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1. Introduction. Table 1 summarises the locations of the results which
pertain to Gram’s Law (GL), the Weak Gram Law (WGL), and Rosser’s
Rule (RR). The columns represent whether the phenomenon is true or false
for infinitely many intervals, and for a positive proportion of intervals. Ques-
tion marks denote a lack of knowledge about a particular statement; aster-
isks denote new results. Throughout this paper, the letter A will denote a
positive quantity, not necessarily the same at each occurrence.

Table 1. Summary of results

true false
i.m. intervals p.p. of intervals i.m. intervals p.p. of intervals

GL ? ? §4.3 §5.2∗

WGL §3 §6∗ §4.3 §5.3∗

RR ? ? §7.3 §7.6∗

1.1. Definition and properties of the zeta-function. The Riemann
zeta-function, defined as

(1) ζ(s) =
∞∑
n=1

1
ns

=
∏
p

(
1− 1

ps

)−1

when σ > 1, can be shown by analytic continuation to be a meromorphic
function, with a simple pole at s = 1, at which the residue is equal to unity.
It is known that ζ(s) satisfies the following functional equation:

(2) ζ(s) = χ(s)ζ(1− s),
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where

(3) χ(s) = 2sπs−1 sin 1
2sπ · Γ (1− s) = πs−1/2Γ

(
1
2 −

1
2s
)

Γ
(

1
2s
) .

The product taken over the primes in (1) is absolutely convergent for σ > 1,
whence it follows that ζ(s) has no zeroes in this region. Moreover, equations
(2) and (3) show that the only zeroes of ζ(s) for σ < 0 are at the points
s = −2,−4,−6, . . . , since at these points sin 1

2sπ = 0. These zeroes are
called the trivial zeroes, and hereafter the term “zeroes” when applied to
the zeta-function refers to those zeroes of ζ(s) with 0 ≤ σ ≤ 1. The work
of Hadamard and de la Vallée Poussin which lead to the proof of the prime
number theorem (see e.g. [37, Ch. III]) shows that the zeroes of ζ(s) are con-
fined to the critical strip defined as the region 0 < σ < 1. It follows from (2)
that the zeroes of ζ(s) are symmetric about the lines t = 0 and σ = 1

2 , the
latter of which is hereafter referred to as the critical line. The conjecture
that all the zeroes lie on the critical line is the Riemann hypothesis.

1.2. Location of zeroes. Following the work of Riemann, it has be-
come customary to work with an entire function ξ(s), to avoid difficulties
that are encountered by the pole of ζ(s) at s = 1. One writes

(4) ξ(s) = 1
2s(s− 1)π−s/2Γ

(
1
2s
)
ζ(s),

whence it is seen that ξ(s) is entire and that the zeroes of ζ(s) coincide with
the zeroes of ξ(s). By (2) and (3) one can show that

ξ
(

1
2 + it

)
= ξ
(

1
2 − it

)
,

whence, applying the reflection principle, it is seen that ξ
(

1
2 + it

)
is real.

This is useful information indeed since, in a search for a zero of ξ
(

1
2 + it

)
,

one can now search for an interval (t1, t2) in which ξ
(

1
2 + it

)
changes sign.

Since it is a real-valued function, the change of sign guarantees the presence
of an odd (1) zero of ξ

(
1
2 + it

)
and hence of ζ

(
1
2 + it

)
in the interval. This

is the guiding principle behind all investigations regarding the whereabouts
of zeroes of ζ

(
1
2 + it

)
. For convenience in calculation, it is the evaluation

of a scaled multiple of ξ
(

1
2 + it

)
that is used, and this is introduced in the

following section.

1.2.1. The functions Z(t) and θ(t). By (3) it is clear that

χ(s)χ(1− s) = 1,

whence, by the reflection principle, it follows that∣∣χ(1
2 + it

)∣∣ = 1.

(1) Henceforth an odd zero refers to either an odd number of simple zeroes or a zero
of odd multiplicity.
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If one writes

θ(t) = −1
2 argχ

(
1
2 + it

)
,

so that

χ
(

1
2 + it

)
= e−2iθ(t),

then one arrives at

(5) Z(t) = eiθ(t)ζ
(

1
2 + it

)
,

where Z(t) is real-valued. To see that Z(t) is real, note that (3) gives

{
χ
(

1
2 + it

)}−1/2 =
{
πit

Γ
(

1
4 −

1
2 it
)

Γ
(

1
4 + 1

2 it
)}−1/2

= π−it/2
Γ
(

1
4 + 1

2 it
)∣∣Γ (1

4 + 1
2 it
)∣∣ ,

whence, courtesy of (4),

(6) Z(t) = −2π1/4 ξ
(

1
2 + it

)(
t2 + 1

4

)∣∣Γ (1
4 + 1

2 it
)∣∣ ,

wherein all terms appearing on the right side are real. For the function θ(t)
one writes

(7) θ(t) = −1
2

(
t log π + arg

Γ
(

1
4 −

1
2 it
)

Γ
(

1
4 + 1

2 it
)),

and appeals to Stirling’s formula (see e.g. [33, Ch. IV, §42]) to show that

θ(t) =
1
2
t log

t

2π
− 1

2
t− π

8
+O(t−1),(8)

θ′(t) =
1
2

log
t

2π
+O(t−2), θ′′(t) ∼ 1

2t
.(9)

The function Z(t) is sometimes called “Hardy’s function” on account of its
importance in Hardy’s proof (see, e.g. [37, Ch. X]) that there are infinitely
many zeroes on the critical line.

Recall that the purpose of the introduction of the functions Z(t) and
θ(t) is to find a zero of ζ

(
1
2 + it

)
by finding an interval (t1, t2) in which Z(t)

changes sign. To this end, Z(t1) and Z(t2) are calculated, not directly (i.e.
not from (6)) but from (5). The function θ(t) can be evaluated using (7),
whence all that remains is to find a method to calculate ζ

(
1
2 + it

)
.

1.2.2. The approximate functional equation. Inside the critical strip one
can approximate ζ(s) by the approximate functional equation of Hardy and
Littlewood, given below as
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Theorem 1.1 (Hardy–Littlewood). If h is a positive constant, 2πxy = t,
and x, y > h, then for 0 < σ < 1 and t > 0,

(10) ζ(s) =
∑
n≤x

1
ns

+ χ(s)
∑
n≤y

1
n1−s +O(x−σ) +O(t1/2−σyσ−1).

Proof. See [37, Ch. IV, §§12–15].

Along the line σ = 1
2 the error terms in the above equation are equal

when x � y. Thus one can take σ = 1
2 and x = y = {t/2π}1/2 in the

approximate functional equation to show that

ζ
(

1
2 + it

)
=

∑
n≤
√
t/2π

n−1/2−it + χ
(

1
2 + it

) ∑
n≤
√
t/2π

n−1/2+it +O(t−1/4).

By multiplying both sides of this equation by eiθ(t) one obtains

(11) Z(t) = 2
∑

n≤
√
t/2π

n−1/2 cos{θ(t)− t log n}+O(t−1/4).

The error term in (11) can be replaced, after the efforts of some careful
analysis (see e.g. [37, Ch. IV, §16]), with an asymptotic series. Instead of
the approximate functional equation, Gram, in [14], used Euler–Maclaurin
summation and the following approximation (found in [37, Thm. 4.11]):

ζ(s) =
∑
n≤x

1
ns
− x1−s

1− s
+O(x−σ),

which is uniform in σ ≥ σ0 > 0, |t| < 2πx/C where C is a given constant
greater than 1. It was in the pursuance of values of ζ

(
1
2 +it

)
via this method

which led Gram to observe the phenomena underlying his eponymous prin-
ciple.

2. Gram points. Gram calculated that <ζ
(

1
2 + it

)
was very rarely neg-

ative, whereas =ζ
(

1
2 + it

)
oscillated regularly between positive and negative

values. Indeed he observed that the values of t such that =ζ
(

1
2 + it

)
= 0

interlaced with the zeroes of ζ
(

1
2 + it

)
.

Since θ(t) is ultimately increasing one can define points {gν} as those
points which satisfy

(12) θ(gν) = νπ,

and, with a little care, one can show that the above equation has solutions
for all ν ≥ −1. These, then, are the Gram points, at which (5) gives

ζ
(

1
2 + igν

)
= (−1)νZ(gν).

If ζ
(

1
2 +it

)
is positive at successive Gram points gν and gν+1, then the above

equation shows that there must be a zero of Z(t) for some t ∈ (gν , gν+1).
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Gram calculated that ζ
(

1
2 + igν

)
was positive for −1 ≤ ν ≤ 15, and there

is a good reason to suppose that this may hold for many values of ν. Con-
sider (11) where t = gν ,

(13) Z(gν) = 2(−1)ν
∑

n≤
√
gν/2π

cos(gν log n)
n1/2

+O(g−1/4
ν ),

and note that the sum begins with +1, after which the terms are oscillatory
and decreasing in magnitude. Provided there is not a conspiracy of a large
quantity of negative terms, this initial +1 would dominate the sum. Thus
one may expect that (−1)νZ(gν) ∼ 2 “often”: this is further explored in §3.
One result which will be needed throughout this article is

Lemma 2.1. If Ng(T ) denotes the number of Gram points gν ∈ [0, T ],
then

(14) Ng(T ) =
T

2π
log T +O(T ).

Also

(15) gν = O

(
ν

log ν

)
,

and if gν , gµ ∈ [T, 2T ] then

(16) gν − gµ ∼
2π(ν − µ)

log ν
∼ 2π(ν − µ)

log T
.

Proof. The first part follows from (12) and (8). For (15), note that (14)
implies that νπ ∼ 1

2gν log(gν/2π), so that log ν ∼ log gν . Finally (16) is
obtained by an application of the mean-value theorem to θ(t) using (9), and
log ν ∼ log gν , which has already been established.

2.1. Gram’s Law. It was Hutchinson [16] who proposed the notion of
Gram’s Law as given in

Definition 2.2 (Gram’s Law). Given Gram points gν and gν+1, Gram’s
Law is said to hold if there is exactly one zero of ζ

(
1
2 + it

)
for some t in the

interval (gν , gν+1].

Hutchinson’s original definition (2) is couched in the zeroes of the func-
tion Z(t). Adopting standard notation, Hutchinson’s commentary runs thus:

Gram calculated the first fifteen roots [of the function Z(t)] γ and called
attention to the fact that the γ’s and the gν ’s separate each other. I will
refer to this property of the roots as Gram’s Law.

(2) In [16], rather confusingly, Z(t) is labelled ρ(t), and the Gram points are la-
belled γn.
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It seems that zeroes of multiplicity greater than one were not considered in
this definition: indeed the rest of [16] is concerned with finding a sign change
in Z(t). In verifying the Riemann hypothesis to a certain height, zeroes of
multiplicity m are included as m simple zeroes. It is therefore natural to
suppose that Hutchinson wrote “zero” for “simple zero”. Furthermore, Def-
inition 2.2 is not concerned with zeroes off the critical line, i.e. the presence
of these zeroes does not contradict Gram’s Law.

Calculation of the first 15 sign changes of Z(t) and thus of the first
15 zeroes of ζ

(
1
2 + it

)
was published by Gram in 1903. By considering the

Euler-product formula, it was shown by Gram that these first 15 zeroes were
the only non-trivial zeroes of ζ(s) up to height t = 50. Each of these zeroes
was found to lie between successive Gram points. Gram’s work was contin-
ued by Backlund [2] in 1914, who showed that N0(200) = N(200) = 79, and
that Gram’s Law is true up to this height. Here, and elsewhere, the function
N0(T ) denotes the number of zeroes of ζ

(
1
2 + it

)
for 0 < t < T . This result

was extended by Hutchinson [op. cit.], who in 1925 found the first 138 roots
of ζ

(
1
2 + it

)
. Precisely one zero was contained in each Gram interval with

four exceptions, occurring in two “pairs”. The interval (g125, g126] does not
contain a zero of ζ

(
1
2 + it

)
, whereas the interval (g126, g127] contains two ze-

roes. Likewise the interval (g133, g134] contains two zeroes while the adjacent
interval (g134, g135] contains none. Moreover it was shown that these are the
only complex zeroes of ζ(s) at this height. Table 2 shows the progress made
in calculating zeroes of ζ

(
1
2 +it

)
: each method used Gram’s Law or a variant

thereof.

Table 2. Calculation of the first n zeroes of ζ( 1
2

+ it) up to height T (n)

Year Author n T (n)

1903 Gram [14] 15 66

1914 Backlund [2] 79 200

1925 Hutchinson [16] 138 300

1936 Titchmarsh [36] 1 041 1 467

1953 Turing [40] 1 104 1 540

1956 Lehmer [23] 15 000 14 041

1970 Lehman [22] 25 000 170 571

1969 Rosser, Yohe and Schoenfeld [30] 3.5 · 106 1.9 · 106

1979 Brent [4] 4 · 107 1.8 · 107

1983 van de Lune and te Riele [41] 3 · 108 1.2 · 108

1986 van de Lune, te Riele and Winter [42] 1.5 · 109 5.5 · 108

2004 Gourdon [13] 1 · 1013 2.5 · 1012
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2.2. The Weak Gram Law. Some sources cite Gram’s Law slightly
differently to Definition 2.2. Sometimes the statement that

(17) (−1)νZ(gν), (−1)ν+1Z(gν+1) > 0,

is given as an equivalent definition to Gram’s Law. Clearly this is implied by
Definition 2.2, and the remarks after (13). However all that this alternative
definition guarantees is the presence of an odd zero in the interval (gν , gν+1],
which quite possibly is actually 3, or 5, etc. zeroes.

It is for this reason that the property in (17) is called the “Weak Gram
Law”. The distinction appears, at first glance, to be one wrought from an
over-zealous insistence on detail. However, Table 1 shows that the state of
knowledge about Gram’s Law is far less complete than that about the Weak
Gram Law. Throughout this article various results will be proved about
Gram’s Law and the Weak Gram Law, the latter as defined in (17).

3. The Weak Gram Law is true infinitely often. The argument
in this section is due to Titchmarsh [34], and it may also be found in
[37, Ch. X, §6]. It is shown that (−1)νZ(gν) is positive on the average.
A by-product of this theorem is a proof that there must be an infinity of
zeroes of ζ

(
1
2 + it

)
.

Consider the sum

Z1(gν) =
∑

n≤
√
gν/2π

cos(gν log n)√
n

= 1 +
cos(gν log 2)√

2
+ · · · ,

that is, (13) but without the factor 2(−1)ν or the error term. One hopes to
show that after the first term there is a fair amount of cancellation in this
sum. What is needed is the following simple result regarding exponential
sums and integrals.

Lemma 3.1. Let f(x) be a continuous function which is differentiable
over the interval [a, b]. If f ′(x) is monotonic and |f ′(x)| ≤ θ < 1, then∑

a<n≤b
e2πif(n) =

b�

a

e2πif(x) dx+O(1).

Proof. This is Lemma 4.18 in [37].

With a fixed M , examine the sum of Z1(g2ν):

(18)
N∑

ν=M+1

Z1(g2ν) =
N∑

ν=M+1

∑
n≤
√
g2ν/2π

cos(g2ν log n)√
n

.

This is a sum first over n, then over the Gram points indexed by ν. Note first
that the n = 1 term in the inner sum is just +1, and this, by virtue of the
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outer sum, contributes N −M to the total. Now change the order of sum-
mation to sum first over the Gram points g2ν . The conditions of summation
are g2N ≥ g2ν ≥ g2(M+1) and g2ν ≥ 2πn2. Define τ = max{2πn2, g2(M+1)};
then equation (18) becomes

N∑
ν=M+1

Z1(g2ν) = N −M +
∑

2≤n≤
√
g2N/2π

1√
n

∑
τ≤g2ν≤g2N

cos(g2ν log n).

The inner sum is of the form∑
cos{2πφ(ν)},

where φ(ν) = g2ν logn
2π . In order that φ(ν) be continuous, define tν to satisfy

θ(tν) = νπ,

where ν need not be integral. Naturally this definition coincides with that
of gν when ν is indeed an integer. Thus, to apply Lemma 3.1, a bound on
φ′(ν) is sought. Since

(19) φ′(ν) =
log n
2π

dt2ν
dν

, θ′(t2ν)
dt2ν
dν

= 2π,

the derivative of φ(ν) is related to that of θ(t2ν), viz.

(20) φ′(ν) =
log n
θ′(t2ν)

.

As deduced in (9), when t is large, θ′(t) ∼ 1
2 log t. Thus θ′(t2ν) can be

bounded below by

(21) θ′(t2ν) > 1
3 log t2ν ,

for sufficiently large ν. Since θ′(t2ν) is bounded below, φ′(ν) can be bounded
above by

φ′(ν) <
log n

2
3

log t2ν
<

3
4
,

since the bounds of summation show that t2ν ≥ 2πn2 and so log t2ν > 2 log n
for all ν. Also, via equations (20) and (21),

(22) φ′′(ν) = −2π log n
θ′′(t2ν)
{θ′(t2ν)}3

< 0,

since by (9), θ′′(t2ν) > 0 for sufficiently large ν. Now the bound in Lemma 3.1
is used: when M is large enough, i.e. for large τ ,∑

τ≤g2ν≤t2N

cos(g2ν log n) =
�

τ≤t2ν≤t2N

cos{2πφ(ν)} dν +O(1).
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Now

(23)
�

τ≤t2ν≤t2N

cos{2πφ(ν)} dν =
�

τ≤t2ν≤t2N

d{sin 2πφ(ν)}
dν

dν

2πφ′(ν)
,

and integrating the right-hand side of the above equation by parts gives

{sin 2πφ(ν)}
2πφ′(ν)

∣∣∣∣t2N
τ

+
1

2π

�

τ≤t2ν≤t2N

{sin 2πφ(ν)}φ′′(ν)
{φ′(ν)}2

dν.

The integrand has modulus at most∣∣∣∣ φ′′(ν)
φ′(ν)2

∣∣∣∣ = − φ
′′(ν)

φ′(ν)2
,

where the equality comes from (22). This when integrated is {φ′(ν)}−1. By
equations (9) and (19) there exists a constant A such that

φ′(ν) =
log n

2θ′(t2ν)
≥ log n

2θ′(t2N )
≥ A log n

log t2N
,

and so both the boundary term and the integral in (23) are

O

(
log t2N
log n

)
,

and therefore ∑
τ≤g2ν≤t2N

cos{2πφ(ν)} = O

(
log g2N
log n

)
.

Finally returning to
∑
Z1(g2ν) for a fixed M ,

N∑
ν=M+1

Z1(g2ν) = N −M +O

(
log g2N

∑
2≤n≤

√
g2N/2π

1√
n log n

)
,

where the error term is, by partial summation, O({g2N}1/4). With the use
of Lemma 2.1 it follows that

N∑
ν=M+1

Z1(g2ν) = N +O(N1/4 log−1/4N).

Now writing Z(g2ν) = 2Z1(g2ν) +O({g2ν}−1/4), one obtains
N∑

ν=M+1

Z(g2ν) = 2N +O(N1/4 log−1/4N) +O

( N∑
ν=M+1

(
2ν

log 2ν

)−1/4)
,

the last term of which is, by partial summation, O(N3/4 log1/4N). Thus
N∑

ν=M+1

Z(g2ν) ∼ 2N,
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which shows that Z(g2ν) is positive for infinitely many ν. A similar argument
leads to

∑N
ν=M+1 Z1(g2ν+1) = N +O(N1/4 log−1/4N), which shows that

N∑
ν=M+1

Z(g2ν+1) ∼ −2N,

whence Z(g2ν+1) is negative for infinitely many values of ν. Together, these
statements prove that there are infinitely many intervals (gn, gn+1] which
contain an odd zero of ζ

(
1
2 + it

)
.

3.1. An estimate for the frequency with which the Weak Gram
Law is true. There is another result of Titchmarsh [34] which is of interest
here. The sum of Z(gν)Z(gν+1) is shown to be negative for infinitely many
values of ν. Certainly this leads to the same result as above, but what is
achieved is a lower bound on the number of Gram intervals which contain
a zero of ζ

(
1
2 + it

)
. The result is

N∑
ν=M+1

Z(gν)Z(gν+1) ∼ −2N(γ + 1),

where γ is Euler’s constant. Let N− denote the number of negative terms
in the above sum, and, as is standard, let µ = µ

(
1
2

)
be the infimum of all ξ

for which ζ
(

1
2 + it

)
= O(tξ). Then

(24) AN < N− max
M+1≤ν≤N

|Z(gν)Z(gν+1)| < AN−(g2µ
N+1),

and by Lemma 2.1, the expression on the right of (24) is less than

AN−
(

N

logN

)2µ

,

which finally shows that

N− > AN1−2µ(logN)2µ.

Let G(T ) denote the number of intervals in (0, T ) for which (gn, gn+1] con-
tains an odd zero of ζ

(
1
2 + it

)
. It follows that

G(T ) > AT 1−2µ log T,

and thus the proportion of Gram intervals up to height T which contain an
odd zero of ζ

(
1
2 + it

)
is bounded below by

A

T 2µ log T
.

So even on the Lindelöf hypothesis where one can take µ = 0, this method
of Titchmarsh will not show that the Weak Gram Law is true a positive
proportion of the time.
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3.2. Moser’s work. In the concluding paragraph of his paper, Titch-
marsh [op. cit.] notes that the following argument may be used to improve
the estimate on the number of Gram intervals in which the Weak Gram Law
is true.

Denote by
∑′ a sum taken over values of ν for which Z(gν)Z(gν+1) is

negative, and denote by N ′ the number of negative terms in the sum. Then

(25) AN <
N∑

ν=M+1

{−Z(gν)Z(gν+1)} ≤
∑′
{−Z(gν)Z(gν+1)}

≤
[∑′

1
∑′
{Z(gν)Z(gν+1)}2

]1/2
≤ (N ′)1/2

[ N∑
ν=M+1

{Z(gν)Z(gν+1)}2
]1/2

.

This last sum is similar to that which arises in the computation of the
integral of

∣∣ζ(1
2 + it

)∣∣4 as given in e.g. [37, Ch. VII]. Titchmarsh then makes
the conjecture that

(26)
N∑

ν=M+1

{Z(gν)Z(gν+1)}2 = O(N logAN),

and adds:
. . . but there are additional complications, and the conjecture has not been
verified.

Moser studied sums of this sort in a series of papers [26–29]. In [29] it is
shown that

(27)
N∑

ν=M+1

{Z(gν)}4 = O(N log4N),

whence, by the Cauchy–Schwarz inequality, the conjecture of Titchmarsh in
(26) follows with A = 4. This then shows, in the notation of (25), that

N ′ ≥ AN

log4N
,

or that the proportion of Gram intervals up to height T which contain an
odd zero of ζ

(
1
2 + it

)
is bounded below by

A

log3 T
.

This bound on the proportion of Gram intervals cannot be improved further
by these methods, since Lavrik [21] showed that in fact

N∑
ν=M+1

{Z(gν)}4 ∼ N

2π
log4N.
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3.3. Atkinson’s result. In the course of his extensive study of the
mean-value properties of the zeta-function, Atkinson [1] pursued the above
ideas of Titchmarsh in the following continuous analogue. For a fixed α > 0,
define tα, as a function of t, by

(28) θ(tα)− θ(t) = α.

Atkinson then proved the following

Theorem 3.2 (Atkinson). If T0 is a positive constant then

T�

T0

Z(t)Z(tα) dt = eiα
T�

T0

ζ
(

1
2 + itα

)
ζ
(

1
2 − it

)
dt(29)

=
sinα
α

T log T +O(T log3/4 T ).

With the particular choice of α = 3
2π, it follows that

(30)
T�

T/2

Z(t)Z(tα) dt ∼ − 1
3π
T log T.

Let Q(T ) denote the set of points t in
(

1
2T, T

)
such that Z(t)Z(tα) < 0.

Thus ζ
(

1
2 + it

)
must vanish in the interval (t, tα) and so, by (30),

�

Q(T )

|Z(t)Z(tα)| dt > AT log T

for T sufficiently large. Two applications of Cauchy’s inequality give

AT 2 log2 T ≤ measQ(T )
�

Q(T )

|Z(t)Z(tα)|2 dt(31)

≤ measQ(T )
{ T�

T/2

|Z(t)|4 dt
T�

T/2

|Z(tα)|4 dt
}1/2

.

The first integral on the right can be estimated using the fourth-power
moment, due to Ingham [18], viz.

(32)
T�

T/2

|Z(t)|4 dt =
T�

T/2

∣∣ζ(1
2 + it

)∣∣4 dt = O(T log4 T ).

To handle the second integral in (31) note that since θ(tα) − θ(t) = α it
follows that

dt

dtα
=
θ′(tα)
θ′(t)

= O(1),
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so that

(33)
T�

T/2

|Z(tα)|4 dt =
T�

T/2

∣∣ζ(1
2 + itα

)∣∣4 dtα dt

dtα
= O(T log4 T ).

Hence (31)–(33) give

measQ(T ) ≥ AT

log2 T
.

If there are N ′ zeroes of ζ
(

1
2 + it

)
for 1

2T ≤ t ≤ T , then, since each zero
contributes an interval of length O(log−1 T ) to Q(T ), it follows that

measQ(T ) <
AN ′

log T
,

and thence that
N ′ >

AT

log T
.

A variant of this method of Atkinson’s was used in 2005 by Hall [15] as part
of his extensive studies on the existence of large gaps between the zeroes of
ζ
(

1
2 + it

)
. Specifically, Hall [op. cit., Thm. 4] shows that, uniformly for any

interval α� log T ,

(34)
T�

0

Z(t)Z
(
t+

α

log T

)
dt

=
sinα/2
α/2

T log T + (2γ − 1− log 2π)T cosα/2 +O

(
αT

log T
+ T 1/2 log T

)
.

The similarities to (29) can be easily seen. For, by (28) and the mean-value
theorem,

α = θ(tα)− θ(t) = θ′(c)(tα − t)
for some c ∈ (t, tα). Since θ′(c) ∼ 1

2 log c, by (9) it follows that

tα = t+
2α{1 + o(1)}

log T
.

This shows that (34) is a refinement of Atkinson’s result (29).

4. The function S(t)

4.1. Introduction. Whenever t is not an ordinate of a zero of ζ(s),
define

(35) S(t) =
1
π

arg ζ
(

1
2 + it

)
,

and write S(t) = limε→0+ S(t + ε) if t coincides with an ordinate of a zero.
The argument is determined by continuous variation along the straight lines
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connecting 2, 2 + it, 1
2 + it; and S(0) is defined to be zero. The peculiarities

in the definition of S(t) stem from the use of Littlewood’s result concern-
ing the number of zeroes of an analytic function inside a rectangle (see
e.g. [24], and [37, Ch. IX, §3]). The study of the function S(t) is useful in
understanding the distribution of the zeroes of the zeta-function, and the
connexion between the two is shown in

Theorem 4.1 (Backlund [2]). With S(T ) defined by (35) and N(T ) de-
fined as the number of zeroes of ζ(s) for 0 < t < T , we have

N(T ) = π−1θ(T ) + S(T ) + 1 =
T

2π
log

T

2π
− T

2π
+O(log T ).

Proof. See e.g. [37, pp. 212–213].

4.2. Basic properties of S(t). Two of the simplest properties of the
function S(t) are

(36) S(T ) = O(log T )

and

(37)
T�

0

S(t) dt = O(log T ).

The former is due to von Mangoldt (see e.g. [37, Thm. 9.4]) and the latter
is due to Littlewood (see e.g. [37, pp. 221–222]). Note that neither result
necessarily implies the other: (36) guarantees the growth of S(T ) must be
suitably slow; (37) ensures that the average value of S(T ) is zero.

It is also known that S(T ) takes large values infinitely often. The first
result of this type was proved by Bohr and Landau in 1913, viz.

Theorem 4.2 (Bohr–Landau). On the assumption of the Riemann hy-
pothesis each of the inequalities

S(T ) > (log T )1/2−ε, S(T ) < −(log T )1/2−ε

has solutions for arbitrary large values of T .

Proof. See [3]. It can be shown (see e.g. [6, p. 202]) that |S(T )| is un-
bounded if one merely assumes that the number of zeroes off the critical line
is finite.

4.3. The failure of Gram’s Law. This section shows that Gram’s
Law fails infinitely often. It is shown that Gram’s Law induces a degree of
constancy in S(T ), which shows that S(T ) is bounded. With an ancillary
argument, this contradicts Theorem 4.2. The approach here is modelled on
that given by Titchmarsh [35]. To begin, one needs

Lemma 4.3 (Titchmarsh). The equation S(t) = 0 is satisfied for in-
finitely many values of t.
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Proof. Arrange the zeroes βn + iγn of ζ(s) in order of non-decreasing
ordinates, where, as is customary, a zero with multiplicity m is included
m times. Then for t ∈ [γn, γn+1) the function N(t) is constant and indeed
N(t) = n. By (9) the function θ(t) is increasing for sufficiently large n, and
therefore, by Theorem 4.1 the function S(t) is decreasing over the interval.
One can approximate S(t) by a linear function l(t) which takes the values
S(γn) and limr↑γn+1 S(r) at γn and γn+1 respectively. Then over the interval
(γn, γn+1] it follows that

l(t)−S(t) = { lim
r↑γn+1

S(r)− S(γn)} t− γn
γn+1 − γn

− {S(t)− S(γn)}(38)

= −π−1{θ(γn+1)− θ(γn)} t− γn
γn+1 − γn

+ π−1{θ(t)−θ(γn)},

where the second equality is deduced from Theorem 4.1, the continuity of
θ(t), and the fact that N(t) is constant over the interval. Now two applica-
tions of the mean-value theorem give

l(t)− S(t) = −π−1{θ′(ξ1)(t− γn)− θ′(ξ2)(t− γn)},
with γn < ξ1 < γn+1 and γn < ξ2 < t. Another application of the mean-value
theorem gives

l(t)− S(t) = π−1θ′′(ξ)(ξ2 − ξ1)(t− γn),

with ξ1 < ξ < ξ2. By (9),

θ′′(t) ∼ 1
2t
,

and given the definitions of ξ, ξ1 and ξ2 it follows that

(39) l(t)− S(t) = O

(
(γn+1 − γn)2

γn

)
= O

(
1
γn

)
,

since the distance γn+1 − γn is bounded (see e.g. [37, Ch. IX, §1]). Suppose
now that S(t) ≥ 0 for t > t0, i.e. that there are no sign changes in S(t) past
t = t0. Since for any ε > 0, there is least one zero at γn, we see that

N(γn)−N(γn − ε) ≥ 1.

This, by virtue of Theorem 4.1 and the fact that θ(t) is a continuous function,
implies

S(γn)− S(γn − ε) ≥ 1.

From the assumption that S(t) ≥ 0 for sufficiently large t, it follows that
S(γn) ≥ 1 for sufficiently large n. Thus integrating (39) with respect to t
gives

γn+1�

γn

S(t) dt =
γn+1�

γn

l(t) dt+O

(
γn+1 − γn

γn

)
.
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After integrating (38) with respect to t, the above becomes
γn+1�

γn

S(t) dt =
1
2

(γn+1 − γn){S(γn) + lim
r↑γn+1

S(r)}+O

(
γn+1 − γn

γn

)
≥ 1

2
(γn+1 − γn) +O

(
γn+1 − γn

γn

)
≥ 1

4
(γn+1 − γn)

for sufficiently large n. If γn+1 = γn then both sides of the inequality are
zero. So for n0 sufficiently large, summing both sides gives

γN�

γn0

S(t) dt ≥ 1
4

(γN − γn0),

which contradicts Littlewood’s result in (37). A similar contradiction is ob-
tained after the assumption that S(t) ≤ 0 for sufficiently large t; whence
S(t) must change sign infinitely often. Since S(t) decreases continuously
and only increases by jumps at the zeroes of the zeta-function, it follows
that S(t) = 0 for infinitely many values of t.

Now suppose that Gram’s Law fails only finitely many times. Then there
exists some n1 such that for every n ≥ n1 there is exactly one zero in the
Gram interval (gn, gn+1]. So if gn < t ≤ gn+1, then the number of zeroes on
the critical line up to height t satisfies

(40) N0(t) = n− n1 = π−1θ(gn+1)− 1− n1 ≥ π−1θ(t)− 1− n1.

The previous result of infinitely many zeroes of S(t) is now used. Let t∗

denote a sequence tending to infinity with S(t∗) = 0, and hence N(t∗) =
π−1θ(t∗) + 1. Then

N0(t∗) > N(t∗) +O(1).

Therefore the number of complex zeroes of ζ(s) not on the line σ = 1
2 is

finite. So for all values of t,

N(t) = N0(t) +O(1) > π−1θ(t) +O(1),

which, along with Theorem 4.1, implies that S(t) is bounded below. But
by the weaker form of Theorem 4.2, a finite number of exceptions to the
Riemann hypothesis implies that S(t) assumes arbitrarily large negative
values. This contradiction shows that Gram’s Law must fail infinitely often.
The argument also shows that the Weak Gram Law fails infinitely often:
one replaces the first “=” in (40) with “≥”.

4.4. Improvements. The link between Gram’s Law and the function
S(t) has been explored in the above proof. Suppose that for t ∈ (gn, gn+1]
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there are k zeroes of ζ(s) (not necessarily on the critical line). Then by
Theorem 4.1,

S(gn+1)− S(gn) = N(gn+1)−N(gn)− π−1{θ(gn+1)− θ(gn)} = k − 1.

Moreover, S(t) is integral if, and only if, t = gn for some n. Note that if
Gram’s Law is true over an interval then it need not follow that k = 1,
owing to the possible presence of zeroes off the critical line. Nevertheless
in intervals with k = 1 it follows that S(gn+1) = S(gn) and |S(t) − S(gn)|
≤ 1 for t ∈ (gn, gn+1]. This in turn induces some constancy in the func-
tion S(t). Theorem 4.2 has been used to show that S(t) takes arbitrar-
ily large values under the assumption that the number of zeroes off the
critical line is finite. This additional assumption will not be needed hence-
forth, since Selberg [31] showed that, independently of any unproven hypo-
theses,

(41) S(t) = Ω±

(
(log t)1/3

(log log t)7/3

)
.

4.5. Selberg’s approximation. Selberg proved the following theorem
[31, Thm. 4].

Theorem 4.4 (Selberg). If Tα<H ≤ T , where α is fixed and 1
2 <α≤ 1,

and, for m a positive integer, T (α−1/2)/m ≤ x ≤ H1/m, then
T+H�

T

∣∣∣∣S(t) +
1
π

∑
p<x

sin(t log p)
√
p

∣∣∣∣2mdt ≤ c(m)H,

where c(m) depends on m but not on T .

The factor c(m) has been improved over the years: in Selberg’s paper [op.
cit.] it was not calculated explicitly. Fujii [7] calculated that c(m) ≤ (Am)4m,
and this result, which was also proved by Ghosh [11], follows more or
less directly from Selberg’s original arguments. Tsang [39] showed that
c(m) ≤ (Am)2m, where the improvement comes from a repeated appli-
cation of Selberg’s density theorem, specifically Lemma 5.2 of [38]. Kara-
tsuba in [19] proved that in Theorem 4.4 one could take (3) H = T 27/82+ε,
where, say, 0 < ε < 0.001. With this, Karatsuba and Korolëv [20] placed
a bound on the explicit constant in the result of Tsang, to show that
c(m) < (ε−3e37π−2m2)m. A different approach is due to Goldston [12]. On
the assumption of the Riemann hypothesis and introducing a different weight
to that used by Selberg, Goldston showed that c(m) ≥ (A logm)m.

Improving either the upper or lower bound on c(m) seems a difficult
task, but one of great interest.

(3) See also the remarks in §6.4.
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5. A positive proportion of failures

5.1. Introduction. This section is concerned with the number of fail-
ures of Gram’s Law between T and 2T , denoted by NF (T ). It has been
shown in §4.3 that NF (T ) → ∞. Corollary 5.4 will show that the Weak
Gram Law fails a positive proportion of the time, and hence so too does
Gram’s Law.

The results in this section are dependent on the following theorem con-
cerning the “shifted moments” of the function S(t).

Theorem 5.1 (Tsang). Let a > 1
2 , T

a < H ≤ T and 0 < h < 1. Then,
for any positive integer m,

T+H�

T

{S(t+ h)− S(t)}2m dt =
(2m)!

(2π2)mm!
H{log(2 + h log T )}m

+O{H(Am)m{mm + (log(2 + h log T ))m−1/2}}.
Proof. See [39, Thm. 4].

The case m = 1 was first shown by Fujii in [8], and indeed this was
shown in greater generality than Theorem 5.1. Fujii considered Dirichlet
L-functions and the function S(t, χ) defined in an analogous way to (35).

5.2. An auxiliary approach to Gram’s Law. It is convenient to
introduce the following notation. For j = 0, 1, . . . , let Fj denote a Gram
interval (gn, gn+1] in which j zeroes are located, whether or not these zeroes
lie on the critical line. Furthermore, let NFj (T ) denote the number of Fj
intervals between heights T and 2T . Thus an F1 interval is one in which
Gram’s Law is true, but the converse need not be so. Results concerning
Gram’s Law will be deduced from

Theorem 5.2. Let NG(T ) = NF0(T ) +NF2(T ) +NF3(T ) + · · · , that is,
NG(T ) is the number of non-F1 intervals between T and 2T . Then NG(T )�
T log T for sufficiently large T .

Proof. Consider the case m = 1 of Theorem 5.1; for simplicity (4), take
H = T , and write

I(T ) =
2T�

T

|S(t+ h)− S(t)|2 dt(42)

= π−2T log(3 + h log T ) +O[T{log(3 + h log T )}1/2].

This becomes an asymptotic relationship, i.e.

I(T ) ∼ π−2T log(3 + h log T ),

(4) See §6.4 for taking H < T .
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if h log T →∞. Henceforth h = C0(log T )−1, where C0 is a constant that is
chosen to be sufficiently large. Initially, C0 is chosen to be large enough to
ensure the dominance of the main term in (42) over the error term. Thus,
for some δ = δ(C0) > 0,

(43) (π−2 − δ)T log(3 + h log T ) ≤ I(T ) ≤ (π−2 + δ)T log(3 + h log T ).

To prove Theorem 5.2, consider that if [T, 2T +h] were covered by F1 inter-
vals, then for all t ∈ [T, 2T + h], it would follow that |S(t+ h)− S(t)| ≤ 2.
Thence I(T ) ≤ 4T , which is “too small”, i.e. there is a contradiction to (43).

Let the sequences {in} and {jn} index the Gram points such that F1

intervals cover (gin , gjn ] and there are no F1 intervals in (gjn , gin+1 ]. Also let
kn = in+1 − jn, that is, the number of consecutive non-F1 intervals, whence∑

n kn = NG(T ).
It is clear that the relative locations of t and t + h will determine the

bound on |S(t+ h)− S(t)|, viz. if gin ≤ t < t+ h ≤ gjn then it follows that
|S(t+ h)− S(t)| ≤ 2. This leads to the definition

J := {t ∈ [T, 2T ] : ∃n such that gin ≤ t < t+ h ≤ gjn},
whence

	
J |S(t+ h)− S(t)|2 dt ≤ 4T .

Now let J be the complement of J in [T, 2T ]. If t belongs to J , then
either t ∈ [gin , gjn ] and t+ h > gjn , or t ∈ (gjn , gin+1 ]. The former condition
implies gjn ≥ t > gjn − h and so in any case gjn − h < t ≤ gin+1 . These
intervals may overlap in [T, 2T ] and indeed

J ⊂
⋃
n

(gjn − h, gin+1 ].

Whether or not these intervals are disjoint is of no consequence, for Lem-
ma 2.1 gives

(44) meas J �
∑
n

(
h+

kn
log T

)
�
(
h+

1
log T

)
NG(T ).

Ultimately an estimate on this number NG(T ) is sought and hence the
imposition of a lower bound of (44) would be useful. Returning to (43), it is
seen that

(45) (π−2−δ)T log(3+h log T ) ≤ I(T ) ≤ 4T +
�

J

|S(t+ h)− S(t)|2 dt.

Currently h = C0(log T )−1 and C0 is chosen to be sufficiently large such
that the main term in (42) dominates the error term. If, in addition to this,
C0 is taken large enough to make the quantity (π−2 − δ)T log(3 + h log T )
larger than, say, 5T , then (45) gives

(46) T ≤
�

J

|S(t+ h)− S(t)|2 dt.
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An application of Cauchy’s inequality gives
�

J

|S(t+ h)− S(t)|2 dt ≤
( �

J

|S(t+ h)− S(t)|4 dt
)1/2

·
( �

J

dt
)1/2

= (meas J )1/2 ·
( �

J

|S(t+ h)− S(t)|4 dt
)1/2

,

whence, via (46), it follows that

T ≤ (meas J )1/2 ·
( �

J

|S(t+ h)− S(t)|4 dt
)1/2

.

The right side of the above inequality can be estimated by taking m = 2 in
Theorem 5.1, whence

(47) T � (meas J )1/2T 1/2 log(3 + h log T )� (meas J )1/2T 1/2,

since h� C0(log T )−1. Together (44) and (47) show that

T �
(

1 + C0

log T

)
NG(T ),

which proves the theorem.

5.3. The Weak Gram Law. Theorem 5.2 can now be used to address
the failure of Gram’s Law. From Lemma 2.1 one may write

(48) NF0(T )+NF1(T )+NF2(T )+· · · = Ng(2T )−Ng(T ) =
T

2π
log T+O(T ).

Since all the zeroes between heights T and 2T fall within Gram intervals,

(49) NF1(T ) + · · ·+ kNFk(T ) + · · · = N(2T )−N(T ) =
T

2π
log T +O(T ),

on using Theorem 4.1. The subtraction of equation (48) from (49) gives

O(T ) = −NF0(T ) +NF2(T ) + 2NF3(T ) + · · ·+ (k − 1)NFk(T ) + · · ·
≥ −NF0(T ) +NF2(T ) +NF3(T ) + · · ·+NFk(T ) + · · · ,

whence, upon an addition of 2NF0(T ) to both sides, and an invocation of
Theorem 5.2, it is seen that

2NF0(T ) +O(T ) ≥ NF0(T ) +NF2(T ) +NF3(T ) + · · · ≥ A{Ng(2T )−Ng(T )},
so that

NF0(T )
Ng(2T )−Ng(T )

≥ A

2
+O

(
1

log T

)
,

which proves

Theorem 5.3. For sufficiently large T there is a positive proportion of
Gram intervals between T and 2T which do not contain a zero of ζ(s).
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Following a fortiori from the above theorem is

Corollary 5.4. For sufficiently large T there is a positive proportion
of failures of the Weak Gram Law, and therefore of Gram’s Law, between T
and 2T .

Since the number of F0 intervals is certainly less than the total number
of violations of Gram’s Law, the order of NF0(T ) is exactly determined, viz.
NF0(T ) � T log T . There is little else (5) to be said about the nature of F0

intervals, so it is natural to now turn to the remaining cases: those Gram
intervals which contain at least one zero of ζ

(
1
2 + it

)
.

6. A positive proportion of successes

6.1. Introduction. Recall the result of Titchmarsh given in §3 that the
Weak Gram Law is true infinitely often. What is actually shown in this proof
is that there is an infinite number of Gram intervals which contain an odd
number of zeroes. The work of Moser from §3.2 shows that the proportion
of Gram intervals between T and 2T which contain an odd number of zeroes
of ζ

(
1
2 + it

)
is greater than A(log T )−3. This is here improved via

Theorem 6.1. There exists a K such that, for sufficiently large T , there
is a positive proportion of Gram intervals between T and 2T which contain
at least one zero and not more than K zeroes of ζ

(
1
2 + it

)
. In particular, the

Weak Gram Law is true a positive proportion of the time.

It is worthwhile to note that Gram’s Law has yet to be shown to be
true infinitely often. It is difficult to investigate the quantities NFk(T ) for
“small” k, since the induced behaviour in S(t) is virtually undetectable.
Indeed, using the shifted moments of S(t) one is unable to distinguish a
collection of F1 intervals from a sequence of alternating F0 and F2 intervals.
The proof of Theorem 6.1 is therefore based on showing that Fk intervals
are rare when k is large.

6.2. Proof of Theorem 6.1. If, in Theorem 5.1, h is suitably small
such that h log T � 1, and H = T , then

2T�

T

|S(t+ h)− S(t)|2m dt� (Am)2mT.

Suppose now that the interval (gn, gn+1] contains k zeroes, for some k ≥ 0,
and that S(gn) = λ. Since S(t) cannot decrease by more than 1 over a Gram
interval it therefore follows that

S(gn−1) ≤ λ+ 1, S(gn+1) = λ+ k − 1, S(gn+2) ≥ λ+ k − 2.

(5) One possibility is to calculate these constants, although any practically useful
results are not achievable via these methods (cf. §6.4).
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Take h = 4π/log T so that, by Lemma 2.1, h is asymptotically twice the
length of a Gram interval. Then |S(t + h) − S(t)| > k − 2 over an interval
of length � (log T )−1. So if there are NFk(T ) intervals between T and 2T
it follows that

T (Am)2m �
2T�

T

|S(t+ h)− S(t)|2m dt� (k − 2)2mNFk(T )
log T

,

whence
NFk(T )
T log T

�
(
Am

k − 2

)2m

.

One now chooses an m > 0 depending on k, to minimise the right side of
the above equation. Write

F (m) = F (k,m) =
(
Am

k − 2

)2m

,

whence

F ′(m) = 0 ⇔ m = m∗ :=
k − 4
Ae

,

and it is easily seen (by e.g. the second derivative test) that this value of m
is indeed minimal. It follows that

F (m∗)� e−Ak.

Now Theorem 5.1 is valid only for integral m, so consider

m′ ∈
{[

k − 4
Ae

]
,

[
k − 4
Ae

]
+ 1
}
,

where, as usual, [x] denotes the greatest integer not exceeding x. Both of
these above terms differ by not more than 1

2 from m∗, and it is easily seen
that

F (m′)� e−Ak,

whence

(50)
NFk(T )
T log T

� e−Ak.

Now denote by F̂j a Gram interval with j zeroes of ζ(s), at least one of
which is on the critical line. Then, if NcFj (T ) is the number of F̂j intervals
between T and 2T it is clear that

(51) NcFj (T ) ≤ NFj (T ).
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Since a positive proportion of zeroes lie on the critical line there is a constant
A′ such that
(52)

0 < A′ <
N0(2T )−N0(T )

T log T
≤
NcF1

(T ) + 2NcF2
(T ) + · · ·+ kNcFk(T ) + · · ·
T log T

,

and by (50) and (51) the series on the right-hand side is convergent. So, if
δ is any small positive number, choose K so large that the sum

(T log T )−1
∞∑

k=K+1

kNcFk(T )

is less than A′ − δ. Then

(53) 0 < δ <

∑K
k=1 kNcFk(T )

T log T
< K

∑K
k=1NcFk(T )

T log T
,

whence follows Theorem 6.1.

6.3. The work of Selberg and Fujii. Selberg [32, p. 198] writes:
By a more detailed investigation of the variation of the amplitude of ζ( 1

2
+it),

I have succeeded in proving that there exist absolute positive constants K
and N0, such that for N > N0, 1 ≤ ν ≤ N , the numbers ζ( 1

2
+ itν−1) and

ζ( 1
2

+ itν) are of different sign in more than KN cases, and of the same sign
in more than KN cases.

The first statement (concerning the same parity of ζ
(

1
2 + itν−1

)
and

ζ
(

1
2 + itν

)
) is equivalent to there being a positive proportion of F1 +F3 + · · ·

intervals. If one applies formulas (50)–(53) then this statement is seen to be
stronger than Theorem 6.1. The second statement follows directly from The-
orem 5.3. It would be interesting to discover the method by which Selberg
arrived at these results, and unfortunately no proof is given in [32].

Fujii [9] states that

(54)
NF0(T )
Ng(T )

� A,

∞∑
k=2

NFk(T )
Ng(T )

� A.

The first is equivalent to Theorem 5.3, although it is unclear how this is
derived in [8]. There, the sum∑

m≤M

{
S

(
2πα(m+ 1)
log(m+ 1)

)
− S

(
2παm
logm

)}2

is considered, for α� logM . Since this is more or less a discrete version of
the integral

T�

0

{S(t+ h)− S(t)}2 dt,
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it is likely that methods of §5 would suffice. The second result in (54) is
slightly different from Theorem 6.1 in that the sum is infinite.

Based on predictions from Random Matrix Theory, Fujii [op. cit.] makes
the following

Conjecture 6.2 (Fujii).

(55)
NF0(T )
Ng(T )

→ 0.17,
NF1(T )
Ng(T )

→ 0.74,
NF2(T )
Ng(T )

→ 0.13.

This then predicts that Gram’s Law should be true approximately 74% of
the time. Note that although the sum of the three numbers in (55) exceeds
unity, the figures can be compared with the calculations of van de Lune
et al. [42], viz. up to the M = 1 500 000 000th Gram point,

NF0(gM )
M

= 0.1378 . . . ,
NF1(gM )

M
= 0.7261 . . . ,

NF2(gM )
M

= 0.1342 . . . .

The results in Conjecture 6.2 rest on Montgomery’s pair-correlation conjec-
ture (see e.g. [25]), and the following

Conjecture 6.3 (Gallagher–Mueller [10]). Assume the pair-correlation
conjecture. Then, as T →∞ and α→ 0,

T�

0

∣∣∣∣S(t+
2πα
log T

)
− S(t)

∣∣∣∣2 dt ∼ (α− α2 + o(α2))T.

A discussion on the relationship between the pair-correlation conjecture
and the moments of S(t + h) − S(t) is beyond the scope of this article,
however pursuing this connection will be of interest in future work.

6.4. Concluding remarks. Intuitively one might expect NFk(T ) to be
steadily decreasing with k (which would be an improvement to the estimate
in (50)). If such a relation could be shown it would therefore follow that
there is a positive proportion of intervals in which Gram’s Law is valid.
However the details of such an approach are at present unknown.

In Theorem 5.1 it is possible to take H as small as T a where a is any
fixed number greater than 1

2 . This restriction comes from the allowance
made for potential zeroes off the critical line, in particular Selberg’s zero-
density theorem [31, Thm. 1]. This was proved for intervals of the type
(T, T + T 1/2+ε). Selberg remarked that such a density theorem should be
valid for shorter intervals, and Karatsuba and Korolëv [20, Ch. I] extended
Selberg’s theorem to show that it was valid over the range (T, T +T 27/82+ε).
The constant 27

82 comes from the estimate of the order of growth of
∣∣ζ(1

2 +it
)∣∣.

Indeed, if one writes, as is customary, µ(σ) as the lower bound on the number
ξ such that

ζ(σ + it) = O(tξ),
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then Titchmarsh [37, Ch. V, §18] proved that µ
(

1
2

)
≤ 27

164 . One can estimate
the exponential sums which appear in Selberg’s work using the same tech-
niques as estimating the sums endemic in the calculation of µ

(
1
2

)
. In partic-

ular, the work of Huxley [17] shows that one may take µ
(

1
2

)
= 32

205 , and thus
the conclusions of Theorems 4.4, 5.1, 5.2, 5.3 and 6.1 should be expected to
hold over the shorter range (T, T + T 2µ(1/2)+ε).

The explicit constant given by Karatsuba and Korolëv (see §4.5) provides
an upper bound on the constant K in Theorem 6.1. Using the result that at
least two-fifths of the zeroes of the zeta-function lie on the critical line (see
e.g. [5]) one can show that K ≤ 109. The proportion of Gram intervals in
which Gram’s Law is false could be similarly computed. Since there is little
chance to prove that K can be small—e.g. 2 or 3—there is not much more
to be said on this point.

An interesting problem would be to calculate how short an interval must
be before one is guaranteed to find, not a positive proportion of failures, but
just one failure of Gram’s Law (or the Weak Gram Law).

7. Extensions to Gram’s Law

7.1. Introduction. Interest in the relationship between the function
S(t) and Gram intervals diminished after the proof of the infinite failure
of Gram’s Law. However, large scale computations into the values of the
zeta-function revealed a phenomenon which required further investigation.
Patterns emerged in the distribution of zeroes of ζ

(
1
2 + it

)
over unions of

Gram intervals. It was observed that some intervals contain too few roots
of the zeta-function but these are “balanced out” by nearby intervals which
contain more than one zero. Recall the counterexamples of Gram’s Law
found by Hutchinson: two roots are found over a union of two Gram intervals.
It is fitting that the computation of values of ζ

(
1
2 + it

)
should refuel interest

in Gram’s Law given that it was empirical observation which prompted the
initial study in the early 20th century.

7.2. Gram blocks and Rosser’s Rule. Rosser, Yohe and Schoen-
feld [30] gave the following

Definition 7.1 (Gram blocks). The interval (gn, gn+l] is a Gram block
of length l if (−1)jZ(gj) > 0 for j = n and for j = n + l, but (−1)jZ(gj)
≤ 0 for n < j < n + l. Furthermore, define the intervals (gn, gn+1] and
(gn+l−1, gn+l] as exterior intervals; the remaining intervals are defined as
interior .

It follows from the above definition that a Gram block of length 1 is an
F2m+1 interval for some non-negative integer m. Also from Definition 7.1 it
is easily seen that when k ≥ 2 a Gram block (gn, gn+k] has an odd zero of
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ζ
(

1
2 + it

)
in each of its interior intervals. If additional zeroes occur in the

Gram block, it follows that there must be an even number in each interval.
For convenience the endpoints of a Gram block are referred to as good ,

since at these points gn one has (−1)nZ(gn) > 0, which is what one expects
from Gram’s Law—cf. (13). Consequently, the interior Gram points of a
Gram block are termed “bad”, since at these points Z(gn) has the “wrong”
sign.

Upon the framework of Gram blocks, Rosser, Yohe and Schoenfeld [op.
cit.] proposed

Definition 7.2 (The Rosser Rule). The Rosser Rule is said to hold in
a Gram block of length l if this block contains exactly l zeroes of ζ

(
1
2 + it

)
.

Note that, just as in the definition of Gram’s Law (Definition 2.2) the
above definition is not concerned with the potentiality of zeroes off the
critical line. In keeping with the definition of the Weak Gram Law, define
the Weak Rosser Rule to be true over a Gram block of length l if this block
contains at least l zeroes of ζ

(
1
2 + it

)
.

The calculations of Rosser et al. [op. cit.] show that the first 3 500 000
complex zeroes of ζ(s) lie on the critical line and that the Rosser Rule is
true up to this height. However, in subsequent calculations, failures have
been observed, and it will be shown in the following section that the Rosser
Rule fails infinitely often.

7.3. The failure of Rosser’s Rule. The first exception to the Rosser
Rule is at the 13 999 825th Gram point. This corresponds to a height t ≈
5 346 000 which falls outside the calculations of Rosser et al. Further failures
are slight, and it is seen in the calculations of Gourdon [13] that up to the
first 1013 zeroes of ζ

(
1
2 + it

)
there are approximately 32 violations of the

Rosser Rule per million zeroes. Indeed this section, which is based on the
argument of Lehman [22], shows that the Rosser Rule fails infinitely often.
It is shown that the Rosser Rule implies that S(t) is bounded below on a
Gram block and therefore that S(t) is bounded below for all t. However this
cannot be reconciled with equation (41).

Theorem 7.3. The Weak Rosser Rule fails infinitely often, and there-
fore so too does the Rosser Rule.

Proof. Suppose there are only finitely many failures to the Weak Rosser
Rule. Let T0 be the point beyond which the Weak Rosser Rule holds. Now
consider a Gram block (gn, gn+k] where gn > T0. From Theorem 4.1 it follows
that

S(gn+k)− S(gn) = N(gn+k)−N(gn)− k.
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Given that there are at least k zeroes in a Gram block of length k, it follows
that

S(gn+k) ≥ S(gn).

This process is now repeated on the Gram block with gn as its right endpoint,
that is, a Gram block of length l, say, and S(gn) ≥ S(gn−l). This can be
continued to show inductively that

(56) S(gn) ≥ S(T0)

over all good Gram points gn. The function S(t) has now been bounded over
the good Gram points, and similarly a bound over the bad Gram points
can be achieved. Let gm and gm+1 be consecutive bad Gram points, i.e.
(−1)mZ(gm), (−1)m+1Z(gm+1) ≤ 0. Thus there must be at least one zero in
this interval. There may be other roots, but in either case, since

S(gm+1)− S(gm) = N(gm+1)−N(gm)− 1,

we get

(57) S(gm+1) ≥ S(gm).

It follows from equations (56) and (57) that S(gν) is increasing at each Gram
point gν . Thus the lowest value attainable by S(gν) is at the first bad Gram
point where S(t) drops by 1 over the interval. Hence for all Gram points,

S(gν) ≥ S(T0)− 1.

Since S(t) only attains integral values at the Gram points, and since S(t) is
continuous from the right, this proves that

S(t) ≥ S(T0)− 2

for all t > T0. So (6) S(t) is ultimately bounded below, which contradicts
the theorem of Selberg given in (41).

7.4. The number of Gram blocks in an interval. It will be of use
to have at hand the following

Lemma 7.4. If NGB(T ) denotes the number of Gram blocks between T
and 2T , then

NGB(T ) � T log T.

Proof. It is clear that NGB(T ) ≤ Ng(2T ) − Ng(T ) � T log T , by Lem-
ma 2.1. On the other hand, each exterior interval of a Gram block corre-
sponds to an F2m interval for some non-negative integer m. In particular,

(6) Here, a proof that the Rosser Rule implies only finitely many exceptions to the
Riemann hypothesis can be given (see [6, pp. 180–181]). Then the theorem of Bohr and
Landau (Theorem 4.2) may be applied. But since the result of Selberg in (41) is indepen-
dent of any assumptions of the Riemann hypothesis, this proof can be made considerably
shorter than that in §4.3.
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each F0 interval is an exterior interval for some Gram block. So certainly,

NGB(T )� NF0(T )� T log T,

by virtue of Theorem 5.3.

A method to visualise the lengths of Gram blocks is as follows. Calculate
the sign of Z(gn) at each of the Gram points g1, . . . , gN , say, for some N .
Write down this progression of signs, and suppose for an example that it is

(58) −+−+−−+−+−−+−+ + +.

According to Definition 7.1 one can read off that (58) comprises 4 Gram
blocks of length 1, followed by 1 Gram block of length 6, followed by 3
Gram blocks of length 1, followed by 1 Gram block of length 2. Thus one
can distinguish Gram blocks of length k ≥ 2 as those commencing with two
identical signs and concluding with two identical signs (which need not be
the same in both instances). The distribution of these signs is related to the
average number of Gram points per Gram block, which will be referred to
as λ.

By a simple combinatorial argument it can be shown that if the signs of
Z(gn) were positive or negative with equal probability, then λ = 2. Up to
height gn for n = 7 · 107, Brent [4] calculated that λ = 1.1873, and that λ
was increasing slowly with n. Brent then conjectured [op. cit., p. 1368] that,
as n→∞, we have λ→ l for some l ≤ 2.

Since each Gram block has length at least 1, it is clear that λ ≥ 1. Also,
by Lemma 7.4,

λ =
Ng(2T )−Ng(T )

NGB(T )
� Ng(T )

T log T
= 1,

whence

Theorem 7.5. If λ = λ(T ) is the average length of a Gram block lying
between T and 2T , then there exists a positive constant A such that

1 ≤ λ(T ) ≤ A.

Due to the size of the implicit constants used in the above methods
(cf. §6.4), there is little plausibility that the above theorem can be refined
to give a bound on λ which is less than 2. However this result still shows
that the average length of a Gram block cannot be too large.

7.5. A positive proportion of failures. For j = 0, 1, . . . , define a Bj
Gram block to be one of length k that contains k+ j − 2 zeroes. Also, write
NBj (T ) as the number of Bj Gram blocks between T and 2T . Note that,
following the discussion after Definition 7.1, there are no Gram blocks of
type B2l+1 for any integer l.
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Consider (gn, gn+k], a B2 Gram block of length k ≥ 2, and write
S(gn) = λ. Since S(t) can decrease by at most one over the length of a
Gram interval, it follows that S(gn+2) ≥ λ− 2, whence S(t) ≥ λ− 2 for all
t ∈ (gn, gn+k]. Also, the remaining two zeroes must lie in the same Gram
interval, whence S(t) ≤ λ + 2 for all t ∈ (gn, gn+k]. Thus if t and t + h lie
in a connected union of B2 Gram blocks then |S(t + h) − S(t)| ≤ 4. The
argument in §5.2 can now be applied mutatis mutandis to prove

Theorem 7.6. Let NB(T ) = NB0(T ) + NB4(T ) + NB6(T ) + · · · , that
is, NB(T ) is the number of non-B2 Gram blocks between T and 2T . Then
NB(T )� T log T for sufficiently large T .

7.6. Further failures. The frequency of the failure of the Rosser Rule
can now be discussed using the methods of §5.3. Take the difference between
the number of Gram points and the number of zeroes between T and 2T ; it
follows from the definition of the NBj (T ) that

{Ng(2T )−Ng(T )}−{N(2T )−N(T )} = 2NB0(T )−2NB4(T )−4NB6(T )−· · · .

Since, as before, the left side is O(T ) it follows that

NB0(T ) = O(T ) +NB4(T ) + 2NB6(T ) + · · ·
> O(T ) +NB4(T ) +NB6(T ) + · · ·,

after the addition of NB0(T ) to each side and the invocation of Theorem 7.6,
one arrives at

NB0(T )� T log T.

When combined with Lemma 7.4 this proves

Theorem 7.7. For sufficiently large T there is a positive proportion of
Gram blocks between T and 2T which contain two fewer zeroes of ζ(s) than
their length.

Following a fortiori from the above theorem is

Corollary 7.8. For sufficiently large T there is a positive proportion
of failures of the Weak Rosser Rule, and therefore of Rosser’s Rule, between
T and 2T .

7.7. Difficulties with successes. One might hope to be able to adapt
the arguments of §6 to show that there is a positive proportion of successes
to the Weak Rosser Rule. Such an argument would need to show that the
number of zeroes on the critical line contained in B0 blocks is suitably
small. With this is mind, let Mj,k(T ) denote the number of Gram blocks
between T and 2T with length j and containing k zeroes of ζ(s); and let
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Mj(T ) =
∑

kMj,k(T ). Consider the array

NB0(T ) = M2,0(T ) +M3,1(T ) +M4,2(T ) + · · · ,
NB2(T ) = M1,1(T ) +M2,2(T ) +M3,3(T ) +M4,4(T ) + · · · ,
NB4(T ) = M1,3(T ) +M2,4(T ) +M3,5(T ) +M4,6(T ) + · · · ,

...
...

...
...

...
NBk(T ) = M1,k−1(T ) +M2,k(T ) +M3,k+1(T ) +M4,k+3(T ) + · · · ,

...
...

...
...

...

To achieve a result analogous to Theorem 6.1 one needs to truncate this
array both horizontally (by showing that Gram blocks with large length are
rare) and vertically (by showing that the presence of many zeroes in a Gram
block is rare). The latter can be achieved using the result given in (50), viz.

NFk(T )
T log T

� e−Ak.

In the horizontal direction, note that for large K,

NGB(T ) =
∑
j≥K

Mj(T ) +
∑
j<K

Mj(T ),

and
Ng(T ) ≥ K

∑
j≥K

Mj(T ) +
∑
j<K

Mj(T ).

It therefore follows that ∑
j≥KMj(T )
T log T

� 1
K
.

But then one sees that the proportion of zeroes contained in the NB0(T )
Gram blocks is � 1. This proportion needs to be o(1) if the analysis con-
tained in (52) and (53) is to be applied. Future research will comprise a
detailed investigation into this problem.
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[20] A. A. Karatsuba and M. A. Korolëv, Behaviour of the argument of the Riemann
zeta-function on the critical line, Russian Math. Surveys 61 (2006), 389–482.

[21] A. A. Lavrik, Titchmarsh’s problem in the discrete theory of the Riemann zeta-
function, Proc. Steklov Inst. Math. 207 (1995), 179–209.

[22] R. S. Lehman, On the distribution of zeros of the Riemann zeta-function, Proc.
London Math. Soc. 20 (1970), 303–320.

[23] D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956),
291–298.

[24] J. E. Littlewood, On the zeros of the Riemann zeta-function, Proc. Cambridge
Philos. Soc. 22 (1925), 295–318.

[25] H. L. Montgomery, The pair correlation of zeros of the zeta function, in: Analytic
Number Theory, Proc. Sympos. Pure Math. 24, Amer. Math. Soc., Providence, RI,
1973, 181–193.

http://dx.doi.org/10.1007/BF01455343
http://dx.doi.org/10.1090/S0025-5718-1979-0537983-2
http://dx.doi.org/10.1090/S0002-9904-1975-13674-3
http://dx.doi.org/10.3792/pjaa.63.392
http://dx.doi.org/10.1016/0022-314X(87)90059-X
http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf
http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf
http://dx.doi.org/10.1007/BF02421310
http://dx.doi.org/10.1112/S0025579300000383
http://dx.doi.org/10.1090/S0002-9947-1925-1501297-5
http://dx.doi.org/10.1112/S0024611504014959
http://dx.doi.org/10.1112/plms/s2-27.1.273
http://dx.doi.org/10.1070/IM1996v060n05ABEH000086
http://dx.doi.org/10.1070/RM2006v061n03ABEH004328
http://dx.doi.org/10.1112/plms/s3-20.2.303
http://dx.doi.org/10.1007/BF02401102


256 T. Trudgian

[26] J. Moser, On a certain sum in the theory of the Riemann zeta-function, Acta
Arith. 31 (1976), 31–43 (in Russian).

[27] —, On a theorem of Hardy–Littlewood in the theory of the Riemann zeta-function,
ibid. 31 (1976), 45–51 (in Russian).

[28] —, On Gram’s law in the theory of the Riemann zeta function, ibid. 32 (1977),
107–113 (in Russian).

[29] —, Proof of E. C. Titchmarsh’s conjecture in the theory of the Riemann zeta-
function, ibid. 36 (1980), 147–156 (in Russian).

[30] J. B. Rosser, J. M. Yohe, and L. Schoenfeld, Rigorous computation and the zeros
of the Riemann zeta-function, in: Information Processing 68, Proc. IFIP Congress
1968, Vol. 1: Mathematics, North-Holland, Amsterdam, 1969, 70–76.

[31] A. Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math.
Naturvid. 48 (1946), 89–155.

[32] —, The zeta-function and the Riemann hypothesis, in: C. R. Dixième Congrès Math.
Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen, 1947, 187–200.

[33] E. C. Titchmarsh, The Theory of Functions, Oxford Sci. Publ., Oxford Univ. Press,
Oxford, 1932.

[34] —, On van der Corput’s method and the zeta-function of Riemann (IV), Quart.
J. Math. 5 (1934), 98–105.

[35] —, The zeros of the Riemann zeta-function, Proc. Roy. Soc. Ser. A 151 (1935),
234–255.

[36] —, The zeros of the Riemann zeta-function, ibid. 157 (1936), 261–263.
[37] —, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Sci. Publ., Oxford

Univ. Press, Oxford, 1986.
[38] K. Tsang, The distribution of the values of the Riemann Zeta-Function, PhD thesis,

Princeton Univ., 1984.
[39] —, Some Ω-theorems for the Riemann zeta-function, Acta Arith. 46 (1986), 369–

395.
[40] A. M. Turing, Some calculations of the Riemann zeta-function, Proc. London Math.

Soc. 3 (1953), 99–117.
[41] J. van de Lune and H. J. J. te Riele, On the zeros of the Riemann zeta function in

the critical strip, III , Math. Comp. 41 (1983), 759–767.
[42] J. van de Lune, H. J. J. te Riele, and D. T. Winter, On the zeros of the Riemann

zeta function in the critical strip, IV , ibid. 46 (1986), 667–681.

Timothy Trudgian
Mathematical Institute
University of Oxford
OX1 3LB, Oxford, England
E-mail: trudgian@maths.ox.ac.uk

Received on 20.1.2010
and in revised form on 29.9.2010 (6275)

http://dx.doi.org/10.1093/qmath/os-5.1.98
http://dx.doi.org/10.1098/rspa.1935.0146
http://dx.doi.org/10.1098/rspa.1936.0192
http://dx.doi.org/10.1112/plms/s3-3.1.99
http://dx.doi.org/10.1090/S0025-5718-1983-0717719-3
http://dx.doi.org/10.1090/S0025-5718-1986-0829637-3

	Introduction
	Definition and properties of the zeta-function
	Location of zeroes
	The functions Z(t) and (t)
	The approximate functional equation


	Gram points
	Gram's Law
	The Weak Gram Law

	The Weak Gram Law is true infinitely often
	An estimate for the frequency with which the Weak Gram Law is true
	Moser's work
	Atkinson's result

	The function S(t)
	Introduction
	Basic properties of S(t)
	The failure of Gram's Law
	Improvements
	Selberg's approximation

	A positive proportion of failures
	Introduction
	An auxiliary approach to Gram's Law
	The Weak Gram Law

	A positive proportion of successes
	Introduction
	Proof of Theorem 6.1
	The work of Selberg and Fujii
	Concluding remarks

	Extensions to Gram's Law
	Introduction
	Gram blocks and Rosser's Rule
	The failure of Rosser's Rule
	The number of Gram blocks in an interval
	A positive proportion of failures
	Further failures
	Difficulties with successes


