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Averages of Euler products, distribution of singular series
and the ubiquity of Poisson distribution

by

Emmanuel Kowalski (Zürich)

1. Introduction. Euler products over primes are ubiquitous in analytic
number theory, going back to Euler’s proof that there are infinitely many
prime numbers based on the behavior of the zeta function ζ(s) as s → 1.
As defining L-functions of various types, Euler products are particularly
important, and their properties remain very mysterious. In this paper, we
consider the issue of the average or statistical behavior of another important
class of Euler products, the so-called singular series, arising in counting
problems for certain “patterns” of primes (1).

The first type of prime patterns are the prime k-tuples, which are the
subject of a famous conjecture of Hardy and Littlewood. Let k ≥ 1 be an
integer and let h = (h1, . . . , hk) be a k-tuple of integers with hi ≥ 1 for all i.
Let then

π(N ; h) = |{n ≤ N | n+ hi is prime for 1 ≤ i ≤ k}|

be the counting function for primes represented by this k-tuple; note that,
for instance, h = (1, 3) leads to the function counting twin primes up to N .

For any prime number p, let νp(h) denote the cardinality of the set

{h1, . . . , hk} (mod p)

of the reductions of the hi modulo p. Note that 1 ≤ νp(h) ≤ min(k, p) for
all p, and that if we assume (as we now do) that the hi’s are distinct, then
νp(h) = k for all sufficiently large p.
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(1) Singular series also occur in many problems of additive number theory or diophan-
tine geometry, but we do not consider these at the moment.
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The singular series associated with h is defined as the Euler product

S(h) =
∏
p

(
1− νp(h)

p

)(
1− 1

p

)−k
(1.1)

=
∏
p

(
1− νp(h)− 1

p− 1

)(
1− 1

p

)1−k
,

which is absolutely convergent (as will be checked again later; here and
throughout the paper, as usual, p is restricted to prime numbers).

The significance of this value is found in the Hardy–Littlewood prime
k-tuple conjecture (originally stated in [HL]), which states that we should
have

(1.2) π(N ; h) = S(h)
N

(logN)k
(1 + o(1)) as N → +∞,

and in particular, if S(h) 6= 0, there should be infinitely many integers n
such that n+ h1, . . . , n+ hk are simultaneously prime. Of course, if k ≥ 2,
this is still completely open, but let us mention that from sieve methods, it
follows that

π(N ; h) ≤ 2kk!(1 + o(1))S(h)
N

(logN)k

asN → +∞ (see, e.g., [IK, Th. 6.7] or [HR, Ch. 4, Th. 5.3]), showing that the
singular series does arise naturally. Also some other previously inaccessible
additive problems with primes, related to counting arithmetic progressions
(of fixed length) of primes are currently being attacked with striking success
by B. Green and T. Tao (see [GT]).

More generally, one considers polynomial prime patterns. First, a finite
family f = (f1, . . . , fm) of polynomials in Z[X] of degrees deg(fj) ≥ 1 is said
to be primitive if the fj are distinct, and each fj is irreducible, has positive
leading coefficient, and the gcd of its coefficients is 1.

If f is primitive, we say that an integer n ≥ 1 is an f -prime seed if
f1(n), . . . , fm(n) are all (positive) primes. Then we denote by

π(N ; f) = |{n ≤ N | n is an f -prime seed}|

for N ≥ 1 the counting function for those prime seeds. Moreover, let

peg(f) =
m∏
j=1

deg(fj).

A generalization of the k-tuple conjecture, due to Bateman and Horn [BH] (2),
states that

(2) The qualitative version is due to Schinzel [S].
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(1.3) π(N ; f) ∼ 1
peg(f)

S(f)
N

(logN)m
as N → +∞,

if S(f) 6= 0, where (3)

(1.4) S(f) =
∏
p

(
1− νp(f)

p

)(
1− 1

p

)−m
,

with νp(f) being now the number of x ∈ Z/pZ such that fj(x) = 0 for
some j, 1 ≤ j ≤ m.

The Hardy–Littlewood conjecture for a k-tuple h is equivalent to this
conjecture for the primitive family

f = (X + h1, . . . , X + hk),

for which νp(h) as defined previously does coincide with νp(f).
Our goal is to study various averages of singular series, for which there

is undoubted arithmetic interest. A result of Gallagher [Ga] states that

(1.5) lim
h→+∞

1
hk

∑∗

|h|≤h

S(h) = 1

for any fixed k, as h→ +∞, where |h| = maxhi and
∑∗ restricts to k-tuples

with distinct components. This property was used by Gallagher himself to
understand the behavior of primes in short intervals (see also the recent
work by Montgomery and Soundararajan [MS]), and it is also important the
remarkable results of Goldston, Pintz and Yıldırım concerning small gaps
between primes (see [GPY] or the survey [K]).

Our first question is to ask about finer aspects of the distribution of S(h).
To apply the method of moments, we first prove the following:

Theorem 1.1. Let k ≥ 1 be fixed. For any complex number m ∈ C with
Re(m) ≥ 0, there exists a complex number µk(m) such that

lim
h→+∞

1
hk

∑∗

|h|≤h

S(h)m = µk(m).

Moreover, for m, k ≥ 1 both integers, we have the symmetry property

(1.6) µk(m) = µm(k);

in addition, µ1(m) = 1 for all integers m ≥ 1, and hence µk(1) = 1 for all
k ≥ 1.

(3) Here, except in the special case where all fj are linear, the singular series S(f) is
not absolutely convergent (see below for more details on this; the problem is that νp(f)
is only equal to m on average over p, and not for all p large enough, except if each fj is
linear); the product is thus defined as the limit of partial products over primes p ≤ y.
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The last statement (µk(1) = 1) is of course Gallagher’s theorem (1.5);
our proof is not intrinsically different, but maybe more enlightening. These
results are in fact quite straightforward, and only the final symmetry in k
andm is maybe surprising. However, its origin is not particularly mysterious:
it is a “local” phenomenon, and it can be guessed from (1.2) by a formal
computation.

We will also find estimates for the size of the moments which are good
enough to imply the existence of a limiting distribution of S(h) for k-tuples
(k fixed):

Theorem 1.2. Let k ≥ 1 be fixed. There exists a probability law νk on
R+ = [0,+∞[ such that S(h), for h with |h| ≤ h and h → +∞, becomes
equidistributed with respect to νk, or equivalently

lim
h→+∞

1
hk

∑∗

|h|≤h

f(S(h)) =
�

R+

f(t) dνk(t)

for any bounded continuous function on R.

The second question we explore is the generalization to other prime pat-
terns of the result of Gallagher (based on (1.5)) that shows that a uniform
version of the prime k-tuple conjecture implies that for a fixed λ > 0, the
distribution of π(x + λ log x) − π(x) is close to a Poisson distribution of
parameter λ as x→ +∞, i.e., it implies that

(1.7)
1
N
|{n ≤ N | π(n+ h)− π(n) = m}| → e−λ

λm

m!
as N → +∞,

for any integer m ≥ 0. It turns out that, indeed, under a general uniform
version of the Bateman–Horn conjecture, for any fixed primitive family f ,
the number of f -prime seeds in short intervals of “fair” length (i.e., intervals
around n in which (1.3) predicts that, on average, there should be a fixed
number of f -prime seeds) always follows a Poisson distribution. As for the
symmetry property of the higher moments for the singular series related to
the k-tuple conjecture, this turns out to depend primarily on local identities,
but we found this rigidity of patterns to be quite surprising at first sight.
Precisely:

Theorem 1.3. Assume that the Bateman–Horn conjecture holds uni-
formly for all primitive families with non-zero singular series, in the sense
that

(1.8) π(N ; f) =
1

peg(f)
S(f)

N

(logN)m

(
1 +O

(
c(f)ε

logN

))
for all primitive families f , all ε > 0, and all N ≥ 2, where

c(f) =
∑

1≤j≤m
H(fj), H(a0 + a1X + · · ·+ adX

d) = max
i
|ai|,
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and the implied constant depends at most on the degrees of the elements of
f and on ε. Let f be a fixed primitive family with S(f) 6= 0. For N ≥ 1, let

δ(N,f) =
peg(f)
S(f)

(logN)m.

Then for any λ > 0 and any integer r ≥ 0, we have

lim
N→+∞

1
N
|{n ≤ N | π(n+ λδ(N,f); f)− π(n; f) = r}| = e−λ

λr

r!
.

In other words, for N large, the number of f -prime seeds in an interval
around N ≥ 1 of length λ(logN)m is asymptotically distributed like a Poisson
random variable with mean given by S(f) peg(f)−1λ.

The final purpose of this paper is to emphasize the fact that Theorems 1.1
and 1.3 are special cases of the problem of computing the average of some
families of values of Euler products, and (because here the Euler products
are absolutely convergent or almost so) the outcome is consistent with the
heuristic that the p-factors are independent random variables, so the average
of the Euler product is the product of “local” averages. All this is a fairly
common theme in analytic number theory, but our presentation is maybe
more systematic than usual. The works of Granville–Soundararajan [GS]
and Cogdell–Michel [CM] also present this point of view very successfully
for values of certain families of L-functions at the edge of the critical strip,
and Y. Lamzouri [La] has developed this type of ideas in a quite general
context. Although this is not really relevant from the point of view of sin-
gular series, we just mention that Euler products built of local averages still
make sense inside the critical strip for many families of L-functions, and
are closely related to their distribution (as one can see, e.g., from the work
of Bohr and Jessen [BJ] for the Riemann zeta function). On the critical
line, “renormalized” Euler products still occur in the moment conjectures for
L-functions (see, e.g., [KS]), although other factors (conjecturally linked to
random matrices) also appear.

In the next section, we state in probabilistic terms a general result on
averages of random Euler products. Then we use it to prove Theorem 1.1
and Theorem 1.2 in Sections 3 and 4. In Section 5, we prove Theorem 1.3.

Notation. As usual, |X| denotes the cardinality of a set. By f � g for
x ∈ X, or f = O(g) for x ∈ X, where X is an arbitrary set on which f
is defined, we mean synonymously that there exists a constant C ≥ 0 such
that |f(x)| ≤ Cg(x) for all x ∈ X. The “implied constant” is any admissible
value of C. It may depend on the set X which is always specified or clear in
context. On the other hand, f ∼ g as x→ x0 means f/g → 1 as x→ x0.

We use standard probabilistic terminology: a probability space (Ω,Σ,P )
is a triple made of a set Ω with a σ-algebra Σ and a measure P on Σ
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with P (Ω) = 1. A random variable is a measurable function Ω → R (or
Ω → C), and the expectation E(X) on Ω is the integral of X with respect
to P when defined. The law of X is the measure ν on R (or C) defined by
ν(A) = P (X ∈ A). If A ⊂ Ω, then 1A is the characteristic function of A.

For k-tuples h = (h1, . . . , hk), we recall that |h| = max(|hi|). When
different values of k can occur, we sometimes write |h|k to indicate the
number of components of h, in particular a sum such as∑

|h|k≤h

a(h)

is a sum over k-tuples (of positive integers) with components ≤ h.

2. A probabilistic statement. We assume given a probability space
(Ω,Σ,P ), and two sequences of random variables Xp, Yp : Ω → C, indexed
by prime numbers.

We assume that (Yp) is an independent sequence; recall that this means
that

P (Yp1 ∈ A1, . . . , Ypk ∈ Ak) =
∏

1≤i≤k
P (Ypi ∈ Ai)

for all choices of finitely many distinct primes p1, . . . , pk, and all measurable
sets Ai ⊂ C, and that a consequence is that (when the expectation makes
sense) we have

E(Yp1 · · ·Ypk) = E(Yp1) · · ·E(Ypk).

We now extend the family to all integers by denoting

Xq =
∏
p|q

Xp, Yq =
∏
p|q

Yp

for any squarefree integer q ≥ 1, and Xq = Yq = 0 if q ≥ 1 is not squarefree.
We will consider the behavior of the random Euler products

ZX =
∏
p

(1 +Xp), ZY =
∏
p

(1 + Yp)

and in particular their expectations E(ZX) and E(ZY ).
For this purpose, we assume that the products converge absolutely (al-

most surely). More precisely, expand formally∏
p

(1 +Xp) =
∑[

q≥1

Xq,

where
∑[ restricts the sum to squarefree numbers. Then we assume that

(2.1)
∑[

q>x

|Xq| ≤ RX(x)



Averages of Euler products 159

where RX(x) is an integrable non-negative random variable such that RX(x)
→ 0 almost surely as x→ +∞. It then follows that ZX is almost surely an
absolutely convergent infinite product.

We moreover assume that the product

(2.2)
∏
p

(1 + |E(Yp)|)

converges (absolutely). By independence of the (Yp), we know that

|E(Yq)| =
∣∣∣E(∏

p|q

Yp

)∣∣∣ =
∏
p|q

|E(Yp)|

and so expanding again in series, we obtain

(2.3)
∑[

q≥1

|E(Yq)| =
∑[

q≥1

∏
p|q

|E(Yp)| =
∏
p

(1 + |E(Yp)|) < +∞.

Our goal is to show that if (Xp) is distributed “more or less” like (Yp), but
without being independent, the expectation of ZX is close to

∏
p (1 + E(Yp)).

In particular, we will typically have (Xp) depend on another parameter
(say h), in such a way that Xp,h converges in law to Yp (which will remain
fixed) when h→ +∞, and this will lead to the relation

lim
h→+∞

E
(∏

p

(1 +Xp,h)
)

=
∏
p

(1 + E(Yp))

in a number of situations. We interpret this as saying that (when applicable)
the average of the Euler product ZX is obtained “as if” the factors were
independent, and taking the product of the local averages 1 + E(Yp) of the
“model” random variables defining ZY .

Here is the precise (and almost tautological) “finitary” statement from
which applications will be derived.

Proposition 2.1. Let (Xp), (Yp) be as above. Then for any choice of
the auxiliary parameter x > 0, we have

E(ZX) =
∏
p

(1 + E(Yp))

+O
(
E(RX(x)) +

∑[

q≤x
|E(Xq − Yq)|+

∑[

q>x

|E(Yq)|
)
,

where the implied constant is absolute, and in fact has modulus at most 1.

Proof. This more or less proves itself: for any x ≥ 1, write first∏
p

(1 +Xp) =
∑[

q≥1

Xq =
∑[

q≤x
Xq +

∑[

q>x

Xq,
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then use (2.1) to estimate the second term, and take the expectation, which
leads to

E(ZX) =
∑
q≤x

E(Xq) +O(E(RX(x))).

Next, we insert Yq by writing Xq = Yq + (Xq − Yq), getting

E(ZX) =
∑[

q≤x
E(Yq) +

∑[

q≤x
E(Xq − Yq) +O(E(RX(x)))

and then use∑[

q≤x
E(Yq) =

∑[

q≥1

E(Yq) +O
(∑[

q>x

|E(Yq)|
)

=
∏
p

(1 + E(Yp)) +O
(∑[

q>x

|E(Yq)|
)
,

to conclude the proof.
Remark 2.2. Observe that by (2.3), the last term in the remainder tends

to zero as x→ +∞. Moreover, if RX(x) is dominated by an integrable func-
tion as x→ +∞, the assumption that RX(x)→ 0 almost surely implies that
the first term also tends to zero. Thus to conclude in practical applications,
one needs to control the middle term.

In terms of the “extra” parameter h mentioned before the statement of
the proposition, we may typically hope for uniform estimates for E(RX(x)),
in terms of h, say

E(RX(x))� hαx−β, α, β > 0;

if we also have a bound of the type
(2.4) E(Xq) = E(Yq) +O(qγh−δ), γ, δ > 0,

(or if this holds on average over q < x, which may often be easier to prove, as
is the case for the error term in the prime number theorem, as the Bombieri–
Vinogradov theorem shows), this leads to a remainder term which is

� hαx−β + x1+γh−δ + ε(x)

with ε(x)→ 0 as x→ +∞, uniformly in h. Then we can conclude that

(2.5) lim
h→+∞

E(ZX) =
∏
p

(1 + E(Yp))

by choosing x suitably as a function of h, provided we have
α

β
<

δ

γ + 1
.

We will see this in action concretely in the next sections. Notice that if
α can be chosen arbitrarily small (i.e., RX(x) is bounded almost uniformly
in terms of h), then this condition can be met.
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Remark 2.3. If we assume, instead of (2.2), that the product of
1 + E(|Yp|) converges, which is stronger, it follows that

∑
|Yp| < +∞ al-

most surely (its expectation being finite), and hence the infinite product
defining ZY converges absolutely almost surely. Also, since

E
(∏
p≤P

(1 + Yp)
)

=
∏
p≤P

(1 + E(Yp))

for all P , we would obtain
E(ZY ) =

∏
p

(1 + E(Yp))

provided ZY converges dominatedly, for instance. This formula is also valid if
Yp ≥ 0, by the monotone convergence theorem. It provides an interpretation
of the right-hand side of (2.5).

3. Moments of singular series for the k-tuple conjecture. In this
section, we prove Theorem 1.1, which includes in particular Gallagher’s the-
orem, in a way which may seem somewhat complicated but which clarifies
the result.

We first assume an integer k ≥ 1 to be fixed. We rewrite (1.1) as

S(h) =
∏
p

(
1 +

pk − νp(h)pk−1 − (p− 1)k

(p− 1)k

)
.

It is therefore natural to define

a(p, ν) =
pk − νpk−1 − (p− 1)k

(p− 1)k

for all primes p and real numbers ν, 0 < ν ≤ p (omitting the dependence
on k). We then define am(p, ν), for m ∈ C with Re(m) ≥ 0, by requiring
that

1 + am(p, ν) = (1 + a(p, ν))m,

with the convention 0m = 0 if Re(m) = 0; the condition ν ≤ p implies that
1 + a(p, ν) ≥ 0, so this is well-defined indeed. (If we assume ν < p, we may
extend this to all m ∈ C.)

We first need a technical lemma.
Lemma 3.1. For m ∈ C with Re(m) ≥ 0, write m+ = 0 if Re(m) < 1,

and m+ = m − 1 otherwise. For all p prime and ν with 1 ≤ ν ≤ min(p, k),
we have

am(p, k)� |m|
p2

(
1 +O

(
1
p2

))m+

,(3.1)

am(p, ν)� |m|
p

(
1 +O

(
1
p

))m+

if 1 ≤ ν < k,(3.2)

where the implied constants depend only on k.
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Proof. Notice first that, in the stated range, we have

a(p, k)� p−2 and a(p, ν)� p−1 if 1 ≤ ν < k,

where the implied constants depend only on k, and then write

am(p, ν) = (1 + a(p, ν))m − 1 = ma(p, ν)
1�

0

(1 + ta(p, ν))m−1 dt

and estimate directly.

We are now going to prove Theorem 1.1. Fix h ≥ 1 (though h will tend
to infinity at the end). We first interpret the mth moment of the singular
series in probabilistic terms, then introduce the source of its limiting value
in the framework of the previous section.

Consider the finite set (again, depending on k)

Ω1 = {h = (hi) | 1 ≤ hi ≤ h, hi distinct},
with the normalized counting measure. Defining h∗k = |Ω1|, notice that

(3.3) h∗k = hk(1 +O(h−1))

for h ≥ 1, the implied constant depending only on k. We will denote by
E1 and P 1 the expectation and probability for this discrete space. So, for
instance,

P 1(νp = ν) =
1
h∗k
|{h ∈ Ω1 | νp(h) = ν}|.

Our goal is to find the limit as h→ +∞ of the average
1
h∗k

∑
|h|≤h

hi distinct

S(h)m = E1(S(h)m)

(notice that, by (3.3), if the limit exists, it is also the limit of
1
hk

∑
|h|≤h

hi distinct

S(h)m

as h→ +∞).
We write Xp(h) = a(p, νp(h)) and Xp(m,h) = am(p, νp(h)), so that∏

p

(1 +Xp(m,h)) = S(h)m

by construction.
Now consider a second space

Ω2 =
∏
p

(Z/pZ)k
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with the product measure of the probability counting measures on each fac-
tor. We denote by ω = (hp)p the elements of Ω2. To avoid confusion with νp
defined for h ∈ Ω1, we introduce the random variables

ρp :
{
Ω2 → {1, . . . , k},
ω = (hp)p 7→ number of distinct hi in Z/pZ,

which satisfy 1 ≤ ρp ≤ min(k, p).
We can now define “random” singular series using Ω2, writing Yp =

a(p, ρp) and considering the Euler product∏
p

(1 + Yp),

and similarly with Yp(m) = am(p, ρp) and∏
p

(1 + Yp(m)) =
(∏

p

(1 + Yp)
)m

.

We denote by P 2 and E2 the probability and expectation for this space.
By construction of Ω2, the random variables (ρp) are independent, and so
are the (Yp), and the (Yp(m)) for a given m. Note also that the components
hp are equidistributed: for any prime p and any a ∈ (Z/pZ)k, we have

(3.4) P 2(hp = a) =
1
pk
.

We now use Proposition 2.1 to compare the average E1(S(h)m) with∏
E2((1 + Yp)m). Although this proposition is phrased with a single proba-

bility space Ω on which both Euler vectors are defined, this is not a serious
issue and the statement remains valid, provided the expectations are suitably
subscripted and one writes

|E1(Xq(m))−E2(Yq(m))|

on the right-hand side instead of |E(Xq(m)− Yq(m))| (4).
We start by estimating the tail R(x) = RX(m)(x) of the Euler prod-

uct defining S(h)m. In keeping with probabilistic conventions, we omit the

(4) We could also simply consider Ω = Ω1 ×Ω2 with the product measure, or equiv-
alently (and maybe more elegantly) assume that we start with some space Ω and two
vectors (Xp), (Yp), distributed according to the prescription of Ω1 and Ω2 respectively,
i.e., with

P (Xp = a) =
1

h∗k
|{h ∈ Ω1 | a(p, νp(h)) = a}|,

P (Yp = a) =
1

pk
|{h ∈ (Z/pZ)k | a(p, ρp(h)) = a}|.
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argument h ∈ Ω1 in many places. Defining

∆(h) =
∣∣∣∏
i<j

(hi − hj)
∣∣∣ ≥ 1,

and noting that νp = k unless p |∆, we have from Lemma 3.1 the bound

|Xp(m)| � |m|
(

1 +O

(
(p,∆)
p2

))m+

(p,∆)p−2

for some C > 0 (depending only on k) and all h, m (with Re(m) ≥ 0) and p,
the implied constant depending only on k (this justifies, in particular, the
convergence of the Euler product ZX for every h). Hence, taking the product
over p | q for a squarefree integer q, we get

|Xq(m)| ≤ (|m|B)ω(q)(q,∆)q−2
∏
p|q

(
1 + C

(p,∆)
p2

)m+

for some constants B > 0 and C ≥ 0 depending only on k. Since ∆ is
bounded by

(3.5) |∆| ≤ (2h)k
2
,

a standard computation with sums of multiplicative functions leads to∑[

q>x

|Xq(m)| � x−1(log 2hx)D

for x ≥ 2 and some constant D ≥ 0, depending on k and m.
The next step is to justify the analogue of the convergence of (2.2); more

precisely, we have

(3.6)
∏
p

(1 + E2(|Yp(m)|)) < +∞.

Indeed, Lemma 3.1 leads to

E2(|Yp(m)|)� p−2 + p−1P 2(ρp < k)� p−2

for p ≥ 2, where the implied constant depends on k and m, since it is clear
that we have

(3.7) P 2(ρp < k) ≤ k(k − 1)
2p

for all primes p and k ≥ 1 (write the event {ρp < k} as the union—not nec-
essarily disjoint—of the k(k − 1)/2 events hi = hj with i 6= j, each of which
has probability 1/p by the uniform distribution (3.4)). By independence, we
then also get

(3.8) E2(|Yq(m)|) ≤ Aω(q)q−2.
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for all squarefree integers q and some constant A ≥ 1, which depends only
on k and m.

Finally, it remains to estimate E1(Xq(m))−E2(Yq(m)). We claim that,
for any a ∈ C, we have

(3.9) P 1(Xq(m) = a) =
(

1 +O

(
q

h

))
P 2(Yq(m) = a) +O

(
kω(q)

h

)
,

where the implied constants depend only on k. Assuming this, and noting
that Xq(m) and Yq(m) take the same finitely many values (at most kω(q)

distinct values, which are � Fω(g)/q where the implied constant and F
depend on m and k), it follows that

E1(Xq(m)) =
(

1 +O

(
q

h

))
E2(Yq(m)) +O

(
Gω(q)

h

)
,

where G depends on m and k, leading in turn to

|E1(Xq(m))−E2(Yq(m))| � q

h
E2(|Yq(m)|) +

Gω(q)

h
� Eω(q)

h

(see (3.8)), where the implied constant depends only on k and m, as does E.
Summing over q < x, it then follows from Proposition 2.1 that

1
h∗k

∑∗

h

S(h)m = E1

(∏
p

(1 +Xp(m))
)

=
∏
p

(1 + E2(Yp(m))) +O(xh−1(log 2hx)B + x−1(log 2hx)D)

for some B depending on k and m. Choosing for instance x = h1/2 leads to
the existence of the mth moment of singular series, with limiting value given
by

µk(m) =
∏
p

(1 + E2(Yp(m)))(3.10)

=
∏
p

(
1− 1

p

)−km{ 1
pk

∑
h∈(Z/pZ)k

(
1− ρp(h)

p

)m}
.

It only remains to prove (3.9). Note that this is clearly an expression
of quantitative equidistribution (or convergence in law) of Xq to Yq as
h→ +∞ (5). The proof is quite simple. First of all, given arbitrary integers

(5) It can also be interpreted as a form of “sieve axiom”.
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sp with p | q, we have

P 1(νp(h) = sp for p | q) =
1
h∗k

∑∗

νp(h)=sp for p|q
|h|≤h

1

=
1
h∗k

∑
. . .
∑

ρp(hp)=sp
hp∈(Z/pZ)k

∑∗

|h|≤h
h≡hp (mod p|q)

1

(where there are as many outer sums in the last line as there are primes
dividing q, and the last sum involves summation conditions for all p | q). The
inner sum is

(3.11)
∑∗

|h|≤h
h≡hp (mod p|q)

1 =
∑
|h|≤h

h≡hp (mod p|q)

1 +O(hk−1),

where the implied constant depends on k (i.e., we now forget the condition
on h to have distinct components). Lattice-point counting leads to∑

|h|≤h
h≡hp (mod p|q)

1 =
hk

qk

(
1 +O

(
q

h

))
,

where the implied constant depends again only on k. In view of the equidistri-
bution of hp for (hp)p ∈ Ω2, we therefore derive from the above the following
quantitative equidistribution result:

(3.12) P 1(νp(h) = sp for p | q)

= P 2(ρp(hp) = sp for p | q)
(

1 +O

(
q

h

))
+O

(
1
h

)
.

Now to derive (3.9), we need only observe that Yq(m) and Xq(m) are
“identical” functions of ρp and νp respectively (for p | q). Hence (3.12) im-
plies (3.9) by summing over all possible values of (sp)p|q leading to a given a,
using the fact that there are at most kω(q) such values (the latter being a
very rough estimate!).

It remains to prove the symmetry property (1.6) to finish the proof of
Theorem 1.1. We note in advance that since S(h) = 1 for all 1-tuples h, we
have µ1(m) = 1 for all m ≥ 1, and hence µk(1) = 1 for all k ≥ 1, which is
Gallagher’s result (1.5).

The symmetry turns out to be true “locally”, i.e., the p-factors of the Euler
products (3.10) defining µk(m) and µm(k) coincide for all p and integers
k,m ≥ 1.

There are different ways to see this, and the following seems to encapsu-
late the origin of the phenomenon. Given a finite set F (which will be Z/pZ),
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consider the following expression, obviously symmetric in m and k:

1
|F |m+k

∑∑
x∈Fm,h∈Fk
{xi}∩{hj}=∅

1

(which is the probability, for the normalized counting measure on F k+m, that
a pair of a k-tuple and an m-tuple, both of elements of F , do not contain a
common element). Then it can be interpreted either as

1
|F |m

m∑
τ=1

∑
x∈Fm
ρ(x)=τ

1
|F |k

∑
h∈Fk

{hj}∩{xi}=∅

1 =
1
|F |m

m∑
τ=1

∑
x∈Fm
ρ(x)=τ

(
1− τ

|F |

)k

=
1
|F |m

∑
x∈Fm

(
1− ρ(x)

|F |

)k
or (by the same computation with m and k interchanged) as

1
|F |k

∑
h∈Fk

(
1− ρ(h)

|F |

)m
,

(using ρ(·) to denote the number of distinct elements in F of an m-tuple,
then of a k-tuple).

Applied with F = Z/pZ, up to the symmetric factor (1 − 1/p)−km

in (3.10), the first is the p-factor for µm(k), and the second is the p-factor
for µk(m), showing that they are indeed equal.

Remark 3.2. Quantitatively, we have proved that∑∗

|h|≤h

S(h)m = µk(m)h∗k +O(hk−1/2+ε)

for any ε > 0, where the implied constant depends on k and m. For m = 1,
Montgomery and Soundararajan [MS, (17), p. 593] have obtained a more
refined expansion with contributions of size hk−1 log h and hk−1, and error
term of size hk−3/2+ε.

Remark 3.3. The fact that µk(1) = 1 can be used to recover the combi-
natorial identities used by Gallagher [Ga, pp. 7–8] instead of the probabilistic
phrasing above. We review this for completeness: in order to prove µk(1) = 1,
it suffices to show that the average of a(p, ρp) is zero. We have∑

h∈(Z/pZ)k

a(p, ρp(h)) =
p∑

ν=1

a(p, ν)|{h ∈ (Z/pZ)k | ρp(h) = ν}|
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and on the other hand,

|{h ∈ (Z/pZ)k | ρp(h) = ν}| =
(
p

ν

){
k

ν

}
,

where
{
k
ν

}
is the number of surjective maps from a set with k elements to one

with ν elements (6); indeed, a k-tuple h with ν distinct values is the same
as a map {1, . . . , k} → Z/pZ with image of cardinality ν, i.e., the set of such
tuples is the disjoint union of those sets of surjective maps {1, . . . , k} → I
over I ⊂ Z/pZ with order ν.

Therefore, Gallagher’s result follows from the identity
p∑

ν=1

a(p, ν)
(
p

ν

){
k

ν

}
= 0,

which is proved in [Ga, p. 7], and which we have therefore reproved. Similarly,
the identities

p∑
ν=1

(
p

ν

){
k

ν

}
= pk,

p∑
ν=1

ν

(
p

ν

){
k

ν

}
= pk+1 − p(p− 1)k,

of [Ga, p. 8] can be derived from the proof that the p-factor for µk(1) is 1.

Remark 3.4. From (1.2), one can guess that µk(m) = µm(k) for m ≥ 1
integer, by computing∑

|h|≤h

(∑
n≤N

∏
1≤i≤k

Λ(n+ hi)
)m

=
∑
|h|k≤h

∑
|n|m≤N

∏
1≤i≤k
1≤j≤m

Λ(nj + hi)

(where n is an m-tuple), which is a symmetric expression in n and h, ex-
cept for the ranges of summation, and which should be asymptotic to either
µk(m)hkNm or µm(k)hkNm by a uniform k-tuple conjecture. In fact, the
computation we did amounts to doing the same argument locally (i.e., look-
ing on average over h at the distribution of integers such that, for a fixed
prime p, the numbers n+ h1, . . . , n+ hk are not divisible by p).

This symmetry µk(m) = µm(k), despite the simplicity of its proof, is a
very strong property, as pointed out to us by A. Nikeghbali. Indeed, write
Xk = ZY,k, the random variable given by the random singular series. Since

µk(m) =
�

R+

tm dνk(t) = E(Xm
k ),

the symmetry implies that the sequence (E(Xm
k ))k, for a fixed value of m, is

the sequence of moments of a probability distribution of [0,+∞[, which is a
highly non-trivial property. We refer to the survey [Si] of the classical theory

(6) This is denoted σ(k, ν) in [Ga], and it is not the standard notation, which would
be ν!

˘
k
ν

¯
instead.
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surrounding the “moment problems”, noting that from Theorem 1 there it
follows that, for any fixed m ≥ 1, we have∑∑

0≤i≤N
0≤j≤N

αiᾱjµi+j(m) > 0,
∑∑
0≤i≤N
0≤j≤N

αiᾱjµi+j+1(m) > 0

for any N ≥ 1 and any complex numbers (αi) ∈ CN − {0}.
It would be quite interesting to know what other types of natural se-

quences of random variables (or probability distributions) satisfy the rela-
tion E(Xm

k ) = E(Xk
m). One fairly general construction is as follows (this

was pointed out by A. Nikeghbali and P. Bourgade): just take Xn = Zn

for Z a random variable such that all moments of Z exist, or a bit more
generally, take a sequence (Xn) of positive random variables such that the
X

1/n
n are identically distributed. But note that the variables we encountered

are not of this type.

Example 3.5. Let m = 2. We find (using the symmetry property) that
the mean-square of S(h) is given by

lim
h→+∞

1
hk

∑∗

|h|≤h

S(h)2 = µk(2),

where

µk(2) =
∏
p

((
1− 1

p

)(
1− 2

p

)k
+

1
p

(
1− 1

p

)k)(
1− 1

p

)−2k

.

In particular, we find (using Pari/GP for instance):

µ2(2) = 2.300 . . . , µ3(2) = 6.03294 . . . ,
µ4(2) = 17.562 . . . , µ5(2) = 55.255 . . . , µ6(2) = 184.18 . . . .

Note that the second (and higher) moments increase quickly with k (as
proved in Proposition 4.1 below). This is explained intuitively by the fact
that S(h) is often zero: for instance, the 2-factor of S(h) is zero unless
all hi are of the same parity, which happens with probability 21−k only (see
Example 4.3 for a more precise estimate). For those h, of course, the 2-factor
is very large (equal to 2k−1).

4. Growth and distribution of moments of singular series. In this
section, we will prove Theorem 1.2, using the methods of moments. For this,
we consider the problem (which has independent interest) of determining the
growth of µk(m). We look at the dependence onm for fixed k, or equivalently
the dependence on k for fixed m, by symmetry (as in Example 3.5). The
result is that the moments grow just a bit faster than exponentially.
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Proposition 4.1. For any fixed k ≥ 1, we have

logµk(m) = km log log 3m+O(m) for m ≥ 1,

where the implied constant depends on k.

Proof. We use the formula (3.10), written in the form

µk(m) =
∏
p

(
1− 1

p

)−km
E2

((
1− ρp

p

)m)
.

We will prove first that

logµk(m) ≥ km log log 3m+O(m)

for m ≥ 1, with an implied constant depending on k, before proving the
corresponding upper bound.

We start by checking that all terms in the Euler product are ≥ 1, i.e.,
for all primes p, all integers k and all real numbers m ≥ 1, we have

(4.1) E2

((
1− ρp

p

)m)
≥
(

1− 1
p

)mk
.

Indeed, by the symmetry between the p-factor for µk(1) and for µ1(k), we
have (

1− 1
p

)k
= E2

(
1− ρp

p

)
,

while raising to the mth power and applying Hölder’s inequality gives(
E2

(
1− ρp

p

))m
≤ E2

((
1− ρp

p

)m)
.

From this we can bound µk(m) from below by any subproduct, and we look
at

µ∗k(m) =
∏
p≤m

(
1− 1

p

)−km
E2

((
1− ρp

p

)m)
.

The probability that ρp is 1 is clearly equal to p−(k−1) (there are only p
k-tuples with this property). Hence we have crude lower bounds

E2

((
1− ρp

p

)m)
≥ 1
pk−1

(
1− 1

p

)k
and

µk(m) ≥ µ∗k(m) ≥
∏
p≤m

(
1 +

1
p− 1

)k(m−1) 1
pk−1

.
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The logarithm of this expression is easily bounded from below as follows:

logµk(m) ≥ k(m− 1)
∑
p≤m

log
(

1 +
1

p− 1

)
− (k − 1)

∑
p≤m

log p

= km log log 3m+O(m)

for m ≥ 2, the implied constant depending only on k, by standard estimates,
and we can incorporate trivially m = 1 also.

To prove the corresponding upper bound, we split the Euler product (3.10)
into two ranges: we write

µk(m) = µ
(1)
k (m)µ(2)

k (m),

where µ(1)
k (m) is the product over primes p < km (which includes the range

used for the lower bound), while µ(2)
k (m) is the product over the other primes

p ≥ km. We will show that

logµ(1)
k (m) ≤ km log log 3m+O(m), logµ(2)

k (m)� m

log 2m
,

with implied constants depending on k, and this will conclude the proof.
We start with small primes, and bound the expectation of (1 − ρ/p)m

simply by 1; this leads to

logµ(1)
k (m) ≤ −km

∑
p<km

log
(

1− 1
p

)
= km log log 3m+O(m),

where the implied constant depends on k, again by standard estimates.
Next, we estimate µ(2)

k (m) more carefully. The logarithm (say L(x)) of
the product restricted to km ≤ p ≤ x is given by

L(x) = −km
∑

km≤p≤x
log
(

1− 1
p

)
+

∑
km≤p≤x

log E2

((
1− ρp

p

)m)
.

Using (3.7), we write first, for p ≥ km, the upper bound

E2

((
1− ρp

p

)m)
≤
(

1− k

p

)m
(1− P 2(ρp < k)) + P 2(ρp < k)

=
(

1− k

p

)m
+ P 2(ρp < k)

(
1−

(
1− k

p

)m)
≤
(

1− k

p

)m
+
mk2(k − 1)

2p2

≤ 1− mk

p
+
m(m− 1)

2
k2

p2
+
mk2(k − 1)

2p2

= 1− mk

p
+
m2k2

2p2
+
mAk
2p2
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(with Ak = k3 − 2k2) since

1−mx ≤ (1− x)m ≤ 1−mx+
m(m− 1)

2
x2 for 0 ≤ x ≤ 1, m ≥ 1.

Moreover, log(1 − x) ≤ −x − x2/2 for 0 ≤ x < 1, and hence after some
rearranging, we obtain

log E2

((
1− ρp

p

)m)
≤ −mk

p
+
m2k2

2p2
+
mAk
2p2

− 1
2

(
mk

p
− m2k2

2p2
− mAk

2p2

)2

= −mk
p

+
m3k2

p3
− m4k4

8p4
+
mAk
2p2

− m2kAk
2p3

−
m2A2

k − 2m3k2Ak
8p4

,

the terms involving (m2k2)/(2p2) having cancelled out.
Summing over km ≤ p ≤ x, we can let x go to infinity in all but the first

resulting term since they define convergent series; bounding the tail by∑
p>km

1
pσ
� (km)1−σ(log 2km)−1

leads to ∑
km≤p≤x

log E2

((
1− ρp

p

)m)
≤ −km

∑
km≤p≤x

1
p

+O

(
m

log 2m

)
for all m and x ≥ km, where the implied constant depends on k. Finally,

logL(x) ≤ −km
∑

km<p≤x

(
1
p

+ log
(

1− 1
p

))
+O

(
m

log 2m

)
,

and since p−1 + log(1−p−1) defines an absolutely convergent series with tail
(for p > y) decreasing like y−1(log y)−1, we obtain the desired bound for

logµ(2)
k (m) = lim

x→+∞
L(x).

The existence of a limiting distribution (Theorem 1.2) is an easy conse-
quence of this.

Corollary 4.2. Let k ≥ 1 be a fixed integer. As h goes to infinity, the
singular series S(h) for h ∈ Ω1, i.e., such that |h| ≤ h, converges in law to
the random singular series

ZY = ZY,k =
∏
p

(
1− 1

p

)−k(
1− ρp

p

)
on Ω2. In other words, there exists a probability law νk on [0,+∞[, which
is the law of ZY , such that S(h), for |h| ≤ h, becomes equidistributed with
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respect to νk, or equivalently

lim
h→+∞

1
hk

∑∗

|h|≤h

f(S(h)) =
�

R+

f(t) dνk(t)

for any bounded continuous function on R. Moreover

(4.2) µk(m) = E2(ZmY ) =
�

R+

tm dνk(t).

Proof. First of all, using (3.10), the monotone and dominated conver-
gence theorems and (3.6) imply that

(4.3) µk(m) = E2(ZmY )

for all integers m ≥ 1. Now a standard result of probability theory (the
“method of moments”) states that given a positive random variable X and
a sequence of positive random variables (Xn) such that E(Xm) < +∞,
E(Xm

n ) < +∞ for all n and m, the condition

lim
n→+∞

E(Xm
n ) = E(Xm)

for all m ≥ 1 implies the convergence in law of Xn to X, if the moments
E(Xm) do not grow too fast (a sufficient, but not necessary condition). In
fact, it is enough that the power series∑

m≥0

im
E(Xm)
m!

tm

have a non-zero radius of convergence, which in our case holds (with X =
ZY ) by the almost exponential upper bound for µk(m) in Proposition 4.1.
Finally, the formula (4.2) follows from (4.3).

Example 4.3. As a corollary of Proposition 4.1 and symmetry, we have

logµk(2) = 2k log log 3k +O(k) for k ≥ 1.

Combined with the classical lower bound for non-vanishing arising from
Cauchy’s inequality, it follows that for every fixed k ≥ 1, we have

lim inf
h→+∞

1
hk
|{h | |h| ≤ h and S(h) 6= 0}| ≥ µk(1)2

µk(2)
≥ exp(−(2k log log 3k +O(k))).

This is close to the truth, as one can check by noting that in fact (7)

lim
h→+∞

1
hk
|{h | |h| ≤ h and S(h) 6= 0}| = P 2(ZY,k 6= 0) =

∏
p≤k

P 2(ρp < p)

(7) This does not follow directly from convergence in law for S(h), but from the
absolute convergence and local structure of the singular series.
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using the almost sure absolute convergence of the random Euler product
ZY,k. We have the bounds

(p− 1)k

pk
≤ P 2(ρp < p) ≤ p(p− 1)k

pk

(since, for p ≤ k, a k-tuple will have ρp < p only if it omits at least one value
in Z/pZ; the lower bound follows by looking at those omitting 0, for instance,
and the upper one is a union bound over the possible omitted values), from
which we get

−k log log 3k +O(k) ≤ log P 2(ZY,k 6= 0) ≤ k − k log log 3k +O(k),

i.e., we have

P 2(ZY,k 6= 0) = exp(−k log log 3k +O(k)).

It follows from this that if we replace the space Ω1 of all k-tuples with
distinct entries by the much smaller one

Ω̃1 = {h ∈ Ω1 | S(h) 6= 0}

(which still depends on h, with cardinality h̃k), the singular series still has
a limiting distribution when interpreted as a random variable on Ω̃1 with
h→ +∞: indeed, this is the distribution ν̃k given by

ν̃k(A) =
νk(A ∩ ]0,+∞[)
νk(]0,+∞[)

,

since, for any integer m ≥ 1, we have
1
h̃k

∑
h∈Ω̃1

S(h)m =
h∗k
h̃k

E1(S(h)m)

→ µk(m)
P 2(ZY,k 6= 0)

=
�

[0,+∞[

tm dν̃k(t) as h→ +∞.

Of course, those moments do not have the symmetry property enjoyed
by µk(m).

Remark 4.4. Before going on to the second part of this paper, the fol-
lowing question seems natural: are there arithmetic consequences (possibly
conditional, similarly to Gallagher’s proof of (1.7)) of the existence of mth
moments of the singular series for k-tuples?

5. Poisson distribution for general prime patterns. In this sec-
tion, we prove Theorem 1.3, essentially by following Gallagher’s reduction
to averages of Euler products, which turn out to be easily computable after
application of Proposition 2.1.
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We fix a primitive family of polynomials f with S(f) 6= 0 (the reader may
want to review the notation in the introduction for what follows). To apply
Gallagher’s method, we also require some auxiliary families of polynomials,
indexed by k-tuples. Thus let k ≥ 1 be an integer and h a k-tuple of integers.
For our fixed primitive f , we define

f � h = (fj(X + hi))1≤j≤m, 1≤i≤k,

which is a family of km integer polynomials.
Technical difficulties will arise because this family may not be primitive,

even if the components of h are distinct (which is a necessary condition),
i.e., we may have an equality

fj1(X + hi1) = fj2(X + hi2),

for some i1 6= i2, j1 6= j2.
For instance, we have (X,X + 2)�(3, 1) = (X+3, X+1, X+5, X+3) (in

the case of twin primes). However, we will show that these degeneracies have
no effect for the problem at hand. Moreover, f �h is primitive whenever h
has distinct arguments, in the following quite general situations:

• if m = 1;
• if the degrees of the fj are distinct;
• if no two among the polynomials fj are related by a translation X 7→
X + α, for some α ∈ Z.

This means that the reader may well disregard the technical problems in
a first reading (for the twin primes, see also Example 5.9 which explains a
special reason why the degeneracies have no consequence then). The follow-
ing lemma is already a first step, and we will need it before proving the full
statement.

Lemma 5.1. Let f be a primitive family and k ≥ 1. Then for any h ≥ 1,
we have

|{h | |h|k ≤ h, f � h is not primitive}| � hk−1,

where the implied constant depends only on k and m.

Proof. Let I be the set of k-tuples h with distinct components such that
f �h is not primitive. If h ∈ I, then there exists at least one relation of the
type

(5.1) fj1(X + hi1) = fj2(X + hi2), i1 6= i2, j1 6= j2,

hence
fj1(X) = fj2(X + hi2 − hi1),

so the two polynomials differ by a “shift”. Let R be the set of pairs (j1, j2)
for which

fj1(X) = fj2(X + δ(j1, j2))
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for some integer δ(j1, j2) 6= 0. Because the polynomials involved are non-
constant, this integer is indeed unique. The cardinality of R is bounded in
terms of m only, and from the above, any k-tuple h ∈ I must satisfy at least
one relation

hi1 − hi2 = δ(j1, j2)

for some i1 6= i2 and (j1, j2) ∈ R. Each such relation is valid for at most
hk−1 among the k-tuples with |h| ≤ h.

We will deduce Theorem 1.3 from the following (unconditional) result,
which is another instance of average of Euler products:

Proposition 5.2. Let f = (f1, . . . , fm) be a primitive family and k ≥ 1
an integer. Then

lim
h→+∞

1
hk

∑∗

|h|≤h

S(f � h) = S(f)k,

where
∑∗ restricts the summation to those k-tuples for which f �h is prim-

itive.

Remark 5.3. Taking f = (X), with S(f) = 1 and f � h = (X + h1,
. . . , X + hk), we recover once more Gallagher’s result (1.5).

We have the following complementary statement, which is also uncon-
ditional (recall that, in many cases, it holds for trivial reasons; it does not
follow trivially from Lemma 5.1 because although fewer k-tuples are con-
cerned, the number of prime seeds increases when f � h is not primitive).

Lemma 5.4. Let f = (f1, . . . , fm) be a primitive family with S(f) 6= 0,
and k ≥ 1 an integer. Then for any N ≥ 2 and any ε > 0, if h ≤ λ(logN)m

for some λ > 0, we have∑∗

|h|k≤h
f�h not primitive

π(N ; f � h)� N

(logN)1−ε

where
∑∗ restricts the sum to those k-tuples with distinct entries, and the

implied constant depends only on k, f , λ and ε.

Here is the proof of the (conditional) Poisson distribution, assuming those
two results.

Proof of Theorem 1.3. The argument is essentially identical with that of
Gallagher, but we reproduce it for completeness, and so that the necessary
uniformity in the Bateman–Horn conjecture becomes clear.

Because the Poisson distribution is characterized by its moments, it is
enough to prove that for any fixed integer k ≥ 1, we have
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1
N

∑
n≤N

(
π(n+ λδ(N,f); f)− π(n; f)

)k → E(P kλ ) as N → +∞,

where Pλ is any Poisson random variable with mean λ.
Write h = λδ(N,f). Expanding the left-hand side, we obtain

1
N

∑
n≤N

( ∑
. . .
∑

n<mi≤n+h
mi f -prime seed

1
)
,

where there are k sums over m1, . . . , mk. Write mi = n + hi, so that 1 ≤
hi ≤ h, and the condition becomes that fj(n+ hi) be prime for all i and j,
i.e., that n be an f �h-prime seed. Exchanging the order of summation, we
get

1
N

∑
|h|k≤h

π(N ; f � h).

Before applying (1.8), we need to account for the k-tuples which do not
necessarily have distinct components, and for those where f�h is not prim-
itive.

For this, observe first that π(N ; f�h) only depends on the set containing
the components of the k-tuple h. This guarantees that the reorderings that
follow are permissible. For each r, 1 ≤ r ≤ k, and each r-tuple h′ with
distinct components, the set of those k-tuples for which the set of values is
given by the set of components of h′ has cardinality depending only on r
and k, but independent of h′, and in fact it is given by

{
k
r

}
(one can assume

that h′ = (1, . . . , r), and obtain a bijection

{suitable k-tuples} → {surjective maps {1, . . . , k} → {1, . . . , r}},
h 7→ (f : i 7→ hi)

between the two sets).
Then we can write

1
N

∑
|h|k≤h

π(N ; f � h) =
1
N

k∑
r=1

1
r!

{
k

r

}∑∗

|h′|r≤h

π(N ; f � h′)

where we divide by r! because we sum over all r-tuples instead of only ordered
ones, and

∑∗ restricts to r-tuples with distinct entries.
Now, for each r, we separate the sum over r-tuples for which f � h′ is

primitive from the other subsum. Applying (1.8) and using the easy bound

c(f � h′)� c(f)|h′|maxdeg(fj)
r

(where the implied constant depends on r and f), the first sum (still de-
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noted
∑∗) is equal to
k∑
r=1

1
r!

{
k

r

}
1

peg(f)r
1

(logN)rm
∑∗

|h′|r≤h

S(f � h′)
(

1 +O

(
hε

logN

))
for any ε > 0, where the implied constant depends on f , k and ε. By Propo-
sition 5.2 and the choice of h = λ peg(f)S(f)−1(logN)m, this converges as
N → +∞ to the limit

k∑
r=1

λr

r!

{
k

r

}
,

which is well-known to be the kth moment of a Poisson distribution with
mean λ (this is checked by Gallagher, for instance, see [Ga, §3]). Hence,
to conclude the proof, we need only notice that Lemma 5.4 (applied with
k = r for 1 ≤ r ≤ k) implies (with ε = 1/2 for concreteness) that the
complementary sum is bounded by

1
N

k∑
r=1

1
r!

{
k

r

} ∑
|h′|r≤h

f�h′ not primitive

π(N ; f � h′)� (logN)−1/2

for N ≥ 2, where the implied constant depends on k, f and λ. Hence this
second contribution goes to 0 as N → +∞, as desired.

We now prove Proposition 5.2. This is the conjunction of the following
two lemmas, where we use the same notation as in Section 3, but change a
bit the definition of probability spaces. Precisely,

Ω2 =
∏
p

(Z/pZ)k

is unchanged, but we let

Ω1 = {h = (h1, . . . , hk) | 1 ≤ hi ≤ h, f � h is primitive}

with the counting probability measure (note that the condition forces h to
have distinct coordinates). By Lemma 5.1, note that

(5.2) |Ω1| ∼ hk as h→ +∞.

The next lemma shows that the average of Euler product involved can
be computed as if the components were independent:

Lemma 5.5. Let S(f)=(f1, . . . , fm) be a primitive family with S(f) 6=0.
Then for any k ≥ 1, we have
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lim
h→+∞

1
hk

∑
|h|≤h

S(f � h) = lim
h→+∞

E1

(∏
p

(
1− 1

p

)−km(
1−

νp,f
p

))

=
∏
p

E2

((
1− 1

p

)−km(
1−

ρp,f
p

))
,

where

νp,f (h) = νp(f � h) for h = (h1, . . . , hk) with hi ≥ 1,
ρp,f (h) = |{x ∈ Z/pZ | fj(x+ hi) = 0 for some i, j}| for h ∈ (Z/pZ)r.

The second lemma computes the limit locally:

Lemma 5.6. Let f = (f1, . . . , fm) be a primitive family. Then for any
k ≥ 1 and any prime p, we have

E2

((
1− 1

p

)−km(
1−

ρp,f
p

))
=
(

1− 1
p

)−km(
1− νp(f)

p

)k
.

Looking at the definition (1.4) of S(f), both lemmas together prove
Proposition 5.2. We start by proving Lemma 5.6 because Lemma 5.5 is cer-
tainly plausible enough in view of Section 3, and the reader may be more
interested by the final formal flourish.

Proof of Lemma 5.6. It suffices to compute E2(1−ρp,f/p) since the other
factor is the same on both sides. We argue probabilistically, although one
can also just expand the various sums (and do the same steps in a different
language, as we did when proving the symmetry (1.6)). We can write

1−
ρp,f
p

=
1
p
|Z/pZ−M |

where M ⊂ Z/pZ is the (random) subset of those x ∈ Z/pZ such that
fj(x+ hi) = 0 for some i and j. We write

|Z/pZ−M | =
∑

x∈Z/pZ

(1− χM (x))

where χM (x) is the random variable equal to one if x ∈ M and zero other-
wise. We have

1− χM (x) =
∏

1≤i≤k

∏
1≤j≤m

(1− 1{fj(x+hi)=0}) =
∏

1≤i≤k
ξf ,i(x),

say. Since ξf ,i(x) only involves the ith component of the random h ∈ Ω2, the
family (ξf ,i(x)) is an independent k-tuple of random variables. Consequently,

E2

(
1−

ρp,f
p

)
=

1
p

∑
x∈Z/pZ

E2

( ∏
1≤i≤k

ξf ,i(x)
)

=
1
p

∑
x∈Z/pZ

∏
1≤i≤k

E2(ξf ,i(x)).
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To conclude we notice that for every x and i, h 7→ x + hi is identically
(uniformly) distributed, so that all ξf ,i(x) are identically distributed like

ξf = ξf ,1(0) =
∏

1≤j≤m
(1− 1{fj(h1)=0}).

Hence all x give the same contribution, and we derive that

E2

(
1−

ρp,f
p

)
= E2(ξf )k = P 2(f1(h1) · · · fm(h1) 6= 0)k =

(
1− νp(f)

p

)k
,

since h1 is uniformly distributed in Z/pZ.

To prove Lemma 5.5, we wish to apply Proposition 2.1. A complica-
tion is that, if peg(f) 6= 1, the singular series S(f � h) are not defined
by absolutely convergent products, and therefore the result is not directly
applicable. However, we can bypass this difficulty here without significant
work because of the following fact: all the relevant Euler products can be
uniformly “renormalized” to absolutely convergent ones. This is the content
of the next lemma.

Lemma 5.7. Let f be a primitive family with S(f) 6= 0, and let k ≥ 1 be
an integer. There exist real numbers γp(f) > 0, for all primes p, such that
the product

∏
p γp(f) converges, and such that the following hold:

(1) For all prime p, and all k-tuples h ∈ (Z/pZ)k, we have(
1− 1

p

)−km(
1−

ρp,f (h)
p

)
= γp(f)(1 +Xp,f (h))

for some coefficients Xp,f (h), and for all k-tuples of integers h such that
f � h is primitive, the product

(5.3)
∏
p

(1 +Xp,f (h))

is absolutely convergent.
(2) We have

lim
h→+∞

1
hk

∑∗

|h|k≤h

∏
p

(1 +Xp,f (h)) =
∏
p

(1 + E2(Xp,f )),

where the sum is over k-tuples with f � h primitive.

Proof. (1) To define γp(f), let θj , 1 ≤ j ≤ m, be a complex root of
the irreducible polynomial fj , and let Kj = Q(θj) be the extension of Q of
degree deg(fj) generated by θj . Then put

γp(f) =
∏

1≤i≤m

(
1− 1

p

)k(rj(p)−1)
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where rj(n), for n ≥ 1, is the number of prime ideals of norm n in the ring
of integers of Kj . In view of this definition, to check first that the product
of γp(f) converges, we can do so for each fj separately. Then the statement
follows, after taking the logarithm of a partial product over p ≤ X, from the
well-known asymptotic formula∑

p≤X

rj(p)
p

=
∑
p≤X

1
p

+ c(Kj) +O((logX)−1)

for X ≥ 2, where c(Kj) is a constant depending only on Kj , and the implied
constant also depends only on Kj .

It therefore remains to prove that the product (5.3) is absolutely conver-
gent for any k-tuple of integers h with f � h primitive. To do so, we claim
that there exists an integer D(h) ≥ 1 (which may also depend on f) such
that, for p - D(h), we have

(5.4) ρp,f (h) = k

m∑
j=1

νp(fj) = k

m∑
j=1

rj(p).

The desired convergence then follows from that of∏
p-D(h)

γp(f)−1

(
1− 1

p

)−km(
1−

ρp,f (h)
p

)

=
∏

p-D(h)

(
1− 1

p

)−ρp,f (h)(
1−

ρp,f (h)
p

)
,

and the latter is clear since the p-factor can be written 1 + O(p−2), where
the implied constant depends only on k and f .

The existence of D(h) is easy; first, let

D1(h) =
∣∣∣ ∏
(i,j) 6=(i′,j′)

Res(fj(X + hi), fj′(X + hi′))
∣∣∣,

where Res(·, ·) is the resultant of two polynomials. By compatibility of the
resultant with reduction modulo p, we have p |D1(h) if and only if, for some
(i, j) 6= (i′, j′), there exists a common zero x ∈ Z/pZ of fj(X + hi) and
fj′(X + hi′). By contraposition, we first obtain

ρp,f (h) = kνp(f) = k
m∑
j=1

νp(fj)

for p - D1(h) (the sets of zeros modulo p of the components of f � h are
then distinct, and obviously there are as many, namely the sum νp(f) of the
νp(fj), for each of the k shifts hi).
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Next, it is a standard fact of algebraic number theory that for each j,
there exists an integer ∆j ≥ 1 such that νp(fj) = rj(p) for p - ∆j . Thus we
can take

D(h) = D1(h)
∏

1≤j≤m
∆j

to obtain the second equality in (5.4).
Note that D(h) is non-zero (hence ≥ 1) because otherwise, there would

exist a common zero θ ∈ C of fj(X + hi) and fj′(X + hi′), and because
those are irreducible integral primitive (8) polynomials with positive leading
coefficient, this is only possible if

fj(X + hi) = fj′(X + hi′),

which is excluded by the assumption that f � h is primitive.
Note in passing the estimate

D(h)� (2|h|k)2k
2m

P
deg(fj)

for all h, where the implied constant depends only on f ; this follows directly
from the determinant expression of the resultant in D1(h) (see, e.g., [L,
§V.10]).

(2) With the bounds we have proved on Xp,f (h) (leading to an analogue
of Lemma 3.1), and the estimate on D(h) (analogue of (3.5)), together with
Lemma 5.1 to ensure that the equidistribution of k-tuples modulo squarefree
integers q remains valid (compare with (3.11)), we can pretty much follow
the steps of the proof of Theorem 1.1. We also use (5.2) to go from the limit
of the expectation on Ω1 to summing over k-tuples normalized by 1/hk and
taking h→ +∞. The details are left to the reader.

Proof of Lemma 5.5. We have first

1
hk

∑
|h|≤h

S(f � h) =
1
hk

∑
|h|≤h

(∏
p

γp(f)
)∏

p

(1 +Xp,f (h))

→
(∏

p

γp(f)
)∏

p

(1 + E2(Xp,f )) as h→ +∞,

by the above, and then we can simply write this limit as(∏
p

γp(f)
)∏

p

(1 + E2(Xp,f )) =
∏
p

E2(γp(f)(1 +Xp,f ))

=
∏
p

E2

((
1− 1

p

)−km(
1−

ρp,f (h)
p

))
.

(8) In the sense that the gcd of their coefficients is 1.
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We conclude with the last remaining part of the proof, namely Lem-
ma 5.4. The following proof can almost certainly be improved, but although
the statement becomes fairly clear after checking one or two examples, the
author has not found a cleaner way to deal with the apparent possibilities
of combinatorial complications. The point is that as f � h becomes “less
primitive” (i.e., there are fewer distinct elements among the km polynomials
involved), the number of prime seeds ≤ N should increase (by a power of
logN), but also the number of k-tuples with this property diminishes (by
a power of h ≤ λ(logN)m), and this gain has to compensate for the loss.

Proof of Lemma 5.4. We first quote a standard sieve upper bound for an
individual primitive family f (withm elements), which is uniform, and which
allows us to prove the lemma unconditionally: for N ≥ 2, for any k-tuple h
with distinct elements for which f � h contains ` distinct components, we
have

(5.5) π(N ; f � h)� (log log 3|h|)km N

(logN)`
,

where the implied constant depends only on k and f . Precisely, (5.5) for
k-tuples follows immediately from, e.g., Th. 2.3 in [HR], and it is easy to
adapt this to the case at hand since uniformity is only asked with respect
to h. Note also that, since the application we give is conditional on much
stronger statements like (1.8), we could also apply the latter for this purpose.

Now, as in the proof of Lemma 5.1, we denote by I the set of k-tuples h
with distinct components such that f � h is not primitive. Recall R is the
set of pairs (j1, j2) for which

fj1(X) = fj2(X + δ(j1, j2))
for some (unique) integer δ(j1, j2) 6= 0.

We continue as follows: for an h ∈ I, let Γh be the graph with vertex set
{1, . . . , k} and with (unoriented) edges (i1, i2) corresponding to those indices
for which the relation
(5.6) hi1 − hi2 = δ(j1, j2)
holds for some (j1, j2) ∈ R; the proof of Lemma 5.1 shows that there is at
least one edge. Because the number of possibilities for Γh is clearly bounded
in terms of k only, and we allow a constant depending on k in our estimate,
we may continue by fixing one possible graph Γ and assuming that all h ∈ I
satisfy Γh = Γ .

This being done, we first estimate from above the number of k-tuples
which lie in I (under the above assumption that the graph is fixed!). We
claim that
(5.7) |{h ∈ I | |h| ≤ h}| ≤ hc

where c = |π0(Γ )| is the number of connected components of Γ .
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To see this, notice that each connected component C corresponds to a
set of variables which are independent of all others, so that I is the prod-
uct over the connected components of sets IC of |C|-tuples satisfying the
relations (5.6) dictated by C. Now we have

|{h ∈ IC | |h| ≤ h}| ≤ h,

because C is connected: if we fix some vertex i0 of C, then for any choice
of hi0 , the value of hi is determined by means of the relations (5.6) for all
vertices i of C, using induction on the length of a path from i0 to i (which
exists by connectedness).

Taking the product over C of these individual upper bounds, we obtain
the desired estimate (5.7).

We next need to estimate from below the number of distinct elements in
the family f �h for a fixed h ∈ I (still under the assumption that the graph
Γh = Γ is fixed).

Let again C be a connected component of the graph Γ . We consider the
set (say {f �h}C) of polynomials of the form fj(X + hi), where 1 ≤ j ≤ m
and i is a vertex of C. We claim this set contains at least m + 1 distinct
polynomials if C has at least two vertices, and m if C is a singleton. Indeed,
fixing a vertex i0 of C, the set contains the polynomials fj(X + hi0), which
are distinct since f is a primitive family. This already takes care of the case
where C is a singleton, so assume now that C contains at least one more
vertex i. If all the m distinct polynomials fj(X +hi) were already in the set
{fj(X + hi0)}, this would define a permutation σ of {1, . . . ,m} such that

fj(X + hi) = fσ(j)(X + hi0), 1 ≤ j ≤ m.

Consider a cycle (j1, . . . , j`) of length ` in the decomposition of σ; apply-
ing the identity to j1, σ(j1) = j2, etc. in turn, we derive the identity

fj1(X) = fσ`(j1)(X + (`− 1)(hi0 − hi)) = fj1(X + (`− 1)(hi0 − hi)).

Since fj is non-constant and hi0 6= hi, we deduce that ` = 1; this holding
for all cycles in σ would mean that σ is the identity, but then f1(X + hi) =
f1(X + hi0) again contradicts the fact that h has distinct components. This
means that σ cannot exist, and so the set {fj(X +hi)} contains at least one
polynomial not among the first m ones, which was our objective.

Next observe that, by the very definition of the graph Γ , the sets {f�h}C
are disjoint when C runs over the connected components of Γ , and hence
we find that any f � h contains at least cm + d elements, where d is the
number of connected components of Γ which are not singletons. Note that
d ≥ 1, because Γ has at least one edge.

We finally estimate the contribution of k-tuples in I using (5.5) and (5.7):
we obtain
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1
N

∑
h∈I
|h|≤h

π(N ; f � h)� hc(log 2h)km(logN)−cm−d,

where the implied constant depends on k and f . If h ≤ λ(logN)m, as as-
sumed in Lemma 5.4, we obtain

1
N

∑
h∈I
|h|≤h

π(N ; f � h)� (logN)−d+ε

for any ε > 0, where the implied constant depends on k, λ, f and ε. Since
d ≥ 1, the lemma is finally proved.

Remark 5.8. The gain of (logN)−1 is indeed the best possible in gen-
eral. Consider for example the primitive family f = (f1, f2, f3) = (X2 + 7,
(X + 2)2 + 7, (X + 4)2 + 7), for which it is easy to check that S(f) 6= 0
(7 is not a square modulo 3 or 5, and each fj(0) is odd). We have the rela-
tions f1(X + 2) = f2(X), f2(X + 2) = f3(X).

Consider k = 2. If we look at 2-tuples h = (h1, h2) for which h2 = h1 +2,
we obtain

f � h = (f1(X + h1), f2(X + h1), f3(X + h1),
f1(X + h2), f2(X + h2), f3(X + h2))

= (f1(X + h1), f1(X + h1 + 2), f1(X + h1 + 4),
f1(X + h2), f1(X + h2 + 2), f1(X + h2 + 4))

= (f1(X + h2 − 2), f1(X + h2), f1(X + h2 + 2),
f1(X + h2), f1(X + h2 + 2), f1(X + h2 + 4)),

which contains four distinct polynomials. With h � λ(logN)3, those 2-tuples
with |h| ≤ h contribute about N(logN)3−4 to the sum of Lemma 5.4 (un-
der (1.8), of course).

Finally, here are a few examples.

Example 5.9. (1) If we take f1 = (X,X + 2), we deduce that the num-
ber of twin primes (p, p+ 2) with n < p ≤ n+ λ(log n)2 should be approxi-
mately distributed like a Poisson random variable with mean

2λ
∏
p≥3

(
1− 1

(p− 1)2

)
≈ 1.320336593 . . . λ.

Similarly, if we take f2 = (X, 2X + 1), we find that the number of
Germain primes (i.e., primes p with 2p + 1 also prime) with n < p ≤ n +
λ(log n)2 should be approximately distributed like a Poisson random variable
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with mean

λS(f2) = 2λ
∏
p≥3

(
1− 1

(p− 1)2

)
.

Two further remarks are interesting here. First, the proof of Theorem 1.3
shows that whenever f consists of linear polynomials (in particular for those
two results), “only” the (uniform) Hardy–Littlewood conjecture is needed. In
other words, no assumption is required beyond those of Gallagher’s original
result for the primes themselves.

Secondly, if one is interested in the case of twin primes in particular,
Lemma 5.4 has a trivial proof from the following coincidence: if f =
(X,X + 2), h has distinct entries, and f � h is not primitive, then

S(f � h) = 0, π(N ; f � h) ≤ 1.

Indeed, if f � h is not primitive, we have k ≥ 2 and an equality hi2 =
hi1 + 2 for some i1, i2. The family f � h contains in particular the three
polynomials X + hi1 , X + hi2 = X + hi1 + 2 and X + hi2 + 2 = X + hi1 + 4.
Hence, to be a prime seed for f �h, an integer n ≥ 1 must be such that, in
particular, the triple (n+hi1 , n+hi1+2, n+hi1+4) consists of prime numbers.
But those three numbers are distinct modulo 3, showing that ν3(f �h) = 3,
and the only possible case is (n, n+ 2, n+ 4) = (3, 5, 7). (Examples such as
f = (X2 + 7, (X + 2)2 + 7) and h = (3, 1) show that this special situation
where imprimitive k-tuples lead to vanishing singular series for f � h is
indeed a coincidence.)

(2) If we take f3 = (X2 + 1), and renormalize in an obvious way, we
find that the number of primes of the form p = n2 + 1 in an interval of the
form N2 < n ≤ (N + λ(logN))2 should be approximately distributed like a
Poisson random variable with mean

λS(f3) =
4λ
π

∏
p≡1 (mod 4)

(
1− 1

(p− 1)2

) ∏
p≡3 (mod 4)

(
1− 1

p2 − 1

)
.
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