
ACTA ARITHMETICA

147.4 (2011)

On conjectures of Minkowski and Woods for n = 8

by

R. J. Hans-Gill, Madhu Raka and Ranjeet Sehmi (Chandigarh)

1. Introduction. Let L be a lattice in the Euclidean space Rn. By
the reduction theory of quadratic forms introduced by Korkine and Zolota-
reff [9], a cartesian coordinate system may be chosen in Rn in such a way that
L has a basis of the form (A1, 0, 0, . . . , 0), (a2,1, A2, 0, . . . , 0), . . . , (an,1, an,2,
. . . , an,n−1, An), where A1, . . . , An are all positive and further for each i =
1, . . . , n any two points of the lattice in Rn−i+1 with basis (Ai, 0, . . . , 0),
(ai+1,i, Ai+1, 0, . . . , 0), . . . , (an,i, an,i+1, . . . , an,n−1, An) are at a distance at
least Ai apart. Here we shall be considering the following conjecture of
Woods:

Conjecture (Woods). If A1 · · ·An = 1 and Ai ≤ A1 for each i then
any closed sphere in Rn of radius

√
n/2 contains a point of L.

Woods [11, 12, 13] proved this conjecture for 4 ≤ n ≤ 6 (see also Cleaver
[3] for n = 4). Recently Hans-Gill et al. [6] have given a simpler and unified
proof of Woods’ Conjecture for n ≤ 6. The present authors [7] proved it for
n = 7.

Woods [13] showed that his conjecture implies the following conjecture:

Conjecture I. If Λ is a lattice of determinant 1 and there is a sphere
|X| < R which contains no point of Λ other than O and has n linearly
independent points of Λ on its boundary then Λ is a covering lattice for the
closed sphere of radius

√
n/4. Equivalently every closed sphere of radius√

n/4 lying in Rn contains a point of Λ.

It is well known that together with the result of McMullen [10], truth of
Conjecture I for a fixed n would imply the following long standing conjecture
attributed to Minkowski on the product of n non-homogeneous linear forms
in n variables:

2010 Mathematics Subject Classification: 11H31, 11H46, 11J20, 11J37, 52C17.
Key words and phrases: lattice, covering, non-homogeneous, product of linear forms, crit-
ical determinant.

DOI: 10.4064/aa147-4-3 [337] c© Instytut Matematyczny PAN, 2011



338 R. J. Hans-Gill et al.

Conjecture (Minkowski). Let Li = ai1x1 + · · · + ainxn, 1 ≤ i ≤ n,
be n real linear forms in n variables x1, . . . , xn having determinant ∆ =
det (aij) 6= 0. For any given real numbers c1, . . . , cn there exist integers
x1, . . . , xn such that

|(L1 + c1) · · · (Ln + cn)| ≤ |∆|/2n.
Minkowski’s Conjecture is known to be true for n ≤ 7. For a more de-

tailed history of Minkowski’s Conjecture and related results, see Gruber [4],
Gruber and Lekkerkerker [5], Bambah et al. [1] and Hans-Gill et al. [7].

In this paper we shall prove

Theorem. Woods’ Conjecture is true for n = 8.

Conjecture I follows for n = 8 from our Theorem. Hence Minkowski’s
Conjecture is proved for n = 8. We use the notations and method of proof of
our paper [7]. We include some of the details given there for the convenience
of the reader. It may be remarked that one can easily supplement this proof
to show that in fact any open sphere with radius

√
2 contains a point of L,

except in the case A1 = · · · = A8 = 1.
In principle, this method can be used in higher dimensions but the details

would become much more involved. Even though a part of the proof (see
remarks in Section 4) can be extended easily to all n, the remaining part,
particularly corresponding to Section 5, will become much harder to settle
with these techniques. In [8], the authors have obtained estimates on Woods’
Conjecture and hence on Minkowski’s Conjecture for 9 ≤ n ≤ 22. These
estimates on Minkowski’s Conjecture are better than the known ones.

2. Preliminary lemmas. Let d(Λ) denote the determinant of a lat-
tice Λ. For the unit sphere Sn with centre O in Rn, the critical determinant is
defined as ∆(Sn) = inf{d(Λ) : Λ has no non-zero point in the interior of Sn}.
Let L be a lattice in Rn reduced in the sense of Korkine and Zolotareff. Let
A1, . . . , An be as defined in Section 1.

We state below some preliminary lemmas. Lemmas 1 and 2 are due to
Woods [11] while Lemma 3 is due to Korkine and Zolotareff [9]. In Lemma 4,
the case n = 3 is a classical result of Gauss, n = 4, 5 are due to Korkine and
Zolotareff [9] while n = 6, 7, 8 are due to Blichfeldt [2].

Lemma 1. If 2∆(Sn+1)An1 ≥ d(L) then any closed sphere of radius

R = A1{1− (An1∆(Sn+1)/d(L))2}1/2

in Rn contains a point of L.
Lemma 2. For a fixed integer i with 1 ≤ i ≤ n − 1, denote by L1 the

lattice in Ri with the reduced basis

(A1, 0, . . . , 0), (a2,1, A2, 0, . . . , 0), . . . , (ai,1, ai,2, . . . , ai,i−1, Ai)
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and denote by L2 the lattice in Rn−i with the reduced basis

(Ai+1, 0, . . . , 0), (ai+2,i+1, Ai+2, 0, . . . , 0), . . . , (an,i+1, an,i+2, . . . , an,n−1, An).

If any sphere in Ri of radius r1 contains a point of L1 and if any sphere
in Rn−i of radius r2 contains a point of L2 then any sphere in Rn of radius
(r21 + r22)1/2 contains a point of L.

Lemma 3. For all relevant i, A2
i+1 ≥ 3

4A
2
i and A2

i+2 ≥ 2
3A

2
i .

Lemma 4. ∆(Sn) = 1/
√

2, 1/2, 1/2
√

2,
√

3/8, 1/8, 1/16 for n = 3, 4, 5,
6, 7, 8 respectively.

3. Plan of the proof. We assume that Woods’ Conjecture is false for
n = 8 and derive a contradiction. Let L be a lattice satisfying the hypothesis
of the conjecture for n = 8. Suppose that there exists a closed sphere of
radius

√
2 in R8 that contains no point of L. Write A = A2

1, B = A2
2,

C = A2
3, D = A2

4, E = A2
5, F = A2

6, G = A2
7 and H = A2

8. As A1 · · ·An = 1
we have ABCDEFGH = 1.

We give some examples of inequalities that arise. Let Li, 1 ≤ i ≤ 5,
be lattices in R1 with basis (Ai) and L6 be a lattice in R3 with basis
(A6, 0, 0), (a7,6, A7, 0), (a8,6, a8,7, A8). Applying Lemma 2 repeatedly and us-
ing Lemma 1, we see that if 2∆(S4)A3

6 ≥ A6A7A8 then any closed 8-sphere
of radius(

1
4
A2

1 +
1
4
A2

2 +
1
4
A2

3 +
1
4
A2

4 +
1
4
A2

5 +A2
6 −

A8
6∆(S4)2

A2
6A

2
7A

2
8

)1/2

contains a point of L. By the initial hypothesis this radius exceeds
√

2. Since
∆(S4) = 1/2 and A1 · · ·A8 = 1, this results in the conditional inequality

(3.1) if F 2 ≥ GH then A+B + C +D +E + 4F − F 4ABCDE > 8.

We call this inequality (1, 1, 1, 1, 1, 3), since it corresponds to the ordered
partition (1, 1, 1, 1, 1, 3) of 8 for the purpose of applying Lemma 2. Similarly
the conditional inequality (1, 1, 1, 1, 1, 1, 2) corresponding to the ordered par-
tition (1, 1, 1, 1, 1, 1, 2) is

(3.2) if 2G ≥ H then A+B + C +D + E + F + 4G− 2G2

H
> 8.

Since 4G− 2G2/H ≤ 2H, the second inequality in (3.2) gives

(3.3) A+B + C +D + E + F + 2H > 8.

Using ABCDEFGH = 1, the second inequality in (3.2) can also be written
as

(3.4) A+B + C +D + E + F + 4G− 2G3ABCDEF > 8.
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Inequality (4, 1, 1, 1, 1) is

(3.5) if A4EFGH ≥ 2 then 4A− 1
2
A5EFGH+E+F +G+H > 8.

In general, if (λ1, . . . , λs) is an ordered partition of n, then the conditional
inequality arising from it, by using Lemmas 1 and 2, is also denoted by
(λ1, . . . , λs). If the conditions in an inequality (λ1, . . . , λs) are satisfied then
we say that (λ1, . . . , λs) holds.

Sometimes, instead of Lemma 1, we are able to use the fact that Woods’
Conjecture is true for dimensions less than or equal to 6. The use of this is
indicated by putting an asterisk on the corresponding part of the partition.
For example, the inequality (6∗, 2) is

(3.6) if 2G ≥ H then 6(ABCDEF )1/6 + 4G− 2G2/H > 8,

the hypothesis of the conjecture in six variables being satisfied.
Throughout the paper we shall use the following notation: a = A − 1,

b = |B − 1|, c = |C − 1|, d = |D − 1|, e = |E − 1|, f = |F − 1|, g = |G− 1|,
h = |H − 1|. We can assume A > 1, because if A ≤ 1, we must have
A = B = C = D = E = F = G = H = 1. In this case Woods’ Conjecture
can be seen to be true using inequality (1, 1, 1, 1, 1, 1, 1, 1). Also the lattice L
has no point in the interior of the sphere of radius A1 centred at the origin.
Therefore ∆(A1S8) ≤ 1. As ∆(S8) = 1/16, we get A8 ≤ 256, which implies
A ≤ 2.

Each of B,C, . . . ,H can be either > 1 or ≤ 1. This gives rise to
27 = 128 cases which are listed in Table 1. Case 1 does not arise be-
cause ABCDEFGH = 1. For the remaining cases we give the propo-
sition in which each case is considered. We also indicate the inequalities
used to get a contradiction in 113 easy cases. These are discussed in Sec-
tion 4. The remaining 14 cases which have no inequality indicated need
a more intricate analysis of available inequalities. Out of these cases, five
are somewhat less difficult and have been dealt with in Propositions 12–
16. The remaining nine difficult cases are dealt with separately in Sec-
tion 5.

We would like to remark that in many cases there are alternative ways to
get a contradiction. We have chosen to describe the method which we find
convenient. The following observations help us to check that the conditions
in certain inequalities are satisfied:

Since A1 ≥ Ai for 2 ≤ i ≤ 8, we have
√

2A1 ≥ A2 and A2
1 ≥ A2A3. Thus

(2, 1, 1, 1, 1, 1, 1) and (3, 1, 1, 1, 1, 1) hold. Using Lemma 3, we get 2B ≥ C,
2C ≥ D, 2D ≥ E. Thus (1, 2, 1, 1, 1, 1, 1), (1, 2, 2, 1, 1, 1), (3, 2, 1, 1, 1) etc.
always hold. If Ai > 1 then A2

i+3 ≥ 3
4A

2
i+2 ≥ 3

4 ·
2
3A

2
i >

1
2 . Thus if we also

have Ai+4 ≤ 1, then
√

2Ai+3 > Ai+4.
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We also observe that for positive real numbers X1, . . . , Xk we have X1 +
· · · + Xk ≤ (k − 1) + X1 · · ·Xk if either all Xi ≤ 1 or all Xi > 1. This we
shall use several times without referring to it.

In this paper we frequently need to maximize functions of several vari-
ables. While doing this we shall find it convenient to name the function
involved as φ(x), ψ(y) etc. to indicate that it is being regarded as a function
of that variable and other variables are kept fixed. When we say that a given
function of several variables in x, y, . . . is an increasing/decreasing function
of x, y, . . . , it means that the relevant property holds when the function is
considered as a function of one variable at a time, all other variables be-
ing fixed. Sometimes the same name is given to different functions in the
proof of a proposition. We think it causes no confusion since in the proof
of a particular claim we have taken care to give different names to different
functions.

Almost all inequalities in the proofs have been checked using calculus
except those specifically mentioned.

4. Easy cases. Here we illustrate how contradiction is obtained in the
easy cases. Some of the lemmas that we use are obvious generalizations of
the lemmas that we have proved in [7], so we shall omit proofs of these.
Since the corresponding cases can be dealt with in the same manner, we
state these without any illustration. It may be remarked that these lemmas
generalize to dimension n and imply the conclusions for the corresponding
cases there.

Proposition 1. Cases which have G > 1 and H ≤ 1 do not arise.

Proof. Note that inequality (6∗, 2) together with ABCDEFGH = 1
gives 6(GH)−1/6 + 2H > 8. The left side of this inequality is less than
6H−1/6 + 2H, which is an increasing function of H for H > 3

4 (the lower
bound on H follows from Lemma 3). Since H ≤ 1, we get a contradiction.

Proposition 2. Cases which have F > 1, G ≤ 1 and H ≤ 1 do not
arise.

Proof. Observe that inequality (5∗, 3) together with ABCDEFGH=1
gives 5(FGH)−1/5 + 4F − F 3

GH > 8, i.e. 5(Fx)−1/5 + 4F −F 3x−1 > 8, where
x = GH ≤ 1. The left side is an increasing function of x, so we can replace
x by 1 to get 5F−1/5 + 4F − F 3 > 8, which is not true for F > 1.

Remark 1. Proposition 1 settles 32 cases and Proposition 2 settles 16
cases. Both these propositions can be proved in general, settling 2n−3 +2n−4

cases in dimension n.

Proposition 3. Cases in which B ≤ 1 and either of the following holds,
do not arise:
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(i) at most two out of C,D,E, F,G,H are greater than 1,
(ii) any three out of C,D,E, F,G,H are greater than 1 and A < 1.196.

Proof. We illustrate a case when exactly two out of C,D,E, F,G,H are
greater than 1. Consider Case (125) where G > 1, H > 1 and C,D,E, F are
all ≤ 1. Inequality (2, 1, 1, 1, 1, 1, 1) gives 4A−2A3CDEFGH+C+D+E+
F +G+H > 8, i.e. 4A−2A3xGH+3+x+G+H > 8, where x = CDEF ≥

1
AGH . We can successively replace x by 1

AGH , G by A and H by A to get
6A− 2A2 + 1

A3 > 5, which is not true for 1 < A ≤ 2. The proof is similar if
three or one (or none) out of C,D,E, F,G,H are greater than 1. The case
when none of C,D,E, F,G,H are greater than 1 can also be seen directly
by inequality (2, 1, . . . , 1), which gives 2B + C +D + E + F +G+H > 8.

Remark 2. Proposition 3(i) settles 22 cases (many of these have already
been settled by Propositions 1 and 2). The new cases settled are (88), (96),
(104), (111), (112), (119), (120), (123), (125), (127) and (128). Proposition
3(ii) will be used to settle Case (121) in Proposition 7. This proposition can
also be proved in general.

Lemma 5. Let X1, . . . , X8 be positive real numbers, each ≤ 2, satisfying
X1 > 1 and X1 · · ·X8 = 1. Then the following hold:

(i) If Xi > 1 for 3 ≤ i ≤ 8, then

S1 = 4X1 −
2X2

1

X2
+X3 + · · ·+X8 ≤ 8.

(ii) If Xi > 1 for i = 3, 5, 6, 7, 8, then

S2 = 4X1 −
2X2

1

X2
+ 4X3 −

2X2
3

X4
+X5 + · · ·+X8 ≤ 8.

(iii) If Xi > 1 for i = 3, 5, 7, 8, then

S3 = 4X1 −
2X2

1

X2
+ 4X3 −

2X2
3

X4
+ 4X5 −

2X2
5

X6
+X7 +X8 ≤ 8.

(iv) If Xi > 1 for i = 4, 7, 8 and X7 < X1, X8 < X1, then

S4 = 4X1 −
X3

1

X2X3
+ 4X4 −

X3
4

X5X6
+X7 +X8 ≤ 8.

(v) If Xi > 1 for i = 3, 5, 8, X2 ≤ X1, X4 ≤ X3, X8 ≤ X1X5, then

S5 = 4X1 −
2X2

1

X2
+ 4X3 −

2X2
3

X4
+ 4X5 −

X3
5

X6X7
+X8 ≤ 8.

(vi) If Xi > 1 for i = 4, 6, 7, 8, Xi ≤ X1X4 for i = 6, 7, 8, X5 ≤ X4,
then

S6 = 4X1 −
X3

1

X2X3
+ 4X4 −

2X2
4

X5
+X6 +X7 +X8 ≤ 8.
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Table 1

Case A B C D E F G H Proposition Inequalities

1 > > > > > > > > − ABCDEFGH = 1

2 > > > > > > > ≤ 1 (6∗, 2)

3 > > > > > > ≤ > 4(i) (1, 1, 1, 1, 1, 2, 1)

4 > > > > > > ≤ ≤ 2 (5∗, 3)

5 > > > > > ≤ > > 4(i) (1, 1, 1, 1, 2, 1, 1)

6 > > > > > ≤ > ≤ 1 (6∗, 2)

7 > > > > > ≤ ≤ > 5(i) (1, 1, 1, 1, 3, 1)

8 > > > > > ≤ ≤ ≤ 17 −
9 > > > > ≤ > > > 4(i) (1, 1, 1, 2, 1, 1, 1)

10 > > > > ≤ > > ≤ 1 (6∗, 2)

11 > > > > ≤ > ≤ > 4(ii) (1, 1, 1, 2, 2, 1)

12 > > > > ≤ > ≤ ≤ 2 (5∗, 3)

13 > > > > ≤ ≤ > > 5(i) (1, 1, 1, 3, 1, 1)

14 > > > > ≤ ≤ > ≤ 1 (6∗, 2)

15 > > > > ≤ ≤ ≤ > 18 −
16 > > > > ≤ ≤ ≤ ≤ 19 −
17 > > > ≤ > > > > 4(i) (1, 1, 2, 1, 1, 1, 1)

18 > > > ≤ > > > ≤ 1 (6∗, 2)

19 > > > ≤ > > ≤ > 4(ii) (1, 1, 2, 1, 2, 1)

20 > > > ≤ > > ≤ ≤ 2 (5∗, 3)

21 > > > ≤ > ≤ > > 4(ii) (1, 1, 2, 2, 1, 1)

22 > > > ≤ > ≤ > ≤ 1 (6∗, 2)

23 > > > ≤ > ≤ ≤ > 4(v) (2, 2, 3, 1)

24 > > > ≤ > ≤ ≤ ≤ 16 −
25 > > > ≤ ≤ > > > 5(i) (1, 1, 3, 1, 1, 1)

26 > > > ≤ ≤ > > ≤ 1 (6∗, 2)

27 > > > ≤ ≤ > ≤ > 4(v) (2, 3, 2, 1)

28 > > > ≤ ≤ > ≤ ≤ 2 (5∗, 3)

29 > > > ≤ ≤ ≤ > > 20 −
30 > > > ≤ ≤ ≤ > ≤ 1 (6∗, 2)

31 > > > ≤ ≤ ≤ ≤ > 21 −
32 > > > ≤ ≤ ≤ ≤ ≤ 22 −
33 > > ≤ > > > > > 4(i) (1, 2, 1, 1, 1, 1, 1)

34 > > ≤ > > > > ≤ 1 (6∗, 2)

35 > > ≤ > > > ≤ > 4(ii) (1, 2, 1, 1, 2, 1)

36 > > ≤ > > > ≤ ≤ 2 (5∗, 3)

37 > > ≤ > > ≤ > > 4(ii) (1, 2, 1, 2, 1, 1)

38 > > ≤ > > ≤ > ≤ 1 (6∗, 2)
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Table 1 (cont.)

Case A B C D E F G H Proposition Inequalities

39 > > ≤ > > ≤ ≤ > 4(iv) (3, 1, 3, 1)

40 > > ≤ > > ≤ ≤ ≤ 9 (1, 2, 2, 1, 2), (3, 1, 3, 1)

41 > > ≤ > ≤ > > > 4(ii) (1, 2, 2, 1, 1, 1)

42 > > ≤ > ≤ > > ≤ 1 (6∗, 2)

43 > > ≤ > ≤ > ≤ > 4(iii) (1, 2, 2, 2, 1)

44 > > ≤ > ≤ > ≤ ≤ 2 (5∗, 3)

45 > > ≤ > ≤ ≤ > > 4(iv) (3, 3, 1, 1)

46 > > ≤ > ≤ ≤ > ≤ 1 (6∗, 2)

47 > > ≤ > ≤ ≤ ≤ > 14 −
48 > > ≤ > ≤ ≤ ≤ ≤ 5(ii) (1, 2, 2, 1, 1, 1), (3, 1, . . . , 1)

49 > > ≤ ≤ > > > > 5(i) (1, 3, 1, 1, 1, 1)

50 > > ≤ ≤ > > > ≤ 1 (6∗, 2)

51 > > ≤ ≤ > > ≤ > 12 −
52 > > ≤ ≤ > > ≤ ≤ 2 (5∗, 3)

53 > > ≤ ≤ > ≤ > > 13 −
54 > > ≤ ≤ > ≤ > ≤ 1 (6∗, 2)

55 > > ≤ ≤ > ≤ ≤ > 11 (1, 3, 3, 1), (2, 2, 2, 1, 1), (3, 1, . . . , 1)

56 > > ≤ ≤ > ≤ ≤ ≤ 5(ii) (1, 2, 1, 2, 1, 1), (1, 3, 1, . . . , 1)

57 > > ≤ ≤ ≤ > > > 23 −
58 > > ≤ ≤ ≤ > > ≤ 1 (6∗, 2)

59 > > ≤ ≤ ≤ > ≤ > 15 −
60 > > ≤ ≤ ≤ > ≤ ≤ 2 (5∗, 3)

61 > > ≤ ≤ ≤ ≤ > > 24 −
62 > > ≤ ≤ ≤ ≤ > ≤ 1 (6∗, 2)

63 > > ≤ ≤ ≤ ≤ ≤ > 25 −
64 > > ≤ ≤ ≤ ≤ ≤ ≤ 5(ii) (1, 2, 1, . . . , 1), (3, 1, . . . , 1)

65 > ≤ > > > > > > 4(i) (2, 1, . . . , 1)

66 > ≤ > > > > > ≤ 1 (6∗, 2)

67 > ≤ > > > > ≤ > 4(ii) (2, 1, 1, 1, 2, 1)

68 > ≤ > > > > ≤ ≤ 2 (5∗, 3)

69 > ≤ > > > ≤ > > 4(ii) (2, 1, 1, 2, 1, 1)

70 > ≤ > > > ≤ > ≤ 1 (6∗, 2)

71 > ≤ > > > ≤ ≤ > 4(vi) (2, 1, 1, 3, 1)

72 > ≤ > > > ≤ ≤ ≤ 10 (2, 1, 1, 2, 2), (2, 1, 1, 3, 1)

73 > ≤ > > ≤ > > > 4(ii) (2, 1, 1, 2, 1, 1)

74 > ≤ > > ≤ > > ≤ 1 (6∗, 2)

75 > ≤ > > ≤ > ≤ > 4(iii) (2, 1, 2, 1, 2)

76 > ≤ > > ≤ > ≤ ≤ 2 (5∗, 3)
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Table 1 (cont.)

Case A B C D E F G H Proposition Inequalities

77 > ≤ > > ≤ ≤ > > 4(vi) (2, 1, 3, 1, 1)

78 > ≤ > > ≤ ≤ > ≤ 1 (6∗, 2)

79 > ≤ > > ≤ ≤ ≤ > 10 (2, 1, 2, 2, 1), (2, 1, 3, 1, 1)

80 > ≤ > > ≤ ≤ ≤ ≤ 5(ii) (2, 1, 2, 1, 1, 1), (3, 1, . . . , 1)

81 > ≤ > ≤ > > > > 4(ii) (2, 2, 1, 1, 1, 1)

82 > ≤ > ≤ > > > ≤ 1 (6∗, 2)

83 > ≤ > ≤ > > ≤ > 4(iii) (2, 2, 1, 2, 1)

84 > ≤ > ≤ > > ≤ ≤ 2 (5∗, 3)

85 > ≤ > ≤ > ≤ > > 4(iii) (2, 2, 2, 1, 1)

86 > ≤ > ≤ > ≤ > ≤ 1 (6∗, 2)

87 > ≤ > ≤ > ≤ ≤ > 5(ii) (2, 2, 2, 1, 1), (3, 1, . . . , 1)

88 > ≤ > ≤ > ≤ ≤ ≤ 3(i) (2, 1, . . . , 1)

89 > ≤ > ≤ ≤ > > > 4(vi) (2, 3, 1, 1, 1)

90 > ≤ > ≤ ≤ > > ≤ 1 (6∗, 2)

91 > ≤ > ≤ ≤ > ≤ > 5(ii) (2, 2, 1, 2, 1), (3, 1, . . . , 1)

92 > ≤ > ≤ ≤ > ≤ ≤ 2 (5∗, 3)

93 > ≤ > ≤ ≤ ≤ > > 8 (2, 2, 2, 2), (2, 3, 1, 1, 1)

94 > ≤ > ≤ ≤ ≤ > ≤ 1 (6∗, 2)

95 > ≤ > ≤ ≤ ≤ ≤ > 5(ii) (2, 2, 1, 1, 1, 1), (3, 1, . . . , 1)

96 > ≤ > ≤ ≤ ≤ ≤ ≤ 3(i) (2, 1, 1, 1, 1, 1, 1)

97 > ≤ ≤ > > > > > 5(i) (3, 1, . . . , 1)

98 > ≤ ≤ > > > > ≤ 1 (6∗, 2)

99 > ≤ ≤ > > > ≤ > 4(vi) (3, 1, 1, 2, 1)

100 > ≤ ≤ > > > ≤ ≤ 2 (5∗, 3)

101 > ≤ ≤ > > ≤ > > 4(vi) (3, 1, 2, 1, 1)

102 > ≤ ≤ > > ≤ > ≤ 1 (6∗, 2)

103 > ≤ ≤ > > ≤ ≤ > 4(iv) (3, 1, 3, 1)

104 > ≤ ≤ > > ≤ ≤ ≤ 3(i) (2, 1, 1, 1, 1, 1, 1)

105 > ≤ ≤ > ≤ > > > 4(vi) (3, 2, 1, 1, 1)

106 > ≤ ≤ > ≤ > > ≤ 1 (6∗, 2)

107 > ≤ ≤ > ≤ > ≤ > 4(v) (3, 2, 2, 1)

108 > ≤ ≤ > ≤ > ≤ ≤ 2 (5∗, 3)

109 > ≤ ≤ > ≤ ≤ > > 4(iv) (3, 3, 1, 1)

110 > ≤ ≤ > ≤ ≤ > ≤ 1 (6∗, 2)

111 > ≤ ≤ > ≤ ≤ ≤ > 3(i) (2, 1, 1, 1, 1, 1, 1)

112 > ≤ ≤ > ≤ ≤ ≤ ≤ 3(i) (2, 1, 1, 1, 1, 1, 1)

113 > ≤ ≤ ≤ > > > > 6 (2, 2, 1, . . . , 1), (3, 1, . . . , 1), (4, 1, . . . , 1)

114 > ≤ ≤ ≤ > > > ≤ 1 (6∗, 2)
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Table 1 (cont.)

Case A B C D E F G H Proposition Inequalities

115 > ≤ ≤ ≤ > > ≤ > 5(ii) (2, 2, 1, 2, 1), (3, 1, . . . , 1)

116 > ≤ ≤ ≤ > > ≤ ≤ 2 (5∗, 3)

117 > ≤ ≤ ≤ > ≤ > > 5(ii) (2, 2, 2, 1, 1), (3, 1, . . . , 1)

118 > ≤ ≤ ≤ > ≤ > ≤ 1 (6∗, 2)

119 > ≤ ≤ ≤ > ≤ ≤ > 3(i) (2, 1, . . . , 1)

120 > ≤ ≤ ≤ > ≤ ≤ ≤ 3(i) (2, 1, 1, 1, 1, 1, 1)

121 > ≤ ≤ ≤ ≤ > > > 7 (2, 1, 2, 1, 1, 1), (4, 1, . . . , 1), (2, 1, . . . , 1)

122 > ≤ ≤ ≤ ≤ > > ≤ 1 (6∗, 2)

123 > ≤ ≤ ≤ ≤ > ≤ > 3(i) (2, 1, . . . , 1)

124 > ≤ ≤ ≤ ≤ > ≤ ≤ 2 (5∗, 3)

125 > ≤ ≤ ≤ ≤ ≤ > > 3(i) (2, 1, 1, 1, 1, 1, 1)

126 > ≤ ≤ ≤ ≤ ≤ > ≤ 1 (6∗, 2)

127 > ≤ ≤ ≤ ≤ ≤ ≤ > 3(i) (2, 1, 1, 1, 1, 1, 1)

128 > ≤ ≤ ≤ ≤ ≤ ≤ ≤ 3(i) (2, 1, 1, 1, 1, 1, 1)

Proof. The proofs of (i) to (iv) are simple extensions of Lemmas 5, 6, 7
and 9 of [7] to the case of eight variables. For the proof of (v) one notices
that, using the AM-GM inequality,

S5 ≤ 4X1 −
X2

1

X2
+ 4X3 −

X2
3

X4
+ 4X5 − 3X1X3X

4/3
5 X

1/3
8 +X8

≤ 3X1 + 3X3 + 4X5 − 3X1X3X
4/3
5 + 1

≤ 3X1 + 3X3 + 5− 3X1X3 ≤ 8.

The proof of (vi) is similar.

It may be noticed that this lemma can be easily extended to n variables.

Proposition 4. The following cases do not arise:

(i) (3), (5), (9), (17), (33), (65);
(ii) (11), (19), (21), (35), (37), (41), (67), (69), (73), (81);

(iii) (43), (75), (83), (85);
(iv) (39), (45), (103), (109);
(v) (23), (27), (107);

(vi) (71), (77), (89), (99), (101), (105).

Proof. It is easy to see that each part of Proposition 4 follows imme-
diately from the corresponding part of Lemma 5, after selecting a suitable
inequality. The inequalities used are mentioned in Table 1.
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Lemma 6. Let Xi be positive real numbers for 1 ≤ i ≤ 8 satisfying
X1 > 1, X1X2X3X4X5X6X7X8 = 1. Let

xi = |Xi − 1|, γ =
∑

4≤i≤8
Xi≤1

xi, δ =
∑

4≤i≤8
Xi>1

xi.

Suppose that either

(i) Xi > 1 for each i, 4 ≤ i ≤ 8, or
(ii) γ ≤ x1 ≤ 0.5, or

(iii) γ ≤ 2
3x1 and x1 ≤ 1, or

(iv) γ ≤ δ/2 and δ ≤ 4x1 with x1 ≤ 0.226, or
(v) δ ≥ 2γ and γ ≤ 2x1 with x1 ≤ 0.226, or

(vi) δ ≥ 4
3γ and γ ≤ 2x1 with x1 ≤ 0.175.

Then
S7 = 4X1 −X4

1X4 · · ·X8 +X4 + · · ·+X8 ≤ 8.

The simple proof similar to that given in Lemmas 8 and 10 of [7] is
omitted.

Proposition 5. The following cases do not arise:

(i) (7), (13), (25), (49), (97);
(ii) (48), (56), (64), (80), (87), (91), (95), (115), (117).

Proof. This follows immediately from Lemma 6(i)&(ii) after selecting a
suitable inequality. The inequalities used are mentioned in Table 1.

Lemma 7. Let Xi > 1 be real numbers for 1 ≤ i ≤ 5.

(i) If X5
1 ≥ 2, then

S8 = 4X1 −
1
2
X5

1X2X3X4X5 +X2 +X3 +X4 +X5 ≤ 8.

(ii) If Xi ≤ X1 = A (say) for 2 ≤ i ≤ 5, A ≤ 2, then

S9 = A+ 4X2 −
1
2
X5

2X3X4X5A+X3 +X4 +X5 ≤ 8.

Proof. The proof of (i) is a simple extension of Lemma 11 of [7] to
the case of eight variables. For the proof of (ii) we notice that S9 is a
linear function of Xi for each i, 3 ≤ i ≤ 5. The coefficient of X5 in
S9 = φ(X3, X4, X5) (say) may be positive or negative, so its maximum
occurs either at X5 = 1 or at X5 = A. A similar argument holds for X3

and X4. Symmetry of φ(X3, X4, X5) in X3, X4 and X5 gives φ(X3, X4, X5) ≤
max{φ(1, 1, 1), φ(1, 1, A), φ(1, A,A), φ(A,A,A)}. One can easily prove that
the right side is at most 8 for 1 < X2 ≤ A.

Proposition 6. Case (113), i.e. A > 1, B ≤ 1, C ≤ 1, D ≤ 1, E > 1,
F > 1, G > 1, H > 1, does not arise.
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Proof. Assume first that A4 ≥ 2. This gives A4EFGH > A4 ≥ 2, there-
fore (4, 1, 1, 1, 1) holds. That is, 4A− 1

2A
5EFGH+E+F+G+H > 8. Using

Lemma 7(i) with X1 = A, X2 = E, X3 = F , X4 = G and X5 = H we get a
contradiction. So we have A4 < 2, which implies A < 1.19. From inequality
(2, 2, 1, 1, 1, 1), we get δ = e + f + g + h > 2d. Now we get a contradiction
using Lemma 6(iv) with γ = d and δ ≤ 4a = 4x1, x1 < 0.19.

Proposition 7. Case (121), i.e. A > 1, B ≤ 1, C ≤ 1, D ≤ 1, E ≤ 1,
F > 1, G > 1, H > 1, does not arise.

Proof. Here a ≤ 1
3 by Lemma 3. Using inequality (2, 1, 2, 1, 1, 1), we have

2B + C + 2E + F + G + H > 8. This gives e < f+g+h
2 = k

2 , say. Therefore
EFGH ≥ (1 − e)(1 + k) > (1 − k

2 )(1 + k) ≥ 1 for k ≤ 3a ≤ 1. Suppose
first that A4 ≥ 2; then A4EFGH > A4 ≥ 2. Therefore (4, 1, 1, 1, 1) holds,
i.e. 4A − 1

2A
5EFGH + E + 2 + FGH > 8. The left side is a decreasing

function of E and E > 1− k
2 . So we can replace E by 1− k

2 . Further FGH ≥
1+f +g+h = 1+k. This gives φ(k) = 4a+ k

2 −
1
2(1+a)5(1+k)(1− k

2 ) > 0.
As φ′′(k) > 0, we have φ(k) ≤ max{φ(0), φ(3a)}, which is negative for
0 < a ≤ 1

3 , giving thereby a contradiction.
Hence we must have A4 < 2. So a < 0.19. By Proposition 3(ii), this case

does not arise.

Proposition 8. Case (93), i.e. A > 1, B ≤ 1, C > 1, D ≤ 1, E ≤ 1,
F ≤ 1, G > 1, H > 1, does not arise.

Proof. Here 2G > H, since 2G ≤ H ≤ A ≤ 4
3 gives G < 1. So (2, 2, 2, 2)

holds and we get 2B + 2D + 2F + 2H > 8, which gives F > 1 − h. Using
the AM-GM inequality in (2, 3, 1, 1, 1) we get 4A − A2

B + 4C + F + G +
H − 2C2A3/2F 1/2G1/2H1/2 > 8. Since B ≤ 1 and F > 1 − h, we see that
4A−A2 + 4C +G− 2C2A3/2(1− h)1/2G1/2H1/2 > 6. Since h ≤ a, we have
4A − A2 + 4C + G − 2C2A3/2(1 − a2)1/2G1/2 > 6. Further the left side is
a decreasing function of G as well as of C for 1 ≤ G ≤ A, 1 ≤ C ≤ A and
1 ≤ A ≤ 4

3 . On replacing G and C by 1 we get 4A−A2−2A3/2(1−a2)1/2 > 1,
which can be easily seen to be false.

Proposition 9. Case (40), i.e. A > 1, B > 1, C ≤ 1, D > 1, E > 1,
F ≤ 1, G ≤ 1, H ≤ 1, does not arise.

Proof. Here a ≤ 1
2 and e ≤ 1

3 by Lemma 3. As 2G > H, (1, 2, 2, 1, 2)
holds, therefore we get A+2C+2E+F+2H > 8, which gives H > 1−e− a

2 .
After using the AM-GM inequality in (3, 1, 3, 1) we get 4A+ 4E +D+H −
2A2E2D1/2H1/2 > 8. The left side is a decreasing function of H as well
as of D, so we can successively replace H by 1 − e − a

2 and D by 1 to get
φ(e) = 2+3.5a+3e−2(1+a)2(1+e)2(1−e− a

2 )1/2 > 0. One easily verifies that
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φ′′(e) > 0 for 0 < e ≤ min{a, 1
3}. Therefore φ(e) ≤ max{φ(0), φ(min(a, 1

3))},
which is negative for a ≤ 1

2 . This gives a contradiction.

Proposition 10. Cases (72) and (79) do not arise.

Proof. First we consider Case (72), i.e. A>1, B≤1, C>1, D>1, E>1,
F ≤ 1, G ≤ 1, H ≤ 1. Here a ≤ 1

3 by Lemma 3. Notice that 2G > 1 > H.
Using inequality (2, 1, 1, 2, 2) we get −2b+c+d−2f−2h > 0, which gives h <
c+d
2 . Inequality (2, 1, 1, 3, 1) holds, i.e. 4A− 2A2

B +C+D+4E−E4ABCDH

+H > 8. Applying the AM-GM inequality to −A2

B −E
4ABCDH and using

B ≤ 1 we get 4A−A2 +C +D+ 4E − 2A3/2E2C1/2D1/2H1/2 +H > 8. As
the left side is a decreasing function of H and H > 1− c+d

2 , we get

4A−A2 +C +D+ 4E − 2A3/2E2C1/2D1/2

(
1− c+ d

2

)1/2

+ 1− c+ d

2
> 8.

Again the left side is a decreasing function of E. Replacing E by 1 and
simplifying we get φ(x) = 2+2a−a2 + x

2−2(1+a)3/2(1+x)1/2(1− x
2 )1/2 > 0

where x = c + d. One verifies that φ′′(x) > 0 and 0 < x ≤ 2a, so φ(x) ≤
max{φ(0), φ(2a)}, which is non-positive for 0 < a ≤ 1

3 , giving thereby a
contradiction.

Now consider Case (79), i.e. A > 1, B ≤ 1, C > 1, D > 1, E ≤ 1, F ≤ 1,
G ≤ 1, H > 1. Using (2, 1, 2, 2, 1) and (2, 1, 3, 1, 1) and proceeding as in Case
(72), replacing D,E,H by H,D,G respectively we get a contradiction.

Proposition 11. Case (55), i.e. A > 1, B > 1, C ≤ 1, D ≤ 1, E > 1,
F ≤ 1, G ≤ 1, H > 1, does not arise.

Proof. Here a ≤ 1
2 and b ≤ 1

3 by Lemma 3. As B2 > CD and E2 > FG
therefore (1, 3, 3, 1) holds. After using the AM-GM inequality, we get

A+ 4B + 4E − 2B2E2(HA)1/2 +H > 8.

Suppose first that A < B4E4H. Then the left side is a decreasing function
of A and A ≥ H. So we get 2H+ 4B+ 4E− 2B2E2H > 8. Again left side is
a decreasing function of B and of E. Replacing B and then E by 1 we get
a contradiction. Now let A ≥ B4E4H. This gives a > 4(b+ e) + h ≥ 2b+ h.
From inequality (2, 2, 2, 1, 1) we get 2b − 2d − 2f − g + h > 0, which gives
d+ f + g < 2b+ h < a. Now using (3, 1, 1, 1, 1, 1) and applying Lemma 6(ii)
with γ = d+ f + g and x1 = a we get a contradiction.

Proposition 12. Case (51), i.e. A > 1, B > 1, C ≤ 1, D ≤ 1, E > 1,
F > 1, G ≤ 1, H > 1, does not arise.

Proof. Here a≤ 1
2 , b≤ 1

3 , e≤ 1
2 by Lemma 3. Using inequality (2, 2, 1, 2, 1)

we get 2b− 2d+ e− 2g + h > 0, which gives d < e+h
2 .

Claim (i). FG ≤ 1.
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Suppose that FG > 1. As B2 > CD, we can use (1, 3, 1, 2, 1) to get
A + 4B − B4EFGHA + E + 2G + H > 8. This implies that A + 4B −
B4EHA+E+ 2 +H > 8. As the coefficient of H is negative we can replace
H by 1. Similarly we can replace E by 1 to get A+4B−B4A+4 > 8, which
is not possible.

Claim (ii). g ≥ b.

Suppose that g < b. Using (1, 3, 1, 1, 1, 1) and applying Lemma 6(ii) with
γ = g, x1 = b ≤ 1

3 , we get a contradiction.

Final contradiction. Here E2 > 1 ≥ FG. Therefore (3, 1, 3, 1) holds.
After using the AM-GM inequality we get 4A + D + 4E − 2A2E2(DH)1/2

+ H > 8. The left side is a decreasing function of D and D > 1 − e+h
2 ,

so replacing D by 1 − e+h
2 we get φ(h) = 2 + 4a + 7e

2 + h
2 − 2(1 + a)2

× (1 + e)2(1 − e+h
2 )1/2(1 + h)1/2 > 0. Now φ′′(h) > 0 and 0 < h ≤ a.

Therefore φ(h) ≤ max{φ(0), φ(a)}, which is non-positive for e ≤ 1
2 and

0 < a ≤ 1
2 , giving thereby a contradiction.

Proposition 13. Case (53), i.e. A > 1, B > 1, C ≤ 1, D ≤ 1, E > 1,
F ≤ 1, G > 1, H > 1, does not arise.

Proof. Here a ≤ 1
2 and b ≤ 1

3 by Lemma 3. Working as in Claims (i)
and (ii) of Proposition 12 (Case (51)) and replacing G by F , F by E, and
E by G, we can suppose that EF ≤ 1 and f ≥ b.

Using inequality (2, 2, 2, 1, 1) we have 2b − 2d − 2f + g + h > 0, which
gives d < g+h

2 . Now (3, 1, 2, 1, 1) holds, i.e. 4A − A4DEFGH + D + 4E −
2E2

F +G+H > 8. Using the AM-GM inequality and F ≤ 1 we get 4A+D+
4E − E2 − 2A2E3/2(DGH)1/2 + G + H > 8. The left side is a decreasing
function of E as well as of D, therefore replacing E by 1 and D by 1− g+h

2
we get

2 + 4a+
g + h

2
− 2(1 + a)2

(
1− g + h

2

)1/2

(1 + g + h)1/2 > 0.

Further the left side is a decreasing function of a and a ≥ g+h
2 = x

2 (say).
So we get 2 + 5x

2 − 2(1 + x
2 )2(1 − x

2 )1/2(1 + x)1/2 > 0. This is not possible
for x ≤ 1.

Proposition 14. Case (47), i.e. A > 1, B > 1, C ≤ 1, D > 1, E ≤ 1,
F ≤ 1, G ≤ 1, H > 1, does not arise.

Proof. Here a ≤ 1
2 and b ≤ 1

3 by Lemma 3. As 2F > G, (1, 2, 2, 2, 1)
holds. Therefore we get A+ 2C + 2E + 2G+H > 8, which gives g < a+h

2 .

Claim (i). a > 0.386.
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Suppose a ≤ 0.386. Using the AM-GM inequality in (3, 3, 1, 1) we get
4A+4D+G+H−2A2D2G1/2H1/2 > 8. The left side is a decreasing function
of D as well as of G. So we can replace D by 1 and G by 1 − a+h

2 and get
φ(h) = 2 + 3.5a + 0.5h − 2(1 + a)2(1 + h)1/2(1 − a+h

2 )1/2 > 0. One easily
verifies that φ′′(h) > 0 for 0 < h ≤ a, therefore φ(h) ≤ max{φ(0), φ(a)},
which is negative for a ≤ 0.386. This gives a contradiction.

Claim (ii). d < 0.0265.

Suppose d ≥ 0.0265. Working as in the previous claim and replacing D
by 1.0265 instead of 1 we get a contradiction for a ≤ 1

2 .

Claim (iii). A < 1.4.

Suppose A ≥ 1.4. Then A4EFGH > A3

BD > 3(1.4)3

4×1.0265 > 2. Therefore
inequality (4, 2, 1, 1) holds. Using the AM-GM inequality we get 4A+ 4E +
G + H − 2A5/2E3/2G1/2H1/2 > 8. The left side is a decreasing function of
E as well as of G. Replacing E by 3

4 and G by 1
2 we get φ(H) = 4A+ 3.5 +

H − 2
√

27
128A

5/2H1/2 > 8. As φ′′(H) > 0, we have φ(H) ≤ min{φ(1), φ(A)},
which is negative for 1.4 ≤ A ≤ 1.5. This gives a contradiction.

Claim (iv). B3 ≤ 2D.

Suppose B3 > 2D. Then as CE ≤ 1, we have B4FGHA ≥ B3

D > 2.
Therefore (1, 4, 1, 1, 1) holds. Using F + G ≤ 1 + FG, we get A + 4B −
1
2B

5FGHA+1+FG+H > 8. The left side is a decreasing function of FG and
FG > 1

ABDH > 0.974
ABH , therefore we get A+ 4B− 1

2B
4(0.974) + 1 + 0.974

ABH +H

> 8. We can replace H by A to get 2A + 4B − 0.487B4 + 0.974
A2B

> 7, which
is not true for A < 1.4 and B3 > 2.

Final contradiction. Using Claims (iv) and (ii) we have AEFGH >
1
BD > 1

D(2D)1/3 > 0.766, hence A4EFGH > 0.766A3 > 2 for A > 1.386.

Now (4, 1, 1, 1, 1) holds, which gives 4A− 1
2A

5EFGH + 2 +EFG+H > 8.
The coefficient of EFG is negative so we replace EFG by 0.766

AH . Then the
resulting function is an increasing function of H and H ≤ A, so we get
5A− 1

2 · 0.766A4 + 0.766
A2 > 6, which is not true for 1.386 < A < 1.4.

Proposition 15. Case (59), i.e. A > 1, B > 1, C ≤ 1, D ≤ 1, E ≤ 1,
F > 1, G ≤ 1, H > 1, does not arise.

Proof. Here a≤ 1
2 and b≤ 1

3 by Lemma 3. Using inequalities (1, 2, 2, 2, 1),
(2, 2, 1, 2, 1) and (2, 1, 2, 2, 1) we get

a− 2c− 2e− 2g + h > 0,(4.1)
2b− 2d− e− 2g + h > 0,(4.2)
2b− c− 2e− 2g + h > 0.(4.3)
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Claim (i). A < 1.226.

SupposeA ≥ 1.226. From (4.1), we have e+g < a+h
2 . Therefore AEGH >

(1 + a+ h)(1− a+h
2 ) > 1 for a+ h ≤ 2a ≤ 1. Also A4EFGH > A4EGH >

(1 + a)4(1 − a+h
2 )(1 + h) ≥ min{(1 + a)4(1 − a

2 ), (1 + a)5(1 − a)} > 2. So
(4, 1, 1, 1, 1) holds. This gives 4A− 1

2A
5EFGH + EG+ F +H > 7. As the

coefficient of EG on the left side is negative and EG > (AH)−1, it follows
that 4A − 1

2A
4F + (AH)−1 + F + H > 7. The left side is an increasing

function of H and a decreasing function of F and H ≤ A, F > 1. So we get
5A− 1

2A
4 +A−2 > 6, which is not true for 1 < A ≤ 3/2.

Claim (ii). e+ g > 2b.

Suppose that e + g ≤ 2b. We use (1, 3, 1, 1, 1, 1) and apply Lemma 6(v)
with γ = e+g, δ = a+f+h. We have γ < 1

2δ from (4.1). Since b ≤ a < 0.226
we get a contradiction.

Final contradiction. Using Claim (ii) and inequality (4.2), we get d < h
2 .

Also from (4.3), we have e+ g < b+ h
2 . Using these together with F > 1 in

inequality (1, 2, 1, 1, 1, 1, 1) we get A+4B−2B3HA(1−b− h
2 )(1− h

2 )−b > 3,
i.e. φ(h) = 2+a+3b−2(1+b)3(1+a)(1+h)(1−b− h

2 )(1− h
2 ) > 0. As φ′′(h) > 0

and 0 < h ≤ a, we get φ(h) ≤ min{φ(0), φ(a)}, which can be easily verified
to be negative for 0 < b ≤ a < 0.226. This gives a contradiction.

Proposition 16. Case (24), i.e. A > 1, B > 1, C > 1, D ≤ 1, E > 1,
F ≤ 1, G ≤ 1, H ≤ 1, does not arise.

Proof. Here a ≤ 1, b ≤ 1
2 and c ≤ 1

3 by Lemma 3. Also 2G > 1 ≥ H.
Using inequalities (2, 2, 2, 2) and (2, 2, 2, 1, 1) we get

2b− 2d− 2f − 2h > 0,(4.4)
2b− 2d− 2f − g − h > 0.(4.5)

Claim (i). B > C.

Suppose B ≤ C. Using (2, 2, 3, 1) we have 4A− 2A2

B + 4C − 2C2

D + 4E −
E4HABCD + H > 8. Applying the AM-GM inequality to −A2

B −
C2

D −
E4HABCD and using B ≤ A, D ≤ 1 we get 3A + 4C − C2 + 4E −
3E4/3H1/3AC + H > 8. As the left side is a decreasing function of H, and
h < b from (4.4), we can replace H by 1− b and get 3A+ 4C − C2 + 4E −
3E4/3(1 − b)1/3AC + (1 − b) > 8. Again the left hand side is a decreasing
function of C and C ≥ B, therefore we get 3A+ 4B−B2 + 4E − 3E4/3(1−
b)1/3AB + 1 − b > 8. Similarly replacing E by 1 we get 3A + 4B − B2 −
3(1− b)1/3AB − b > 3. This is not possible for A ≥ B and 1 < B ≤ C ≤ 4

3 .

Claim (ii). a < 3b.
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Suppose a ≥ 3b. Then from (4.5), d + f + g + h < 2b ≤ 2a
3 . Using

(3, 1, 1, 1, 1, 1) and applying Lemma 6(iii) with γ = d+f+g+h, x1 = a ≤ 1,
we get a contradiction.

Claim (iii). b > 0.386.

Suppose b≤0.386. From Claim (i) we have B2>CD, therefore (1, 3, 3, 1)
holds. Applying the AM-GM inequality we get A + 4B + 4E + H −
2B2E2A1/2H1/2 > 8. As the left side is a decreasing function of H and
of E, we can replace successively H by 1 − b and E by 1 to get A + 4B −
b− 2B2A1/2(1− b)1/2 > 3. Further using Claim (ii), A < 1 + 3b < B4(1− b)
for b ≤ 1

2 , so the left side is a decreasing function of A. Replacing A by B

we get 2 + 4b− 2(1 + b)5/2(1− b)1/2 > 0, which is not possible for b ≤ 0.386.

Claim (iv). E4ABCD < 2.

Assume E4ABCD ≥ 2. Therefore (2, 2, 4) holds, i.e. 2B+4C− 2C2

D +4E−
1
2E

5ABCD > 8. Applying the AM-GM inequality and then using A ≥ B,
we get φ(C,E) = 2B+4C+4E−2E5/2C3/2B > 8. As φ(C,E) is a decreasing
function of C and E for B > 1.386, we have φ(C,E) ≤ φ(1, 1) = 8, which
gives a contradiction.

Final contradiction. From Claim (iv) we get FGH > 1
2 , which gives

B4FGHA > 1
2B

5 > 2 for B > 1.386. Therefore (1, 4, 1, 1, 1) holds, i.e.
A + 4B − 1

2B
5FGHA + F + G + H > 8. This implies that A + 4B −

1
2B

5FGHA + 2 + FGH > 8. As the coefficient of FGH on the left side is
negative, replacing FGH by 1

2 we get A+ 4B− 1
4B

5A+ 5
2 > 8, which is not

possible for A ≥ B and B > 1.386.

5. Difficult cases

5.1. Case (8)

Proposition 17. Case (8), i.e. A > 1, B > 1, C > 1, D > 1, E > 1,
F ≤ 1, G ≤ 1, H ≤ 1, does not arise.

Proof.

Claim (i). E4ABCD ≤ 2, E < 1.149 and FGH > 1/2.

Suppose E4ABCD > 2. Inequality (1, 1, 1, 1, 4) is A+B+C+D+4E−
1
2E

5ABCD > 8. This is not true by Lemma 7(ii) with X2 = E, X3 = B,
X4 = C, X5 = D. Therefore E4ABCD ≤ 2. This implies E5 ≤ 2, which
gives E < 1.149. Also FGH = 1

ABCDE ≥
E3

2 > 1
2 .

Claim (ii). A4EFGH ≤ 2 and A ≤
√

2.

Suppose A4EFGH > 2. Then inequality (4, 1, 1, 1, 1) holds, i.e. 4A −
1
2A

5EFGH +E + F +G+H > 8. This implies φ(y) = 4A− 1
2A

5Ey +E +
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2 + y > 8, where y = FGH > 1/2 by Claim (i). As the coefficient of y in
φ(y) is negative, we can replace y by 1

2 to get

(5.1.1) ψ(E) = 4A− 1
4
A5E + E + 2.5 > 8.

We see that ψ(E) ≤ max{ψ(1), ψ(A)}, which can be easily seen to be less
than 8, contradicting (5.1.1). This proves A4EFGH ≤ 2.

Now A4 < A4E ≤ 2
FGH ≤ 4 gives A ≤

√
2.

Claim (iii). C < 1.22; C < 1.1 if A > 1.38.

Suppose C ≥ 1.22. Using (2, 2, 4∗) and the AM-GM inequality we get
φ(x) = 4A + 4C − 4A3/2C3/2x1/2 + 4x1/4 > 8, where x = EFGH. Since
x > FGH > 1

2 and φ(x) is a decreasing function of x, we have φ(x) ≤ φ(1
2),

which can be easily verified to be less than 8 for A ≥ C ≥ 1.22. This
gives a contradiction. Further if A > 1.38, then φ(1

2) < 8 for C ≥ 1.1, a
contradiction.

Final contradiction. Let

(5.1.2) λ =


A if A ≤ 1.22,
1.22 if 1.22 < A ≤ 1.38,
1.1 if 1.38 < A ≤

√
2.

Using (3, 1, 3, 1) and the AM-GM inequality we get 4A + 4E + D + H −
2A2E2

√
D
√
H > 8. The left side of this inequality is a quadratic in

√
H.

Since A4E4D − 4A− 4E −D + 8 > 0, we have

(5.1.3)
√
H < A2E2

√
D − (A4E4D − 4A− 4E −D + 8)1/2 = α (say).

Using the AM-GM inequality in (2, 2, 2, 2), we get 4A + 2D + 4E + 4G −
6AEGC1/3D1/3 > 8, which gives G < (2D + 4A + 4E − 8)(6AEC1/3D1/3

− 4)−1. Substituting this upper bound of G in inequality (1, 2, 2, 2, 1), we
get

(5.1.4) H > 8−A− 2C − 2E − 2
{

2D + 4A+ 4E − 8
6AEC1/3D1/3 − 4

}
= β (say).

From (5.1.3) and (5.1.4) we have β < α2. On simplifying we get

φ(C) =
{
A4E4D − 3A

2
− E − D

2
+ C +

2D + 4A+ 4E − 8
6AEC1/3D1/3 − 4

}
(5.1.5)

−A2E2{A4E4D2 − 4AD − 4ED −D2 + 8D}1/2 > 0.

One can see that φ(C) is an increasing function of C. From Claim (iii), we
have C ≤ λ. Therefore φ(C) ≤ φ(λ), which gives

(5.1.6) ψ(D) =
{
A4E4D − 3A

2
− E − D

2
+ λ+

2D + 4A+ 4E − 8
6EAλ1/3D1/3 − 4

}
−A2E2{A4E4D2 − 4AD − 4ED −D2 + 8D}1/2 > 0.
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ψ′(D) = A4E4 − 1
2

+
2EAλ1/3D1/3 − 2− (2A+ 2E − 4)EAλ1/3D−2/3

(3EAλ1/3D1/3 − 2)2

− A2E2{A4E4D − 2A− 2E −D + 4}
{A4E4D2 − 4AD − 4ED −D2 + 8D}1/2

.

We first prove that ψ′(D) < 0 for 1 < D ≤ A, 1 < A ≤
√

2 and 1 < E <
1.149. Let

(5.1.7) (µ1, µ2) =


(0.42, 0.08) if A ≤ 1.22,
(0.44, 0.06) if 1.22 < A ≤ 1.38,
(0.45, 0.05) if 1.38 < A ≤

√
2.

Let ψ′(D) = P +Q where

P = A4E4 − µ1 −
A2E2{A4E4D − 2A− 2E −D + 4}

{A4E4D2 − 4AD − 4ED −D2 + 8D}1/2
,

Q =
2EAλ1/3D1/3 − 2− (2A+ 2E − 4)EAλ1/3D−2/3

(3EAλ1/3D1/3 − 2)2
− µ2.

To prove ψ′(D) < 0, we show that P < 0 and Q < 0 for 1 < D ≤ A,
1 < A ≤

√
2 and 1 < E < 1.149.

Now P < 0 if θ1(D) = (A4E4−µ1)2(A4E4D2−4AD−4ED−D2+8D)−
A4E4{A4E4D− 2A− 2E−D+ 4}2 < 0. As θ1(D) is an increasing function
of D, so θ1(D) ≤ θ1(A) which is a function in two variables A and E and can
be shown to be negative by plotting its 3-dimensional surface graph for 1 <
E < 1.149 and µ1 as given in (5.1.7) (using the package Mathematica 5.1).

Further Q < 0 if θ2(D,E) = EAλ1/3D1/3−1−(A+E−2)EAλ1/3D−2/3−
1
2µ2(3EAλ1/3D1/3−2)2 < 0. One finds that θ2(D,E) is a decreasing function
of E and an increasing function of D, therefore θ2(D,E) ≤ θ2(A, 1) =
λ1/3A1/3− 1

2µ2(3λ1/3A4/3− 2)2− 1, which is negative for λ and µ2 as given
in (5.1.2) and (5.1.7) respectively.

Thus ψ(D) is a decreasing function of D, therefore ψ(D) ≤ ψ(1), where

ψ(1) =
{
A4E4 − 3A

2
− E − 1

2
+ λ+

4A+ 4E − 6
6EAλ1/3 − 4

}
−A2E2{A4E4 − 4A− 4E + 7}1/2.

This is again a function in two variables A and E and can be shown to be
negative by plotting its 3-dimensional surface graph for 1 < E < 1.149 and
λ as given in (5.1.2) (using Mathematica 5.1), which gives a contradiction
to (5.1.6).

5.2. Case (15)

Proposition 18. Case (15), i.e. A > 1, B > 1, C > 1, D > 1, E ≤ 1,
F ≤ 1, G ≤ 1, H > 1, does not arise.
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Proof. The proof of this case is similar to that of Case (8).

Claim (i). D4HABC ≤ 2, D < 1.149 and EFG > 1/2.

Suppose D4HABC > 2. We use inequality (1, 1, 1, 4, 1) and proceed as
in Claim (i) of Case (8) to get the desired result.

Claim (ii). A4EFGH ≤ 2, A ≤
√

2 and H < 1.31951.

Suppose A4EFGH > 2. Then we use inequality (4, 1, 1, 1, 1) and proceed
as in Claim (ii) of Case (8). For the bound on H we notice that H5 ≤ A4H ≤

2
EFG ≤ 4 gives H < 1.31951.

Claim (iii). B4FGHA ≤ 2, B4HA < 4 and B < 1.31951.

Suppose B4FGHA > 2. Then inequality (1, 4, 1, 1, 1) holds, i.e. A+4B−
1
2B

5FGHA + F + G + H > 8. Let z = FG. This gives φ(z) = A + 4B −
1
2B

5zHA+ 1 + z +H > 8. By Claim (i), z > EFG > 1
2 . As the coefficient

of z is negative, we can replace z by 1
2 to get

(5.2.1) ψ(H) = A+ 4B − 1
4
B5HA+H + 1.5 > 8.

We have ψ(H) ≤ max{ψ(1), ψ(A)}. Let ψ(1) = A + 4B − 1
4B

5A + 2.5 =
ϕ(B). One finds that ϕ(B) has a maximum at B = ( 16

5A)1/4 and therefore
ϕ(B) ≤ ϕ(( 16

5A)1/4), which is less than 8 for 1 < A ≤
√

2. Let ψ(A) =
2A + 4B − 1

4B
5A2 + 1.5 = ϑ(B). It is easily seen that ϑ(B) ≤ ϑ(( 16

5A2 )1/4),
which is less than 8 for 1 < A ≤

√
2. This contradicts (5.2.1).

Now B5 ≤ B4AH ≤ 2
FG < 4 gives B < 41/5 < 1.31951.

Final contradiction. Let

(5.2.2) λ =


A if A ≤ 1.284 and 1 < H ≤ A,
1.31951 if A > 1.284 and 1 < H ≤ 1.15,
1.284 if A > 1.284 and 1.15 < H ≤ 1.25,
1.257 if A > 1.284 and 1.25 < H ≤ 1.31951.

Since B ≤ A and B4HA < 4 by Claim (iii), we get B ≤ λ.
Using (3, 3, 1, 1) and the AM-GM inequality we get 4A+ 4D+G+H −

2A2D2
√
G
√
H > 8. The left side of this inequality is a quadratic in

√
G.

Since A4D4H − 4A− 4D −H + 8 > 0, we have

(5.2.3)
√
G < A2D2

√
H − (A4D4H − 4A− 4D −H + 8)1/2 = α (say).

Also inequality (1, 2, 2, 2, 1) on using the AM-GM inequality gives A+ 4B+
4D + 4F + H − 6BDFA1/3H1/3 > 8, which gives F < (A + 4B + 4D + H
−8)(6BDA1/3H1/3−4)−1. Substituting this upper bound of F in inequality
(2, 2, 2, 1, 1), we get

(5.2.4) G > 8− 2B − 2D −H − 2
{
A+ 4B + 4D +H − 8

6BDA1/3H1/3 − 4

}
= β (say).
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From (5.2.3) and (5.2.4), we have β < α2. On simplifying we get

φ(B) =
{
A4D4H − 2A−D +B +

A+ 4B + 4D +H − 8
6BDA1/3H1/3 − 4

}2

(5.2.5)

−A4D4{A4D4H2 − 4AH − 4DH −H2 + 8H} > 0,

φ′(B) =
{
A4D4H − 2A−D +B +

A+ 4B + 4D +H − 8
6BDA1/3H1/3 − 4

}
×
{

1 +
−16 + 6DA1/3H1/3(8−A− 4D −H)

(6BDA1/3H1/3 − 4)2

}
.

One finds that φ′(B) > 0 if ψ(A,D,H) = 6DA1/3H1/3 − A− 4D −H > 0.
Nowψ(A,D,H) is an increasing function ofD,H andA, thereforeψ(A,D,H)
> ψ(1, 1, 1) = 0. Hence φ(B) is an increasing function of B. Since B ≤ λ,
we have φ(B) ≤ φ(λ) where λ is as given in (5.2.2). From (5.2.5), we get

ϕ(H) =
{
A4D4H − 2A−D + λ+

A+ 4λ+ 4D +H − 8
6λDA1/3H1/3 − 4

}2

(5.2.6)

−A4D4{A4D4H2 − 4AH − 4DH −H2 + 8H} > 0.

Write ϕ(H) = (χ1(H))2 − χ2(H), which gives

ϕ′′(H) = 2(χ′1(H))2 + 2χ1(H)χ′′1(H)− χ′′2(H),

where

χ1(H) = A4D4H − 2A−D + λ+
A+ 4λ+ 4D +H − 8

6λDA1/3H1/3 − 4
,

χ2(H) = A4D4{A4D4H2 − 4AH − 4DH −H2 + 8H}.
For 1 < D < 1.149 and λ as defined in (5.2.2), one can show that ϕ′′(H) > 0
by proving that 2(χ′1(H))2 − χ′′2(H) > 0, χ1(H) > 0 and χ′′1(H) > 0. Let

(5.2.7) (µ1, µ2) =


(1, A) if A ≤ 1.284 and λ = A,
(1, 1.15) if A > 1.284 and λ = 1.31951,
(1.15, 1.25) if A > 1.284 and λ = 1.284,
(1.25, 1.31951) if A > 1.284 and λ = 1.257.

From (5.2.2) and (5.2.7), we have µ1≤H≤µ2. Therefore ϕ(H)≤max{ϕ(µ1),
ϕ(µ2)}. Now ϕ(µ1) and ϕ(µ2) are functions in two variables A andD and can
be shown to be negative in each of the cases, by plotting their 3-dimensional
surface graphs for 1 < D < 1.149 and 1 < A ≤

√
2 (using Mathematica

5.1), which gives a contradiction to (5.2.6).

5.3. Case (16)

Proposition 19. Case (16), i.e. A > 1, B > 1, C > 1, D > 1, E ≤ 1,
F ≤ 1, G ≤ 1, H ≤ 1, does not arise.
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Proof. Here c ≤ 1
2 , d ≤ 1

3 , f ≤ 1
3 , g ≤ 1

2 by Lemma 3. Also H ≥ 4
9D, F ≥

4
9B, H ≥ 8B

27 and G ≥ 4
9C. Since the lattice generated by (A2, 0, 0, . . . , 0),

(a3,2, A3, 0, . . . , 0), . . . , (a8,2, a8,3, . . . , a8,7, A8) in R7 has no point in the in-
terior of the sphere with radius A2 centred at the origin, it follows that
∆(A2S7) ≤ A2A3 · · ·A8, which gives B7∆2(S7) ≤ BCDEFGH = 1

A ≤
1
B .

Hence B8 ≤ 64, which gives b < 0.69. Also 2E > 1 ≥ F , 2F > 1 ≥ G
and 2G > 1 ≥ H. Using inequalities (2, 2, 2, 2), (1, 2, 2, 2, 1), (1, 2, 2, 1, 2),
(2, 1, 2, 1, 2), (2, 2, 2, 1, 1), and (2, 1, 2, 2, 1) we get

2b+ 2d− 2f − 2h > 0,(5.3.1)
a+ 2c− 2e− 2g − h > 0,(5.3.2)
a+ 2c− 2e− f − 2h > 0,(5.3.3)
2b+ c− 2e− f − 2h > 0,(5.3.4)
2b+ 2d− 2f − g − h > 0,(5.3.5)
2b+ c− 2e− 2g − h > 0.(5.3.6)

First we prove that if d ≥ 1
8 and λ and µ are positive functions of d such

that b ≤ λ and a ≥ µ then

(5.3.7) D4HABC ≥ min


D4(1− µ)(1 + µ)2,
D4(1− λ)(1 + λ)2,
4
9D

5(1 + µ)2(19
9 −

8d
9 − 2µ),

4
9D

5(1 + λ)2(19
9 −

8d
9 − 2λ).

Since h ≤ 5
9 −

4d
9 and also h ≤ b+ c

2 from (5.3.4), we divide the proof of
(5.3.7) into two cases.

If c ≤ 10
9 − 2b − 8d

9 , i.e. b + c
2 ≤

5
9 −

4d
9 then D4HABC > D4(1 −

b − c
2)ABC = φ(c), say. As φ′′(c) < 0, we have D4HABC > min{φ(0),

φ(10
9 −2b− 8d

9 )}. Now φ(0) = D4(1−b)(1+a)(1+b) and b ≤ min(a, λ), a ≥ µ,
therefore we find that φ(0) ≥ min{D4(1 − µ)(1 + µ)2, D4(1 − λ)(1 + λ)2}.
Further φ(10

9 −2b− 8d
9 ) = 4

9D
5AB(19

9 −
8d
9 −2b) = ψ(b), say. As ψ′(b) < 0 for

d ≥ 1
8 we get ψ(b) ≥ ψ(min(a, λ)), which gives the desired result for a ≥ µ.

If c > 10
9 − 2b − 8d

9 then D4HABC > 4
9D

5AB(19
9 −

8d
9 − 2b) = ψ(b),

which has already been dealt with. This proves (5.3.7).

Claim (i). d < 0.155.

Suppose d ≥ 0.155. We first show that D4HABC > 2. If B > 3
2 , we

get this by using H ≥ 4
9D,A ≥ B and C > 1. For B ≤ 3

2 we get this
by (5.3.7) with λ = 1

2 , µ = d ≥ 0.155. So (3, 4, 1) holds. Therefore 4A −
A4DEFGH + 4D − 1

2D
5HABC + H > 8. Using the AM-GM inequality

we get 4A+ 4D −
√

2A2D5/2H1/2 +H > 8. As the left side is a decreasing
function of H and H ≥ 4

9D, we get 4A + 40
9 D −

2
√

2
3 A2D3 > 8. Further,
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as a function of A, the left side has maximum at A = 3√
2D3 , therefore we

get 40
9 D + 6√

2D3 > 8. This inequality does not hold for 1.155 ≤ D ≤ 4
3 . For

future reference we notice that in fact it does not hold for D > 1.12: see
Claims (v) and (vii).

Claim (ii). C < 1.322 and A < 1.983.

Assume C ≥ 1.322. Then since EF < 1, we get C4GHAB > C3

D > 2
for D < 1.155. Therefore (2, 4, 2) holds, i.e. 4A− 2A2

B + 4C − 1
2C

5GHAB +
4G − 2G2

H > 8. Using the AM-GM inequality we get 4A− A2

B + 4C + 4G −
3AGC5/3 > 8. The left side is a decreasing function of G and G ≥ 4C

9 ,
therefore we get 4A − A2

B + 52C
9 −

4
3AC

8/3 > 8. Further the left side is a
decreasing function of C as well as of A. Therefore we can replace C by
1.322 and A by B to get 3B + 52×1.322

9 − 4
3B(1.322)8/3 > 8, which is not

possible for B < 1.69. So we must have C < 1.322. Since A ≤ 3
2C we get

A < 1.983.

Claim (iii). B < 1.4509.

Suppose B ≥ 1.4509. Using Claims (i) and (ii) we get B4FGHA ≥
B3

CD > 2. Therefore (1, 4, 2, 1) holds, i.e. A+4B− 1
2B

5FGHA+4F− 2F 2

G +H
> 8. Using the AM-GM inequality we get

(5.3.8) A+ 4B + 4F +H − 2B5/2F 3/2H1/2A1/2 > 8.

Now the left side of (5.3.8) is a decreasing function of F as well as of H. We
shall use different lower bounds of F and of H for different ranges of B.

Case 1: B > 1.586. Here we replace H by 8B
27 and F by 4B

9 to get
A+ 164B

27 − 2(8B
27 )1/2(4B

9 )3/2B5/2A1/2 > 8, which is not true for 1.586 < B ≤
A < 1.983.

Case 2: 1.47 < B ≤ 1.586.

Subcase 2.1: H ≥ 5.8
9 . Here we replace H by 5.8

9 , F by 4B
9 and get

A + 52B
9 + 5.8

9 − 2(4B
9 )3/2(5.8

9 )1/2B5/2A1/2 > 8, which is not possible for
1.47 < B ≤ 1.586 and B ≤ A < 1.983.

Subcase 2.2: H < 5.8
9 , i.e. 3.2

9 < h ≤ 5
9 . From (5.3.1) and Claim (i),

we have F > 1 − b − d + h > 1 − b − 0.155 + h. Here we replace F by
1−b−0.155+h to get φ(h) = A+4B+4(1−b−0.155+h)+H−2(1−b−0.155
+h)3/2H1/2B5/2A1/2 > 8. As φ′′(h) > 0, we have φ(h) < max{φ(3.2

9 ), φ(5
9)}.

A simple calculation shows that φ(3.2
9 ) < 8 and φ(5

9) < 8 for 1.47 ≤ B ≤
1.586 and B ≤ A < 1.983, which gives a contradiction.

Case 3: 1.4509 ≤ B ≤ 1.47. In this case we work as in Case 2 above
partitioning the interval for H into the subcases H ≥ 6.5

9 and H < 6.5
9 .
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In Claims (iv), (v), (xvi), (xxi) and final contradiction we shall divide
the discussion into two cases g + h ≤ αa + βd and g + h > αa + βd for
different choices of α and β.

Claim (iv). a > 0.245.

Suppose a ≤ 0.245.

Case 1: g+ h ≤ 1.6d+ 0.52a. Using inequality (3, 3, 1, 1) we have 4A−
A4DEFGH+4D−D4GHABC+G+H > 8. Using the AM-GM inequality
we get 4A+ 4D − 2A2D2

√
GH +G+H > 8. This implies that

(5.3.9) 2 + 4a+ 4d− (g + h)− 2(1 + a)2(1 + d)2(1− g − h)1/2 > 0.

As the left side is an increasing function of g + h and g + h ≤ 1.6d+ 0.52a,
we get φ(d) = 2 + 4a + 4d − (1.6d + 0.52a) − 2(1 + a)2(1 + d)2(1 − 1.6d −
0.52a)1/2 > 0. As φ′′(d) > 0 and 0 < d ≤ min(a, 0.155), we have φ(d) ≤
max{φ(0), φ(min(a, 0.155))}. Now one can easily check that φ(0) < 0 for
0 < a ≤ 0.245; φ(a) < 0 for 0 < a ≤ 0.155; and φ(0.155) < 0 for 0.155 <
a ≤ 0.245. This gives a contradiction.

Case 2: g + h > 1.6d + 0.52a. Using (5.3.5) we get f < b + 0.2d −
0.26a. Inequality (1, 2, 2, 2, 1) after using AM-GM gives A+4B+4D+4F −
6BDFA1/3H1/3 +H > 8. As the left side is a decreasing function of H and
H > 1− b− d+ f , we get

(5.3.10) φ(f) = 6 + a+ 3b+ 3d− 3f − 6BDFA1/3(1− b− d+ f)1/3 > 0.

Since φ′′(f) > 0 and 0 < f < b + 0.2d − 0.26a, we have φ(f) <
max{φ(0), φ(b+0.2d−0.26a)}. Let φ(0) = 6+a+3b+3d−6BDA1/3(1−b−
d)1/3 = ψ(a). As ψ′(a) < 0 and a ≥ b, we have ψ(a) ≤ ψ(b) = 6 + 4b+ 3d−
6DB4/3(1−b−d)1/3, which can be verified to be negative for 0 < b ≤ 0.4509
and 0 < d ≤ 0.155. Thus for b, d lying in these intervals and a ≥ b we al-
ways have φ(0) < 0. At the other end point of f , let φ(b + 0.2d− 0.26a) =
6+1.78a+2.4d−6BD(1− b−0.2d+0.26a)A1/3(1−0.8d−0.26a)1/3 = ϑ(b).
As ϑ′′(b) > 0 and 0 < b ≤ a, we have ϑ(b) ≤ max(ϑ(0), ϑ(a)). One can easily
check that ϑ(0) and ϑ(a) are negative for 0 < a ≤ 0.245 and 0 < d ≤ 0.155.
This gives a contradiction.

Claim (v). a > 0.285.

Suppose a ≤ 0.285. Under this assumption we first see that d < 0.144.
If d ≥ 0.144, we get D4HABC > 2 by (5.3.7) with λ = 0.285, µ = 0.245. So
inequality (3, 4, 1) gives a contradiction as in Claim (i).

Case 1: g+h ≤ 1.53d+0.69a. Using inequality (3, 3, 1, 1) and proceeding
as in Case 1 of Claim (iv), we get φ(d) = 2 + 4a + 4d − (1.53d + 0.69a) −
2(1 +a)2(1 +d)2(1−1.53d−0.69a)1/2 > 0, which is not possible for 0.245 <
a ≤ 0.285 and 0 < d < 0.144.
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Case 2: g + h > 1.53d + 0.69a. From (5.3.5) we get f < b + 0.235d
− 0.345a. Using inequality (1, 2, 2, 2, 1) and proceeding as in Case 2 of
Claim (iv), we just need to check that (5.3.10) is not true at the end point
f = b + 0.235d − 0.345a. A simple calculation shows that φ(b + 0.235d −
0.345a) < 0 for 0 < b ≤ a, 0 < d < 0.144 and 0.245 < a ≤ 0.285. This gives
a contradiction.

Claim (vi). b > 0.178.

Inequality (2, 1, 5∗) gives

(5.3.11) φ(C) = 4A− 2A2

B
+ C +

5
(ABC)1/5

> 8.

As φ(C) is an increasing function of C and C ≤ min(A, 1.322), we get
φ(C) ≤ φ(min(A, 1.322)). When 1 ≤ B ≤ 1.178, one finds that φ(A) < 8 for
1.285 < A ≤ 1.322 and φ(1.322) < 8 for 1.322 < A < 1.983. This contradicts
(5.3.11).

Claim (vii). d < 0.147.

Taking λ = 0.4509, µ = 0.285 in (5.3.7) we get D4HABC > 2 for
d ≥ 0.147. Now inequality (3, 4, 1) gives a contradiction as in Claim (i).

Claim (viii). F < 0.82.

Suppose F ≥ 0.82, i.e. f ≤ 0.18. Using (1, 2, 2, 2, 1) and proceeding as in
Case 2 of Claim (iv), we just need to check that (5.3.10) is not true at the
end point f = 0.18. Now φ(0.18) = ψ(a) is a decreasing function of a and
a ≥ max{b, 0.285}, therefore ψ(a) ≤ ψ(max(b, 0.285)), which is negative for
0 < d < 0.147.

Claim (ix). C < 1.2345.

Suppose C ≥ 1.2345. Then using bounds on D and F from Claims (vii)
and (viii) we have

(5.3.12) C4GHAB =
C3

DEF
≥ C3

DF
>

C3

1.147× 0.82
> 2.

Case 1: G > 0.59. Inequality (2, 4, 2) holds. Applying the AM-GM in-
equality we get

4A− 2A2

B
+ 4C + 4G− 2C5/2G3/2A1/2B1/2 > 8.

The left hand side is a decreasing function of both G and A, therefore
replacing G by 0.59 and A by B we get 2B+4C+2.36−2C5/2(0.59)3/2B > 8,
which is not true for 1.178 < B < 1.4509 and 1 < C < 1.322.
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Case 2: G ≤ 0.59. Inequality (2, 4, 1, 1) holds, therefore we have

4A− 2A2

B
+ 4C − 1

2
C5GHAB +G+H > 8.

As H > 1 − 2b − c + 2g from (5.3.6) and the left hand side is a decreasing
function of H, we get ψ(g) = 4A − 2A2

B + 4C − 1
2C

5(1 − g)(1 − 2b − c +
2g)AB + 2 − 2b − c + g > 8. As ψ′′(g) > 0 and 0.41 ≤ g < 1

2 , we have
ψ(g) ≤ max{ψ(0.41), ψ(1

2)}, which can be easily verified to be less than 8
for 0.178 < b < 0.4509 and 0 < c < 0.322. This gives a contradiction.

Claim (x). b < 0.415.

Suppose b≥0.415. Then using Claims (ix) and (vii) we obtain B4FGHA

> B3

CD > 2 and therefore (1, 4, 2, 1) holds, which yields inequality (5.3.8).
The left side of (5.3.8) is a decreasing function of H. Also from (5.3.1)
and Claim (vii), we have H > 1 − b − d + f > 1 − b − 0.147 + f . So we
replace H by 1 − b − 0.147 + f to get φ(f) = 2 + a + 3b − 0.147 − 3f −
2(1 − b − 0.147 + f)1/2(1 − f)3/2B5/2A1/2 > 0. As φ′′(f) > 0 we have
φ(f) < max{φ(0.18), φ(1

3)}. A simple calculation shows that φ(0.18) < 0
and φ(1

3) < 0 for 0.415 ≤ b < 0.4509 and b ≤ a < 0.983, which gives a
contradiction. We note that inequality (1, 4, 2, 1) gives a contradiction even
for 0.27 ≤ b ≤ 0.4509 and 0.285 < a < 0.983.

Claim (xi). F < 0.811.

Suppose F ≥ 0.811, i.e. f ≤ 0.189. Working as in Claim (viii) we get a
contradiction. Now we use 0.178 < b < 0.415 in place of 0.178 < b < 0.4509.

Claim (xii). C < 1.23.

If C ≥ 1.23, using upper bounds on D and F from Claims (vii) and (xi)
in (5.3.12) and working as in Claim (ix) we get a contradiction.

Claim (xiii). D4HABC ≤ 2 and G > 0.64.

Suppose D4HABC > 2. Then (2, 1, 4, 1) holds, i.e.

(5.3.13) 4A− 2A2

B
+ C + 4D − 1

2
D5HABC +H > 8.

From (5.3.4) we have H > 1 − b − c
2 . The left hand side of (5.3.13) is a

decreasing function of both H and A, therefore we can replace H by 1−b− c
2

and A by B to get φ(c) = b+ c
2 +4d− 1

2(1+d)5(1− b− c
2)(1+ b)2(1+ c) > 0.

Now φ′′(c) > 0 and 0 < c < 0.23, therefore φ(c) < max{φ(0), φ(0.23)},
which is negative for 0.178 < b < 0.415 and 0 < d < 0.147. This gives a
contradiction. Therefore D4HABC ≤ 2.

This gives EFG ≥ 1
2 . Therefore 1

2 ≤ EFG < 3
2G(0.811)G and hence

G > 0.64.
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Claim (xiv). A < 1.587.

Suppose A ≥ 1.587. Then A4EFGH = A3

BCD > A3

1.415×1.23×1.147 > 2.
Therefore (4, 2, 2) holds. Applying the AM-GM inequality we have

4A+ 4E + 4G− 3 · 21/3A5/3EG > 8.

The left hand side is a decreasing function of bothG and E. Therefore we can
replace G by 0.64 and E by 0.75 to get 4A+3+2.56−3 ·21/3A5/3(0.48) > 8,
which is not true for A ≥ 1.587; in fact, it is not true even for A ≥ 1.54.

Claim (xv). d < 0.14312.

Taking λ = 0.415, µ = 0.285 in (5.3.7) we get D4HABC > 2 for d ≥
0.14312, which contradicts Claim (xiii).

Claim (xvi). b > 0.27.

Suppose b ≤ 0.27.

Case 1: g+h ≤ 1.45d+0.6a. Using inequality (3, 3, 1, 1) and proceeding
as in Case 1 of Claim (iv), we get φ(d) = 2 + 4a + 4d − (1.45d + 0.6a) −
2(1 + a)2(1 + d)2(1− 1.45d− 0.6a)1/2 > 0, which is not possible for 0.285 <
a ≤ 0.587 and 0 < d < 0.14312.

Case 2: g+h > 1.45d+0.6a. From (5.3.5) we get f < b+0.275d−0.3a.
Using inequality (1, 2, 2, 2, 1) and proceeding as in Case 2 of Claim (iv), we
just need to check that (5.3.10) is not true at the end point f = b+0.275d−
0.3a. A simple calculation shows that φ(b+ 0.275d− 0.3a) < 0 for b ≤ 0.27,
0 < d < 0.14312 and 0.285 < a < 0.587. This gives a contradiction.

Claim (xvii). e+ g > 0.34a+ 0.46c.

Suppose e+ g ≤ 0.34a+ 0.46c. Using inequality (2, 2, 2, 2) and applying
the AM-GM inequality we have

2 + a+ c− (e+ g)− 2(1 + a)3/4(1 + c)3/4(1− e− g)3/4 > 0.

The left side is an increasing function of e+ g so replacing e+ g by 0.34a+
0.46c we get 2 + a+ c− (0.34a+ 0.46c)− 2(1 + a)3/4(1 + c)3/4(1− 0.34a−
0.46c)3/4 > 0, which is not true for 0.285 < a < 0.587 and 0 < c < 0.23.

Claim (xviii). d < 0.1083.

From Claim (xvii) and (5.3.2), we have h < 0.32a+ 1.08c. If d ≥ 0.1083,
then D4HABC > D4(1−0.32a−1.08c)ABC > D4(1−0.32×0.285−1.08×
0.23)× 1.285× 1.27× 1.23 > 2. This is a contradiction to Claim (xiii).

Claim (xix). C < 1.21592.

If C ≥ 1.21592, using upper bounds on D and F from Claims (xviii) and
(xi) in (5.3.12) and working as in Claim (ix) we get a contradiction.

Claim (xx). B4FGHA ≤ 2, B < 1.392 and A < 1.554.
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Suppose B4FGHA>2. Then (1, 4, 2, 1) holds. Proceeding as in Claim (x)
we get a contradiction for b>0.27. Now 2≥B4FGHA> B3

CD >
B3

1.21592×1.1083

implies B < 1.392. Similarly if A ≥ 1.554, we have A4EFGH = A3

BCD >
A3

1.392×1.21592×1.1083 > 2; then proceeding as in Claim (xiv), inequality (4, 2, 2)
gives a contradiction.

Claim (xxi). a > 0.384.

Suppose a ≤ 0.384.

Case 1: g + h < 1.5d + 0.7a. Using (3, 3, 1, 1) and proceeding as in
Case 1 of Claim (iv) we get a contradiction for 0.285 < a ≤ 0.384 and
0 < d < 0.1083.

Case 2: g + h ≥ 1.5d + 0.7a. From (5.3.5) we get f < b + 0.25d −
0.35a. Inequality (1, 2, 2, 2, 1) with the AM-GM inequality gives A + 4B −
2B2

C + 4D + 4F +H − 4(DF )3/2(HABC)1/2 > 8. As the left hand side is a
decreasing function of H and an increasing function of C, we can replace H
by 1− b− d+ f and C by 1.21592 to get

φ(f) = 6 + a+ 3b+ 3d− 3f − 2B2

1.21592
− 4(DF )3/2{1.21592AB(1− b− d+ f)}1/2 > 0.

One easily checks that φ′′(f) > 0, therefore φ(f) < max{φ(0.189), φ(b +
0.25d − 0.35a)}. Let φ(0.189) = ψ(a). It is a decreasing function of a. Re-
placing a by b one can easily verify that φ(0.189) = ψ(a) ≤ ψ(b) < 0
for 0.27 < b < 0.384 and 0 < d < 0.1083. Let φ(b + 0.25d − 0.35a) = θ(b).
A simple calculation shows that θ(b) is an increasing function of b. Therefore
φ(b+ 0.25d− 0.35a) = θ(b) ≤ θ(a), which is negative for 0.285 < a < 0.384
and 0 < d < 0.1083. This gives a contradiction.

Claim (xxii). e+ g > 0.34a+ 0.5c.

Suppose e + g ≤ 0.34a + 0.5c. Proceeding as in Claim (xvii) and using
inequality (2, 2, 2, 2) we get a contradiction for 0.384 < a < 0.554 and 0 <
c < 0.21592.

Claim (xxiii). d < 0.09072, c < 0.21, b < 0.3821 and a < 0.54.

From (5.3.2) and Claim (xxii) we get h < 0.32a + c. Proceeding as
in Claim (xviii), we find that D4HABC > 2 for d ≥ 0.09072, which is a
contradiction to Claim (xiii). Thus we have d < 0.09072. Using this improved
bound of d and working as in Claim (xix) we get C < 1.21. This in turn
gives b < 0.3821 as B3 < 2CD from Claim (xx). Now A4EFGH > 2 for
a ≥ 0.54. Therefore (4, 2, 2) holds and proceeding as in Claim (xiv) we get
a contradiction.



Conjectures of Minkowski and Woods for n = 8 365

Final contradiction. If g + h < 1.46d + 0.66a then using (3, 3, 1, 1) and
proceeding as in Case 1 of Claim (xxi) we get a contradiction for 0.384 <
a < 0.54 and 0 < d < 0.09072. If g + h ≥ 1.46d+ 0.66a, we get from (5.3.5)
that f < b+0.27d−0.33a. Now working as in Case 2 of Claim (xxi) we have

φ(f) = 6+a+3b+3d−3f− 2B2

1.21
−4(DF )3/2{1.21AB(1−b−d+f)}1/2 > 0.

Since φ′′(f) > 0, we obtain φ(f) < max{φ(0.189), φ(b+ 0.27d− 0.33a)}. As
in Claim (xxi), one can easily verify that φ(0.189) < 0 for a ≥ b, 0.27 <
b < 0.3821 and 0 < d < 0.09072. Let φ(b+ 0.27d− 0.33a) = θ(b). As before
θ(b) is an increasing function of b and b < 0.3821. Therefore φ(b + 0.27d −
0.33a) = θ(b) < θ(0.3821), which is negative for 0.384 < a < 0.54 and
0 < d < 0.09072. This gives a contradiction.

5.4. Case (29)

Proposition 20. Case (29), i.e. A > 1, B > 1, C > 1, D ≤ 1, E ≤ 1,
F ≤ 1, G > 1, H > 1, does not arise.

Proof. Here b ≤ 1
2 , c ≤ 1

3 , e ≤ 1
3 by Lemma 3. Also 2D > 1 ≥ E,

2E ≥ 1 > F and 2F > 1 ≥ G. Using inequalities (1, 1, 2, 2, 1, 1), (2, 2, 2, 1, 1),
(1, 2, 1, 2, 1, 1) and (1, 2, 2, 1, 1, 1) we get

a+ b− 2d− 2f + g + h > 0,(5.4.1)
2b− 2d− 2f + g + h > 0,(5.4.2)

a+ 2c− d− 2f + g + h > 0,(5.4.3)
a+ 2c− 2e− f + g + h > 0.(5.4.4)

Claim (i). a < 0.588.

Suppose a ≥ 0.588. Then A6GH > A6 > 16. Therefore inequality (6, 1, 1)
holds. That is, 4A − 1

16A
7GH + G + H > 8. As the left hand side is a

decreasing function of G and of H, we can replace G as well as H by 1 to
get 4A− 1

16A
7 > 6, which is not true for a ≥ 0.588.

Claim (ii). C4GHAB < 2 and c < 0.149.

Suppose C4GHAB ≥ 2. Therefore (1, 1, 4, 1, 1) holds, i.e. A+B + 4C −
1
2C

5GHAB +G+H > 8, which is not true, by Lemma 7(ii) with X2 = C,
X3 = B, X4 = G, X5 = H.

Now C4GHAB < 2 implies C5 < 2 and so c < 0.149.

Claim (iii). b < 0.322.

Suppose b ≥ 0.322. Then B5GHA ≥ B6 > 16
3 . Therefore (1, 5, 1, 1) holds,

i.e. A+ 4B − 3
16B

6GHA+G+H > 8. As usual we can replace G, H by 1
and A by B to get 5B − 3

16B
7 > 6, which is not true for B ≥ 1.322.

Claim (iv). b < 0.202.
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Suppose b ≥ 0.202. We first show that B4FGHA > 2. Let g + h = k.
We consider the following cases:

Case 1: k < a. Here using f < b+ k
2 from (5.4.2) we have B4FGHA >

(1 + b)4(1 + a)(1− b− k
2 )(1 + k) = φ(k) ≥ min{φ(0), φ(a)} > 2 for b ≤ a <

0.588 and 0.202 ≤ b < 0.322.

Case 2: k ≥ a, a ≥ 0.4. Here using F > 1
2 , we have B4FGHA >

1
2(1.202)4(1.4)2 > 2.

Case 3: k ≥ a, a < 0.4. B4FGHA > (1 + b)4(1 + a)(1− b− k
2 )(1 + k) =

φ(k) ≥ min{φ(a), φ(2a)} > 2 for b ≤ a < 0.4 and 0.202 ≤ b < 0.322.
Therefore inequality (1, 4, 1, 1, 1) holds, i.e. A+ 4B − 1

2B
5FGHA+F +

G + H > 8. Since the left side of this inequality is a decreasing function
of B, we can replace B by 1.202 to get

(5.4.5) A+ 4.808− 1
2

(1.202)5AFGH + F +G+H > 8.

We have 2F ≥ C and F ≥ 2
3D, i.e. 1 − c ≥ 2f and d

2 ≥
3f−1

4 . Also from
(5.4.3), c+ a+g+h

2 > f + d
2 . Adding all these we get f < 1

3 + 2(a+g+h)
15 . Now

the coefficient of F on the left hand side of (5.4.5) is negative so we can
replace F by 1− 1

3 −
2(a+g+h)

15 to get

(5.4.6) χ(g, h) = 0.475 +
13(a+ g + h)

15

− (1.254)(1 + a)(1 + g)(1 + h)
{

2
3
− 2(a+ g + h)

15

}
> 0.

One can easily check that the second derivative of the function χ firstly
with respect to g and then with respect to h is positive. The function being
symmetric in g and h, we find that χ(g, h) ≤ max{χ(0, 0), χ(a, 0), χ(a, a)}
which is non-positive for 0 < a < 0.588. This contradicts (5.4.6).

Claim (v). f > 2c and c < 0.097.

Assume f ≤ 2c. From (5.4.1) we have f < 1
2(a+b+g+h). Using Lemma

6(v) with inequality (1, 1, 3, 1, 1, 1), taking γ = f < 1
2(a + b + g + h) = 1

2δ
for c < 0.149, we get a contradiction. Hence f > 2c.

If c ≥ 0.097, we get C4GHAB > C4(1 + a+ b+ g + h) > C4(1 + 2f) >
C4(1 + 4c) > 2, which contradicts Claim (ii).

Claim (vi). a < 0.3816.

Suppose a ≥ 0.3816. Then A4EFGH > A3

BC > (1.3816)3

1.202×1.097 > 2. Therefore
(4, 2, 1, 1) holds. Using the AM-GM inequality we get 4A + 4E −
2A5/2E3/2G1/2H1/2 + 1 + GH > 8. The left side is a decreasing func-
tion of E for E > 2

3 and A > 1.3. So replacing E by 2
3 we get φ(x) =
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4A + 8
3 − 2A5/2(2

3)3/2x1/2 + 1 + x > 8, where 1 < x = GH ≤ A2. As
φ′′(x) > 0, we have φ(x) ≤ max{φ(1), φ(A2)}. One can easily check that
φ(1) and φ(A2) are less than 8 even for A > 1.3; a contradiction.

Claim (vii). a > 0.275.

Suppose a ≤ 0.275.

Case 1: f < 1.4c+ 0.635(g + h). Using inequality (2, 3, 1, 1, 1) we have
2B + 4C − C4FGHAB + F + G + H > 8. As the coefficient of B, namely
2−C4FGHA, is positive by Claim (ii), we can replace b by λ = min(a, 0.202)
and then F by 1− 1.4c− 0.635(g + h) to get

φ(g, h) = 1 + 2λ+ 2.6c+ 0.365(g + h)− (1 + c)4(1 + a)(5.4.7)
× {1− 1.4c− 0.635(g + h)}(1 + g)(1 + h)(1 + λ) > 0.

One finds that the second derivative of the function φ first with respect to
g and then with respect to h is positive, therefore φ(g, h) ≤ max{φ(0, 0),
φ(a, 0), φ(a, a)}, which is non-positive for λ = a if a < 0.202, and λ = 0.202
if 0.202 ≤ a ≤ 0.275, and 0 < c < 0.097. This contradicts (5.4.7).

Case 2: f ≥ 1.4c+ 0.635(g + h). From (5.4.4) we get e < 0.5a+ 0.3c+
0.1825(g + h). Using inequality (2, 2, 2, 1, 1) and applying the AM-GM in-
equality we have 4A + 4C + 4E − 6ACEG1/3H1/3 + G + H > 8. The left
hand side is a decreasing function of E so replacing E by 1− 0.5a− 0.3c−
0.1825(g + h) and simplifying we get

(5.4.8) ψ(g, h) = 6 + 2a+ 2.8c+ 0.27(g + h)− 6(1 + a)(1 + c)

× {1− 0.5a− 0.3c− 0.1825(g + h)}(1 + g)1/3(1 + h)1/3 > 0.

Again the second derivative of the function ψ first with respect to g and then
with respect to h is positive, thereforeψ(g, h)≤max{ψ(0, 0), ψ(a, 0), ψ(a, a)},
which is non-positive for 0 < a ≤ 0.275 and 0 < c < 0.097. This contradicts
(5.4.8).

Claim (viii). c < 0.079.

For if c ≥ 0.079 then C4GHAB > C4A(1 + b+ g + h) > C4 · 1.275(1 +
2c) > 2, as b + g + h ≥ b + g

2 + h
2 > f > 2c from inequality (5.4.2). This

contradicts Claim (ii).

Claim (ix). b < 0.175 and a < 0.364.

Suppose b ≥ 0.175. Then proceeding as in Claim (iv) we get B4FGHA >
(1 + b)4(1 + a)(1 − b − k

2 )(1 + k) = φ(k) ≥ min{φ(0), φ(a), φ(2a)} > 2 for
0.275 < a < 0.3816 and 0.175 ≤ b < 0.202. Now using inequality (1, 4, 1, 1, 1)
and working as in Claim (iv) we get a contradiction.

Further if a ≥ 0.364, then A4EFGH > A3

BC > A3

1.175×1.079 > 2. Now using
inequality (4, 2, 1, 1) and working as in Claim (vi), we get a contradiction.
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Claim (x). f ≥ 1.6c+ 0.57(g + h) and a > 0.306.

Suppose f < 1.6c+ 0.57(g+h). We use inequality (2, 3, 1, 1, 1) and work
as in Case 1 of Claim (vii) to get a contradiction for b < 0.175, 0 < c < 0.079
and 0.275 < a < 0.364. So we must have f ≥ 1.6c+ 0.57(g + h). This gives
e < 0.5a+ 0.2c+ 0.215(g + h).

Suppose a ≤ 0.306. Using inequality (2, 2, 2, 1, 1) and working again as
in Case 2 of Claim (vii), we get a contradiction for 0.275 < a ≤ 0.306 and
0 < c < 0.079.

Claim (xi). g + h > a.

Suppose if possible k = g + h ≤ a. From (5.4.4) and Claim (x) we get
e < 0.5a+0.2c+0.215k. Also from (5.4.3) we have d+f < b+ k

2 < 0.175+ k
2 .

Using inequality (2, 1, 1, 1, 1, 1, 1) we have 4A−2A3C(1−d−f)(1−e)GH+3−
d−f−e+G+H > 8. Replacing d+f by 0.175+ k

2 and e by 0.5a+0.2c+0.215k
we get

ψ(k) = 1.825 + 3.5a+ 0.8c+ 0.285k − 2(1 + a)3(1 + c)(5.4.9)

×
(

0.825− k

2

)
(1− 0.5a− 0.2c− 0.215k)(1 + k) > 0.

Again one finds that ψ′′(k) > 0, therefore ψ(k) ≤ max{ψ(0), ψ(a)}, which
is non-positive for 0.306 ≤ a ≤ 0.364 and 0 < c < 0.079. This gives a
contradiction.

Claim (xii). b < 0.134.

Suppose b ≥ 0.134. Here using f < b + g+h
2 from (5.4.2) we have

B4FGHA > (1 + b)4(1 + a)(1 − b − g+h
2 )(1 + g)(1 + h) = φ(g), say. Since

a − h < g ≤ a we have φ(g) ≥ min{φ(a − h), φ(a)} > min{(1 + b)4(1 −
b − a

2 )(1 + a)2, (1 + b)4(1 − b − a)(1 + a)3} > 2 for 0.306 < a < 0.364 and
0.134 ≤ b < 0.175. Therefore B4FGHA > 2. Now working as in Claim (iv),
inequality (1, 4, 1, 1, 1) gives a contradiction.

Claim (xiii). c < 0.041 and a < 0.3316.

If c ≥ 0.041 then C4GHAB > C4(1 + a)2 > 2 for a > 0.306, which
contradicts Claim (ii).

Further if a ≥ 0.3316, then A4EFGH > A3

BC > A3

1.134×1.041 > 2. Now us-
ing inequality (4, 2, 1, 1) and working as in Claim (vi), we get a contradiction.

Final contradiction. If f < 2c+0.61(g+h), we use inequality (2, 3, 1, 1, 1)
and work as in Case 1 of Claim (vii) to get a contradiction for b < 0.134,
0 < c < 0.041 and 0.306 < a < 0.3316. If f ≥ 2c + 0.61(g + h), we find
e < 0.5a+ 0.195(g + h). Again using inequality (2, 2, 2, 1, 1) and working as
in Case 2 of Claim (vii), we get a contradiction for 0.306 < a ≤ 0.3316 and
0 < c < 0.041.
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5.5. Case (31)

Proposition 21. Case (31), i.e. A > 1, B > 1, C > 1, D ≤ 1, E ≤ 1,
F ≤ 1, G ≤ 1, H > 1, does not arise.

Proof. Here b ≤ 1
2 , c ≤ 1

3 , e ≤ 1
3 and G ≥ 4C

9 , i.e. g ≤ 5
9 −

4c
9 . Also

2D > 1 ≥ E, 2E ≥ 1 > F and 2F > 1 ≥ G. Using inequalities (2, 2, 1, 2, 1),
(1, 2, 2, 1, 1, 1), (1, 2, 2, 2, 1) and (2, 2, 2, 1, 1) we get

2b− 2d− e− 2g + h > 0,(5.5.1)
a+ 2c− 2e− f − g + h > 0,(5.5.2)

a+ 2c− 2e− 2g + h > 0,(5.5.3)
2b− 2d− 2f − g + h > 0.(5.5.4)

Claim (i). C < 1.155, A ≤ 1.7325.

Suppose C ≥ 1.155. Proceeding as in (5.3.7) and Claim (i) of Proposi-
tion 19, replacing d by c, h by g and c by h, we find that C4GHAB > 2.

Therefore (2, 4, 1, 1) holds, i.e.

(5.5.5) 4A− 2A2

B
+ 4C − 1

2
C5GHAB +G+H > 8.

As the coefficient of G in (5.5.5) is negative and G ≥ 4C
9 , we can replace G

by 4C
9 . Further if C6AB < 9

2 we can replace H by A and then B by A to
get φ(A) = 3A + 40

9 C −
2
9C

6A3 > 8. Now φ(A) has its maximum value at
3√
2C3 where it is less than 8 for C ≥ 1.155, giving thereby a contradiction. If

C6AB ≥ 9
2 , we can replace H by 1 and A by B to get 2B+ 40

9 C−
2
9C

6B2 > 7,
which is not true for 1 < B ≤ 3

2 and C ≥ 1.155; again a contradiction.
Now A ≤ 3

2C implies A ≤ 1.7325 for C < 1.155.

Claim (ii). B < 1.322.

Suppose B ≥ 1.322. Then using Claim (i), B4FGHA > B3

C > 2 and
therefore (1, 4, 2, 1) holds, which by using the AM-GM inequality yields

(5.5.6) A+ 4B + 4F +H − 2B5/2F 3/2H1/2A1/2 > 8.

The left side of (5.5.6) is a decreasing function of F for F ≥ 4
9B, therefore we

can replace F by 4
9B to get ψ(H) = A+ 52

9 B+H− 16
27B

4H1/2A1/2 > 8. Now
ψ′′(H) > 0, therefore ψ(H) ≤ max{ψ(1), ψ(A)}, which can be shown to be
less than 8 for B ≥ 1.322 and B ≤ A ≤ 1.7325. This gives a contradiction.

Claim (iii). C4GHAB ≤ 2.

Suppose C4GHAB > 2. Then (2, 4, 1, 1), i.e. inequality (5.5.5), holds. As
the coefficient of G in (5.5.5) is negative, we replace G by 2

C4HAB
. Further

it is an increasing function of both H and B, so we can replace H by A,
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B by 1.322 to get 5A − 2A2

1.322 + 3C + 2
C4A2×1.322

> 8, which is not true for
1 < A ≤ 1.7325 and 1 < C < 1.155.

Claim (iv). A < 1.4509.

Suppose A ≥ 1.4509. Using Claims (i) and (ii) we have A4EFGH >
A3

BC > 2. Therefore (4, 2, 1, 1) holds, which using the AM-GM inequality
yields

(5.5.7) 4A+ 4E +G+H − 2A5/2E3/2G1/2H1/2 > 8.

The left side of (5.5.7) is a decreasing function of both G and E within the
given ranges specified in each case.

Case 1: A > 1.63. Here we replace G by 8A
27 and E by 4A

9 in the left
side of (5.5.7) to get H + 164A

27 − 2(8A
27 )1/2(4A

9 )3/2A5/2H1/2 > 8, which is not
true for H > 1 and 1.63 < A < 1.7325.

Case 2: 1.4509 ≤ A ≤ 1.63.

Subcase 2.1: G ≥ 5.35
9 . So we replace G by 5.35

9 and E by 4A
9 in (5.5.7)

and get 52A
9 + 5.35

9 +H−2(4A
9 )3/2(5.35

9 )1/2A5/2H1/2 > 8, which is not possible
for 1.4509 ≤ A ≤ 1.63 and 1 < H ≤ A.

Subcase 2.2: G < 5.35
9 , i.e. g > 3.65

9 . Also g ≤ 5
9 . From (5.5.2) and

Claim (i), we have E > 1− c− a+h
2 + g > 1− 0.155− a+h

2 + g. So we replace
E by this lower bound in (5.5.7) to get φ(g) = 4A+4(1−0.155− a+h

2 +g)+
G+H − 2(1− 0.155− a+h

2 + g)3/2G1/2A5/2H1/2 > 8. As φ′′(g) > 0 we have
φ(g) ≤ max{φ(3.65

9 ), φ(5
9)}. A simple calculation shows that φ(3.65

9 ) < 8 and
φ(5

9) < 8 for 1.4509 ≤ A ≤ 1.63 and 1 < H ≤ A, which gives a contradiction.

Claim (v). A > 1.3.

Suppose A ≤ 1.3.

Case 1: f+g ≤ 1.6c+0.37(a+h). Using inequality (2, 3, 1, 1, 1) we have
2B+4C−C4FGHAB+F +G+H > 8. Since by Claim (iii), the coefficient
of B is positive, we can replace B by A to get 1 + 2a + 4c + h − (f + g) −
C4(1 − f − g)HA2 > 0. Further as the coefficient of f + g is positive and
f + g ≤ 1.6c+ 0.37(a+ h), we get

(5.5.8) φ(h) = 1+1.63a+0.63h+2.4c−C4(1−1.6c−0.37(a+h))HA2>0.

As φ′′(h) > 0 and 0 < h ≤ a, it follows that φ(h) ≤ max{φ(0), φ(a)}. Let
φ(0) = ψ(c) and φ(a) = ϑ(c). Since ψ′′(c) > 0 and 0 < c ≤ min(a, 0.155),
we have ψ(c) ≤ {ψ(0), ψ(min(a, 0.155))}. Now one can easily check that
ψ(0) < 0 for 0 < a ≤ 0.3; ψ(a) < 0 for 0 < a ≤ 0.155; and ψ(0.155) < 0
for 0.155 < a ≤ 0.3. Similarly one can prove that ϑ(c) < 0 for 0 < c ≤
min(a, 0.155). This gives a contradiction to (5.5.8).
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Case 2: f + g > 1.6c + 0.37(a + h). Using (5.5.2) we get e < 0.2c +
0.315(a+h). Inequality (2, 2, 2, 1, 1) after using the AM-GM inequality gives
4A + 4C + 4E − 6ACEG1/3H1/3 + G + H > 8. As the left hand side is a
decreasing function of G and G > 1− c− a+h

2 + e from (5.5.3), we get

φ(e) = 6 + 3.5a+ 3c+ 0.5h− 3e(5.5.9)

− 6ACE
(

1− c− a+ h

2
+ e

)1/3

H1/3 > 0.

Since φ′′(e) > 0 and 0 ≤ e < 0.2c + 0.315(a + h), it follows that φ(e) ≤
max{φ(0), φ(0.2c + 0.315(a + h))}. Let φ(0) = ψ(h). As ψ′′(h) > 0 and
0 < h ≤ a, we have ψ(h) ≤ max{ψ(0), ψ(a)}, which can be verified to be
negative for 0 < a ≤ 0.3 (in fact it is so for a ≤ 0.4509) and 0 < c ≤ 0.155.
Let φ(0.2c + 0.315(a + h)) = ϑ(h). As ϑ′′(h) > 0 and 0 < h ≤ a, we
have ϑ(h) ≤ max(ϑ(0), ϑ(a)). One can easily check that ϑ(0) and ϑ(a) are
negative for 0 < a ≤ 0.3 and 0 < c ≤ 0.155. This gives a contradiction to
(5.5.9).

Claim (vi). B > 1.185.

Using inequality (2, 5∗, 1) we get

(5.5.10) φ(H) = 4A− 2A2

B
+

5
(ABH)1/5

+H > 8.

As φ(H) is an increasing function of H and H ≤ A, we have 5A − 2A2

B +
5

(A2B)1/5 > 8, which is not possible for 1 < B ≤ 1.185 and 1.3 < A < 1.4509.

Claim (vii). E < 0.84.

Suppose E ≥ 0.84, i.e. e ≤ 0.16. Using (2, 2, 2, 1, 1) and proceeding as
in Case 2 of Claim (v), we just need to check that (5.5.9) is not true at
the end point e = 0.16. Let φ(0.16) = ψ(h). As ψ′′(h) > 0 we have ψ(h) ≤
max{ψ(0), ψ(a)}, which is negative for 0 < c < 0.155 and 1.3 < a < 1.4509.

Claim (viii). F > 0.595, B4FGHA ≤ 2 and B < 1.2475.

From Claim (iii) we get EF ≥ DEF ≥ 1
2 . Therefore by Claim (vii), we

obtain F > 1
2E > 0.595.

Now suppose B4FGHA > 2. Then (1, 4, 2, 1) holds. Using the AM-GM
inequality we have

A+ 4B + 4F − 2B5/2F 3/2H1/2A1/2 +H > 8.

The left side is a decreasing function of F for A > 1.3, B > 1.185 and
F > 0.595. Therefore we can replace F by 0.595 to get φ(H) = A + 4B +
4 × 0.595 − 2B5/2(0.595)3/2H1/2A1/2 + H > 8. Now φ′′(H) > 0 and 1 <
H ≤ A, therefore φ(H) ≤ max{φ(1), φ(A)}, which is less than 8 for 1.3 <
A < 1.4509 and 1 < B < 1.322. This gives a contradiction.
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Now 2 ≥ B4FGHA ≥ B3

CE > B3

1.155×0.84 gives B < 1.2475.

Claim (ix). A < 1.4.

Suppose A ≥ 1.4.
If B ≤ 1.226, we use inequality (2, 5∗, 1) and work as in Claim (vi) to

get a contradiction to (5.5.10).
If B>1.226, we prove that B4FGHA>2, which will give a contradiction

to Claim (viii). From (5.5.4) and (5.5.1), we have f <b+ h
2−

g
2 and g<b+ h

2 .
Therefore B4FGHA>B4(1−b−h2+g

2)(1−g)AH=φ(g)≥min{φ(0), φ(b+h
2 )}.

Now φ(0) =B4(1−b− h
2 )A(1+h) =ψ(h)≥min{ψ(0), ψ(a)}> 2 for b> 0.226

and a > 0.4. Similarly φ(b+ h
2 ) = B4(1− b

2−
h
4 )(1−b− h

2 )A(1+h) = ϑ(h) ≥
min{ϑ(0), ϑ(a)}>2 for b>0.226 and a>0.4.

Claim (x). g < b+ 0.15h.

Suppose g ≥ b + 0.15h. From inequality (5.5.4), we get d + f < 0.5b +
0.425h. Using inequality (1, 2, 2, 2, 1) and applying the AM-GM inequality
we get

(5.5.11) 6 + a+ 4b− 4(d+ f) + h− 6B(1− d− f)A1/3H1/3 > 0.

Replacing d + f by 0.5b + 0.425h we have φ(h) = 6 + a + 2b − 0.7h −
6B(1− 0.5b− 0.425h)A1/3H1/3 > 0. As φ′′(h) > 0, φ(h) ≤ max{φ(0), φ(a)},
which is negative for 0.3 < a < 0.4 and 0.185 < b < 0.2475. This gives a
contradiction.

Claim (xi). B < 1.2214.

If B ≥ 1.2214, working as in Claim (ix) and using g < b+ 0.15h in place
of g < b+ h

2 , we find that B4FGHA > 2 for a > 0.3, which is a contradiction
to Claim (viii).

Claim (xii). g < 0.6b+ 0.34h.

Suppose g ≥ 0.6b + 0.34h. From (5.4.5), we get d + f < 0.7b + 0.33h.
Using inequality (1, 2, 2, 2, 1) and working as in Claim (x), we arrive at a
contradiction to (5.5.11) for 0.3 < a < 0.4 and 0.185 < b < 0.2214.

Claim (xiii). B < 1.2.

If B ≥ 1.2, working as in Claim (ix) and using g < 0.6b+ 0.34h in place
of g < b+ h

2 , we find that B4FGHA > 2 for a > 0.3, which is a contradiction
to Claim (viii).

Claim (xiv). H > B.

Suppose H ≤ B. Using inequality (2, 5∗, 1) and proceeding as in Claim
(vi), we have 4A− 2A2

B + 5
(AB2)1/5 +B > 8, which is not possible for 1.185 ≤

B ≤ 1.2 and 1.3 < A < 1.4. This contradicts (5.5.10).
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Final contradiction. We now have b < h ≤ a, g < 0.6b+0.34h, b > 0.185
and a > 0.3. Proceeding as in Claim (ix), we find that B4FGHA > 2, which
is a contradiction to Claim (viii).

5.6. Case (32)

Proposition 22. Case (32), i.e. A > 1, B > 1, C > 1, D ≤ 1, E ≤ 1,
F ≤ 1, G ≤ 1, H ≤ 1, does not arise.

Proof. Here a ≤ 1, b ≤ 1
2 and c ≤ 1

3 by Lemma 3. Also 2E > 1 ≥ F and
2F > 1 ≥ G. Using inequalities (2, 2, 1, 2, 1), (2, 2, 2, 1, 1) and (1, 2, 2, 1, 1, 1)
we get

2b− 2d− e− 2g − h > 0,(5.6.1)
2b− 2d− 2f − g − h > 0,(5.6.2)

a+ 2c− 2e− f − g − h > 0.(5.6.3)

Further from (5.6.1) we have g < b ≤ 1
2 , which gives 2G > 1 > H. Therefore

inequality (2, 2, 2, 2) also holds, which gives

(5.6.4) 2b− 2d− 2f − 2h > 0.

Claim (i). B > C.

Suppose C ≥ B. Now C2 > DE, therefore (1, 1, 3, 1, 1, 1) holds, i.e.
A+B+4C−C4FGHAB+F+G+H > 8. From (5.6.1) and (5.6.4), we have
g < b and f+h < b, hence C3FGHAB ≥ B5FGH ≥ (1+b)5(1−b)2 > 1 for
b < 1

2 . We can successively replace C byB andA byB to get 6B+F+G+H−
B6FGH > 8, which implies 1+6b−(f+h)−g−(1+b)6(1−(f+h))(1−g) > 0.
As the coefficient of f + h is positive, we can replace f + h by b to get
1 + 5b − g − (1 + b)6(1 − b)(1 − g) > 0, which is not true for g < b and
b ≤ c ≤ 1

3 .

Claim (ii). b < 0.2866.

Suppose b ≥ 0.2866. From (5.6.1) and (5.6.2) we have g < b − h
2 and

f < b− g+h
2 . Also h < b. Therefore B4FGHA ≥ (1 + b)5(1− b+ g+h

2 )(1− g)
× (1− h) = φ(g) ≥ φ(b− h

2 ) = ψ(h) ≥ min{ψ(0), ψ(b)} > 2 for b ≥ 0.2866.
Hence (1, 4, 1, 1, 1) holds, i.e. A+ 4B− 1

2B
5FGHA+F +G+H > 8. As the

coefficient of A is negative, we can replace A by B to get 5B − 1
2B

6FGH +
F +G+H > 8. Now the coefficient of F is negative and F > 1− b+ g+h

2 ,
therefore we get

(5.6.5) ϑ(g) = 4b− 1
2

(1 + b)6
(

1− b+
g + h

2

)
(1− g)(1− h)− g + h

2
> 0.

As ϑ′′(g) > 0, we have ϑ(g) ≤ max{ϑ(0), ϑ(b − h
2 )} ≤ 0 for 0.2866 ≤ b ≤ 1

2
and 0 < h < b. This can be seen to give a contradiction.



374 R. J. Hans-Gill et al.

Claim (iii). c < 0.19.

Suppose c ≥ 0.19. Now C4GHAB ≥ C4AB(1 − b + h
2 )(1 − h) ≥ C4B2

× (1 − b
2)(1 − b) = φ(b) ≥ min{φ(c), φ(0.2866)} > 2, therefore (1, 1, 4, 1, 1)

holds. That is, A + B + 4C − 1
2C

5GHAB + G + H > 8. As the coefficient
of G is negative, we can replace G by 1− b+ h

2 to get

ψ(h) = a+ 4c− h

2
− 1

2
(1 + c)5(1 + a)(1 + b)(1− h)

(
1− b+

h

2

)
> 0.

As ψ′′(h) > 0 and 0 < h < b, it follows that ψ(h) ≤ max{ψ(0), ψ(b)}. Now
ψ(0) = a+4c− 1

2(1+c)5(1+a)(1−b2) is a decreasing function of a and a ≥ c,
therefore we get ψ(0) ≤ 5c− 1

2(1 + c)6(1− b2), which is negative for c ≥ 0.19
and b < 0.2866. Also ψ(b) = a+4c− b

2−
1
2(1+c)5(1+a)(1+b)(1−b)(1− b

2) ≤
max{ψ(c), ψ(0.2866)}, which is negative for c ≤ a ≤ 1 and c ≥ 0.19, a
contradiction.

Claim (iv). f + g + h > 2c.

Suppose f+g+h ≤ 2c. Using inequality (1, 1, 3, 1, 1, 1), we have A+B+
4C−C4FGHAB+F +G+H > 8. We can replace B by C as the coefficient
of B is negative and then A by C to get 6C − C6FGH + F + G + H > 8.
This implies 1 + 6c− (f + g+ h)− (1 + c)6(1− f − g− h) > 0, which is not
true for f + g + h ≤ 2c and c < 0.19.

Claim (v). a < 0.453.

Suppose a ≥ 0.453. Now AEFGH = 1
DBC > 1

BC ≥
1

1.2866×1.19 > 0.653.
Therefore A4EFGH > 2 for A ≥ 1.453. Hence (4, 1, 1, 1, 1) holds, i.e. 4A−
1
2A

5EFGH +E + F +G+H > 8. Since E + F +G+H < 3 +EFGH we
have 4A− 1

2A
5EFGH + 3 + EFGH > 8. Now the coefficient of EFGH is

negative and EFGH > 0.653
A , therefore we can replace EFGH by 0.653

A to
get φ(A) = 4A− 1

2A
4 × 0.653 + 0.653

A > 5. As φ(A) is a decreasing function
of A and A ≥ 1.453, it follows that φ(A) ≤ φ(1.453) < 5, a contradiction.

Claim (vi). d+ f > 0.65b.

Suppose d + f ≤ 0.65b. Using (1, 2, 2, 2, 1) and applying the AM-GM
inequality we have 6+a+4b−4(d+f)−h−6(1+b)(1−d−f)(1+a)1/3(1−
h)1/3 > 0. As the left side is an increasing function of h and h < b− d− f ,
replacing h by b− d− f we get

(5.6.6) 6+a+3b−3(d+f)−6(1+b)(1−d−f)(1+a)1/3(1−b+d+f)1/3 > 0.

Again the left side is an increasing function of d + f and d + f < 0.65b,
therefore Φ(a) = 6+a+1.05b−6(1+b)(1−0.65b)(1+a)1/3(1−0.35b)1/3 > 0.
As Φ(a) is a decreasing function of a for a < 0.453, we get Φ(a) ≤ Φ(b) =
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6+2.05b−6(1−0.65b)(1+b)4/3(1−0.35b)1/3 which is negative for b < 0.2866,
a contradiction.

Claim (vii). b < 0.2282.

Suppose b ≥ 0.2282. From Claim (vi) and inequalities (5.6.4) and (5.6.2)
we have h < 0.35b and g + h < 0.7b. Using these better bounds on g and h,
i.e. g < 0.7b − h and h < 0.35b, and working as in Claim (ii) we find that
B4AFGH > 2 for B ≥ 1.2282. Then (1, 4, 1, 1, 1) holds. But then working
as in Claim (ii), we find that (5.6.5) is not true, which gives a contradiction.

Claim (viii). d+ f > 0.75b.

Suppose d + f ≤ 0.75b. Using (1, 2, 2, 2, 1) and proceeding as in Claim
(vi) we find that (5.6.6) is not true for d+ f < 0.75b, a ≥ b and b ≤ 0.2282.

Final contradiction. Using Claim (viii) and Claim (iv), and inequalities
(5.6.2)–(5.6.4) we have g+ h < 0.5b, e < a

2 and d+ f + h < b. As inequality
(1, 2, 1, 1, 1, 1, 1) holds we have A+4B−2B3DEFGHA+D+E+F+G+H
> 8. As the coefficient of E is negative and E > 1− a

2 , we can replace E by
1− a

2 to get 2 + 0.5a+ 4b− (d+ f + h)− g − 2(1 + b)3(1 + a)(1− (d+ f +
h))(1− g)(1− a

2 ) > 0. We can successively replace d+ f +h by b and g by b
2

to get 2+ 0.5a+2.5b−2(1+ b)3(1+a)(1− b)(1− b
2)(1− a

2 ) > 0, which is not
possible for b ≤ a < 0.453 and b < 0.2282, giving thereby a contradiction.

5.7. Case (57)

Proposition 23. Case (57), i.e. A > 1, B > 1, C ≤ 1, D ≤ 1, E ≤ 1,
F > 1, G > 1, H > 1, does not arise.

Proof. Here a ≤ 1
2 , b ≤ 1

3 by Lemma 3. Using inequalities (1, 2, 2, 1, 1, 1),
(2, 1, 2, 1, 1, 1) and (2, 2, 1, 1, 1, 1) we get

a− 2c− 2e+ f + g + h > 0,(5.7.1)
2b− c− 2e+ f + g + h > 0,(5.7.2)
2b− 2d− e+ f + g + h > 0.(5.7.3)

Claim (i). B4FGHA ≤ 2 and B < 1.149.

Suppose B4FGHA>2. Then (1, 4, 1, 1, 1) holds, i.e. A+4B− 1
2B

5FGHA
+ F +G+H > 8. This is not true, by Lemma 7(ii) with X2 = B, X3 = F ,
X4 = G, X5 = H. Now B4FGHA ≤ 2 implies B5 ≤ 2, i.e. B < 1.149.

Claim (ii). e > 2b and f + g + h > 2b.

Assume e ≤ 2b. Using inequality (1, 3, 1, 1, 1, 1) and applying Lemma
6(v) with X1 = B, X2 = A, X3 = E, X4 = F , X5 = G, X6 = H, γ = e
and δ = a + f + g + h > 2e = 2γ (from (5.7.1)) we get a contradiction
as γ ≤ 2b = 2x1, x1 < 0.149. So we must have e > 2b. Now (5.7.2) gives
f + g + h > 2b.
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Claim (iii). a > 0.1433.

Assume a ≤ 0.1433. Let k = f + g + h. From (5.7.3) and Claim (ii),
d < k

2 . Also from (5.7.1), c + e < a+k
2 . As (2, 1, . . . , 1) holds, we have

4A−2A3CDEFGH+C+D+E+F +G+H > 8. This gives 4A−2A3(1−
(c + e))DFGH + D + (1 − (c + e)) + k > 4. Now DFGH > D(1 + k) >
(1− k

2 )(1+k) > 1 as k ≤ 3a < 1. Therefore the coefficient of c+e is positive.
So we have 4A− 2A3(1− a+k

2 )DFGH +D + (1− a+k
2 ) + k > 4. Again the

coefficient of D is negative and D > 1− k
2 , therefore we get

φ(f)

= 2+
7a
2
−2A3

(
1−a+ f + g + h

2

)(
1− f + g + h

2

)
(1+f)(1+g)(1+h) > 0.

As φ(f) is an increasing function of f and f ≤ a, we get 2 + 7a
2 − 2(1 + a)4

×(1− 2a+g+h
2 )(1− a+g+h

2 )(1+g)(1+h) > 0. Using similar arguments we can
replace g and h successively by a to get 2+ 7

2a−2(1+a)6(1−2a)(1− 3a
2 ) > 0,

which is not true for a ≤ 0.1433.

Claim (iv). b < 0.1.

Assume b ≥ 0.1. Using Claim (iii) and k = f + g + h > 2b we have
B4FGHA > 1.1433B4(1 + k) > 1.1433B4(1 + 2b) > 2 for b ≥ 0.1. This
contradicts Claim (i).

Claim (v). a < 0.4.

Suppose a ≥ 0.4. Then A5 > 16
3 and therefore A5FGH > 16

3 . So
(5, 1, 1, 1) holds, i.e. 4A − 3

16A
6FGH + F + G + H > 8. This gives 4A −

3
16A

6FGH + FGH > 6. As the coefficient of FGH, namely 1 − 3
16A

6, is
negative and FGH > 1, replacing FGH by 1 we get 4A− 3

16A
6 > 5, which

is clearly not true for a ≥ 0.4.

Claim (vi). a < 0.202.

Assume a ≥ 0.202. Using (5.7.1) and E ≥ 2C
3 we have c + e < a+k

2 and
1− c < 3

2(1− e). This gives e < 1+a+k
5 . Also from inequality (5.7.2) we have

e < b+ k
2 .

Now A4EFGH > (1 + a)4(1− b− k
2 )(1 + k) = ψ(k), say. As ψ′′(k) < 0

and 2b < k ≤ 3a, we have A4EFGH ≥ min{ψ(2b), ψ(3a)} > 2 for b < 0.1
and 0.202 ≤ a ≤ 0.4. Thus A4EFGH > 2 for a > 0.202 and so (4, 1, 1, 1, 1)
holds. That is, 4A − 1

2A
5EFGH + E + F + G + H > 8. This gives 4A −

1
2A

5(1−e)(1+k)−e+k > 4. As the coefficient of e is positive and e < 1+a+k
5

we can replace e by 1+a+k
5 to get

ϕ(k) = −1
5

+
19a
5

+
4k
5
− 1

2
(1 + a)5

(
4
5
− a+ k

5

)
(1 + k) > 0.
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As ϕ′′(k) > 0 and 0 ≤ k ≤ 3a, we have ϕ(k) ≤ max{ϕ(0), ϕ(3a)}, which is
negative for a < 0.4, giving thereby a contradiction.

Claim (vii). e > 2b+ 0.21k.

Assume e ≤ 2b+0.21k. Using (1, 3, 1, 1, 1, 1) we haveA+4B−B4EFGH+
E+F+G+H > 8. As the coefficient of E is negative and E > 1−2b−0.21k,
we have A+4B−B4(1−2b−0.21k)FGH+1−2b−0.21k+F +G+H > 8.
This gives θ(k) = 1+a+2b+0.79k−(1+b)4(1−2b−0.21k)(1+a)(1+k) > 0.
As θ′′(k) > 0 and 2b < k ≤ 3a, we get θ(k) ≤ max{θ(2b), θ(3a)} < 0 for
0.202 > a > 0.1433 and b < 0.1. This gives a contradiction.

Claim (viii). a > 0.19.

Assume a ≤ 0.19. Using Claim (vii) and inequalities (5.7.2) and (5.7.3)
we have f + g + h > 2b

0.58 and d < 0.395k. Proceeding as in Claim (iii) and
using (2, 1, . . . , 1) we get 2 + 3.815a − 2(1 + a)6(1 − 2a)(1 − 1.185a) > 0,
which is not true for a < 0.19.

Claim (ix). b < 0.075.

Assume b ≥ 0.075. Using k = f + g + h > 2b
0.58 we have B4FGHA >

1.19B4(1 + k) > 1.19B4(1 + 2b
0.58) > 2 for b ≥ 0.075. This contradicts

Claim (ii).

Final contradiction. Proceeding as in Claim (vi) we have A4EFGH >
(1 + a)4(1 − b − k

2 )(1 + k) = ψ(k), say. As ψ′′(k) < 0 and 2b
0.58 < k ≤ 3a,

it follows that A4EFGH ≥ min{ψ( 2b
0.58), ψ(3a)} > 2 for b < 0.075 and

a > 0.19. Therefore (4, 1, 1, 1, 1) holds and proceeding as in Claim (vi) we
get a contradiction.

5.8. Case (61)

Proposition 24. Case (61), i.e. A > 1, B > 1, C ≤ 1, D ≤ 1, E ≤ 1,
F ≤ 1, G > 1, H > 1, does not arise.

Proof. Here by Lemma 3, a ≤ 1
2 , b ≤ 1

3 , c ≤ 1
4 , d ≤ 1

3 and f ≤ 5
9 .

Also 2E ≥ B > 1 ≥ F . Using inequalities (1, 2, 2, 1, 1, 1), (1, 2, 1, 2, 1, 1),
(2, 2, 2, 1, 1), (2, 2, 1, 1, 1, 1) and (2, 1, 2, 1, 1, 1) we get

a− 2c− 2e− f + g + h > 0,(5.8.1)
a− 2c− d− 2f + g + h > 0,(5.8.2)

2b− 2d− 2f + g + h > 0,(5.8.3)
2b− 2d− e− f + g + h > 0,(5.8.4)
2b− c− 2e− f + g + h > 0.(5.8.5)

In the forthcoming discussion, all the expressions considered as functions
of variables g and h can be shown to have their second derivatives with
respect to g as well as with respect to h either always positive or always
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negative throughout the ranges of the variables. Hence their maximum value
(or minimum value as the case may be) can occur at the end points of g
and h only, i.e. at (g, h) = (0, 0), (a, 0), (0, a) or (a, a). These functions are
symmetric in g and h, so we just need to consider their values at (0, 0), (a, 0)
and at (a, a).

Claim (i). a < 0.46 or g + h < 3a
2 .

Suppose that a ≥ 0.46 and g + h ≥ 3a
2 . Then A6GH ≥ A6(1 + 3a

2 ) > 16.
Therefore (6, 1, 1) holds, i.e. 4A− 1

16A
7GH +G+H > 8. This implies that

4A− 1
16A

7(1 + g+ h) + g+ h > 6, which is not possible for 3a
2 < g+ h ≤ 2a

and 0.46 ≤ a ≤ 1
2 .

Claim (ii). a < 0.274.

Assume a ≥ 0.274. Firstly we show that A4EFGH > 2.
If A > 1.4, then A4EFGH > A3

B > 3
4A

3 > 2 as CD < 1.
Now suppose that A ≤ 1.4. From (5.8.1) and (5.8.2), we have e < a+g+h

2 −
f
2 and 0 < f < a+g+h

2 . Therefore A4EFGH > A4(1 − a+g+h
2 + f

2 )(1 − f)
× (1 + g)(1 + h) = φ(f) ≥ min{φ(0), φ(a+g+h2 )}, as φ′′(f) < 0. Now φ(0) =
ψ1(g, h) = A4(1 − a+g+h

2 )(1 + g)(1 + h) ≥ min{ψ1(0, 0), ψ1(a, 0), ψ1(a, a)}
which can be shown to be greater than 2 for a ≥ 0.274. Similarly φ(a+g+h2 ) =
ψ2(g, h) = A4(1− a+g+h

4 )(1− a+g+h
2 )(1 + g)(1 +h) ≥ min{ψ2(0, 0), ψ2(a, 0),

ψ2(a, a)} > 2 for 0.274 ≤ a ≤ 0.4.
Therefore A4EFGH > 2 in both the cases. Hence (4, 1, 1, 1, 1) holds, i.e.

4A− 1
2A

5EFGH + E + F +G+H > 8. As the coefficient of E on the left
side is negative and E > 1 − a+g+h

2 + f
2 , replacing E by 1 − a+g+h

2 + f
2 we

get

(5.8.6) ϕ(f)

=
7a
2
− f

2
+
g + h

2
− 1

2
A5

(
1− a+ g + h

2
+
f

2

)
(1− f)(1 + g)(1 + h) > 0.

As ϕ′′(f) > 0 and 0 < f ≤ 5
9 , we have ϕ(f) ≤ max{ϕ(0), ϕ(5

9)}. Let now

ϕ

(
5
9

)
=

7a
2
− 5

18
+
g + h

2
− 2

9
A5

(
1− a+ g + h

2
+

5
18

)
(1 + g)(1 + h)

= ψ3(g, h),

ϕ(0) =
7a
2

+
g + h

2
− 1

2
A5

(
1− a+ g + h

2

)
(1 + g)(1 + h) = ψ4(g, h).

At each of the end points (g, h) = (0, 0), (a, 0) or (a, a) one can verify that
ψ3(g, h) < 0 for 0.274 ≤ a ≤ 0.5. Also ψ4(g, h) < 0 at the end points
(g, h) = (0, 0) and (a, 0) for 0.274 ≤ a ≤ 0.5. But ψ4(a, a) is non-negative
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in the full range of a. It is certainly so for 0.274 < a ≤ 0.46. If a > 0.46 we
already have from Claim (i), g + h ≤ 3a

2 . In this case

ψ4(g, h) <
7a
2

+
k

2
− 1

2
A5

(
1− a+ k

2

)
(1 + k) = χ(k),

say where k = g + h. It is easy to see that χ(k) < 0 and hence ψ4(g, h) < 0
for 0 < k ≤ 3a

2 and 0.46 ≤ a ≤ 1
2 . Therefore ϕ(f) < 0 for a ≥ 0.274, giving

a contradiction to (5.8.6).

Claim (iii). b < 0.17.

Suppose that b ≥ 0.17. From (5.8.2) we have f < a+g+h
2 and soB4AFGH

> B4(1 + a)(1 − a+g+h
2 )(1 + g)(1 + h) = ψ5(g, h), say. One verifies that

ψ5(g, h) ≥ min{ψ5(0, 0), ψ5(a, 0), ψ5(a, a)} > 2 for a ≥ b ≥ 0.17. Therefore
inequality (1, 4, 1, 1, 1) holds, i.e. A+ 4B− 1

2B
5AFGH+F +G+H > 8. As

the coefficient of F on the left side is negative and F > 1− a+g+h
2 , replacing

F by 1− a+g+h
2 we get

ψ6(g, h) =
a

2
+ 4b+

g + h

2
− 1

2
B5A

(
1− a+ g + h

2

)
(1 + g)(1 + h) > 0.

But ψ6(g, h) ≤ max{ψ6(0, 0), ψ6(a, 0), ψ6(a, a)}, which is non-positive for
0.17 ≤ b ≤ a ≤ 0.274. This gives a contradiction.

Claim (iv). e+ f > 2b and d < g+h
2 .

Suppose e+ f ≤ 2b. From (5.8.1) and (5.8.2) we have 2e+ f < a+ g+h

and f < a+g+h
2 . This gives e + f < 3

4(a + g + h). Using (1, 3, 1, 1, 1, 1) and
applying Lemma 6(vi) with γ = e + f , δ = a + g + h, γ < 3δ

4 , γ < 2b and
b < 0.17 we get a contradiction. Hence e+ f > 2b.

Now (5.8.4) gives d < g+h
2 .

Claim (v). a > 0.2 and g + h > a.

Suppose first that a ≤ 0.2. Using (1, 2, 1, 1, 1, 1, 1) we have A + 4B −
2B3ADEFGH +D + E + F +G+H > 8. The coefficient of E on the left
side is negative because ABDFGH > 1. Also from inequality (5.8.5) we
have E > 1 − b − g+h

2 + f
2 , therefore replacing E by 1 − b − g+h

2 + f
2 and

simplifying we get

(5.8.7) φ(f) = 2 + a+ 3b− d− f

2
+
g + h

2
− 2B3A(1− d)

×
(

1− b− g + h

2
+
f

2

)
(1− f)(1 + g)(1 + h) > 0.

We shall prove that (5.8.7) is not true for variables f, d, g, h, a and b lying
in the given intervals. As φ′′(f) > 0 and from (5.8.3), 0 < f < b− d+ g+h

2 ,
therefore φ(f) ≤ max{φ(0), φ(b − d + g+h

2 )}. The coefficient of d in φ(0) is
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positive since B2(1−b− g+h
2 )(1+g)(1+h) > (1+2b+g+h)(1− 2b+g+h

2 ) > 1
for 2b+ g + h < 4a < 1. Also d < g+h

2 . So

φ(0) < 2+a+3b−2B3A

(
1− g + h

2

)(
1−b− g + h

2

)
(1+g)(1+h) = ψ7(g, h).

Further φ(b−d+ g+h
2 ) = 2+a+ 5b

2 −
d
2 + g+h

4 −2B3(1−d)A(1− b
2−

g+h
4 −

d
2)

× (1 − b − g+h
2 + d)(1 + g)(1 + h) = θ(d), say. For d ≤ 1

3 one finds that
θ′′(d) > 0. Therefore θ(d) ≤ max{θ(0), θ(g+h2 )}. Let θ(0) = ψ8(g, h) and
θ(g+h2 ) = ψ9(g, h), where

ψ8(g, h)

= 2+a+
5b
2

+
g + h

4
−2B3A

(
1− b

2
− g + h

4

)(
1−b− g + h

2

)
(1+g)(1+h),

and

ψ9(g, h) = 2+a+
5b
2
−2B3A

(
1− b

2
− g + h

2

)(
1− g + h

2

)
(1−b)(1+g)(1+h).

At each of the end points (g, h) = (0, 0), (a, 0) or (a, a) one can verify that
each of ψ7(g, h), ψ8(g, h) and ψ9(g, h) is non-positive for 0 < b ≤ 0.17 and
0 < a ≤ 0.2. This implies that φ(f) < 0, which is a contradiction to (5.8.7)
for a ≤ 0.2.

Suppose now g + h = k ≤ a. In the above discussion we notice that
ψ7(g, h), ψ8(g, h) and ψ9(g, h) are negative at the end points (g, h) = (0, 0),
(a, 0) for the full range of a, namely a ≤ 0.274. Using GH > 1+k, inequality
(5.8.7) reduces to

(5.8.8) φ(f) = 2 + a+ 3b− d− f

2
+
k

2
− 2B3A(1− d)

×
(

1− b− k

2
+
f

2

)
(1− f)(1 + k) > 0.

If k ≤ a, proceeding as above we find that (5.8.8) is not true for 0 < b ≤ 0.17
and 0 < a ≤ 0.274. Therefore we must have g + h > a.

Claim (vi). b < 0.148.

Assume b ≥ 0.148. We proceed as in Claim (iii). We get B4AFGH > 2
for g + h > a, a > 0.2 and b ≥ 0.148. Then we use (1, 4, 1, 1, 1) to get a
contradiction.

Claim (vii). e+ f ≥ 1.5b+ 0.4(g + h) and d < b
4 + 3(g+h)

10 .

Suppose e+f < 1.5b+0.4(g+h). Using (1, 3, 1, 1, 1, 1) we have A+4B−
B4EFGHA+E+F +G+H > 8, which implies that A+ 4B−B4(1− (e+
f))GHA− (e+ f) +G+H > 6. As the coefficient of e+ f on the left side
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is positive, replacing e+ f by 1.5b+ 0.4(g + h) we get

(5.8.9) ϕ(g) = 1+a+2.5b+0.6(g+h)−B4(1−1.5b−0.4(g+h))GHA > 0.

As ϕ′′(g) > 0 and from Claim (v) we have a − h < g ≤ a therefore ϕ(g) ≤
max{ϕ(a− h), ϕ(a)}. Now

ϕ(a−h) = 1+a+2.5b+0.6a−B4(1−1.5b−0.4a)(1+a−h)(1+h)A = ω(h),

say. As ω′′(h) > 0 and 0 < h ≤ a therefore ω(h) ≤ max{ω(0), ω(a)} < 0 for
0.2 ≤ a ≤ 0.274 and 0 < b ≤ 0.148. Similarly

ϕ(a) = 1 + a+ 2.5b+ 0.6(a+ h)−B4(1− 1.5b− 0.4(a+ h))HA2 = ν(h),

say. As ν ′′(h) > 0 and 0 < h ≤ a, we have ν(h) ≤ max{ν(0), ν(a)}. It
is easy to see that ν(0) < 0 as well as ν(a) < 0 and hence ν(h) < 0 for
0.2 ≤ a ≤ 0.274 and 0 < b ≤ 0.148. This gives ϕ(g) < 0, which is a
contradiction to (5.8.9).

Therefore we must have e+ f ≥ 1.5b+ 0.4(g + h).
Now (5.8.4) gives d < b

4 + 3(g+h)
10 .

Final contradiction. We use inequality (1, 2, 1, 1, 1, 1, 1) and proceed as
in Claim (iv). Here we have d < b

4 + 3(g+h)
10 in place of d < g+h

2 . Using this
upper bound on d we get ψ10(g, h) in place of ψ7(g, h) and ψ11(g, h) in place
of ψ9(g, h) (for the end point d = 0, ψ8(g, h) remains unchanged), where

ψ10(g, h)

= 2 + a+
11b
4

+
g + h

5
− 2B3A

(
1− b

4
− 3(g + h)

10

)(
1− b− g + h

2

)
GH,

ψ11(g, h)

= 2 + a+
19b
8

+
g + h

10
− 2B3A

(
1− 5b

8
− 4(g + h)

10

)(
1− 3b

4
− g + h

5

)
GH.

The second derivative of the function ψ10(g, h) with respect to g turns out
to be positive. As a − h < g ≤ a, we have ψ10(g, h) ≤ max{ψ10(a − h, h),
ψ10(a, h)}. Considering ψ10(a − h, h) and ψ10(a, h) as functions of h, their
second derivatives are positive and 0 < h ≤ a; so ψ10(g, h) ≤ max{ψ10(a, 0),
ψ10(a, a)}. Similarly ψ11(g, h) ≤ max{ψ11(a, 0), ψ11(a, a)}. One can easily
verify that ψ8(g, h), ψ10(g, h) and ψ11(g, h) are negative at the end points
(g, h) = (a, 0), (a, a) for 0.2 ≤ a ≤ 0.274 and 0 < b ≤ 0.148. This contradicts
(5.8.7).

5.9. Case (63)

Proposition 25. Case (63), i.e. A > 1, B > 1, C ≤ 1, D ≤ 1, E ≤ 1,
F ≤ 1, G ≤ 1, H > 1, does not arise.
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Proof. Here a ≤ 1
2 , b ≤ 1

3 , 2E ≥ B > 1 ≥ F by Lemma 3. Also
2F > 1 > G, for if F ≤ 1

2 then E < 4F
3 < 2

3 so that EF < 1
3 , which

implies ABCDGH > 3. But ABCDGH ≤ ABH ≤ A2B ≤ 9
4 ·

4
3 = 3, a

contradiction. Using inequalities (1, 2, 2, 1, 1, 1), (1, 2, 1, 2, 1, 1), (1, 2, 2, 2, 1)
and (2, 2, 1, 1, 1, 1) we get

a− 2c− 2e− f − g + h > 0,(5.9.1)
a− 2c− d− 2f − g + h > 0,(5.9.2)

a− 2c− 2e− 2g + h > 0,(5.9.3)
2b− 2d− e− f − g + h > 0.(5.9.4)

Claim (i). a < 0.287.

Assume a ≥ 0.287. From (5.9.1)–(5.9.3) we get e < a+h
2 − f+g

2 , f <
a+h

2 −
g
2 and g < a+h

2 . We will first prove that A4EFGH > 2 for a ≥ 0.287.
Now A4EFGH > A4(1 − a+h

2 + f+g
2 )(1 − f)(1 − g)(1 + h) = θ(f), say.

One finds that θ(f) is a decreasing function of f , so θ(f) ≥ θ(a+h2 −
g
2) =

A4(1 − a+h
4 + g

4)(1 − a+h
2 + g

2)(1 − g)(1 + h) = φ(g), say. As φ′′(g) ≤ 0, we
get φ(g) ≥ min{φ(0), φ(a+h2 )}. Now

φ(0) = A4

(
1− a+ h

4

)(
1− a+ h

2

)
(1 + h)

≥ min
{

(1 + a)4
(

1− a

4

)(
1− a

2

)
, (1 + a)5

(
1− a

2

)
(1− a)

}
= (1 + a)5

(
1− a

2

)
(1− a) > 2

for a ≥ 0.287. Similarly

φ

(
a+ h

2

)
= A4

(
1− a+ h

8

)(
1− a+ h

4

)(
1− a+ h

2

)
(1 + h)

≥ min
{

(1 + a)4
(

1− a

8

)(
1− a

4

)(
1− a

2

)
,

(1 + a)5
(

1− a

4

)(
1− a

2

)
(1− a)

}
= (1 + a)5

(
1− a

4

)(
1− a

2

)
(1− a) > 2

for a ≥ 0.287. Hence A4EFGH > 2 for a ≥ 0.287. Therefore (4, 1, 1, 1, 1)
holds, i.e. 4A− 1

2A
5EFGH+E+F +G+H > 8. As the coefficient of E on

the left hand side is negative, replacing E by 1− a+h
2 + f+g

2 and simplifying
we get
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(5.9.5) ϕ(f)

=
7a
2
− f + g

2
+
h

2
− 1

2
A5

(
1− a+ h

2
+
f + g

2

)
(1− f)(1− g)(1 + h) > 0.

As ϕ′′(f) > 0, we have ϕ(f) ≤ max{ϕ(0), ϕ(a+h2 −
g
2)}. Now

ϕ

(
a+ h

2
− g

2

)
=

13a
4
− g

4
+
h

4
− 1

2
A5

(
1− a+ h

2
+
g

2

)(
1− a+ h

4
+
g

4

)
(1−g)(1+h) = ψ(g),

say. As ψ′′(g) > 0 so ψ(g) ≤ max{ψ(0), ψ(a+h2 )}. It is easy to see that ψ(0)
and ψ(a+h2 ) are negative for 0 < h ≤ a and 0.287 ≤ a ≤ 1

2 , which shows
that ϕ(a+h2 −

g
2) < 0. Using a similar argument we can show that ϕ(0) < 0

for 0 < h ≤ a and 0.287 ≤ a ≤ 1
2 . It now follows that ϕ(f) < 0, which

contradicts (5.9.5).

Claim (ii). c+ e > 0.32(a+ h).

Assume that x = c + e ≤ 0.32(a + h). After applying the AM-GM
inequality to (2, 2, 2, 1, 1) we have 4A + 4C + 4E − 6ACEG1/3H1/3 + G +
H > 8, which implies 6+4a−4x−g+h−6(1+a)(1−x)(1−g)1/3(1+h)1/3 > 0.
Since (1+a)(1−x) > 1 for x ≤ 0.64a and a ≤ 1

2 , the left side is an increasing
function of g, therefore replacing g by a+h

2 − c− e we get

(5.9.6) ϕ(x)

= 6 +
7a
2
− 3x+

h

2
− 6(1 + a)(1− x)

(
1− a+ h

2
+ x

)1/3

(1 + h)1/3 > 0.

Since ϕ′′(x) > 0 and 0 ≤ x ≤ 0.32(a+ h), it follows that ϕ(x) ≤ max{ϕ(0),
ϕ(0.32(a+ h))}, which can be easily seen to be negative for 0 < h ≤ a and
0 < a < 0.287, a contradiction to (5.9.6).

Claim (iii). a < 0.25.

Assume that a ≥ 0.25. Using Claim (ii) and inequalities (5.9.1) and
(5.9.3) we get f < 0.36(a+ h)− g and g < 0.18(a+ h). Now proceeding as
in Claim (i) and using f < 0.36(a + h) − g in place of f < a+h

2 −
g
2 and

g < 0.18(a+h) in place of g < a+h
2 we find that A4EFGH ≥ 2 for a ≥ 0.25.

Therefore (4, 1, 1, 1, 1) holds. Proceeding as in Claim (i) we find that (5.9.5)
is false for f < 0.36(a+ h)− g, g < 0.18(a+ h), 0 < h ≤ a and a ≥ 0.25.

Claim (iv). c+ e > 0.35(a+ h).

Assume that c + e ≤ 0.35(a + h). Using (2, 2, 2, 1, 1) and proceeding as
in Claim (ii) we find that (5.9.6) is not true for x ≤ 0.35(a+ h), 0 < h ≤ a
and 0 < a < 0.25.
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Claim (v). b < 0.17.

Suppose that b ≥ 0.17. Using Claim (iv) and inequalities (5.9.1) and
(5.9.3) we get f + g < 0.3(a+ h) and g < 0.15(a+ h). Let y = f + g. Then
AFGH > (1+a+h)(1−y) > (1+a+h)(1−0.3(a+h)) > (1+a)(1−0.3a) >
(1 + b)(1− 0.3b). This gives B4AFGH > (1 + b)5(1− 0.3b) > 2 for b ≥ 0.17.
Therefore (1, 4, 1, 1, 1) holds. That is, A+4B− 1

2B
5AFGH+F +G+H > 8,

which implies that

(5.9.7) φ(y) = a+ 4b− y + h− 1
2(1 + b)5(1 + a)(1− y)(1 + h) > 0.

As the coefficient of y on the left side is positive and y < 0.3(a+h), we have
φ(y) < φ(0.3(a+h)) = 0.7a+4b+0.7h− 1

2(1+b)5(1+a)(1−0.3(a+h))(1+h) =
ψ(h), say. As ψ′′(h) > 0, we have ψ(h) ≤ max{ψ(0), ψ(a)}, which is easily
seen to be negative for 0.17 ≤ b ≤ a < 0.25. This gives a contradiction to
(5.9.7).

Claim (vi). e+ f + g > 2b.

Assume e + f + g ≤ 2b. From (5.9.1) we have 2e + f + g < a + h. Also
f + g < 0.3(a+ h). Adding these two we get e+ f + g < 0.65(a+ h). Using
inequality (1, 3, 1, 1, 1, 1) we have A+4B−B4EFGHA+E+F+G+H > 8.
Now we get a contradiction from Lemma 6(vi) with γ = e + f + g < 3

4δ
where δ = a+ h and γ < 2b, b = x1 < 0.17.

Final contradiction. Using inequality (5.9.4) and Claim (vi) we get d< h
2 .

Using (3, 1, 1, 1, 1, 1) we have 4A−A4DEFGH +D +E + F +G+H > 8.
This gives

1 + 4a− d− (e+ f + g) + h− (1 + a)4(1− d)(1− (e+ f + g))(1 + h) > 0.

As the coefficient of e+ f + g is positive and e+ f + g < 0.65(a+h) (proved
in the last Claim), so we can replace e+f+g by 0.65(a+h) and then d by h

2

to get 1+4a− h
2−0.65(a+h)+h−(1+a)4(1− h

2 )(1−0.65(a+h))(1+h) > 0,
which is not possible for 0 < h ≤ a < 0.25. This gives a contradiction.
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