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1. Introduction. Let p be a prime, and A, B be finite subsets of Z,,.
Set

(1) A+B={a+b:a€ A, be B},

(2) A+B={a+b:ac A be B, a+#b}.
The Cauchy-Davenport theorem [4] asserts that

(3) |A+ B| > min{p, |A| + |B| — 1}.

A well-known result on restricted sumsets states that

(4) |A+ Al > min{p, 2|4 — 3};

this was conjectured by P. Erdés and H. Heilbronn [6] in 1964 and confirmed
by J. A. Dias da Silva and Y. O. Hamidoune [5] in 1994. In 1995-1996

N. Alon, M. B. Nathanson and I. Z. Ruzsa [2] proposed a polynomial method
in this field and showed that if |B| > |A| > 0 then

() |A+ B| = min{p, |A| + |B| - 2}.

By the polynomial method, many interesting results have been obtained
(cf. [, 121, 3], [8], [9], [10], [11]).

In 2005, Terence Tao developed an analytic method for restricted sumsets
and gave a simple proof of the Cauchy—Davenport theorem, applying a new
form of the uncertainty principle for the Fourier transform. In [7] S. Guo and
7. Sun extended this method and gave a new proof of the Erdés—Heilbronn
conjecture.
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In this article we give a new application of Tao’s method and obtain the
following theorem which contains the inequalities (2)—(5).

THEOREM 1. Let A and B be non-empty subsets of Z, where p is an
odd prime, and

(6) C=A+sB={a+b:ac A, beB,a—b¢gS}
with S C Zyp. Then

(7) ] = min{p, |A] + |B| - |S| -1},

where

(2 if[Al=|B| and [S| =1 (mod 2),
L1+ min{||S]/2], ||A] — |B||} otherwise.

In [7] the author and Z. Sun conjectured that min{||S|/2], ||A] — |B||}
can be eliminated, hence

o) B {2 if [A] = |B| and |S| = 1 (mod 2),

1 otherwise.
When |S] is even, this conjecture was proposed by Q. Hou and Z. Sun in [§].

(8)

2. Proof of the main result. Without loss of generality, we let |A| <|B|
(note that A+g B = B +_g A). Set m = |S|. When |A| =1 or |A| + |B| <
m+7r orm = 0, (7) holds trivially. Assume that |A| > 2, |A|+|B| > m+r+1
and 1 <m < p—1. For any a,b € Z, we let [a,b] ={z € Z:a <z < b}.
For an assertion P we adopt Iverson’s notation

1 if P holds,
(10) 171 { |
0 otherwise.

For any function f : Z, — C, we define its support supp(f) and its
Fourier transform f : Z, — C as follows:

(11) supp(f) = {z € Zy : f(z) # 0},
(12) f(z) = Z fla)ep(ax), =€ Zy,
a€Zy

where e,(y) = e~ 2™W/P for y € Z,,.
Tao obtained the following result in [12]:

LEMMA 1. Let p be an odd prime. If f : Z, — C is not identically zero,
then

(13) [supp(f)| + [supp(f)| = p + L.
Given two non-empty subsets A and B of 7Z, with |A|+|B| > p+1, we can
find a function f : Z, — C with supp(f) = A and supp(f) = B.
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Note that inequality (13) was also discovered independently by Andrés
Biro.

DEFINITION. A pair of sets (/l, fi) is m-good if 0Dec A and p—m € B,
and there is no ¢ € [0,m — 1] such that t —m € A and —¢ € B.

DEFINITION. For a pair (A, B) we put

m
(A, B)m U B+1—m)).
LEMMA 2. Let A, B,C be as in Theorem 1 and A, B be subsets of Zy
with |A| > p+1—|A| and |B| > p+ 1 — |B|. If (A, B) is m-good, then

Cl = p+1—[(A B)nl.

Proof. By Lemma 1 there are functions f, g : Z, — C such that supp(f)

= A, supp(f) = A, supp(g) = B and supp(g) = B. Now we define a function
F:7,— Cby

(14) =Y fl@g(e —a) [ (ep(x —a) —epla—d)),
a€Zyp des

as in [7]. For each = € supp(F’), there exists a € supp(f) with z—a € supp(g)
and d:=a— (z —a) € S, hence v = a+ (x — a) € C. Therefore

(15) supp(F) € C.

For any = € Z we have

Z F(b)e,(bx) Z Z fla)g(b—a)ey(bx)P(a,b),

beZp a€Zp beLy
where
P(a,b) = [](ep(b—a) —ep(a—d))
des
= > ()Tle, (1] = 1T)(b = a)) e (1T — > ).
TCS deT
Therefore
Fla)= > (-1)le ( Zd) 3" fla)eplaz + |Tla)
TCS deT a€Zyp
< 3" g(b— a)e, (b= a)z + (|S| = [T]) (b~ a))
by

= Y (=1)7le ( Zd> x4 |TNg(x +m — |T)).

TCS deT
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By the definition of m-good pair we have

Flp=m) = (~1)"e, (= Y d) f@3—m) # 0.
des
so F is not identically zero.

Suppose that x € supp(F’). Then there is a subset T' of S with |T'| =t
such that = +¢ € A = supp(f) and 2 + m—t € B = supp(g), hence
z € (A, B)y,. Thus supp(F') C (A, B)p,. By Lemma 1, we have

|C| > [supp(F)| > p+1—supp(F) > p+1—|(4,B),,]. =

Below we construct a suitable m-good pair (A, B) so that |[A, Bl,,| is
small and hence |C] is large. All the cases needed to be proved are listed in
the following table.

The hypothesis on the cardinality of A and B r Proof
|[Al+|B|<m+ror|Al=1lorm=0 - Trivial
|[A|+|B|>p—m+1 - Lemma 3
|[Al=|B| < (p—m)/2 and m =1 (mod 2) 2 Lemma 4
2|A| <m and [21m] <n=|B|—-|A| < |m/2] n+1 Trivial
m+1<2/A| <|A|+|B|<p—-m

and [21m] <n =|B|—|4| < |m/2] n+1 Lemma 5
m+r <|A+|B|<p—mand |B|—|A| >(m+1)/2 | [m/2]+1 | Lemma 6

We note that |A| + |B| —m —r = 2|A] —m — 1 < 0 when 2|A| < m and
[2fm] <n<|m/2].

LEMMA 3. Suppose that [A| + |B] > p—m + 1. Let A=1{2:i=
0,1,....,k=1} withk =p+1—[|Aland B={p—m —2j: j=0,1,...,1-1}
with | =k +1—|B|. Then (A, B) is m-good with |(A, B);,| = 1.

Proof. Let x € (A,B)m Suppose that ¢t € [0,m], z +t € A and 7 +
m —1 € B. Then there are i € [0,k — 1] and j € [0,] — 1] such that o + ¢ =
2i (mod p) and x + m —t = p — m — 25 (mod p). Thus 2i —t = = =
p—2m —2j +t (mod p) and hence 2(i + j +m —t) = 0 (mod p). Since
k+l=2p+2—|A|—|B| < p—m+1land 0 <i+j+m—t < k+l+m—-2 < p—1,
we must have ¢ +j+m —t =0 and hence i = j =0 and t = m.

In view of the above, (4, B) is m-good with (A, B),, = {p — m}. =

~ LEmMA 4. Suppose that |[A| = [B| < (p —m)/2 and m =1 (mod 2). Let
A={2i:i=0,1,....k =1} with k = p+2—|A| and B = A\ {0}. Then
(A, B) is m-good with |(A, B)m| <2k —1+m — p.

Proof. Since

2k—2=2p+2-2|Al>p+m—2>p—m,
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we have p—m € B. Let z € [p—m,p— 1] with Z € A. Then z = 0 (mod 2).
For any t € [0,m — 1], we have

p—m+itcA = t=0 (mod 2),
p—mt+m—teB = t=1 (mod 2).
Thus (A, B) is m-good.
Observe that 2k —2 —p = p+2 — 2|A] < p — m. Then for any z €

[max{0,2k — 1 — p},p — 1] with T € A, we must have z = 0 (mod 2). Let
x € [max{0,2k — 1 —p},p—m — 1] and ¢ € [0, m]. Clearly

r+t€A = x+t=0 (mod 2),
T+m—1t€B = z+m—t=0 (mod 2).
Recalling m =1 (mod 2), we have
(16) (A, B)y N {Z : x € [max{0,2k — 1 — p},p—m — 1]} = 0.
Suppose that 2k — 1 — p < 0. By the definition of A,
An{Z:ze2k—1,p—1]} =0.

For any = € 2k —1,p— 1] and t € [0, m], we have x +t,x + m —t € [2k — 1,
p+m—1].Ifz +t € A, then p < 24+t < p+m—1 and z+t—p = 0 (mod 2). For
T +m—te B, wehavep < a4+m—t < p+m—1 and z+m—t—p = 0 (mod 2).
Thus T & (A, B),, since m =1 (mod 2). So we have

(17) (A, B)nN{Z: z€2k—1,p—1]} =0.
Combining (16) and (17), we obtain
(A, B)nnN{Z:z€2k—1-p,p—m—1]} =0.
Therefore

(A, B)m| <p—(p—m—1—(2k—2-p))<2k—1+m—p. =
LEMMA 5. Suppose that m +1 < 2|A| < |A|+ |B| < p—m. Set k =
p+1—|Al, l =p+1—|B| and n = k—1. Suppose that [21m] <n < |m/2].
Let A={2i:i=0,1,...,k— 1} and
B={z:zxe[l,2k—1-p|}
U{Z:2=p—m (mod 2) & = € 2k —p,p+ 1+ 21 — 2k]}.
Then (A, B) is m-good with |(A, B)m| < 2k +m — p.
Proof. Note that
A 2 20-2k—(2k—p—1—2
Bl —py DEBEMI Y22 @h o1 pim)
Sincek‘—l§Lm/2J,Wehavep—m§p+1—|—2l—2k‘andhencep—meE.




334 S. Guo

Clearly,
m+1<p+1—(A+|B))<p+1-2/A|=2k—1-p<p-—m.
For any ¢ € [0, m — 1], we have
p—m+tecAd = p—m+t=0 (mod 2),
p—m+m—teB = m—t=0 (mod 2).
Thus (A, B) is m-good.
Ifx € 2k—p,p—m—1] and t € [0, m], then x+t,x+m—t € 2k—p,p—1],

hence )
r+teA = xz+t=0 (mod 2),

T+m—teB = z+m—t=p—m (mod 2),
thus T & [A, B]. So
(A, B)wn{Z:xe€Rk—p,p—m—1]} =0,
and hence
(A, B)m| <p—(p—m—1—-(2k—p—1))<2k+m—p. =
LEMMA 6. Suppose that m + |m/2] +1 < [A] + |B] < p—m and
|IB| — |A] > (m+1)/2. Setk=p+1—|Al and l =p+1—|B|. Let A =
{20:9i=0,1,...,k—1} and
{ZT:zep-m—-Il+Lp—m]} if k>p—|m/2],
{p—m—2i:i=0,1,...,01—1} if max{2,l} <p—k—|m/2] +1,
{ZT:x€2k—p,p—m] and x =p —m (mod 2)}
U{z:ze€lk—1—|(m—-1)/2],2k—1—p|]} otherwise.
Then (A, B) is m-good with |(A, B)y| < k+1+ [3m/2] — p.
Proof. Note that if [ > p—k — |m/2] + 1, then

|B\:pm(2k2pl[[2|m]])+2k—p—(k—l— {TJ) =1

For any t € [O,m—l]ap—m—i—m—t:p—tgfy’. So (A,B) is m-good.
CASE 1: k> p—|m/2]. Forany x € Z, and t € [0,m] withz +m —t € B,

we must have z € [p—2m—I[+1, p—m]. Thus (A,é)m C [p—2m—I+1,p—m)].
As k> p—|m/2], we obtain

(A, B)m| <p-m—(p—-2m—1+1)+1=m+1<k+1+[3m/2] —p.
CASE 2: max{2,l} < p—k—|m/2]|+1. Forany x € [1—m,p—2m—2]+1]
and t € [0, m], we have
l-m<z4+m—-t<p—-m-—-20+1,
soz+m—1¢ B andhence T & (A, B),,.

B=
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For any « € 2k —p — 1,p —m — 1] and ¢ € [0, m], clearly
2k—p—-1<z+t,z+m—-t<p-—1,

hence X
r+t€eA = r+t=0 (mod 2),

T+m—teB = z4+m—t=p—m (mod 2),

thus T & (A, B),, since 21 p.

In view of the above,
(A B)ypon{Z:ze2k—p—1,p—m—1U[1—m,p—2m—20+1]} = 0.
Thus

(A, B)| <p— (3p—2m — 2k — 21 +2) = 2k + 20 + 2m — 2p — 2.
Recall that | <p—k — |m/2] 4+ 1, so we have

(A, B)| <k +142m—2p—24p—|m/2) +1 <k +1+ [3m/2] —p.

CASE3:l > p—k—|m/2]+1 > 2. Ifx € [1-m,k—I—|(m — 1)/2|—m—1]
and ¢t € [0,m], then z+m —t ¢ B and hence T ¢ (A, B),. For any x €
[2k —p,p —m — 1] and t € [0,m], clearly

2k —p<z+t,x+m—-t<p-—1,

hence R
r+teA = xz+t=0 (mod 2),

t+m—-teB = z+m—t=p—m (mod 2),

thus T ¢ (fl, B)m If x =2k —p—1andte[0,m], then
Tfm—-teB=>m—t=0=t=nm,
and hence
xr+teA = 2k—p—1+m=0 (mod 2).
Therefore 2k —p — 1 € (A, B),, if and only if 2| m.
In view of the above,

(A, B)n
3m + [2tm]

ﬂ{x:xe[l—m,k‘—l— 5

U[Qk—p—[[QTm]],p—m—l]} = 0.
Thus

(A, B)ul <p—(2p—k—1—[3m/2]) = k+1+ [3m/2] —p.
We are done. =

Combining the above lemmas we immediately obtain the desired results
of Theorem 1.
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