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On the zeros of linear recurrence sequences
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1. Introduction. A linear recurrence sequence of order t ≥ 1 is a se-
quence {um}m∈Z of elements in an algebraically closed field K of character-
istic zero which satisfies a minimal relation

um+t = c1um+t−1 + · · ·+ ctum (m ∈ Z)

with c1, . . . , ct ∈ K. We say that {um} is simple if its companion polynomial
P(z) = zt − c1zt−1 − · · · − ct has only simple roots. Let

S({um}) = {k : uk = 0}.
The Skolem–Mahler–Lech theorem asserts that for an arbitrary linear re-
currence sequence {um} of order t ≥ 1 the set S({um}) is a finite union of
arithmetic progressions, where we adopt the convention that single elements
of Z are trivial arithmetic progressions. In [4], J.-H. Evertse, H.-P. Schlicke-
wei and W. Schmidt prove that for a simple linear recurrence sequence of
order t the set S({um}) is the union of at most

exp{(6t)3t}
arithmetic progressions.

Let K be a field of characteristic 0. Let (a1, . . . , an) ∈ (K∗)n and Γ be
a subgroup of (K∗)n of finite rank r. Let us consider the equation

(1.1) a1α1 + · · ·+ anαn = 1 with α ∈ Γ.
We say that a solution of (1.1) is non-degenerate if no subsum of the left
hand side of (1.1) vanishes. The result on linear recurrence sequences of [4]
is a quite straightforward corollary of the bound for the number of non-
degenerate solutions of the equation (1.1). In turn, this last estimate depends
on two different tools. An application of the Subspace Theorem gives an
estimate on the “large” solutions of equation (1.1). To handle the “small”
solutions one usually applies a gap principle. For this purpose one needs
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a lower bound for the height of a small solution. In the quoted paper the
authors use a result of Schmidt [5]. In [3, Corollary 1.4], we considerably
improved such a bound. Thus we can save one exponential in the bound of
[4] for the number of non-degenerate solutions of the equation (1.1) (see ([3,
Theorem 6.2]). As a further application, we found ([3, Corollary 6.3]) that,
for a simple linear recurrence sequence of order t, the set S({um}) is the
union of at most

(8t)4t5

arithmetic progressions.
In [7], Schmidt generalized the zero estimate of [4] to arbitrary linear

recurrence sequences of order t. He proved that S({um}) is the union of at
most

(1.2) exp exp exp(20t)

arithmetic progressions. This was recently improved to

exp exp exp(
√

11t log t)

by Allen (see [2]). The key change in his proof is an improvement on [7,
Lemma 2 on linear independence].

One of the fundamental tools in Schmidt’s proof is the estimate of [4]
for the number of non-degenerate solutions of the equation (1.1). The aim
of the present paper is to briefly show how our results in [3] allow us to
substantially improve (1.2), saving an exponential.

Theorem 1.1. Let {um} be a linear recurrence of order t. Then the set
S({um}) = {k : uk = 0} is the union of at most

exp exp(70t)

arithmetic progressions.

We then improve some other bounds. Let α1, . . . , αk be the distinct roots
of the companion polynomial P and let a be the maximum of their multi-
plicities in P. In [7], Schmidt also proves that S({um}) is a union of at
most

exp exp(30aka log k)

arithmetic progressions. Theorem 1.1 suggests that one could possibly also
improve this last estimate by one exponential. Unfortunately, we have not
been able to do that. This is due to the double exponential growth in t of the
function Z(t, T ) which bounds the number of such arithmetic progressions
in (3.1) below. However, we can successfully treat the case of non-degenerate
sequences. We recall that a sequence is non-degenerate if no quotient αi/αj

(1 ≤ i < j ≤ k) is a root of unity. For a non-degenerate sequence the
Skolem–Mahler–Lech theorem simply asserts that S({um}) is a finite set.
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Its cardinality is called the zero multiplicity of the sequence {um}. The
following result improves by one exponential the main theorem of [6].

Theorem 1.2. Let {um} be a non-degenerate linear sequence whose
companion polynomial has k distinct roots with multiplicity ≤ a. Then the
zero multiplicity of {um} is bounded by

(8ka)8k6a ≤ exp(32ak6a log k).

We finally remark that in Theorem 1.1, one could naturally try to com-
bine our improvement with Allen’s refined version of [7, Lemma 2] to obtain
a lower bound of the shape

exp exp(c
√
t log t).

We cannot do this, because of the double exponential growth in t of the
function Z(t, T ) and because of the double exponential growth in n for the
number of systems of 3-element sets (see the discussion at the end of this
article for some more details).

2. Ingredients of the proof

2.1. Auxiliary results. In what follows we sum up an improved version
of some lemmas of [6] which we need in order to obtain the final result.
Essentially, we replace the main results of [4] by those of [3, Section 6]. Let
us sketch the necessary computations.

For integers q ≥ 1 and r ≥ 0 we define

C(q, r) = (8q)4(q−1)4(q+r).

Lemma 2.1 (Counterpart to [6, Lemma 4]). Let Γ be a finitely generated
subgroup of (C∗)q of rank r, and let a1, . . . , aq ∈ C∗. Then, up to a factor of
proportionality, the equation

a1x1 + · · ·+ aqxq = 0

has less than C(q, r) non-degenerate solutions x ∈ Γ .

Proof. This is an inhomogeneous version of Theorem 6.2 of [3]. Indeed,
set n = q− 1, bi = −ai/aq and yi = xi/xq (i = 1, . . . , n). Then the equation
becomes

b1y1 + · · ·+ bnyn = 1

with y = (y1, . . . , yn) in a subgroup of rank ≤ r. By Theorem 6.2 of [3] this
last equation has at most

(8n)4n4(n+r+1) < C(q, r)

non-degenerate solutions.

For α ∈ Pn(Q) we denote by h(α) the absolute, logarithmic Weil height
of α. For α = (α1, . . . , αn) ∈ (Q∗)n we let ĥ(α) = h((1 : α1 : · · · : αn)).
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Lemma 2.2 (Counterpart to [6, Lemma 5]). Let q > 1 and let Γ be a
finitely generated subgroup of (Q∗)q of rank r. Consider the set S of solutions
of the equation

(2.1) z1 + · · ·+ zq = 0

with z = xy, x ∈ Γ , y ∈ Qq and

h(y) ≤ 1
4q2

h(x).

Then S is contained in the union of less than C(q, r) proper linear subspaces
of the (q − 1)-dimensional linear space defined by (2.1).

Proof. Set n = q− 1. As in the proof of [6], it is enough to prove the fol-
lowing inhomogeneous version of this lemma. Let Γ be a finitely generated
subgroup of (Q∗)n of rank r. Let S′ be the set of solutions of the equation
z1 + · · · + zn = 1 with z = xy, x ∈ Γ , y ∈ (Q∗)n and ĥ(y) ≤ (4n2)−1h(x).
Then S′ is contained in the union of not more than C(q, r) proper lin-
ear subspaces of (Q∗)n. We follow the proof of [6] replacing Theorem 2.1
of [4] by Theorem 6.1 of [3]. Then S′ is contained in the union of not more
than

n+ 230n2
(21n2)r + (8n)(6n3)(n+r)

proper linear subspaces of (Q∗)n. We clearly assume n ≥ 2. Using 2 =
161/4 ≤ (8n)1/4 and 1 + 7.5x2 + 6x4 ≤ 4x4(x + 1) for x ≥ 2, we see
that

n+ 230n2
(21n2)r + (8n)(6n3)(n+r) ≤ (8n)1+7.5n2+2r+(6n3)(n+r)

≤ (8n)4n4(n+r+1) < C(q, r).

For a non-zero polynomial P ∈ C[X] we put t(P ) = 1 + deg(P ) and
we agree that t(0) = 0. For a vector P = (P1, . . . , Pk) ∈ (C[X])k, define
t(P) = t(P1) + · · ·+ t(Pk) and a(P) = maxi t(Pi).

Let α1, . . . , αk ∈ (Q∗)k be algebraic numbers and let P1, . . . , Pk ∈ Q[X]
be non-zero polynomials. We consider the polynomial-exponential equation

(2.2) P1(x)αx
1 + · · ·+ Pk(x)αx

k = 0.

Put for simplicity t = t(P) and t∗ = 1 + a(P). Assume t ≥ 3 and } ∈ (0, 1].
We suppose that

max
i,j

h((αi : αj)) ≥ }.

Let us define

E = 16t2 · t∗/}, F = (8t)4(t−1)4(t+2) + 5E logE.
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Lemma 2.3 (Counterpart to [6, Lemma 7]). There exist k-tuples P(w) =
(P (w)

1 , . . . , P
(w)
k ) 6= (0, . . . , 0) (1 ≤ w < F ) of polynomials with

degP (w)
i ≤ degPi (1 ≤ w < F, 1 ≤ i < k),

degP (w)
k < degPk (1 ≤ w < F )

such that every solution x ∈ Z of (2.2) satisfies

P
(w)
1 (x)αx

1 + · · ·+ P
(w)
k (x)αx

k = 0

for some w ∈ [1, F ).

Proof. We replace, in Schmidt’s proof, Lemma 5 of [6] by Lemma 2.2.
From (4.10) of [6] and from the discussion following that formula, we see
that we can take

F = C(t, 2) + 5E logE = (8t)4(t−1)4(t+2) + 5E logE.

Let α, β be complex numbers. We write α ≈ β if α, β are non-zero and
α/β is a root of unity.

Let a1, . . . , aq, α1, . . . , αq ∈ C and

f(x) = a1α
x
1 + · · ·+ aqα

x
q .

Consider a partition of the summands such that aiα
x
i and ajα

x
j are in the

same part if and only if αi ≈ αj . After relabeling, one can write

f(x) = f1(x) + · · ·+ fg(x)

where
fi(x) = ai,1α

x
i,1 + · · ·+ ai,qiα

x
i,qi

(i = 1, . . . , g)

with q1 + · · ·+ qg = q and

αi,j ≈ αi,k when 1 ≤ i ≤ g, 1 ≤ j, k ≤ qi;
αi,j 6≈ αi′,k when 1 ≤ i 6= i′ ≤ g, 1 ≤ j ≤ qi, 1 ≤ k ≤ qi′ .

Lemma 2.4 (Counterpart to [6, Lemma 8]). All but at most

G(q) = (8q)4(q−1)3q2

solutions x ∈ Z of f(x) = 0 have f1(x) = · · · = fg(x) = 0.

Proof. In the proof of [6, Lemma 8], we replace [6, Lemma 4] by our
Lemma 2.1. From the last formula of [6], p. 258, we see that it is enough to
show that C(q, 1) + 2qG(q − 1) ≤ G(q) for q ≥ 2. This arises from

C(q, 1) + 2qG(q − 1) ≤ (8q)4(q−1)4(q+1) + 2q(8(q − 1))4(q−2)3(q−1)2

≤ (1 + 2q)(8q)4(q−1)2 max((q−1)2(q+1),(q−2)3)

≤ (8q)q+4(q−1)2 max((q−1)2(q+1),(q−2)3) ≤ (8q)4(q−1)3q2

(use x+ 4(x− 1)2 max((x− 1)2(x+ 1), (x− 2)3) ≤ 4(x− 1)3x2 for x ≥ 2).
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2.2. Main proposition. We improve the main proposition at the be-
ginning of Section 3 of [7] replacing in (3.4) of that proposition the value
of H(T ) by (8T )4(T−1)T 4

. For the convenience of the reader we recall the
statement of that proposition, which is the core of [7]. Let

Mj(X) = a1,jX1 + · · ·+ ak,jXk (j = 1, . . . , n)

be linear forms with algebraic coefficients which are linearly independent
over Q. We write ai = (ai,1, . . . , ai,n) and assume that each ai 6= (0, . . . , 0)
(i = 1, . . . , k). We define ti to be the integer such that

ai = (ai,1, . . . , ai,ti , 0, . . . , 0)

with ai,ti 6= 0. Set

t = t1 + · · ·+ tk, T = min(kn, e12t), } = }(T ) = e−6T 4
.

Proposition 2.5. Suppose that α1, . . . , αk are non-zero algebraic num-
bers. Consider x ∈ Z for which

M1(αx
1 , . . . , α

x
k), . . . ,Mn(αx

1 , . . . , α
x
k)

are linearly independent over Q. These numbers fall into at most

(2.3) H(T ) = (8T )4(T−1)T 4

classes with the following properties. For each class C there is a natural
number m such that

(a) solutions x, x′ in C have x ≡ x′ mod m,
(b) there are i 6= j such that either αi 6≈ αj and h(αi/αj) ≥ }, or

αi ≈ αj and ord(αm
i /α

m
j ) ≤ }−1.

Proof. We remark that t ≥ k. Moreover, t ≥ n. Indeed max ti = n,
otherwise we had Mn = 0, contradicting the hypothesis on the linear inde-
pendence of M1, . . . ,Mn.

The case k = 1 is trivial, as remarked at the beginning of [7, Section 6].
Assume k ≥ 2 and n = 1. In the proof, we replace Lemma 8 of [6] by our
Lemma 2.4. Then the last equation of [7, Section 6, p. 625] can be replaced
by

G(k) + 2k · k3k2
= (8k)4(k−1)3k2

+ 2k · k3k2

≤ (8k)4(k−1)3k2+3k2 ≤ H(k) = H(T )

because 4(x − 1)3x2 + 3x2 ≤ 4(x − 1)x4 for x ≥ 2 and in addition n = 1
yields T = k.

As in [7, Section 7] we assume k ≥ 2 and n ≥ 2. Thus

T = min(kn, e12t) ≥ min(2n, e12n) = 2n.
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Again, we replace Lemma 8 of [6] by our Lemma 2.4. Then [7, (7.11)] is
replaced by (use (3T )n ≤ (8T )T )

|S ′′|G(T ) < (3T )n(8T )4(T−1)3T 2
< (8T )T+4(T−1)3T 2

.

The estimate at the end of [7, p. 630] becomes (use 3n ≤ 4n ≤ T 2)

(8T )T+4(T−1)3T 2
+ exp(5T 3 + 3nT ) ≤ (8T )T+4(T−1)3T 2

+ exp(6T 3)

≤ (8T )T+4(T−1)3T 2+6T 3 ≤ H(T )

because x+ 4(x− 1)3x2 + 6x3 ≤ 4(x− 1)x4 for x ≥ 3 and T ≥ 2n ≥ 4.

3. Conclusion. We closely follow [7, Section 3]. For a non-zero poly-
nomial P ∈ C[X] we recall that t(P ) = 1 + deg(P ) (with the convention
t(0) = 0). For a vector P = (P1, . . . , Pk) ∈ (C[X])k, as before we put
t(P) = t(P1) + · · ·+ t(Pk) and a(P) = maxi t(Pi). Moreover, we let

T (P) = min(ka(P), e12t(P)).

For a set Z of integers, let ν(Z) be the minimum ν such that Z can be
expressed as the union of ν arithmetic progressions. We agree that single
elements of Z are trivial arithmetic progressions and that ν(Z) = ∞ if Z
cannot be expressed as such a union. Notice that for a finite set Z, ν(Z) is
simply the cardinality of Z.

Let {um} be a linear recurrence of order t with companion polynomial P.
Write

P(z) = c0

k∏
i=1

(z − αi)ai

with distinct roots α1, . . . , αk. Then

um = P1(m)αm
1 + · · ·+ Pk(m)αm

k

where Pi is a polynomial of degree < ai (i = 1, . . . , k). Thus, we have to
consider the polynomial-exponential equation

P1(x)αx
1 + · · ·+ Pk(x)αx

k = 0.

Let Z = Z(P) be the set of integers x satisfying this equation. We have
t = t(P). Put for simplicity a = a(P) = max ai and T = T (P).

3.1. Proof of Theorem 1.1. By induction on t, we prove that

(3.1) ν(Z) ≤ Z(t, T ) = (8T )(2
t−1)8T 5

.

As in [7], we may suppose k ≥ 2 and t ≥ 3. Since k ≥ 2, we have
ka−1 ≥ a. Thus ka ≥ ka ≥ t and T ≥ t ≥ 3.
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We consider the solutions of [7, (3.9)]

(3.2)
n∑

r=1

( a∑
j=1

cj,rx
j−1
)
Mr(αx

1 , . . . , α
x
k) = 0.

There are fewer than a numbersx∈Z such that each polynomial
∑a

j=1 cj,rx
j−1

(r=1, . . . , n) vanishes. For other solutions of (3.2) the numbersMr(αx
1, . . . ,α

x
k)

(r = 1, . . . , n) are linearly dependent over Q. By Proposition 2.5, these
numbers fall into at most

H(T ) = (8T )4(T−1)T 4

classes. Fix one class C.
Proposition 2.5 leads to two cases. Let us consider first the case where

there are i 6= j such that αi ≈ αj and ord(αm
i /α

m
j ) ≤ }(T )−1. In this case,

by [7, (3.12) and the inequality just before (3.12)], the set ZC of solutions
in our class satisfies

ν(ZC) ≤ exp(6T 4)Z(t− 1, T ) ≤ (8T )4(T−1)T 4
Z(t− 1, T )

(use 6x4 ≤ 4(x− 1)2x4 for x ≥ 3).
We now consider the case where there are i 6= j such that αi 6≈ αj and

h(αi/αj) ≥ }(T ). We replace [6, Lemma 7] by our Lemma 2.3. Let, as in
that lemma,

F = (8t)4(t−1)4(t+2) + 5E logE.

In the present situation, thanks to the inequality just before [7, (3.14)], we
have E logE < exp(8T 4). Thus (3.14) is replaced by

F < (8t)4(t−1)4(t+2) + 5 exp(8T 4) ≤ 6(8T )max(4(T−1)4(T+2),4T 4)

≤ (8T )4(T−1)T 4

(recall that t ≤ T and use e ≤
√

8, 1+max(4(x−1)4(x+2), 4x4) ≤ 4(x−1)x4

for x ≥ 3). Inequality (3.17) of [7] now reads

(3.3) ν(ZC) ≤ FZ(t− 1, T )2 < (8T )4(T−1)T 4
Z(t− 1, T )2.

Therefore, in both cases of Proposition 2.5,

ν(ZC) ≤ (8T )4(T−1)T 4
Z(t− 1, T )2.

Thus, using the new value (2.3) of H(T ) in Proposition 2.5 and the
inductive hypothesis, the inequality which follows (3.17) in [7] becomes

ν(Z) < a+H(T )(8T )4(T−1)T 4
Z(t− 1, T )2(3.4)

≤ T + (8T )4(T−1)T 4+4(T−1)T 4+2(2t−1−1)8T 5

≤ (8T )1−8T 4+(2t−1)8T 5 ≤ Z(t, T ).
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Hence (3.1) is established. Since T ≤ e12t, we deduce

ν(Z) ≤ (8e12t)2
t·8e60t ≤ exp exp(t log 2 + log 8 + 60t+ log(log 8 + 12t))

≤ exp exp(70t).

3.2. Proof of Theorem 1.2. We follow the proof above. We show by
induction on t that

(3.5) |Z| ≤ Z(t, T ) = (8T )8T 5t.

As in the proof of Theorem 1.1, Proposition 2.5 leads to two cases. However,
the case

∃i 6= j, αi ≈ αj , ord(αm
i /α

m
j ) ≤ }(T )−1

does not occur, since {um} is not degenerate. More importantly, the case

∃i 6= j, αi 6≈ αj , h(αi/αj) ≥ }(T )

has no additional troubles with non-trivial arithmetic progressions (see the
paragraph in [7] between (3.14) and (3.15)). Thus, inequality (3.3) can be
replaced by

ν(ZC) ≤ FZ(t− 1, T ) < (8T )4(T−1)T 4
Z(t− 1, T )

saving a square on Z(t− 1, T ). In turn, (3.4) becomes

ν(Z) < a+H(T )(8T )4(T−1)T 4
Z(t− 1, T )

≤ T + (8T )4(T−1)T 4+4(T−1)T 4+(t−1)8T 5 ≤ (8T )1−8T 4+8T 5t ≤ Z(t, T ).

Hence (3.5) is established. Since t ≤ T ≤ kn ≤ ka and k ≥ 2, we immediately
deduce that

|Z| ≤ (8ka)8k6a
= exp(8k6a(3 log 2 + a log k)) ≤ exp(32ak6a log k).

As mentioned in the introduction, in Theorem 1.1, we could try to com-
bine our improvement with Allen’s refined version of [7, Lemma 2], to obtain
a lower bound of the shape

(3.6) exp exp(c
√
t log t).

We have not been able to do that. In the degenerate case the growth in t
of Z(t, T ) is double exponential. So, as for Theorem 1.2, we are not able to
get further advantage. Neither in the non-degenerate case can we obtain a
bound of the kind (3.6). Allen takes

H(T ) = exp(4(6T )3T )

in the main proposition (see [1, Proposition in Section 5.6]) and replaces

T = min(kn, e12t)
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by min(kn, e
√

2t). This does not work with a function H(T ) which has a
simple exponential growth. Indeed, the number of systems of 3-element sets
has a double exponential growth in n ([6, Section 11]).
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