic completion of L inside
Ep = E ⊗F Fp. Since the ring class field KL of the order L corresponds to
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the open subgroup E∗(
∏

p≤∞ L
×
p ) of IE by class field theory, the natural

group homomorphism

λ̃E : T (AF )/T (F )
∏
p≤∞

T(oFp)→ IE/E∗
∏
p≤∞

L×p

is well-defined. By Proposition 1.2, we only need to show λ̃E is injective.
Suppose there are

β ∈ E∗ and i ∈ E∗∞
∏
p<∞

L×p

such that βi ∈ T (AE). Then

NE/F (βi) = NE/F (β)NE/F (i) = 1

and
NE/F (β) ∈ F ∗ ∩

∏
p<∞

o×Fp
= {±εn}.

Since NE/F (β) is totally positive, we have NE/F (β) = εn.
When n is even, let γ = βεn/2, j = iε−n/2. Then βi = γj and NE/F (γ) =

NE/F (j) = 1, so

γ ∈ T (F ) and j ∈
∏
p≤∞

T(oFp).

Hence βi = γj ∈ T (F )
∏

p≤∞T(oFp).
When n is odd, we have NE/F (i) = ε−n. That is, x2 + y2 = ε−n has

integral solutions at every local place of F . Since n is odd and ε ∈ o×F ,
x2 + y2 = ε has integral solutions at every place of F . By assumption, this
equation has an integral solution (x0, y0) in oF . Let ζ = x0 + y0

√
−1 and

γ = βε(n−1)/2ζ, j = iε(1−n)/2ζ−1. Then βi = γj, and NE/F (γ) = NE/F (j)
= 1, so

γ ∈ T (F ) and j ∈
∏
p≤∞

T(oFp).

Hence βi = γj ∈ T (F )
∏

p≤∞T(oFp). Therefore λ̃E is injective.

In the following, we consider the case that d is a prime number.

Lemma 3.2. Let p be a prime and F = Q(
√
p). Let ε be the fundamental

unit of oF and ε = a+ b
√
p with a, b > 0. Then there is a place p of F such

that the equation x2 + y2 = ε is not solvable over oFp.

Proof. If p ≡ 1 mod 4 or p = 2, then x2−py2 = −1 has integral solutions
by Proposition 2.2. Therefore NF/Q(ε) = −1. There exists a real place p of
F such that |ε|p < 0. So the equation x2 + y2 = ε is not solvable at p.

If p ≡ 3 mod 4, then x2 − py2 = −1 is not solvable over Z by Propo-
sition 2.2. Therefore NF/Q(ε) = 1 and ε is totally positive. Moreover, one
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of the equations x2 − py2 = ±2 has an integral solution (x0, y0) in Z by
Proposition 2.2. It is easy to see that x0 and y0 are odd. Let

A = (x2
0 + py2

0)/2 and B = x0y0.

Since x0, y0 are odd, we see that A,B are integers and B is odd. Moreover,

A2 − pB2 = (x2
0 − py2

0)2/4 = 1.

Let ε1 = A + B
√
p. Obviously ε1 is totally positive and ε1 = εm for some

m ∈ Z.
Let p be the unique place of F over 2. Assume the equation x2 + y2 = ε

is solvable over oFp . Since ε1 = εm, the equation x2 +y2 = ε1 is also solvable
over oFp . For any solution (x1, y1) = (a1 + b1

√
p, a2 + b2

√
p) of the latter, we

have
(a1 + b1

√
p)2 + (a2 + b2

√
p)2 = A+B

√
p.

Then
2a1b1 + 2a2b2 = B.

However, B is odd, a contradiction.

From Proposition 3.1 and Lemma 3.2, we obtain the following result.

Theorem 3.3. Let p be a prime number and F = Q(
√
p). Let HL be

the ring class field corresponding to the order L = oF + oF
√
−1. Then the

diophantine equation x2+y2 = α is solvable over oF if and only if α satisfies
the Artin condition of HL.

Now we use Theorem 3.3 to give an explicit example. Let F = Q(
√

17).
Write NF/Q(α) = 2s117s2pe11 · · · p

eg
g for any α ∈ oF . Let D(n) = {p1, . . . , pg}

and h(x) = x4 − 2x2 + 17. Denote

D1 =
{
p ∈ D(n) :

(
−17
p

)
= −

(
−1
p

)
= 1
}
,

D2 =
{
p ∈ D(n) :

(
−17
p

)
=
(
−1
p

)
= 1

and h(x) ≡ 0 mod p is not solvable
}
.

We can see that ei is even if pi ∈ D1.

Example 3.4. Let F = Q(
√

17) and let α be an integer in F . With the
above notation, x2 + y2 = α is solvable over oF if and only if

(1) x2 + y2 = α has integral solutions at every place of F ,
(2) s1 +

∑
pi∈D1

ei/2 +
∑
pi∈D2

ei ≡ 0 mod 2.
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