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An analog of crank for a certain kind of
partition function arising from the cubic continued fraction
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1. Introduction and statement of results. In a series of papers ([4]–
[6]) H.-C. Chan studied congruence properties of a certain kind of partition
function a(n), which arises from Ramanujan’s cubic continued fraction and
is defined by

(1.1)
∞∑
n=0

a(n)qn =
1

(q; q)∞(q2; q2)∞
.

Here and below, we use the following standard q-series notation:

(a; q)0 := 1,

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1,
(a; q)∞ := lim

n→∞
(a; q)n, |q| < 1.

We can interpret a(n) as the number of 2-color partitions of n with colors r
and b subject to the restriction that color b appears only in even parts. For
example, there are three such partitions of 2:

2r, 2b, 1r + 1r.

Since a(n) is closely related to Ramanujan’s cubic continued fraction (see
[4]), we will say that a(n) is the number of cubic partitions of n.

In particular, by using identities for the cubic continued fraction, Chan
found a result analogous to “Ramanujan’s most beautiful identity” (in the
words of G. H. Hardy [17, p. xxxv]), namely,

∞∑
n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

,
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where p(n) is the number of ordinary partitions of n. Chan’s identity is
∞∑
n=0

a(3n+ 2)qn = 3
(q3; q3)∞(q6; q6)∞
(q; q)4∞(q2; q2)∞

.

This implies immediately that

(1.2) a(3n+ 2) ≡ 0 (mod 3).

To give a combinatorial explanation of the famous Ramanujan partition
congruences

p(5n+ 4) ≡ 0 (mod 5),
p(7n+ 5) ≡ 0 (mod 7),
p(11n+ 6) ≡ 0 (mod 11),

G. E. Andrews and F. G. Garvan [2] introduced the crank of a partition.
For a given partition λ, the crank c(λ) of a partition is defined as

c(λ) :=
{
`(λ) if r = 0,
ω(λ)− r if r ≥ 1,

where r is the number of 1’s in λ, ω(λ) is the number of parts in λ that are
strictly larger than r, and `(λ) is the largest part in λ.

Let M(m,n) be the number of ordinary partitions of n with crank m.
Andrews and Garvan showed that

(1.3)
∞∑
n=0

∞∑
m=−∞

M(m,n)xmqn = (1− x)q +
(q; q)∞

(xq; q)∞(x−1q; q)∞
.

This equation is equivalent to

(q; q)∞
(xq; q)∞(x−1q; q)∞

= 1 + (−1 + x+ x−1)q +
∞∑
n=1

∞∑
m=−∞

M(m,n)xmqn.

Let M(k,N, n) be the number of ordinary partitions of n with crank ≡ k
(mod N). In [2] and [9], Andrews and Garvan showed that for all n ≥ 0,

M(i, 5, 5n+ 4) = M(j, 5, 5n+ 4) for all 0 ≤ i ≤ j ≤ 4,
M(i, 7, 7n+ 5) = M(j, 7, 7n+ 5) for all 0 ≤ i ≤ j ≤ 6,

M(i, 11, 11n+ 6) = M(j, 11, 11n+ 6) for all 0 ≤ i ≤ j ≤ 10.

These identities clearly imply Ramanujan’s congruences.
As Chan mentioned in his paper [6], it is natural to seek an analog of

the crank of the ordinary partition to give a combinatorial explanation of
(1.2). In light of (1.3), it is natural to conjecture that

(1.4) F (x, q) =
(q; q)∞(q2; q2)∞

(xq; q)∞(x−1q; q)∞(xq2; q2)∞(x−1q2; q2)∞
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gives an analogous crank for cubic partitions. In Section 2, we will review
the crank of Andrews and Garvan of the ordinary partition function, and
by giving a combinatorial interpretation of (1.4), we will define an analog
ca of crank. To this end, we need to extend the set of cubic partitions to
a new set which we will call extended cubic partitions. Then we define a
cubic crank ca as a weighted count of extended cubic partitions according
to a weight wta. (For the exact definition, see Section 2.) By using q-series
identities, we will prove our first theorem.

Theorem 1.1. Let M ′(m,N, n) be the number of extended cubic parti-
tions of n with cubic crank ≡ m (mod N) counted according to the weight
wta. Then

M ′(0, 3, 3n+ 2) ≡M ′(1, 3, 3n+ 2) ≡M ′(2, 3, 3n+ 2) (mod 3)

for all nonnegative integers n.

Since

a(n) =
N−1∑
k=0

M ′(k,N, n),

this immediately implies the following corollary.

Corollary 1.2. For all nonnegative integers n,

a(3n+ 2) ≡ 0 (mod 3).

Let us define

(1.5) ck :=


7 · 3n + 1

8
if k is even,

5 · 3n + 1
8

if k is odd.

In [5], Chan proved the following congruences for cubic partitions, which are
originally due to P. Eggan [7].

Theorem 1.3 (Theorem 1 in [5]). For all nonnegative n, a(3kn+ck) ≡ 0
(mod 32bk/2c+1).

Surprisingly, our cubic crank can explain these congruences partially. To
see this, we will prove the following theorem.

Theorem 1.4. For all nonnegative n,

M ′(0, 3, 3kn+ ck)−M ′(1, 3, 3kn+ ck) ≡ 0 (mod 3bk/2c+1).

By (2.7), Theorem 1.4 implies that

M ′(0, 3, 3kn+ ck) ≡M ′(1, 3, 3kn+ ck) ≡M ′(2, 3, 3kn+ ck) (mod 3bk/2c+1).

Moreover, from Theorem 1.3, we find that

M ′(0, 3, 3kn+ck) ≡M ′(1, 3, 3kn+ck) ≡M ′(2, 3, 3kn+ck) ≡ 0 (mod 3bk/2c).
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Therefore, we can see that the cubic crank gives a combinatorial explanation
for the congruences

a(3kn+ ck) ≡ 0 (mod 3bk/2c+1)

for all nonnegative integers n. Though this cubic crank does not give a
full explanation for Theorem 1.3, as far as the author knows, this is the
first crank which explains infinitely many congruences for a fixed arithmetic
progression. In Section 3, we will review basic properties of modular forms.
With this equipment, we will prove Theorem 1.4 in Section 4.

In [14], K. Mahlburg proved that there are infinitely many arithmetic
progressions An+B such that

M(m, `j , An+B) ≡ 0 (mod `τ )

simultaneously for every 0 ≤ m ≤ `j − 1, where ` ≥ 5 is a prime and τ , j
are positive integers. This implies that p(An+B) ≡ 0 (mod `τ ).

By using the theory of modular forms, in Section 4, we will prove our
third theorem, which is analogous to Mahlburg’s result.

Theorem 1.5. There are infinitely many arithmetic progressions An+B
such that

M ′(m, `j , An+B) ≡ 0 (mod `τ )

simultaneously for every 0 ≤ m ≤ `j − 1, where ` ≥ 5 is a prime and τ , j
are positive integers.

2. A cubic crank for a(n). Before defining a cubic crank, we need to
introduce some notation and review the definition of the crank of ordinary
partitions. After Andrews and Garvan [2], for a partition λ, we denote by
#(λ) the number of parts in λ, and by σ(λ) the sum of the parts of λ, with
the convention #(λ) = σ(λ) = 0 for the empty partition λ. Let P be the
set of all ordinary partitions, and D be the set of all partitions into distinct
parts. We define

V = {(λ1, λ2, λ3) | λ1 ∈ D and λ2, λ3 ∈ P}.

For λ = (λ1, λ2, λ3), we define the sum of parts s, a weight w, and a crank t,
by

s(λ) = σ(λ1) + σ(λ2) + σ(λ3),

w(λ) = (−1)#(λ1),

t(λ) = #(λ2)−#(λ3).

We say λ is a vector partition of n if s(λ) = n. Let NV (m,n) denote the
number of vector partitions of n with crank m counted according to the
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weight w, so that
NV (m,n) =

∑
λ∈V
s(λ)=n
t(λ)=m

w(λ).

Then

(2.1)
∞∑
n=0

∞∑
m=−∞

NV (m,n)xmqn =
(q; q)∞

(xq; q)∞(x−1q; q)∞
.

By putting x = 1 in (2.1) we find
∞∑

m=−∞
NV (m,n) = p(n).

Andrews and Garvan showed that this vector crank actually gives the
crank for ordinary partitions.

Theorem 2.1 (Theorem 1 in [2]). For all n > 1, M(m,n) = NV (m,n).

Now, we are ready to define a cubic crank for cubic partitions. For a
given cubic partition λ, we define λr to be the partition that consists of all
parts with color r, and λb to be the partition that is formed by dividing
each of the parts with color b by 2. The generating function (1.4) suggests
that it is natural to define an analog Na

V (m,n) of vector crank as

Na
V (m,n) =

∑
λr,λb∈V

s(λr)+2s(λb)=n
t(λr)+t(λb)=m

w(λr)w(λb).

Then
(2.2)
∞∑
n=0

∞∑
m=−∞

Na
V (m,n)xmqn =

(q; q)∞(q2; q2)∞
(xq; q)∞(x−1q; q)∞(xq2; q2)∞(x−1q2; q2)∞

.

By putting x = 1 in (2.2), we find
∞∑

m=−∞
Na
V (m,n) = a(n).

Since Theorem 2.1 does not hold when n = 1, we need to extend the
set of partitions P to a new set P∗ by adding two additional copies of the
partition 1, say 1∗ and 1∗∗. We identify these three partitions of 1 with the
three vector partitions of 1:

1 = ((1), ∅, ∅), 1∗ = (∅, (1), ∅), 1∗∗ = (∅, ∅, (1)),

so that

P∗ = {(∅), (1), (1∗), (1∗∗), (1, 1), (2), (1, 1, 1), (1, 2), (3), . . . }.
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We define the weight wt(λ) for λ ∈ P∗ by

wt(λ) =
{

1 if λ ∈ P,
w(λ) otherwise,

so that

wt(1) = wt((1), ∅, ∅) = −1,
wt(1∗) = wt(∅, (1), ∅) = 1,

wt(1∗∗) = wt(∅, ∅, (1)) = 1.

We extend the definition of the crank function c(λ) to P∗ by

c∗(λ) =
{
c(λ) if λ ∈ P,
t(λ) otherwise,

so that

c∗(1) = t((1), ∅, ∅) = 0,
c∗(1∗) = t(∅, (1), ∅) = 1,
c∗(1∗∗) = t(∅, ∅, (1)) = −1.

The sum-of-parts function σ(λ) is extended in the natural way:

σ∗(λ) =
{
σ(λ) if λ ∈ P,
s(λ) otherwise.

In this way we see that

(q; q)∞
(xq; q)∞ (x−1q; q)∞

= 1 + (−1 + x+ x−1)q + (x2 + x−2)q2

+ (x3 + 1 + x−3)q3 + · · ·

=
∑
λ∈P∗

wt(λ)xc
∗(λ)qσ

∗(λ).

Now we need to extend the definition of cubic partition. Note that we
may identify a cubic partition of n (i.e. a partition into two colors r and b
where color b is only available for even parts) with an element of (λr, λb)
in P × P such that σ(λr) + 2σ(λb) = n. We extend the definition of cubic
partitions in the natural way by defining them to be elements of P∗×P∗. For
the set of extended cubic partitions we define the sum-of-parts function σa,
weight function wta, and crank function ca in the natural way. For λ =
(λr, λb) ∈ P∗ × P∗ we set

σa(λ) = σ∗(λr) + 2σ∗(λb),
wta(λ) = wt(λr) · wt(λb),
ca(λ) = c∗(λr) + c∗(λb).
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Hence we can deduce that∑
λ∈P∗×P∗

wta(λ)xca(λ)qσa(λ)

=
∑
λr∈P∗

wt(λr)xc
∗(λr)qσ

∗(λr) ·
∑
λb∈P∗

wt(λb)xc
∗(λb)q2σ

∗(λb)

=
(

1 + (−1 + x+ x−1)q +
∑
λr∈P

xc(λr)qσ(λr)
)

×
(

1 + (−1 + x+ x−1)q2 +
∑
λb∈P

xc(λb)q2σ(λb)
)

=
(

1 + (−1 + x+ x−1)q +
∞∑
n=1

∞∑
m=−∞

M(m,n)xmqn
)

×
(

1 + (−1 + x+ x−1)q2 +
∞∑
n=1

∞∑
m=−∞

M(m,n)xmq2n
)

=
(q; q)∞

(xq; q)∞ (x−1q; q)∞
· (q2; q2)∞

(xq2; q2)∞ (x−1q2; q2)∞
= F (x, q).

We let M ′(m,n) be the number of extended cubic partitions of n with crank
m counted according to the weight wta, so that

M ′(m,n) =
∑

λ∈P∗×P∗
ca(λ)=m,σa(λ)=n

wta(λ),

and

(2.3)
∞∑
n=0

∞∑
m=−∞

M ′(m,n)xmqn = F (x, q).

In summary, we have proven the following theorem.

Theorem 2.2. For all n ≥ 1, M ′(m,n) = Na
V (m,n).

We let M ′(m,N, n) be the number of extended cubic partitions of n with
crank congruent to m modulo N counted according to the weight wta, so
that

M ′(m,N, n) =
∑

r≡m (modN)

M ′(r, n) =
∑

λ∈P∗×P∗
ca(λ)≡m (modN), σa(λ)=n

wta(λ).

By letting x = 1 in (2.3) we find that
∞∑

m=−∞
M ′(m,n) = a(n)

for all n.
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Now, we are ready to give the proof for our first theorem.

Proof of Theorem 1.1. By a simple argument, we find that

F (ζ, q) =
(q; q)∞(q2; q2)∞

(ζq; q)∞(ζ−1q; q)∞(ζq2; q2)∞(ζ−1q2; q2)∞

=
∞∑
n=0

2∑
k=0

M ′(k, 3, n)ζkqn,

where ζ is a primitive third root of unity.
To find the coefficient of q3n+2 of F (ζ, q), we multiply the numerator and

the denominator by (q; q)∞(q2; q2)∞. Then, we have

F (ζ, q) =
(q; q)2∞(q2; q2)2∞

(q3; q3)∞(q6; q6)∞
(2.4)

=
(q; q2)2∞(q2; q2)∞(q2; q2)3∞

(q3; q3)∞(q6; q6)∞
(2.5)

=
(
∑∞

n=−∞(−1)nqn
2
)(
∑∞

m=0(−1)m(2m+ 1)qm(m+1))
(q3; q3)∞(q6; q6)∞

.

For the last equality, we used the Jacobi triple product identity and Jacobi’s
identity. (See [3, pp. 12–14] for the proof of these identities.) Since n2 ≡
0 or 1 (mod 3) and m(m + 1) ≡ 0 or 2 (mod 3), the coefficient of q3n+2 in
F (ζ, q) is the same as the coefficient of q3n+2 in

(2.6)
(
∑∞

n=−∞(−1)nq9n
2
)(
∑∞

m=0(−1)3m+1(6m+ 3)q9m
2+9m+2)

(q3; q3)∞(q6; q6)∞
.

Note that the coefficients of (2.6) are multiples of 3. Thus,

2∑
k=0

M ′(k, 3, 3n+ 2)ζk = 3N

for some integer N . Since 1 + ζ + ζ2 is a minimal polynomial in Z[ζ], we
must have

M ′(0, 3, 3n+ 2) ≡M ′(1, 3, 3n+ 2) ≡M ′(2, 3, 3n+ 2) (mod 3).

This completes the proof of Theorem 1.1.

Before proceeding, we give an example pertaining to Theorem 1.1.

Example 2.3. There are five extended cubic partitions of 2. We repre-
sent these as elements (λr, λb) of P∗ × P∗:
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(λr, λb) wta(λ) ca(λ) (mod 3)

((1, 1), ∅) +1 −2 ≡ 1

((2), ∅) +1 2 ≡ 2

(∅, (1)) −1 0 ≡ 0

(∅, (1∗)) +1 1 ≡ 1

(∅, (1∗∗)) +1 −1 ≡ 2

We see that

M ′(0, 3, 2) = −1, M ′(1, 3, 2) = M ′(2, 3, 2) = 2,
M ′(0, 3, 2) ≡M ′(1, 3, 2) ≡M ′(2, 3, 2) (mod 3).

From (2.4), we observe that

(2.7) M ′(1, 3, n) = M ′(2, 3, n) for all n ≥ 1.

Thus, by (2.5), we arrive at

(2.8)
∞∑
n=0

(M ′(0, 3, n)−M ′(1, 3, n))qn =
(q; q)2∞(q2; q2)2∞

(q3; q3)∞(q6; q6)∞
.

By (2.6) and the Jacobi triple product identity, we obtain

(2.9)
∞∑
n=0

(M ′(0, 3, 3n+ 2)−M ′(1, 3, 3n+ 2))qn = −3
(q3; q3)2∞(q6; q6)2∞
(q; q)∞(q2; q2)∞

.

Moreover, by using [8, (33.124)], we can deduce that
∞∑
n=0

(M ′(0, 3, 9n+ 8)−M ′(1, 3, 9n+ 8))qn = −9
(q3; q3)3∞(q6; q6)3∞
(q; q)2∞(q2; q2)2∞

.

These identities illuminate the possibility that there are further congruences
modulo powers of 3 for cubic crank differences.

3. Preliminary results. This section contains the basic definitions and
properties of modular forms that we will use in Section 4. For additional
basic properties of modular forms, see [16, Chaps. 1, 2, and 3].

Define Γ = SL2(Z) and

Γ0(N) :=
{(

a b

c d

)
∈ Γ : c ≡ 0 (mod N)

}
,

Γ1(N) :=
{(

a b

c d

)
∈ Γ : a ≡ d ≡ 1 (mod N) and c ≡ 0 (mod N)

}
.

For a meromorphic function f on the complex upper half plane H, define
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the Slash operator by

f |k
(
a b

c d

)
:= (cz + d)−kf

(
az + b

cz + d

)
.

Let Mk(Γ ) (resp. Sk(Γ )) denote the vector space of weakly holomorphic
forms (resp. cusp forms) of weight k. LetMk(Γ0(N), χ) (resp. Sk(Γ0(N), χ))
denote the vector space of weakly holomorphic forms (resp. cusp forms) on
Γ0(N) with character χ. For a prime p and a positive integer m, we need
to define the Hecke operators Tp, the Um-operator and the Vm-operator on
Mk(Γ0, χ). If f(q) has a Fourier expansion f(q) =

∑
a(n)qn, then

f |Tp :=
∑(

a(pn) + χ(p)pk−1a

(
n

p

))
qn,

f |Um :=
∑

a(mn)qn = mk/2−1
m−1∑
v=0

f |k
(

1 v

0 m

)
,

f |Vm :=
∑

a(n)qmn.

Recall that the Dedekind eta function η(z) is defined by

(3.1) η(z) = q1/24(q; q)∞,

where q = exp(2πiz) and z ∈ H. For a fixed N and integers ri, a function
of the form

f(z) :=
∏
n|N
n>0

η(nz)rn

is called an η-quotient. The following theorem of [15] shows when an η-
quotient becomes a modular function.

Theorem 3.1. The η-quotient is in M0(Γ0(N)) if and only if

(1)
∑

n|N rn = 0,
(2)

∑
n|N nrn ≡ 0 (mod 24),

(3)
∑

n|N (N/n)rn ≡ 0 (mod 24),
(4)

∏
n|N n

rn is a square of a rational number.

The following theorem of [13] gives the order of the η-quotient f at the
cusps c/d of Γ0(N) provided f ∈M0(Γ0(N)).

Theorem 3.2. If the η-quotient f is in M0(Γ0(N)), then its order at
the cusp c/d of Γ0(N) is

1
24

∑
n|N

N(d, n)2rn
(d,N/d)dn

.
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Recall that if p |N and f ∈M0(Γ0(pN)), then Upf ∈M0(Γ0(N)). Also,
the following theorem of [10] gives bounds on the order of f |Up at cusps of
Γ0(N) in terms of the order of f at cusps of Γ0(pN).

Theorem 3.3. Let p be a prime and π(n) be the highest power of p
dividing n. Suppose that f ∈ M0(Γ0(pN)), where p |N and α = c/d is a
cusp of Γ0(N). Then

ordα f |Up ≥


1
p

ordα/p f if π(d) ≥ π(N)/2,

ordα/p f if 0 < π(d) < π(N)/2,
min

0≤β≤p−1
ord(α+β)/p f if π(d) = 0.

The following eta-quotient E`,t(z) will play an important role in our
proof. Given a prime ` ≥ 5 and a positive integer t, we define

E`,t(z) =
η`
t
(z)

η(`tz)
.

The following lemma summarizes necessary and well-known properties
of E`,t(z).

Lemma 3.4. The eta-quotient E`,t satisfies:

(i) For a prime ` ≥ 5,

E`,t(z) ∈M(`t−1)/2(Γ0(`t), χ`,t),

where χ`,t(·) =
( (−1)(`

t−1)/2`t

·
)

denotes the Legendre–Jacobi symbol,
(ii) E`,t(z)`

j ≡ 1 (mod `j+1) for j ≥ 0,
(iii) E`,t(z) vanishes at every cusp a/c with `t - c.

The following theorem is a slightly modified version of Serre’s famous
theorem of [19], which is an integer weight version of Theorem 2.2 of [14].

Theorem 3.5. For 0 ≤ i ≤ r, let Ni and ki be positive integers and let
gi ∈ Ski(Γ1(Ni)), where the Fourier coefficients of gi are algebraic integers.
If M ≥ 1, then a positive proportion of primes p ≡ −1 (mod N1 · · ·NrM)
have the property that for every i,

gi(z)|Tp ≡ 0 (mod M).

If ζ = exp(2πi/N), then for 1 ≤ s ≤ N − 1, we define the (0, s)-Klein
form by

(3.2) t0,s(z) =
ωs
2πi

(ζsq; q)∞(ζ−sq; q)∞
(q; q)2∞

for 1 ≤ s ≤ N − 1,

where ωs := ζs/2(1− ζ−s).
The following proposition gives a transformation formula under Γ0(N).
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Proposition 3.6 (Proposition 3.2 in [14], eqn. K2 (p. 28) in [12]). If(
a b
c d

)
∈ Γ0(N), then

(3.3) t0,s(z)|−1

(
a b

c d

)
= β · t0,ds(z),

where β is given by e
( cs+(ds−ds)

2N − cds2

2N2

)
and e(z) = exp(2πiz). Here ds is

the least nonnegative residue of ds modulo N .

For certain congruence subgroups, a Klein form is a weakly holomorphic
modular form.

Lemma 3.7 (Corollary 3.3 of [14]). If 1 ≤ s ≤ N − 1, then t0,s(z) ∈
M−1(Γ1(2N2)).

4. Proof of Theorems 1.4 and 1.5. Since we will follow the argument
of B. Gordon and K. Hughes [10] for the proof of Theorem 1.4, we do not
give every detail for the proof.

Proof of Theorem 1.4. Let

C(q) =
(q; q)2∞(q2; q2)2∞

(q3; q3)∞(q6; q6)∞
and for k ≥ 0 define

Dk(q) =
∞∑
n=0

γ3(3kn+ ck)qn, where γ3(n) = M ′(0, 3, n)−M ′(1, 3, n),

so that equation (2.9) can be written as D1(q) = C(q). Define

F (z) :=
η2(z)η2(2z)η(27z)η(54z)
η(3z)η(6z)η2(9z)η2(18z)

,(4.1)

G(z) :=
η(9z)η(18z)
η(z)η(2z)

.(4.2)

Then, by Theorem 3.1, F (z) ∈M0(Γ0(54)), and G(z) ∈M0(Γ0(18)).
We also define a sequence of functions Lk (k ≥ 0) inductively, by

L0 := 1, L2k+1 = FL2k|U3, L2k+2 = L2k+1|U3.

Then one can show easily by induction that

D2k(q) = C(q)L2k(q), D2k+1(q) = C(q3)L2k+1(q).

By Theorem 3.2, the orders for F (z) and G(z) as a modular function of
level 54 at the cusps are as follows.

d 1 2 3 6 9 18 27 54

ordF 5 5 −1 −1 −2 −2 1 1

ordG −3 −3 0 0 1 1 1 1
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Note that Gi|U3, FGi|U3, G(z) ∈M0(Γ0(18)). By Theorem 3.3, their orders
at the cusps are as follows.

d 1 2 3 6 9 18

ordG −1 −1 0 0 1 1

ordGi|U3 ≥ −3i −3i i
3

i
3

i
3

i
3

ordFGi|U3 ≥ min{5− 3i,−1} min{5− 3i,−1} i−2
3

i−2
3

i+1
3

i+1
3

By comparing the order at the cusps, we can see that (F |U3)/G is a holo-
morphic modular function, i.e. a constant. Hence,

F |U3 = −3G.

Remark 4.1. This can be proved by an elementary argument by using
(2.8) and (2.9).

By using a similar argument, we can see the following:

G|U3 = 3G+ 9G2 + 27G3,

G2|U3 = 2G+ 33G2 + 180G3 + 729G4 + 1458G5 + 2187G6,

G3|U3 = G+ 30G2 + 414G3 + 2916G4 + 14580G5 + 48114G6

+ 118098G7 + 177147G8 + 177147G9,

FG|U3 = −G,
FG2|U3 = G,

FG3|U3 = 3G2 + 9G3 + 27G4.

By using Newton’s formula, we obtain, for i ≥ 3, a recurrence formula
for Gi|U3,

Gi|U3 = σ1G
i−1|U3 − σ2G

i−2|U3 + σ3G
i−3|U3,

where σ1 = 9G + 27G2 + 81G3, σ2 = −3G − 9G2 − 27G3, and σ3 = G +
3G2 +9G3. Since FGi|U3 satisfies the same recurrence formula, for all i ≥ 1,
we can write Gi|U3 and FGi|U3 as linear sums of Gi’s,

(4.3) Gi|U3 =
∞∑
j=1

ai,jG
j and FGi|U3 =

∞∑
j=1

bi,jG
j ,

where ai,j and bi,j are integers. Thus, by (4.3), each Lk for k ≥ 1 is a linear
sum of Gi. If Lk =

∑∞
j=1 lj(k)Gj , we will write Lk = (l1(k), l2(k), . . .). By

setting A := (ai,j) and B := (bi,j), we obtain

L1 = −3G = (−3, 0, 0, . . .),

L2k+1 = (−3, 0, 0, . . .)(AB)k,

L2k+2 = (−3, 0, 0, . . .)(AB)kA.
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Thus Theorem 1.4 will follow once we show that for all k ≥ 0

(4.4) π(lj(2k + 1)) ≥ k + 1 +
⌊
j

2

⌋
, π(lj(2k + 2)) ≥ k + 1 +

⌊
j + 1

2

⌋
,

where π(n) is the 3-adic order of n. By using recurrence formulas for Gi|U3

and FGi|U3 and induction, we find that

π(ai,j) ≥
⌊

3j − i+ 1
3

⌋
and π(bi,j) ≥

⌊
3j − i+ 1

3

⌋
.

From this, again by induction, we can derive (4.4), which completes the
proof of Theorem 1.4.

Now we turn to the proof of Theorem 1.5. For the rest of this section, we
set N := `j , where ` is a fixed prime ≥ 5, and j is a fixed positive integer.
Since our proof follows the works of K. Ono and S. Ahlgren ([1], [16]) and
Mahlburg [14], we will not give every detail of each step.

Recall that

F (x, q) =
∞∑
n=0

∞∑
m=−∞

M ′(m,n)xmqn,

where q = exp(2πiz) and z ∈ H. Then, by a simple argument,

(4.5)
∞∑
n=0

M ′(m,N, n)qn =
1
N

N−1∑
s=0

F (ζs, z)ζ−ms,

where ζ = exp(2πi/N).
From (3.1) and (3.2), we deduce that

(4.6) F (ζs, z) =
−ω2

sq
1/8

4π2

1
η(z)η(2z)t0,s(z)t0,s(2z)

.

Therefore, by (4.5) and (4.6),
∞∑
n=0

N ·M ′(m,N, n)qn =
−1
4π2

N−1∑
s=1

ω2
sζ
−msq1/8

η(z)η(2z)t0,s(z)t0,s(2z)
+
∞∑
n=0

a(n)qn.

Remark 4.2. We have multiplied (4.5) by N to ensure that the Fourier
coefficients of

−1
4π2

N−1∑
s=1

ω2
sζ
−msq1/8

η(z)η(2z)t0,s(z)t0,s(2z)

are algebraic integers with a view to applying Theorem 3.5.

Define δ` = (`2 − 1)/24 and δ` = 3δ`. We also define

(4.7) gm(z) =
( ∞∑
n=0

N ·M ′(m,N, n)qn+δ`
)

(q`; q`)`∞(q2`; q2`)`∞.
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Then

gm(z) =
−1
4π2

N−1∑
s=1

η`(`z)η`(2`z)
η(z)η(2z)

ω2
sζ
−ms

t0,s(z)t0,s(2z)
+
η`(`z)η`(2`z)
η(z)η(2z)

=:
1

4π2

N−1∑
s=1

Gm,s(z) + P (z).

In [6], Chan proved that, for sufficiently large τ ,

(4.8)
(

P (z)|U`
η`(z)η`(2z)

E`
τ

`,1

)∣∣∣∣V8 ∈ Sk(Γ0(128`, χ))

for some positive integer k and Dirichlet character χ. Here, we prove the
following similar result.

Theorem 4.3. For sufficiently large τ , there is a positive integer k′ such
that

(4.9)
(
Gm,s(z)|U`
η`(z)η`(2z)

E`
τ

`,j+1

)∣∣∣∣V8 ∈ Sk′(Γ1(128N2)) for all 1 ≤ s ≤ N − 1.

Throughout the proof, we will use the notation

qm = e2πiz/m = q1/m and λ = e2πi/`.

Proof. First, note that η`(`z)/η(z) ∈ M(`−1)/2(Γ0(`), ( ·`)). Thus, by
Lemma 3.7, Gm,s(z) ∈ M`+1(Γ1(4N2)). Since η(8z)η(16z) ∈ S1(Γ1(128)),
the left side of (4.9) transforms correctly on Γ1(128N2). By Lemma 3.4, if τ
is sufficiently large, then we only need to show that Gm,s(z)|U`/(η`(z)η`(2z))
vanishes at each cusp a/c with `N | c. Suppose that

(
a b
c d

)
∈ Γ0(`N). If c is

even, then the result is a straightforward exercise and basically reduces to
considering the cusp at infinity. At infinity, we have

Gm,s =
∞∑
n=0

C(n)qn+(`2−1)/8,

where C(n)’s are complex numbers. Thus the order of Gm,s|U` is greater
than the order of η`(z)η`(2z), which is `/8. Thus, from now on, we assume
that c is odd. Since the Fourier expansion of η`(z)η`(2z) at such cusps is of
the form B0q

`/8
2 + · · · , where B0 is a nonzero constant, it suffices to show

that the Fourier expansion of Gm,s|U` at such cusps is of the form B1q
h
2 +· · · ,

where B1 is a constant and h > `/8. Then

(Gm,s(z)|U`)|`+1

(
a b

c d

)
= `(`−1)/2

`−1∑
j=0

Gm,s(z)|`+1

(
1 j

0 `

)
|`+1

(
a b

c d

)
.
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Note that, for any
(
a b
c d

)
, we have(

1 j

0 `

)(
a b

c d

)
=
(
a′ b′

c′ d′

)(
1 j′

0 `

)
,

where (
a′ b′

c′ d′

)
=
(
a+ cj (−aj′ − cjj′ + b+ dj)/`
c` −cj′ + d

)
.

By choosing j′ ∈ {0, 1, . . . , ` − 1} such that −aj′ + b + dj ≡ 0 (mod `), we
have

(
a′ b′

c′ d′

)
∈ Γ0(`N). Note that as j runs over a complete residue system

modulo `, so does j′. Thus,

(Gm,s(z)|U`)|`+1

(
a b

c d

)
= `(`−1)/2

`−1∑
j′=0

Gm,s(z)|`+1

(
a′ b′

c′ d′

)(
1 j′

0 `

)
.

From the fact that

(4.10)
(

2 0
0 1

)(
a′ b′

c′ d′

)
=
(

2a′ −a′v + b′

c′ (d′ − c′v)/2

)(
1 v

0 2

)
,

where

v =
{

0 if d′ is even,
1 if d′ is odd,

we deduce that, by setting u = (z + v)/2,

Gm,s(z)|`+1

(
a′ b′

c′ d′

)
=
(
η`(`z)η`(2`z)
η(z)η(2z)

ω2
sζ
−ms

t0,s(z)t0,s(2z)

)
|`+1

(
a′ b′

c′ d′

)
= χ(d′)χ((d′ − c′v)/2)

η`(`z)
η(z)

η`(`u)
η(u)

ω2
sζ
−ms

βt0,d′s(z)β
′t

0,(d′−c′v)s/2(u)
,

where β and β′ are the roots of unity defined in Proposition 3.6, and χ(d) =(
d
`

)
. Since `N | c, by calculation we can check that χ(d′), χ((d′− c′v)/2) and

the products βt0,d′s(z), β
′t

0,(d′−c′v)s/2(u) do not depend on j′. In summary,
we obtain

(4.11) Gm,s(z)|`+1

(
a′ b′

c′ d′

)
= A1q

δ`
2 (−1)δ`v

(
1 +

∑
n≥1

c1(n, j′)qn2
)
,

where A1 is a nonzero constant not depending on j′.
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Thus, we finally arrive at

(Gm,s(z)|U`)|`+1

(
a b

c d

)

= A1

`−1∑
j′=0

(
qδ`2 (−1)δ`v

(
1 +

∑
n≥1

c1(n, j′)qn2
))∣∣∣∣(1 j′

0 `

)

= A2q
δ`
2`

`−1∑
j′=0

λδ`j
′/2(−1)δ`v

(
1 +

∑
n≥1

c2(n, j′)qn2`
)

= A2q
δ`
2`

`−1∑
j′=0

λδ`j
′/2(−1)δ`v + qδ`2`

(∑
n≥1

c3(n)qn2`
)
,

where λ = exp(2πi/`). Since 1 + δ` − `2/8 > 0, it suffices to show that

S :=
`−1∑
j′=0

λδ`j
′/2(−1)δ`v = 0.

When δ` is even, it is obvious that S = 0. Now we assume that δ` is odd.
Since v ≡ −cj′ + d (mod 2), we find that

S =
`−1∑
j′=0

λδ`j
′/2(−1)j =

`−1∑
j′=0

λj
′(δ`+`)/2.

Since (δ` + `)/2 is an integer that is relatively prime to `, we have S = 0.
This completes the proof.

Now, we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. We see that

gm(z)|U` =
( ∞∑
n=0

N ·M ′(m,N, n)qn+δ`
)∣∣∣U` · (q; q)`∞(q2; q2)`∞

and so
gm(z)|U`
η`(z)η`(2z)

=
∞∑
n=0

N ·M ′(m,N, `n− δ`)qn−`/8.

Thus, by Theorem 4.3, for sufficiently large t,(
gm(z)|U`
η`(z)η`(2z)

E`
t

`,j+1

)∣∣∣∣V8 ≡
∑
n≥0

`n≡−1 (mod 8)

N ·M ′
(
m,N,

`n+ 1
8

)
qn(mod `τ+j)

≡ H1 +H2 (mod `τ+j),



18 B. Kim

where H1 ∈ Sk′(Γ1(128N2)) and H2 ∈ Sk(Γ0(128`), χ). Then, by Theorem
3.5, a positive proportion of primes Q ≡ −1 (mod 128N2) have the property
that

H1|TQ = H2|TQ ≡ 0 (mod `τ+j).

This implies that

N ·M ′
(
m,N,

`nQ+ 1
8

)
≡ 0 (mod `τ+j) whenever (n,Q) = 1.

This completes the proof of Theorem 1.5.

5. Concluding remarks. From the numerical data, the following in-
equalities seem true:

M ′(0, 3, 3n+ 1) ≤M ′(1, 3, 3n+ 1),
M ′(0, 3, 3n+ 2) ≤M ′(1, 3, 3n+ 2),
M ′(0, 3, 3n+ 3) ≥M ′(1, 3, 3n+ 3).

These inequalities and other similar inequalities will be discussed in a forth-
coming paper [11]. It would be nice to find a more natural combinatorial
interpretation for the coefficients of F (x, q) as in (1.4). It is also worth-
while to seek another crank which can explain cubic partition congruences
modulo every power of 3. After the author completed writing his paper, F.
Garvan informed him that another analog of crank for a(n) was also stud-
ied by Z. Reti in his unpublished thesis [18], which explains cubic partition
congruences modulo 3 and 9.
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