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On the representation of H-invariants in the Selberg class
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Almasa Odžak and Lejla Smajlović (Sarajevo)

1. Introduction. The extended Selberg class of functions, S], intro-
duced by J. Kaczorowski and A. Perelli in [2], is a general class of Dirichlet
series F such that

(i) the series

F (s) =
∞∑
n=1

aF (n)
ns

,

converges absolutely for Re s > 1,
(ii) there exists an integer m ≥ 0 such that (s − 1)mF (s) is an entire

function of finite order,
(iii) F satisfies the functional equation

ΦF (s) = wΦF (1− s̄),

where

ΦF (s) = F (s)QsF
r∏
j=1

Γ (λjs+ µj) = F (s)γ(s),

with QF > 0, r ≥ 0, λj > 0, |w| = 1, Reµj ≥ 0, j = 1, . . . , r. The
function γ(s) is called the gamma factor.

The smallest integer m ≥ 0 such that (s−1)mF (s) is entire is denoted by
mF and called the polar order of F . It is easy to see (due to the functional
equation and the Stirling formula for the gamma function) that the function
(s− 1)mFF (s) is actually an entire function of order one.

The Selberg class of functions (introduced by A. Selberg in [10]) consists
of all F ∈ S] such that

(iv) for every ε > 0, aF (n)� nε (the Ramanujan conjecture),
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(v) there is an expansion

(1) logF (s) =
∞∑
n=1

bF (n)
ns

,

where bF (n) = 0 for all n 6= pm with m ≥ 1 and p prime, and
bF (n)� nθ for some θ < 1/2.

The last axiom is called the Euler product axiom, since it implies multi-
plicativity of the coefficients aF (n).

It is believed that the extended Selberg class contains all zeta and L-
functions of number-theoretical interest, and that the Selberg class contains
all zeta and L-functions having an Euler product. A panoramic view on the
Selberg class can be found in the survey papers [1, 3, 8, 9].

The notion of invariant in the extended Selberg class arises from the
fact that, due to the multiplication and factorial formulas for the gamma
function, the data (QF , λ, µ, ω) of the functional equation of F , where λ =
(λ1, . . . , λr) and µ = (µ1, . . . , µr), is not uniquely determined by F . Hence,
an invariant (resp. a numerical invariant) of a function F ∈ S] is an expres-
sion (resp. a number) defined in terms of the data of F which is uniquely
determined by F itself. In the series of papers on the structural problems
in the Selberg class J. Kaczorowski and A. Perelli introduced the notion of
invariant of the functional equation and proved a lot of important proper-
ties of invariants (see [4]–[6]). In particular, they proved that for an integer
n ≥ 0, the numbers HF (n) defined by

HF (n) = 2
r∑
j=1

Bn(µj)
λn−1
j

,

where Bn(x) is the nth Bernoulli polynomial, are (numerical) invariants.
The numbers HF (n) are called the H-invariants.

The special cases

HF (0) = 2
r∑
j=1

λj = dF

and

HF (1) = 2
r∑
j=1

(
µj −

1
2

)
= ξF = ηF + iθF

are particularly important. They are called the degree and the ξ-invariant,
respectively. The real and imaginary parts of the ξ-invariant are called,
respectively, the parity and the shift of F ∈ S].
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Other important invariants for functions F ∈ S] are the conductor qF
and the root number ω∗F defined as follows:

qF = (2π)dFQ2
F

r∏
j=1

λ
2λj
j ,

ω∗F = ωe−i
π
2
(ηF+1)

(
qF

(2π)dF

)iθF /dF r∏
j=1

λ
−2i Imµj
j .

A set {Ij}j∈J of numerical invariants is called a set of basic invariants if
Ij(F1) = Ij(F2) for all j ∈ J implies that F1(s) and F2(s) satisfy the same
functional equation, for any F1, F2 ∈ S]. In other words, a set of basic invari-
ants characterizes the functional equation of every F ∈ S]. More precisely,
such a set is called a global set of basic invariants, as opposed to a local set of
basic invariants, characterizing the functional equation of a given function
F ∈ S].

Theorem A ([5, Th. 1], see also [8, Th. 4.3]). The H-invariants HF (n),
n ≥ 0, the conductor qF and the root number ω∗F form a global set of basic
invariants.

In [5], J. Kaczorowski and A. Perelli obtained an interpretation of H-
invariants and conductor as coefficients in a certain asymptotic expansion
of the gamma factor of the functional equation and raised the problem of
interpreting HF (n), n ≥ 2, in terms of F alone, without explicit reference
to the functional equation (see also [8, Problem 4.1]). The purpose of this
paper is to give a solution of this problem.

The solution can be briefly explained as follows. First, we notice that the
“superzeta” functions ZF (s, z) from trivial zeros of F ∈ S], introduced in
Section 3, may be easily written in terms of Hurwitz zeta functions, hence,
by the standard properties of Hurwitz zeta functions, the invariants HF (n)
for F ∈ S] and n ≥ 1 can be expressed in terms of ZF (1− n, 0). Moreover,
by Voros’ theory of generalized zeta functions and zeta-regularized products
[16], the function ZF (s, z) is related to the “superzeta” function ZF (s, z)
from the non-trivial zeros of F ∈ S. Such a link becomes very simple for
integer s and allows us to express HF (n) in terms of ZF (1− n, 0), n ≥ 1.

2. Zeta-regularized products. Let {yk}k∈N be the sequence of zeros
of an entire function H of order 1, repeated according to their multiplicities.
Then the series

(2) Z(s, z) =
∞∑
k=1

(z − yk)−s
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converges absolutely for Re s > 1 and a fixed complex z such that z−yk /∈ R−
for all k. Here and throughout, we assume that 0 ∈ R− and define the
function z 7→ z−s in a standard way, using the principal branch of the
logarithm with arg z ∈ (−π, π) in the slit plane C \ (−∞, 0].

The series Z(s, z) is called the zeta function associated to the zeros of H,
or the “superzeta” function from the zeros {yk}k∈N.

According to A. Voros [16], this kind of series was first considered by
Hj. Mellin in [7] (see also [16, Appendix D] for an English translation of [7],
with comments). An informative summary of previous results on “superzeta”
functions can be found in [16, Section 5.5].

In [12]–[16], A. Voros considered “superzeta” functions in different set-
tings (geometric, arithmetical and algebraic). In order to make our exposi-
tion more explicit, we will summarize the results of [12], [14], [15], and [16]
needed later by stating them as a proposition, and briefly indicate its proof,
referring to the corresponding results of Voros. We may assume that yk 6= 0
for all k, since, as pointed out in [14, p. 355], a basic feature of the construc-
tion of zeta-regularized products is their full invariance under translations
{−yk}k∈N 7→ {z − yk}k∈N, z ∈ C. (The numbers xk in the notation of [14,
Section 1.1] and [16, Chapter 2] correspond to our −yk.) Let us note here
that the function F ∈ S satisfies the main assumptions imposed on the “pri-
mary functions L(x)” by A. Voros in [15, Section 1.1] and [16, Chapter 10],
the only significant difference being the functional equation that relates val-
ues of F at s with values of the “conjugate” function F (s) = F (s) at 1− s
in our setting (in contrast to the equation that relates L(s) to L(1 − s) in
the setting of Voros). Therefore, in our proposition below, we will impose
the same assumptions on the entire function ∆ of order µ0 = 1, as in [15,
Section 2.1] and [16, Chapter 2].

Proposition B ([12], [14], [15], [16]). Let {yk}k∈N be the sequence of
zeros of an entire function ∆ of order 1 and let

∆(z) = eB1z+B0

∞∏
k=1

(
1− z

yk

)
ez/yk

be the corresponding Hadamard product. Assume that ∆(z) has the asymp-
totic expansion

(3) log∆(z) ∼ ã1z(log z − 1) + b1z + ã0 log z + b0 +
∑

{µk}\{0}

akz
µk

as |z| → ∞ in the sector |arg z| < θ < π (θ > 0), for some sequence
1 > µ1 > · · · > µn ↓ −∞, such that the series on the right-hand side of (3)
can be repeatedly differentiated term by term.
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Then for all z ∈ C such that z− yk /∈ R− for all k, the zeta function (2)
has a meromorphic continuation to the half-plane Re s < 2, regular at s = 0
obtained through the continuation of the Mellin-transform representation

(4) Z(s, z) =
sinπs
π(1− s)

I(s, z) =
sinπs
π(1− s)

∞�

0

Z(2, z + y)y1−s dy,

valid for 1 < Re s < 2 and all z ∈ C such that z − yk /∈ R− for all k.
Furthermore, the zeta-regularized product D(z) associated to Z(s, z), de-

fined as D(z) := e−Z
′(0,z), where ′ denotes differentiation with respect to the

first variable, is related to ∆(z) through the formula

(5) D(z) = e−(b1z+b0)∆(z).

Proof. Formula (4) is a special case of [16, formula (2.28), p. 15] for 1 <
Re s < 2. Continuation of the integral I(s, z) further to the left is obtained
using (3), by repeated integration by parts as explained in [13, Appendix A],
[12, pp. 442–443] and [16, Section 1.5].

Since Z(s, z) is regular at s = 0, D(z) is well defined. Finally, formula (5)
is stated in [15, formula (2.3), p. 177] and holds true under our assumptions.
The proof is complete.

3. Zeta functions built over zeros of a function F ∈ S]. We will
consider two “superzeta” functions arising from zeros of a function F ∈ S]:
the function ZF (s, z) built over the non-trivial zeros of F , and the function
ZF (s, z) built over the trivial zeros. The non-trivial zeros of F are zeros of
the function ΦF , and the trivial zeros are the ones arising from the poles of
the factor of the functional equation.

The functional equation for F ∈ S can be written as

(6) ΦcF (z) = wΦcF (1− z),
where

(7) ΦcF (z) = (z − 1)mF zmFΦF (z) = (z − 1)mF zmFF (z)G−1(z)

and

G−1(z) = QzF

r∏
j=1

Γ (λjz + µj).

Therefore, the trivial zeros of F coincide with the zeros of z−mFG (z). The
zero ρ = 0, if present, usually requires special attention, since it may arise
as both a trivial and a non-trivial zero (in the case when mF = 0).

Set AF = {j ∈ {1, . . . , r} : µj = 0}, and let aF denote the number of
elements in AF . Then G−1(z) has a pole at z = 0 of order aF , hence ρ = 0
may arise as a trivial zero of F only in the case when aF > mF and in that
case the order of the trivial zero ρ = 0 is equal to aF −mF . Actually, the
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inequality aF ≥ mF always holds true. Namely, if aF < mF , then mF ≥ 1,
hence ρ = 1 is not a zero of (z − 1)mFF (z), by the definition of mF . Since
Re(λj + µj) > 0, we conclude that ρ = 1 is not a zero of ΦcF (z). On the
other hand, ρ = 0 is not a pole of F , hence it is a zero of zmFF (z)G−1(z) of
order greater than or equal to mF − aF . Therefore, ρ = 0 is a zero of ΦcF (z)
of order at least mF − aF . By the functional equation (6), ρ = 1 is also a
zero of ΦcF (z) of the same order, a contradiction.

We will consider the following two “superzeta” functions:

ZF (s, z) =
∑
ρ

(z − ρ)−s (Re s > 1),

where the sum is taken over the all non-trivial zeros ρ (counted with mul-
tiplicities) of the function F , z ∈ X = {z ∈ C : z − ρ /∈ R− for all ρ},
and

(8) ZF (s, z) =
∑
ηk

(z − ηk)−s −mF z
−s (Re s > 1),

where the sum is taken over the zeros ηk=ηn,j =−(n+ µj)/λj , n=0, 1, . . . ,
j = 1, . . . , r, of G, counted with multiplicities, and z ∈ X1 = {z ∈ C :
z − ηk /∈ R− for all k}.

Since z−mFG(z) is an entire function of order 1, ZF (s, z) is well defined
for F ∈ S], z ∈ X1, Re s > 1. If AF 6= ∅ the term z−s appears in the sum
on the right-hand side of (8) aF times, hence

ZF (s, z) =
∑
ηk 6=0

(z − ηk)−s + (aF −mF )z−s (Re s > 1).

This shows that ZF (s, z) is equal to the sum
∑

κ(z − κ)−s over all trivial
zeros κ of F (including the zero κ = 0, if present).

Let X2 = {z ∈ X1 : Re(λjz + µj) > 0, j = 1, . . . , r}. For F ∈ S] and all
z ∈ X2, the function ZF (s, z) can also be written as

(9) ZF (s, z) =
r∑
j=1

λsjζ(s, λjz + µj)−mF z
−s (Re s > 1),

where ζ(s, w) denotes the Hurwitz zeta function. By [16, Section 3.6], the
function ζ(s, w) has a meromorphic continuation (in the s variable, for
Rew > 0) to the whole complex plane, with a single pole at s = 1, simple
and of residue 1. Therefore, the right-hand side of (9) provides a meromor-
phic continuation of ZF (s, z) to the whole s-plane (in the given range of z),
with a single pole at s = 1, simple and of residue

∑r
j=1 λj = 1

2HF (0).
Since ζ(−n,w) = −Bn+1(w)/(n+ 1) for all n ∈ N ∪ {0} and Rew > 0

(see, e.g., [14, p. 353] or [16, formula (3.37) on p. 29]), we obtain
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ZF (−n, z) = −
r∑
j=1

Bn+1(λjz + µj)
λnj (n+ 1)

−mF z
n

for every non-negative integer n and all z ∈ X2. The property

Bn(x+ y) =
n∑
k=0

(
n

k

)
Bk(x)yn−k

of Bernoulli polynomials and the definition of H-invariants implies that

ZF (−n, z) =
−1

2(n+ 1)
HF (n+ 1)(10)

− 1
2(n+ 1)

n∑
k=0

(
n+ 1
k

)
HF (k)zn+1−k −mF z

n

for n ∈ N ∪ {0}, in the given range of z.
The function on the right-hand side of (10) provides analytic continua-

tion of the function ZF (−n, z), n ∈ N ∪ {0}, to the whole z-plane. Putting
n = 0 one also gets ZF (0, z) = −1

2HF (0) z − 1
2HF (1)−mF .

This proves the following proposition.

Proposition 3.1. Let F ∈ S] and z ∈ X2. Then

HF (n) = −2nZF (1− n, 0) for n ∈ N, n ≥ 2,
HF (1) = −2(ZF (0, 0) +mF ), HF (0) = 2 Ress=1 ZF (s, z).

The above proposition shows that the H-invariants may be interpreted as
special values of (a meromorphic continuation of) the “superzeta” function
ZF (s, z) from the trivial zeros of F ∈ S]. This result may be regarded as a
partial solution to [8, Problem 4.1], since ZF (s, z) depends directly on the
factor of the functional equation.

In the last statement of Proposition 3.1 there is a variable z appearing
only on the right-hand side of the equation. This is not surprising, as it
follows from the fact that Ress=1 ζ(s, w) = 1, independently of w in the
half-plane Rew > 0.

4. The main result. In this section we will prove that H-invariants
may be represented in terms of certain special values of the “superzeta”
function ZF (s, z) from the non-trivial zeros of F ∈ S. Firstly, we will obtain
a meromorphic continuation formula for ZF (s, z) in the half-plane Re s ≤ 1.
Then we will consider special values of ZF (s, z) when s is a negative integer
(or zero) and prove that they are related to values of HF (n).

Let us recall that the admissible sets X and X2 are defined by X =
{z ∈ C : z − ρ /∈ R− for all ρ} and X2 = {z ∈ C : z − ηk /∈ R− for all k and
Re(λjz + µj) > 0, j = 1, . . . , r}.
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Theorem 4.1. Let F ∈ S. Then ZF (s, z) has the integral representation

(11) ZF (s, z) = −ZF (s, z) +
mF

(z − 1)s
+

sinπs
π

JF (s, z),

valid for Re s < 1 and z ∈ X ∩X2 \ (−∞, 1], where

(12) JF (s, z) =
∞�

0

F ′

F
(z + y)y−s dy

is a holomorphic function in the half-plane Re s < 1.

Proof. We only sketch the proof, since it follows the lines of the proof of
the analytic continuation formula from [14, Sec. 2.1], [15, Sec. 2.2] and [16,
Section 10.3] (with t+ 1/2 replaced by z).

We start with the asymptotic expansion of the entire function z−mFG(z)
of order one as

(13) logG(z)−mF log z

= −1
2
HF (0)z(log z − 1)− 1

2
(log qF −HF (0) log 2π)z

−
(

1
2
HF (1) +mF

)
log z −

r∑
j=1

(
µj −

1
2

)
log λj − r log

√
2π

− 1
2

N∑
n=1

(−1)n+1

n(n+ 1)
HF (n+ 1)z−n +O(|z|−N−1)

for all N ∈ N, as z → ∞ with |arg z| < π, proved by J. Kaczorowski
and A. Perelli in [5, formula (2.8)], and apply Proposition B with ∆(z) =
z−mFG(z), µk = −k (k ≥ 1), Z(s, z) = ZF (s, z) to obtain

(14) ZF (s, z) =
sinπs
π(1− s)

IF (s, z) =
sinπs
π(1− s)

∞�

0

ZF (2, z + y)y1−s dy

for 1 < Re s < 2 and all z ∈ X2.
Moreover, the zeta-regularized product DF (z) := e−Z′

F (0,z), associated
to the sequence of trivial zeros of F , can be expressed as

(15) DF (z) = eb1z+b0z−mFG(z),

with −b0 being the constant term in the expansion (13) and

b1 =
1
2

(log qF −HF (0) log 2π).

The Euler product axiom (especially, the fact that bF (1) = 0) yields

(16) (logF (z))(n) = O(|z|−N−1)
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for all N,n ∈ N, as |z| → ∞ with |arg z| < π/2. This together with (7)
yields the asymptotic expansion

(17) logΦcF (z) ∼ ã1z(log z − 1) + b1z + ã0 log z + b0 +
∞∑
n=1

anz
−n,

as |z| → ∞ with |arg z| < π/2, repeatedly differentiable term by term.
Applying Proposition B with ∆(z) = ΦcF (z), µk = −k (k ≥ 1), θ = π/2 and
Z(s, z) = ZF (s, z) we conclude that the zeta function ZF (s, z) for z ∈ X has
a meromorphic continuation to the half-plane Re s < 2, regular at s = 0,
that is obtained through a meromorphic continuation of the representation

(18) ZF (s, z) =
sinπs
π(1− s)

IF (s, z) =
sinπs
π(1− s)

∞�

0

ZF (2, z + y)y1−s dy

valid for 1 < Re s < 2 and all z ∈ X. Furthermore, the zeta-regularized
product DF (z) := e−Z′

F (0,z) built over the non-trivial zeros of F is well
defined and equal to e−(b1z+b0)ΦcF (z).

Now (z − 1)mFF (z) = DF (z)DF (z), hence

ZF (2, z) + ZF (2, z) = −(log DF (z))′′ − (log DF (z))′′

= − mF

(z − 1)2
+
(
F ′

F
(z)
)′
.

This together with (14) and (18) yields the representation

(19) ZF (s, z) + ZF (s, z)

=
sinπs
π(1− s)

∞�

0

(
mF

(z + y − 1)2
−
(
F ′

F
(z + y)

)′)
y1−s dy

valid for 1 < Re s < 2 and z ∈ (X ∩X1) \ (−∞, 1].
Now, we use (16) and proceed as in [15, Section 2.2] and [14, Section 2]

to deduce (by repeated integration by parts) that JF (s, z) is holomorphic in
the half-plane Re s < 1. The proof is complete.

Our main result is the following theorem.

Theorem 4.2. Let F ∈ S. Then

(a) For n ∈ N and z ∈ (X ∩X2) \ (−∞, 1] one has

(20) ZF (−n, z) =
1

2(n+ 1)
HF (n+ 1)

+
1

2(n+ 1)

n∑
k=0

(
n+ 1
k

)
HF (k)zn+1−k +mF (z − 1)n +mF z

n.
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(b) For a fixed integer n ≥ 0, the function ZF (−n, z) has an analytic
continuation to the whole z-plane and

HF (n) = 2n(ZF (1− n, 0) + (−1)nmF ) for n ≥ 2,
HF (1) = 2(ZF (0, 0)− 2mF ).

Proof. (a) Theorem 4.1 together with (10) implies that for z∈(X∩X2)\
(−∞, 1] one has

ZF (−n, z) = −ZF (−n, z) +
mF

(z − 1)−n
=

1
2(n+ 1)

HF (n+ 1)

+
1

2(n+ 1)

n∑
k=0

(
n+ 1
k

)
HF (k)zn+1−k +mF (z − 1)n +mF z

n

and the proof is complete.
(b) The right-hand side of (20) is a polynomial in z, hence it provides the

analytic continuation of ZF (−n, z) (as a function of z) to the whole complex
plane. Putting z = 0 we get

ZF (−n, 0) =
HF (n+ 1)
2(n+ 1)

+ (−1)nmF

for n ≥ 1. This proves the first part of (b).
Furthermore, since ζ(0, a) = 1/2 − a for Re a > 0, (9) and (11) imply

that
ZF (0, z) =

1
2
HF (1) +

dF
2
z + 2mF .

The right-hand side of the above equation yields the analytic continuation
of ZF (0, z) to the complex z-plane and completes the proof.

By repeated integration by parts in (12), having in mind (16), it is easy
to check that JF (s, z) is meromorphic in the whole s-plane with simple poles
at s = n, n ∈ N, and corresponding residues

Ress=n JF (s, z) = − 1
(n− 1)!

(logF (z))(n) (z 6= 1).

Therefore, the function sinπs
π JF (s, z) is entire, hence, by (11) the function

ZF (s, z) (as function of complex s, for a fixed, admissible z) has the same
polar structure as −ZF (s, z). Since −ZF (s, z) (in the given range of z) has
a simple pole at s = 1 with residue −

∑r
j=1 λj = −1

2HF (0), it follows that
ZF (s, z) has a simple pole at s = 1, of residue −1

2HF (0). Therefore HF (0) =
−2 Ress=1 ZF (s, z). The right-hand side of the last equation is independent
of z, due to the last statement of Proposition 3.1.

On the other hand, by [11, Th. 3.4],

lim
T→∞

∑
|Im ρ|≤T

1
z − ρ

=
(ΦcF )′

ΦcF
(z)
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for all z ∈ X. Putting Z∗F (1, z) := (ΦcF )′

ΦcF
(z), applying (13), (17) and [15,

display (2.26), p. 181] we get

b1 =
1
2

(log qF −HF (0) log 2π) = Z∗F (1, z)− FPs=1 ZF (s, z),

where FPs=1 ZF (s, z) denotes the constant term in the Laurent series ex-
pansion of ZF (s, z) at the pole s = 1. This proves the following corollary:

Corollary 4.3. For z ∈ (X ∩X2) \ (−∞, 1] one has

(a) HF (0) = −2 Ress=1 ZF (s, z),
(b) log qF = 2[Z∗F (1, z)− log 2π · Ress=1 ZF (s, z)− FPs=1 ZF (s, z)].

5. Concluding remarks. In this section we will give some further com-
ments on extension of our results to a larger class of functions and possible
construction of other “superzeta” functions of Voros presented in [15] and
[16] in the setting of the Selberg class. We will also give an alternative proof
of our main results.

Remark 5.1 (Extension of main results to a larger class of functions). It
is easy to see that Theorem 4.1, as well as Theorem 4.2, remain valid for all
F ∈ S] such that logF (z) has a Dirichlet series representation

(21) logF (z) =
∞∑
n=2

bF (n)
nz

,

converging in a certain half-plane Re z > σ ≥ 1, without additional as-
sumptions on the growth of the coefficients bF (n). Namely, the Ramanujan
conjecture was not obviously needed in the proof of Theorem 4.1. Further-
more, convergence of the series (21) in the half-plane Re z > σ is sufficient to
deduce that logF (z) and all its derivatives decay as 2−Re z as Re z → +∞
with |arg z| < π/2. This implies the bound (16), sufficient for the proof of
Theorem 4.1. Therefore, our main results hold true for all F ∈ S] having an
Euler product (21) convergent in some half-plane Re z > σ ≥ 1, without ad-
ditional bounds on the coefficients bF (n). (Needless to say, the convergence
of (21) in the half-plane Re z > σ > 0 implies that bF (n) = o(nσ), but σ
may be greater than 1/2.)

Results of Section 4 may not extend to the class S], since representa-
tion (21) is essential in order to deduce (17) and to prove that JF (s, z) is
holomorphic for Re s < 1.

Remark 5.2 (On further applicability of Voros’ theory of “superzeta”
functions to the Selberg class). The absence of central symmetry ρ↔ 1− ρ
in the set of zeros of a function F ∈ S implies that the zeros of F ∈ S do
not necessarily come in pairs ρ = 1/2 ± iτk with Re τk > 0. That is the
main reason why it is not possible to define the Selberg class analogues of
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“superzeta” functions of the second and third kind, introduced in [16, p. 41]
(see also [16, Sections 5.2, 5.3, 10.4 and 10.5]).

However, if the coefficients aF (n) of the Dirichlet series representation
of F ∈ S are real numbers, then for all n ∈ N, by the reflection principle,
the zeros of F are symmetric with respect to the real line. (Actually, if ρ is
a zero, then ρ, 1 − ρ and 1 − ρ are zeros of F ). Therefore, the zeros of F
come in pairs ρ = 1/2 ± iτk with Re τk > 0, and results of [15, Sections 3
and 4] and of [16, Sections 10.4 and 10.5] may be easily generalized to yield
properties of two new “superzeta” functions built over zeros of such F ∈ S.

The only results of [16, Section 10] that may not easily be generalized in
this case are the ones using the assumption that F is non-vanishing on the
real interval [0, 1].

Remark 5.3 (A different proof of main results).

(i) The representation (15) of the zeta-regularized product DF (z) may
be obtained directly by differentiating equation (9) with respect to the s
variable and taking s = 0 to get

Z′F (0, z) =
r∑
j=1

[log λj · ζ(0, λjz + µj) + ζ ′(0, λjz + µj)] +mF log z

for all z ∈ X2. Using the formulas

ζ(0, a) = 1/2− a and ζ ′(0, a) = log(Γ (a)/
√

2π)

(see [16, Section 3.6]), we immediately obtain

DF (z) = exp(−Z′F (0, z)) = exp
( r∑
j=1

log λj(µj − 1/2) +
r

2
log 2π

)
· exp

(( r∑
j=1

λj log λj
)
z
)
· z−mF ·

( r∏
j=1

Γ (λjz + µj)
)−1

= eb0 · z−mF ·G(z)ez logQF exp
(( r∑

j=1

λj log λj
)
z
)
.

Simple calculations show that

logQF +
r∑
j=1

λj log λj =
1
2

(log qF −HF (0) log 2π) = b1

and (15) is proved.

(ii) Theorem 4.1, and hence Theorem 4.2, may be proved in a differ-
ent way, without referring to results of Voros. The main reason for that is
the special expression (9) of the zeta function ZF (s, z) that yields its mero-
morphic continuation based on the properties of the Hurwitz zeta function.
Here, we briefly explain how to obtain formula (19) directly.
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Since the zeros of z−mFG(z) coincide with the trivial zeros of F , having
in mind that z−mFG(z) is entire of order one, representing this function as
a Hadamard product over its zeros, we can easily see that

ZF (2, z) = −[log(z−mFG(z))]′′ =
∑
κ

1
(z − κ)2

for z ∈ X2. Analogously,

ZF (2, z) = −[log(ΦcF (z))]′′ =
∑
ρ

1
(z − ρ)2

for z ∈ X. It is easy to see that for 1 < Re s < 2 and z ∈ (X ∩X2) \ (−∞, 1]
the series

∑
κ y

1−s/(z − κ)s and
∑

ρ y
1−s/(z − ρ)s may be integrated term

by term to obtain the representation

ZF (s, z) + ZF (s, z)

= − sinπs
π(1− s)

∞�

0

((log(z−mFG(z)))′′ + (log(ΦcF (z)))′′)y1−s dy,

equivalent to (19), by (7). The analytic continuation of the above integral
is obtained in the same way as in the proof of Theorem 4.1.

We have first given a longer proof of Theorem 4.1, using Proposition B,
because in that proof we have also proved that the zeta-regularized products
DF (z) and DF (z) built over the trivial and non-trivial zeros of F are well
defined, and we have obtained their representation in terms of the functions
z−mFG(z) and ΦcF (z), respectively.

(iii) Corollary 4.3(b) may also be obtained directly from (11), without re-
ferring to results of [15]. Namely, since FPs=1 ζ(s, w)=−Γ ′

Γ (w) for Rew>0,
we immediately see that FPs=1 λ

sζ(s, w) = λ
(
log λ− Γ ′

Γ (w)
)
, hence

FPs=1 ZF (s, z) =
r∑
j=1

λj

(
log λj −

Γ ′

Γ
(λjz + µj)

)
− mF

z

= logQF +
r∑
j=1

λj log λj −
mF

z
+
G′

G
(z) = b1−

mF

z
+
G′

G
(z)

for z ∈ X2. Since Ress=1 JF (s, z) = −F ′

F (z), and hence FPs=1
sinπs
π JF (s, z) =

F ′

F (z), from (11) we get

FPs=1 ZF (s, z) = −b1 +
mF

z
+

mF

z − 1
+
F ′

F
(z)− G′

G
(z) = −b1 + Z∗F (1, z),

and the proof is complete.
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