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1. Introduction and main results. Let G be an additively written,
finite cyclic group and g ∈ G with ord(g) = |G|. For a sequence

S = (n1g) · . . . · (nlg) over G, where l ∈ N0 and n1, . . . , nl ∈ [1, n],

we set
‖S‖g =

n1 + · · ·+ nl
n

,

and then

ind(S) = min{‖S‖h | h ∈ G with ord(h) = |G|} ∈ Q≥0

denotes the index of S. The index of a sequence is a crucial invariant in
the investigation of (minimal) zero-sum sequences (resp. of zero-sum free
sequences) over cyclic groups. It was first considered by Lemke and Kleitman
([11]), used as key tool by Geroldinger ([6, p. 736]), and then investigated
by Gao [3] in a systematical way. Since then it has found a lot of attention
in recent years (see [1, 2, 5, 8, 12–16]). We briefly discuss some key results.

If S is a minimal zero-sum sequence, then |S|≤3, as well as |S|≥bn/2c+2,
implies that ind(S) = 1 (see [1], [14], [16]). In contrast, it was shown that
for every k ∈ [5, bn/2c + 1], there is a minimal zero-sum subsequence T of
length |T | = k and with ind(T ) ≥ 2, and that the same is true for k = 4
and gcd(n, 6) 6= 1. This leads to the conjecture that, in case gcd(n, 6) = 1,
every minimal zero-sum sequence S over G of length |S| = 4 has ind(S) = 1.
Li, Plyley, Yuan and Zeng [12] recently proved that this holds true if n is a
prime power, but the general case is still open.

In 1989, Lemke and Kleitman [11, p. 344] stated the following conjecture,
which we formulate in the present language.
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Conjecture 1.1. Let G be a cyclic group of order n, d a divisor of n,
and S a sequence over G of length |S| = n. Then there exists a subsequence
T of S and an element g ∈ G with ord(g) = n such that

d |n‖T‖g |n.
In the special case d = n, this is equivalent to the existence of a subsequence
T with ind(T ) = 1.

Indeed, the above is the third of three interesting conjectures stated by
Lemke and Kleitman in [11]. Their first conjecture has turned out to be
true for all finite abelian groups (see [7]), and the second one is still open.
In this paper we demonstrate that the above conjecture fails in general (see
Theorem 1.2), but that it holds true under an additional assumption on the
highest multiplicity of an element occurring in the sequence. Here are the
main results of the present paper (for any undefined terminology or notation
the reader is referred to the beginning of Section 2).

Theorem 1.2. Let G be a cyclic group of order n ≥ 2, where n = 4k+2
for some k ≥ 5, and let g ∈ G with ord(g) = n. Then the sequence

S = gn/2−3
(n

2
g
)((n

2
+ 1
)
g

)n/2−1((n
2

+ 2
)
g

)bn/4c−2

has no subsequence T with ind(T ) = 1.

Theorem 1.3. Let G be a cyclic group of order n ≥ 2 and S be a
sequence over G of length |S| = n. If h(S) < 4 or h(S) ≥ n/2, then S has a
subsequence T with ind(T ) = 1 and length |T | ≤ h(S).

Theorem 1.4. Let G be a cyclic group of prime order p > 24318 and S
be a sequence over G of length |S| = p. If h(S) ≥ (p− 2)/10, then S has a
subsequence T with ind(T ) = 1.

In Section 2 we summarize our notation and prove Theorem 1.2. In the
following two sections we provide the proofs of Theorems 1.3 and 1.4. We end
the paper with a further conjecture and some open problems (see Section 5).

2. Notation and proof of Theorem 1.2. Let N denote the set of
positive integers, P ⊂ N the set of prime numbers, and for rational numbers
a, b ∈ Q we set [a, b] = {x ∈ Z | a ≤ x ≤ b}. Let G be an additively written
abelian group and G0 ⊂ G a subset. We fix the notation concerning se-
quences over G0 (which is consistent with [4] and [9]). Let F(G0) be the free
abelian monoid with basis G0. The elements of F(G0) are called sequences
over G0. We write sequences S ∈ F(G0) in the form

S = g1 · . . . · gl =
∏
g∈G

gvg(S),
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where l ∈ N0, g1, . . . , gl ∈ G0, vg(S) ∈ N0 and vg(S) = 0 for almost all
g ∈ G0. We call |S| = l the length of S, σ(S) = g1 + · · · + gl the sum of S,
vg(S) the multiplicity of g in S, supp(S) = {g ∈ G | vg(S) > 0} the support
of S, and we denote by

h(S) = max{vg(S) | g ∈ G} ∈ [0, |S|]
the maximum of the multiplicities of S. For every group homomorphism
ϕ : G→ H, we set ϕ(S) = ϕ(g1)·. . .·ϕ(gl) ∈ F(H), and if ϕ is multiplication
by some m ∈ N, then we set mS = ϕ(S). We say that S is a zero-sum
sequence if σ(S) = 0, and it is called a minimal zero-sum sequence if σ(S) = 0
but

∑
i∈I gi 6= 0 for all ∅ 6= I ( [1, l]. Suppose that G is finite cyclic. Then

a simple calculation (see [8, Lemma 5.1.2]) shows that

ind(S) = min{‖S‖h | h ∈ G with supp(S) ⊂ 〈h〉}
= min{‖S‖h | h ∈ G with 〈supp(S)〉 = 〈h〉}.

Proof of Theorem 1.2. Assume to the contrary that S has a subsequence
T with ind(T ) = 1. Then there exists an element h ∈ G with ord(h) = n
such that ‖T‖h = 1. We set

g = jh and T = gx
(
n

2
g

)y((n
2

+ 1
)
g

)z((n
2

+ 2
)
g

)w
where j ∈ [1, n − 1] with gcd(j, n) = 1, x ∈ [0, n/2 − 3], y ∈ [0, 1], z ∈
[0, n/2− 1] and w ∈ [0, n/4− 2]. Then

(1) n‖T‖g = (x+ z + 2w) +
n

2
(y + z + w) ≡ 0 (mod n).

Case 1: j < n/4. Then

T = (jh)x
(
n

2
h

)y((n
2

+ j

)
h

)z((n
2

+ 2j
)
h

)w
.

Since ‖T‖h = 1, we infer that y + z + w ≤ 1, which implies that n‖T‖g ≤
x+ (n/2 + 2) ≤ n/2− 3 + n/2 + 2 < n, a contradiction.

Case 2: n/4 < j < n/2. Then

T = (jh)x
(
n

2
h

)y((n
2

+ j

)
h

)z((
2j − n

2

)
h

)w
.

Since ‖T‖h = 1, we infer that x ≤ 3 and z ≤ 1, which implies that x +
z + 2w ≤ 3 + 1 + 2 (bn/4c − 2) < n/2. Since x + z + 2w > 0 and again by
‖T‖h = 1, we derive that x+ z + 2w ≡ 0 (mod n/2), a contradiction.

Case 3: n/2 < j < 3n/4. Then

T = (jh)x
(
n

2
h

)y((
j − n

2

)
h

)z((
2j − n

2

)
h

)w
.
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Since ‖T‖h = 1, we infer that x+ y + w ≤ 1. We assert that

(2) x+ y + w = 1.

Otherwise, x = y = w = 0 and n‖T‖g = z + (n/2)z 6≡ 0 (mod n/2), a
contradiction to n‖T‖g ≡ 0 (mod n). Note that 0 < x+ z+ 2w < n. By (1),
we have

x+ z + 2w = n/2,(3)
y + z + w ≡ 1 (mod 2).(4)

By (2) and (3), we have y + z + w ≡ z + w − y = n/2 − 1 ≡ 0 (mod 2), a
contradiction to (4).

Case 4: 3n/4 < j < n. Then

T = (jh)x
(
n

2
h

)y((
j − n

2

)
h

)z((
2j − 3n

2

)
h

)w
.

Since ‖T‖h = 1, we infer that x ≤ 1 and z ≤ 3, which implies that x+ z +
2w ≤ 1 + 3 + 2 (bn/4c − 2) < n/2. Clearly, x + z + 2w > 0. From (1), we
derive a contradiction.

3. Proof of Theorem 1.3. We need the following two results. A simple
proof of the first one can be found in [8, Proposition 4.2.6] (for historical
comments see [10]), and a proof of Lemma 3.2 is given in [13].

Lemma 3.1. Let G be a finite cyclic group and S be a sequence over
G of length |S| ≥ |G|. Then S has a zero-sum subsequence T of length
|T | ∈ [1, h(S)].

Lemma 3.2. Let G be a finite cyclic group and S be a minimal zero-sum
sequence over G of length |S| ∈ [1, 3]. Then ind(S) = 1.

Proof of Theorem 1.3. We set n = |G| and h = h(S). If h < 4, then
the assertion follows from Lemmas 3.1 and 3.2. Suppose that h ≥ n/2. Let
g ∈ G with vg(S) = h. If ord(g) < n, then ord(g) ≤ n/2 ≤ h, and T = gord(g)

has the required properties. If 0 |S, then T = 0 has the required properties.
Suppose that ord(g) = n and that 0 - S. Then we can write S in the

form

S = gh(b1g) · . . . · (bn−hg) where b1, . . . , bn−h ∈ [2, n− 1].

Assume to the contrary that S has no subsequence T with the required
properties. We continue with the following assertion.

A. For every subset I ⊂ [1, n− h] we have
∑

i∈I bi ≤ n− h+ |I| − 1.
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If A holds, then we apply it with I = [1, n− h] and obtain
n−h∑
i=1

bi ≤ 2(n− h)− 1,

a contradiction to b1, . . . , bn−h ∈ [2, n− 1].
We prove A by induction on |I|. If there were an i ∈ [1, n − h] such

that bi ≥ n− h+ 1, then T = gn−bi(big) would be a subsequence of S with
ind(T ) = 1 and length |T | = n−bi+1 ≤ h, a contradiction. Let I ⊂ [1, n−h]
with |I| = k + 1 ≥ 2, say I = [1, k + 1], and suppose that A holds for all
proper subsets of I. We set β = b1 + · · ·+ bk+1. By induction hypothesis we
get β − bi ≤ n− h+ k − 1 for every i ∈ [1, k + 1], which implies that

β =
1
k

(kβ) =
1
k

k+1∑
i=1

(β − bi) ≤
(k + 1)(n− h+ k − 1)

k
≤ n

(to get the last inequality, use that h ≥ n/2 and k ≤ n − h − 1). Thus, if
β ≥ n − h + k + 1, then T = gn−β(b1g) · . . . · (bk+1g) is a subsequence of S
with ind(T ) = 1 and length |T | = n−β+k+ 1 ≤ h. This is a contradiction,
and thus A is proved.

Note that the sequence S given in Theorem 1.2 satisfies h(S) = n/2− 1.
Thus the assumption in Theorem 1.3, that h(S) ≥ n/2, cannot be weakened
for n ≡ 2 (mod 4).

4. Proof of Theorem 1.4. We fix our notation which remains valid
throughout the whole section. Let G be a prime cyclic group of order |G| =
p > 24318, G• = G \ {0}, and let S be a sequence over G• of length |S| = p.
If g ∈ G•, A ⊂ Z and S = (n1g) · . . . · (nlg) with n1, . . . , nl ∈ [1, p− 1], then
we set

S(A, g) =
∏

i∈[1,l], ni∈A

(nig).

For an element g ∈ G•, we set

Σg(S) = {p‖T‖g |T is a subsequence of S with ‖T‖g ≤ 1},
and we denote by mg(S) the maximal t ∈ [1, p] such that Σg(T ) = [1, t] for
some subsequence T of S. We define

m(S) = max{mg(S) | g ∈ G•}.
From now on we fix an element g ∈ G• such that mg(S) = m(S).

Lemma 4.1. Let T be a subsequence of S such that Σg(T ) = [1,m(S)].
Then |T | ≤ m(S), and if x ∈ [1, p − 1] is such that (xg) |ST−1, then x ≥
m(S) + 2. Furthermore, if m(S) = p, or if there exists an x ∈ [1, p− 1] such
that (xg) |ST−1 and x ≥ p−m(S), then S has a subsequence with index 1.
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Proof. By definition, we have |T | ≤ p‖T‖g = m(S). If there is some
x ∈ [1, p − 1] with (xg) |ST−1 and x ≤ m(S) + 1, then Σg((xg)T ) =
[1,min{p,m(S)+x}], a contradiction to the maximality of m(S). The second
part of this lemma is clear.

From now on we suppose that S has no subsequence with index 1.
Let k ≥ 2 be a positive integer, and let F [1/k, (k − 1)/k] be the set of

all irreducible fractions between 1/k and (k − 1)/k and with denominators
in [2, k], i.e.,

F

[
1
k
,
k − 1
k

]
=
{
a

b

∣∣∣∣ a ∈ N, b ∈ [2, k] with gcd(a, b) = 1 and
1
k
≤ a

b
≤ k − 1

k

}
.

Lemma 4.2. Let a/b and c/d be two adjacent fractions in F [1/k, (k−1)/k]
with a/b < c/d. Then

(i) b+ d ≥ k + 1.
(ii) bc− ad = 1.

Proof. (i) Note that a
b <

a+c
b+d <

c
d . Since a/b and c/d are adjacent, it fol-

lows that the irreducible fraction with value a+c
b+d is not in F [1/k, (k − 1)/k].

This forces that b+ d ≥ k + 1.
(ii) Since gcd(a, b) = 1, there are two integers u and v such that bu+ av

= 1. Note that b(u+ma)+a(v−mb) = 1 for any integer m. Let x = u+ma
and y = mb− v. Then bx− ay = 1. By choosing m suitably we may assume
that y ≤ k and y + b ≥ k + 1. It follows that y ≥ k + 1− b > 0 and x > 0.
From bx− ay = 1 we get

x

y
− a

b
=

1
by
.

If y > 1, then x/y is a fraction in F [1/k, (k − 1)/k]. So, either c/d = x/y
and we are done, or c/d < x/y. For the latter case we have

1
by

=
x

y
− a

b
=
(
x

y
− c

d

)
+
(
c

d
− a

b

)
=
b(dx− cy) + y(cb− ad)

byd
≥ b+ y

byd
.

This implies that d ≥ b+ y ≥ k + 1, a contradiction.
Now assume that y = 1 and we must have b = k. It follows from bx− ay

= 1 that a = kx − 1. Therefore, x = 1 and a = k − 1. So, a/b = (k − 1)/k
is the largest fraction in F [1/k, (k − 1)/k], a contradiction.

We set

k =
⌊

p

m(S)

⌋
, f =

∣∣∣∣F[1
k
,
k − 1
k

]∣∣∣∣,
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and we arrange all fractions in F [1/k, (k − 1)/k] increasingly; so let
a1

b1
< · · · <

af
bf

denote the elements of F [1/k, (k − 1)/k]. Furthermore, we set

S1 = S([1,m(S)], g), S2 = S

([
m(S) + 2,

p− 1
b1

]
, g

)
and, for every i ∈ [1, f ], we set

S2i+1 = S

([
aip+ 1
bi

,
aip+ m(S)

bi

]
, g

)
,

S2i+2 = S

([
aip+ m(S) + 1

bi
,
ai+1p− 1
bi+1

]
, g

)
.

Furthermore, for every i ∈ [2, k], we define

Ri = S({x ∈ [1, p] | If xi ∈ [1, p] with p | (xi − ix),
then xi ∈ [1,m(S)] and gcd(xi, i) = 1}, g).

Lemma 4.3. We have S =
∏2f+1
j=1 Sj.

Proof. This is clear by construction.

Lemma 4.4. Suppose that

4 ≤ m(S) ≤ p− 3
2

and max
{
p−m(S)− 2

m(S)
,
p−m(S)
m(S) + 1

}
≤ k ≤ p+ 1

m(S)
.

(i) |S2i+2| ≤ bi+1 − 1 for every i ∈ [0, f − 1].
(ii) p = |S| ≤ m(S) +

∑k
i=2

∑
j∈[1,i−1]with gcd(i,j)=1(i− 1) +

∑k
i=2 |Ri|.

Proof. (i) Suppose that i = 0. Then S2 = S([m(S) + 2, (p− 1)/b1], g)
and b1 = k. If |S2| ≥ b1 = k, then we can take a k-term subsequence U
of S2. Note that p− 1 ≥ p‖U‖g ≥ k(m(S) + 2) ≥ p−m(S) and one can find
a subsequence V of S1 such that UV has index 1, a contradiction.

Now suppose that i ∈ [1, f−1], and assume to the contrary that |S2i+2| ≥
bi+1. We choose an arbitrary bi+1-term subsequence X of S2i+2, and write
biS in the form

biS = (x1g) · . . . · (xpg) with x1, . . . , xp ∈ [1, p− 1].

It follows from Lemma 4.2 that ai+1bi − aibi+1 = 1, and so

bi

(
ai+1p− 1
bi+1

)
− aip =

p− bi
bi+1

.

Thus for every ν ∈ [1, p] with (xνg) |S2i+2, we infer that xν ∈ [m(S) + 1,
(p− bi)/bi+1] and xν ≡ −aip (mod bi). Therefore, since bi + bi+1 ≥ k+ 1 by
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Lemma 4.2, we get

p− bi ≥ p‖biX‖g ≥ bi+1(m(S) + 1) ≥ p− bim(S)

and
p‖biX‖g ≡ −bi+1aip = (1− ai+1bi)p ≡ p (mod bi).

Therefore there exists a subsequence Y of S1 such that p‖bi(XY )‖g = p, a
contradiction.

(ii) For every ` ∈ [2, k], we have R` =
∏
bi=`

S2i+1, and hence

S = S1

f−1∏
i=0

S2i+2

k∏
`=2

R`.

Now (ii) follows from (i).

Lemma 4.5. Let ` ∈ N≥2 and S ∈ F(Z) be a sequence of length |S| = `.
Suppose that every element from S is coprime to `. Then for every m ∈ Z
there exists a subsequence Sm such that σ(Sm) ≡ m (mod `). Moreover, if
m /∈ `Z, then Sm 6= S.

Proof. Let ϕ : Z → Z/`Z be the canonical epimorphism and ϕ(S) =
a1 · . . . · al. We denote by A = {a1, 0}+ · · ·+ {a`−1, 0} ⊂ Z/`Z the sumset,
and by H = Stab(A) the stabilizer of A. Clearly, it suffices to verify that
A = Z/`Z. If H were a proper subgroup of Z/`Z, then Kneser’s Theorem
would imply that

|A| ≥
`−1∑
i=1

|{ai, 0}+H| − (`− 2)|H| = (`− 1)2|H| − (`− 2)|H| ≥ `,

whence A = H = Z/`Z. Thus H = Z/`Z, which implies that A = Z/`Z,
and we are done.

Lemma 4.6. Let t, ` ∈ [2, k− 1] with t < ` and d = gcd(t, `) < t, and let
u ∈ [2,m(S)]. If

(t− d)p− `
t`

≤ m(S) ≤ dp

`
− t(u− 1),

then

|Rt| = 0 or |R`| ≤
p− `m(S)− 2`+ 1

u
+ 2`− 1.

Proof. Suppose that |Rt| > 0. Let x ∈ [1, p − 1] be such that (xg) |Rt,
and let x` ∈ [1, p− 1] be such that p | (`x− x`). By the definition of Rt, we
get

x` ∈
⋃

i∈[1,t−1]with gcd(i,t)=1

[
`ip+ `

t
,
`ip+ `m(S)

t

]
,
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and thus

x` ∈
⋃

i∈[1,t−1]with d|i

[
ip+ `

t
,
ip+ `m(S)

t

]
⊂
[
dp+ `

t
,
(t− d)p+ `m(S)

t

]
⊂ [p− `m(S), p− `(u− 1)].

If |(`R`)([1, u− 1], g)| ≥ `, then, by Lemma 4.5 and the definition of Rt, we
may choose a subsequence W of R` of length at most ` with (`W )([1, u−1], g)
= `W and x` + p‖`W‖g ≡ p (mod `). Since p‖`W‖g ≤ `(u − 1), we have
x` + p‖`W‖g ∈ [p − `m(S), p]. Thus, we can construct a subsequence of
(xg)WS1 of index 1, a contradiction. Therefore,

(5) |(`R`)([1, u− 1], g)| ≤ `− 1.

If |R`| < ` then we are done. Otherwise, by Lemma 4.5, we get a subsequence
R0 of R` with p‖`R0‖p ≡ p (mod `) and

(6) |R0| ≥ |R`| − `.
We assert that

(7) p‖`R0‖p ≤ p− `m(S)− `.
Assume to the contrary that p‖`R0‖p ≥ p− `m(S), and choose T to be the
minimal subsequence of R0 such that p‖`T‖g ≥ p− `m(S) and p‖`T‖g ≡ p
(mod `). If p‖`T‖g ≤ p, then we can construct a subsequence of TS1 with
index 1, a contradiction. Now suppose that p‖`T‖g > p. If y ∈ [1, p − 1] is
such that (yg) |R` and y` ∈ [1, p−1] such that p | (`y−y`), then y` ∈ [1,m(S)]
and gcd(y`, `) = 1. By Lemma 4.5, by dropping at most ` terms from T , we
get a proper subsequence T̃ such that p‖`T̃‖g ≥ p− `m(S) and p‖`T̃‖g ≡ p
(mod `), a contradiction to the minimality of T . Therefore, (7) holds.

By (5), we have p‖`R0‖g ≥ (`− 1) + u(|R0| − `+ 1). This together with
(7) gives

|R0| ≤
p− `m(S)− 2`+ 1

u
+ `− 1.

Now the lemma follows from (6).

Lemma 4.7. Let t ∈ [2, k], and let 1 = α1 < α2 < · · · denote all positive
integers coprime to t. If

m(S) ≤ p− 2t+ wαu+1 + 2
t+
∑u

i=2 αi
for some w, u ∈ N0,

then

|Rt| ≤
p− (t+

∑u
i=2 αi)m(S)− 2t+ 2
αu+1

+ δu(u− 1)m(S) + 2t+ w

where

δu =
{

0 for u = 0,
1 for u ≥ 1.
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Proof. Assume to the contrary that |Rt| is strictly larger than the above
bound. Since

m(S) ≤ p− 2t+ wαu+1 + 2
t+
∑u

i=2 αi
,

it follows that |Rt| ≥ 2t+ 1. By Lemma 4.5, there exists a nonempty subse-
quence R0 of Rt with

(8) p‖tR0‖g ≡ p (mod t) and |R0| ≥ |Rt| − t.
Similarly to Lemma 4.6, we can prove that

(9) p‖tR0‖g ≤ p− tm(S)− t.
Note that tR0 contains α1g = g at most t − 2 times, because otherwise we
would get

m(S) ≥ mg(tS) ≥ tmg(S) + t− 1 > mg(S) = m(S),

a contradiction. Since vαig(S) ≤ h(S) ≤ m(S) for all i ≥ 2, it follows that

p‖tR0‖g ≥ α1(t− 2) +
( u∑
i=2

αi

)
m(S) + αu+1(|R0| − (u− 1)m(S)− (t− 2)).

By (9), we have

|R0| ≤
p− (t+

∑u
i=2 ai)m(S)− 2t+ 2
αu+1

+ δ(u− 1)m(S) + t− 2.

By (8), we derive a contradiction.

Proof of Theorem 1.4. We use the notation introduced at the beginning
of this section. In particular, we assume to the contrary that there exists
a sequence S ∈ F(G•) of length |S| = p which has no subsequence with
index 1. We have to derive a contradiction.

Clearly, h(S) ≤ m(S) ≤ p − 1. Lemma 4.1 implies that, for every x ∈
[1, p − 1] with (xg) |ST−1, we have m(S) + 2 ≤ x ≤ p − m(S) − 1. Thus it
follows that

p− 2
10

≤ h(S) ≤ m(S) ≤ p− 3
2

.

We distinguish several cases.

Case 1: (p− 2)/3 ≤ m(S) ≤ (p− 3)/2. With k = 2 in Lemma 4.4, we
have

p ≤ m(S) + 1 + |R2|.
Applying Lemma 4.7 with u = 0 and w = 6, we infer that

|R2| ≤ p− 2m(S) + 8.

It follows that p ≤ m(S) + 1 + |R2| = m(S) + 1 + p − 2m(S) + 8 < p, a
contradiction.
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Case 2: (p+ 3)/4 ≤ m(S) ≤ (p− 4)/3. With k = 3 in Lemma 4.4, we
have

p ≤ m(S) + 1 + 2 + 2 + |R2|+ |R3|.
Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R2| ≤
p− 2m(S) + 28

3
, |R3| ≤

p− 3m(S) + 20
2

.

It follows that

p ≤ m(S)+5+
3∑
i=2

|Ri| = m(S)+5+
p− 2m(S) + 28

3
+
p− 3m(S) + 20

2
< p,

a contradiction.

Case 3: (p− 2)/5 ≤ m(S) ≤ (p+ 1)/4. With k = 4 in Lemma 4.4, we
have

p ≤ m(S) + 1 + 2 · 2 + 3 · 2 + |R2|+ |R3|+ |R4|.
Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R2| ≤
p− 2m(S) + 28

3
, |R3| ≤

p− 3m(S) + 20
2

, |R4| ≤
p− 4m(S) + 36

3
.

It follows that

p ≤ m(S) + 11 +
p− 2m(S) + 28

3
+
p− 3m(S) + 20

2
+
p− 4m(S) + 36

3
< p,

a contradiction.

Case 4: (p− 1)/6 ≤ m(S) ≤ (p− 3)/5. With k = 5 in Lemma 4.4, we
have

p ≤ m(S) + 27 +
5∑
i=2

|Ri|.

Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R2| ≤
p− 2m(S) + 28

3
, |R3| ≤

p− 3m(S) + 20
2

,

|R4| ≤
p− 4m(S) + 36

3
, |R5| ≤

p− 5m(S) + 24
2

.

Applying Lemma 4.6 with t = 2, ` = 3 and u = 12, we obtain that either

|R2| = 0 or |R3| ≤
p− 3m(S) + 55

12
,

and therefore

|R2|+ |R3| ≤ max
{
p− 2m(S) + 28

3
+
p− 3m(S) + 55

12
,
p− 3m(S) + 20

2

}
=

5p− 11m(S) + 167
12

.
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Summing up we obtain

p ≤ m(S) + 27 +
5∑
i=2

|Ri| = m(S) + 27 + (|R2|+ |R3|) + |R4|+ |R5|

≤ 5p− 11m(S) + 167
12

+
p− 4m(S) + 36

3
+
p− 5m(S) + 24

2
+ 27 < p,

a contradiction.

Case 5: (p− 5)/7 ≤ m(S) ≤ (p− 5)/6. With k = 6 in Lemma 4.4, we
have

p ≤ m(S) + 37 +
6∑
i=2

|Ri|.

Applying Lemma 4.7 with u = 2 and w = 0, we infer that

|R2| ≤
p+ 18

5
, |R3| ≤

p−m(S) + 20
4

.

Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R4| ≤
p− 4m(S) + 36

3
, |R5| ≤

p− 5m(S) + 24
2

, |R6| ≤
p− 6m(S) + 80

5
.

Summing up we obtain

p ≤ m(S) + 37 +
6∑
i=2

|Ri|

= m(S) + 37 +
p+ 18

5
+
p−m(S) + 20

4
+
p− 4m(S) + 36

3

+
p− 5m(S) + 24

2
+
p− 6m(S) + 80

5
< p,

a contradiction.

Case 6: (p− 2)/8 ≤ m(S) ≤ (p− 3)/7. With k = 7 in Lemma 4.4, we
have

p ≤ m(S) + 73 +
7∑
i=2

|Ri|.

Applying Lemma 4.7 with u = 2 and w = 0, we infer that

|R2| ≤
p+ 18

5
, |R3| ≤

p−m(S) + 20
4

.

Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R4| ≤
p− 4m(S) + 36

3
, |R5| ≤

p− 5m(S) + 24
2

,

|R6| ≤
p− 6m(S) + 80

5
, |R7| ≤

p− 7m(S) + 28
2

.
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Applying Lemma 4.6 with t = 2, ` = 5 and u = 10, we infer that

|R2|+ |R5| ≤ max
{
p− 5m(S) + 4

2
,
p+ 18

5
+
p− 5m(S)− 9

10
+ 9
}

=
3p− 5m(S) + 117

10
.

Summing up we obtain

p ≤ m(S) + 73 +
7∑
i=2

|Ri|

= m(S) + 73 + (|R2|+ |R5|) + |R3|+ |R4|+ |R6|+ |R7|

≤ m(S) + 73 +
3p− 5m(S) + 117

10
+
p−m(S) + 20

4
+
p− 4m(S) + 36

3

+
p− 6m(S) + 80

5
+
p− 7m(S) + 28

2
< p,

a contradiction.

Case 7: (p− 2)/9 ≤ m(S) ≤ (p− 3)/8. With k = 8 in Lemma 4.4, we
have

p ≤ m(S) + 111 +
8∑
i=2

|Ri|.

Applying Lemma 4.7 with u = 2 and w = 0, we infer that

|R2| ≤
p+ 18

5
, |R3| ≤

p−m(S) + 20
4

,

|R4| ≤
p− 2m(S) + 34

5
, |R5| ≤

p− 4m(S) + 22
3

.

Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R6| ≤
p− 6m(S) + 80

5
, |R7| ≤

p− 7m(S) + 28
2

, |R8| ≤
p− 8m(S) + 52

3
.

Applying Lemma 4.6 with t = 2, ` ∈ {5, 7} and u = 20, we can prove that
either

|R2| = 0 or |Ri| ≤
p− im(S)− 2i+ 1

20
+ 2i− 1 for i ∈ {5, 7},

and therefore

|R2|+ |R5|+ |R7| ≤ max
{
p− 4m(S) + 22

3
+
p− 7m(S) + 28

2
,

p−m(S) + 20
4

+
p− 5m(S)− 9

20
+ 9 +

p− 7m(S)− 13
20

+ 13
}

=
5p− 29m(S) + 128

6
.
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Applying Lemma 4.6 with t = 4, ` = 6 and u = 10, we find that either

|R4| = 0 or |R6| ≤
p− 6m(S)− 11

10
+ 11,

and therefore

|R4|+ |R6| ≤ max
{
p−2m(S)+34

5
+
p−6m(S)−11

10
+ 11,

p−6m(S)+80
5

}
=

3p− 10m(S) + 167
10

.

Summing up we obtain

p ≤ m(S) + 111 +
8∑
i=2

|Ri|

= m(S) + 111 + (|R2|+ |R5|+ |R7|) + (|R4|+ |R6|) + |R3|+ |R8|

≤ m(S) + 111 +
5p− 29m(S) + 128

6
+

3p− 10m(S) + 167
10

+
p−m(S) + 20

4
+
p− 8m(S) + 52

3
< p,

a contradiction.

Case 8: (p− 2)/10 ≤ m(S) ≤ (p− 4)/9. With k = 9 in Lemma 4.4, we
have

p ≤ m(S) + 159 +
9∑
i=2

|Ri|.

Applying Lemma 4.7 with u = 2 and w = 0, we infer that

|R2| ≤
p+ 18

5
, |R3| ≤

p−m(S) + 20
4

,

|R4| ≤
p− 2m(S) + 34

5
, |R5| ≤

p− 4m(S) + 22
3

.

Applying Lemma 4.7 with u = 1 and w = 6, we infer that

|R6| ≤
p− 6m(S) + 80

5
, |R7| ≤

p− 7m(S) + 28
2

,

|R8| ≤
p− 8m(S) + 52

3
, |R9| ≤

p− 9m(S) + 32
2

.

Applying Lemma 4.6 with t = 2, ` ∈ {5, 7} and u = 10, we deduce that
either

|R2| = 0 or |Ri| ≤
p− im(S)− 2i+ 1

10
+ 2i− 1 for i ∈ {5, 7},
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and therefore

|R2|+ |R5|+ |R7| ≤ max
{
p− 4m(S) + 22

3
+
p− 7m(S) + 28

2
,

p+ 18
5

+
p− 5m(S)− 9

10
+ 9 +

p− 7m(S)− 13
10

+ 13
}

=
5p− 29m(S) + 128

6
.

Applying Lemma 4.6 with t = 3, ` = 8 and u = 5, we deduce that either

|R3| = 0 or |R8| ≤
p− 8m(S)− 15

8
+ 15,

and therefore

|R3|+ |R8| ≤ max
{
p−m(S)+20

4
+
p−8m(S)−15

8
+ 15,

p−8m(S)+52
3

}
=

3p− 10m(S)
8

+ 20.

Summing up we obtain

p ≤ m(S) + 159 +
9∑
i=2

|Ri|

= M + 159 + (|R2|+ |R5|+ |R7|) + (|R3|+ |R8|) + |R4|+ |R6|+ |R9|

≤ m(S) + 159 +
5p− 29m(S) + 128

6
+
(

3p− 10m(S)
8

+ 20
)

+
p− 2m(S) + 34

5
+
p− 6m(S) + 80

5
+
p− 9m(S) + 32

2
< p,

a contradiction.

5. A conjecture and an open problem. In spite of Theorem 1.2 and
in view of Lemma 3.1, we formulate a conjecture which sharpens the original
Lemke–Kleitman Conjecture for prime cyclic groups.

Conjecture 5.1. Let G be a cyclic group of prime order and S be a
sequence over G of length |S| = |G|. Then S has a subsequence T with
ind(T ) = 1 and length |T | ∈ [1, h(S)].

Let G be a cyclic group of order n ≥ 2. We denote by

• t(n) the smallest integer ` ∈ N such that every sequence S over G of
length |S| ≥ ` has a subsequence T with ind(T ) = 1,
• T(n) the smallest integer ` ∈ N such that every squarefree sequence S

over G of length |S| ≥ ` has a subsequence T with ind(T ) = 1.

By Theorem 1.2, it follows that t(n) ≥ n+ bn/4c − 4 for n = 4k + 2 ≥ 22.

Problem. Determine t(n) and T(n) for all n ≥ 2.
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[9] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combi-
natorial and Analytic Theory, Pure Appl. Math. 278, Chapman & Hall/CRC, 2006.

[10] Y. O. Hamidoune, A weighted generalization of Gao’s n + D− 1 theorem, Combin.
Probab. Comput. 17 (2008), 793–798.

[11] P. Lemke and D. Kleitman, An addition theorem on the integers modulo n, J. Num-
ber Theory 31 (1989), 335–345.

[12] Y. L. Li, C. Plyley, P. Z. Yuan, and X. Zeng, Minimal zero-sum sequences of length
four over finite cyclic groups, ibid. 130 (2010), 2033–2048.

[13] V. Ponomarenko, Minimal zero sequences of finite cyclic groups, Integers 4 (2004),
paper A24, 6 pp.

[14] S. Savchev and F. Chen, Long zero-free sequences in finite cyclic groups, Discrete
Math. 307 (2007), 2671–2679.

[15] X. W. Xia and P. Z. Yuan, Indexes of insplitable minimal zero-sum sequences of
length l(Cn)− 1, ibid. 310 (2010), 1127–1133.

[16] P. Z. Yuan, On the index of minimal zero-sum sequences over finite cyclic groups,
J. Combin. Theory Ser. A 114 (2007), 1545–1551.

Weidong Gao, Jiangtao Peng, Guoqing Wang
Center for Combinatorics
LPMC-TJKLC
Nankai University
Tianjin 300071, P.R. China
E-mail: wdgao1963@yahoo.com.cn

jtpeng1982@yahoo.com.cn
gqwang1979@yahoo.com.cn

Yuanlin Li, Chris Plyley
Department of Mathematics

Brock University
St. Catharines, Ontario

Canada L2S 3A1
E-mail: yli@brocku.ca

cp07rp@brocku.ca

Received on 6.9.2009
and in revised form on 15.7.2010 (6139)

http://dx.doi.org/10.1016/S0012-365X(99)00027-8
http://dx.doi.org/10.1007/s00605-008-0547-z
http://dx.doi.org/10.1006/jnth.1993.1035
http://dx.doi.org/10.1017/S0963548308009425
http://dx.doi.org/10.1016/0022-314X(89)90077-2
http://dx.doi.org/10.1016/j.jnt.2009.12.005
http://dx.doi.org/10.1016/j.disc.2007.01.012
http://dx.doi.org/10.1016/j.disc.2009.11.029
http://dx.doi.org/10.1016/j.jcta.2007.03.003

	Introduction and main results
	Notation and proof of Theorem 1.2
	Proof of Theorem 1.3
	Proof of Theorem 1.4
	A conjecture and an open problem

