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1. Introduction. Let φ : P1 → P1 be a morphism of degree d defined
over a field K. In other words, φ(z) = P (z)/Q(z) with P,Q ∈ K[z] having
no common root in K, and max{degP,degQ} = d. Such rational maps are
the fundamental objects of study in one-dimensional arithmetic dynamics.
(Because we are working in one dimension, rational maps and morphisms
exactly coincide, so we use the terms interchangeably.) Performing the same
change of coordinates on both the domain and target spaces preserves all dy-
namical behavior, so we are usually interested in studying conjugacy classes
rather than individual rational maps.

Generalizing work by Milnor [5], Silverman [8] proved that the moduli
space of degree-d rational maps up to conjugacy, which we denoteMd, exists
as an affine integral scheme over Z and that M2 is isomorphic to A2

Z. As
explained in Section 2, if φ : P1 → P1 has degree 2, and if we let λ1, λ2, λ3

be the multipliers of the three fixed points of φ (counted with multiplicity),
then the first two symmetric functions of these multipliers form natural
coordinates for M2:

(1.1) M2 = {(σ1, σ2)}
where σ1 = λ1 + λ2 + λ3 and σ2 = λ1λ2 + λ1λ3 + λ2λ3.

In [7] Silverman shows that in the case of polynomial maps and maps
of even degree, the field of moduli for a rational map is always a field of
definition. In particular, a K-rational point in M2 corresponds to a conju-
gacy class of quadratic rational maps [ψ], and some map φ ∈ [ψ] must have
coefficients in the field K. However, it was not clear from any previous work
how to explicitly find such a map, given a K-rational point in the moduli
space.
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Furthermore, each family [ψ] describes a conjugacy class of maps, but
only up to conjugacy over an algebraically closed field K. Much recent work
in arithmetic dynamics has focused on quadratic polynomials. These results
invariably use the normal form z2+c and the fact that it gives a complete de-
scription of quadratic polynomials up to K-conjugacy. (See, for example, [1],
[2], and [3].) Attempts to extend these results to arbitrary quadratic rational
maps would benefit from a complete description of the K-conjugacy classes
of such maps. Our result provides such a description.

Theorem 1.1. Let K be a field with characteristic different from 2
and 3. Let ψ(z) ∈ K(z) have degree 2, and let λ1, λ2, λ3 ∈ K be the multi-
pliers of the fixed points of ψ (counted with multiplicity).

(a) If the multipliers are distinct or if exactly two multipliers are 1, then
ψ(z) is conjugate over K to the map

φ(z) =
2z2 + (2− σ1)z + (2− σ1)
−z2 + (2 + σ1)z + 2− σ1 − σ2

∈ K(z),

where σ1 and σ2 are the first two symmetric functions of the multi-
pliers. Furthermore, no two distinct maps of this form are conjugate
to each other over K.

(b) If λ1 = λ2 6= 1 and λ3 6= λ1 or if λ1 = λ2 = λ3 = 1, then ψ is
conjugate over K to a map of the form

φk,b(z) = kz +
b

z

with k ∈ K r {0,−1/2} (in fact, k = (λ1 + 1)/2), and b ∈ K∗.
Furthermore, two such maps φk,b and φk′,b′ are conjugate over K if
and only if k = k′; they are conjugate over K if in addition b/b′ ∈
(K∗)2.

(c) If λ1 = λ2 = λ3 = −2, then ψ is conjugate over K to a map of the
form

θd,k(z) =
kz2 − 2dz + dk

z2 − 2kz + d
with k ∈ K, d ∈ K∗, and k2 6= d.

All such maps are conjugate over K. Furthermore, θd,k(z) and
θd′,k′(z) are conjugate over K if and only if

d′ = b2d and k′ ∈
{
bd

k
,
b(d2γ3 + 3dkγ2 + 3dγ + k)
dkγ3 + 3dγ2 + 3kγ + 1

}
for some γ ∈ K and b ∈ K∗.

Each quadratic rational map φ(z) ∈ K(z) must fall into exactly one of the
cases above, so this gives a complete description of the K-conjugacy classes
of such maps.
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Remark 1.2. As will be proved in Lemma 5.1, if ψ satisfies the hypoth-
esis of case (c), then it has a two-cycle defined over K if and only if it is
conjugate over K to θd,k with d ∈ (K∗)2. In such a case, ψ is also conjugate
over K to

θt(z) = t/z2 with t =
−
√
d+ k√
d+ k

.

Since k2 6= d, we see that t is a well-defined element of K∗. With this
alternative description, θt(z) and θt′(z) are conjugate over K if and only if
t/t′ ∈ (K∗)3 or tt′ ∈ (K∗)3.

The theorem is proved via several lemmas, each tackling a specific case
of quadratic rational maps based on their automorphism groups.

2. Preliminaries. Throughout, we take K to be a field with charac-
teristic different from 2 and 3. Let φ : P1 → P1 be a rational map defined
over K. That is, let φ(z) = P (z)/Q(z) with P,Q ∈ K[z] having no common
root in K, and deg φ = max{degP,degQ}.

Definition 2.1. Two rational maps φ, ψ ∈ K(z) are conjugate if there
is some h ∈ PGL2(K) such that

φh := h−1 ◦ φ ◦ h = ψ,

and they are conjugate over K if we can take h ∈ PGL2(K).

If deg(φ) = d, then φ has d + 1 fixed points, counted with proper mul-
tiplicity. If P is a finite fixed point of φ, the multiplier at P is defined to
be φ′(P ). For any h ∈ PGL2, h−1(P ) is a fixed point of φh. Applying the
chain rule shows that the multiplier of φ at P is equal to the multiplier of
φh at h−1(P ) (as long as both are finite points). Therefore, we can speak of
the set of multipliers of a conjugacy class of rational maps, and we can also
extend the definition of the multiplier to the point at infinity.

A finite fixed point has multiplier equal to 1 if and only if it is a multiple
root of the polynomial P (z)−zQ(z) (see [9, Theorem 4.6]), and this extends
to a fixed point at infinity via conjugation in the obvious way. So for a
quadratic rational map, either no multiplier is 1 (if the three fixed points
are distinct), or two multipliers are 1 (corresponding to a fixed point of
multiplicity two), or all three multipliers are 1 (corresponding to a fixed
point of multiplicity three).

Let λ1, . . . , λd+1 be the fixed point multipliers for a rational map φ of
degree d. As long as none of the λi are 1, by [9, Theorem 1.14], we have

(2.1)
d+1∑
i=1

1
1− λi

= 1.
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We conclude that for quadratic rational maps, all three multipliers can be
equal only if they are all equal to 1, or if they are all equal to −2; and if
two multipliers are equal, they cannot be −1. It is now clear that the three
categories in Theorem 1.1 exhaust all possibilities for quadratic rational
maps, so by proving the theorem we will have a complete description of all
K-conjugacy classes of such maps.

Usually, φh 6= φ as rational maps, but this is not always the case. For
example, the map φ(z) = 2z + 5/z has a nontrivial PGL2 automorphism
h(z) = −z.

Definition 2.2. The automorphism group of φ ∈ K(z) is

Aut(φ) = {f ∈ PGL2(K) | φf = φ}.

If f ∈ Aut(φ), then h−1 ◦ f ◦ h ∈ Aut(φh) for any h ∈ PGL2(K), so
conjugate maps have isomorphic automorphism groups. If deg φ ≥ 2, then
Aut(φ) must be a finite subgroup of PGL2(K); furthermore, if two maps
defined over a field K are conjugate, then they must be conjugate over K
unless the maps have a nontrivial automorphism group (this follows from [7,
Proposition 7.2] or [9, Proposition 4.73]). This last fact is essential in our
classification of K-conjugacy classes.

In the case of quadratic rational maps, Milnor showed in [5, Section 5]
that

• the automorphism group is trivial if and only if all three multipli-
ers are distinct or exactly two of the multipliers equal 1 (case (a) of
Theorem 1.1);
• the automorphism group is cyclic of order 2 (we will use the nota-

tion C2) if and only if two multipliers are equal but are not 1 or all
three multipliers are 1 (case (b) of Theorem 1.1); and
• the automorphism group is isomorphic to the symmetric group S3 if

and only if all three multipliers are −2 (case (c) of Theorem 1.1).

Hence, we proceed by considering each possible automorphism group.
Finally, if [φ] corresponds to a K-rational point in the moduli spaceM2,

then the symmetric functions of the multipliers satisfy σ1, σ2 ∈ K. It follows
from equation (2.1) that σ3 = σ1 − 2. So in fact the three multipliers are
roots of a monic cubic polynomial with coefficients K. We will frequently
use the fact that a quadratic rational map is completely determined up to
K-conjugacy by the three multipliers λ1, λ2, λ3, or equivalently by the first
two symmetric functions σ1 and σ2 on these multipliers. See [5, Lemma 3.1]
for details.

Using the coordinates (σ1, σ2), Milnor provides a description of the sym-
metry locus in M2. The maps with nontrivial automorphism groups lie on
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the cuspidal cubic defined by

(2.2) −2σ3
1 − σ2

1σ2 + σ2
1 + 8σ1σ2 + 4σ2

2 − 12σ1 − 12σ + 36 = 0.

(This equation can be derived from the parameterization given in [5, Corol-
lary 5.3].)

3. The case Aut(φ) = id. Let [ψ] ∈ M2 be a conjugacy class of
quadratic rational maps with trivial automorphism group. Then either all
three multipliers are distinct, or exactly two multipliers are 1. From the re-
marks in Section 2, we know that if [ψ] corresponds to a K-rational point
in M2, then we can find a map φ ∈ [ψ] defined over K, and that there is
only one K conjugacy class for [ψ]. Hence, it suffices to find a single map
defined over K for each K-rational point in M2.

Lemma 3.1. Let [ψ] ∈M2(K) correspond to a K-rational point (σ1, σ2)
in the moduli space of degree-2 rational maps, and let ψ ∈ [ψ] be any repre-
sentative. If Aut(ψ) is trivial, then there is a unique map φ(z) in [ψ] of the
form

(3.1) φ(z) =
P (z)
Q(z)

=
2z2 + (2− σ1)z + (2− σ1)
−z2 + (2 + σ1)z + 2− σ1 − σ2

,

which is necessarily defined over K.

Proof. Define φ, P , and Q as in (3.1). Recall that Aut(ψ) is trivial if
and only if the three fixed point multipliers are distinct or exactly two of
the multipliers are 1. We treat these two cases separately.

First, assume that exactly two of the multipliers for fixed points of ψ
are 1, and let the third multiplier be λ 6= 1. In this case, σ1 = 2 + λ,
σ2 = 2λ+ 1, and

φ(z) =
2z2 − λz − λ

−z2 + (λ+ 4)z − 3λ− 1
.

This map has a double fixed point at z = 1 with multiplier 1, and a fixed
point at z = λ with multiplier λ. Since the fixed point multipliers of φ and
ψ coincide, φ(z) ∈ [ψ].

Now assume the three multipliers are distinct, and let

(3.2) f(x) = x3 − σ1x
2 + σ2x− (σ1 − 2)

be the cubic polynomial whose roots in K are the multipliers of the fixed
points of ψ. A simple calculation shows that if f(λ) = 0, then P (λ)−λQ(λ)
= 0. In other words, if λ is a multiplier for the conjugacy class [ψ], then
z = λ is a fixed point of the map φ(z) in (3.1). Furthermore, if f(λ) = 0
and Q(λ) 6= 0, another calculation shows that φ′(λ) = λ. That is, the fixed
point z = λ has multiplier λ. So as long as the denominator Q(z) does not
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vanish at any of the three multipliers, φ(z) ∈ K(z) has the correct fixed
point multipliers.

If Q(λ) = 0, then

(3.3) −λ2 + (2 + σ1)λ+ 2− σ1 − σ2 = 0.

Multiply (3.3) by λ and add f(λ) = 0 to get

2λ2 + (2− σ1)λ− (σ1 − 2) = 0.

Subtracting (3.3), we obtain

3λ2 − 2σ1λ+ σ2 = 0.

This exactly says that f ′(λ) = 0, so we have a double root at λ, contradicting
our assumption that the roots of the multiplier cubic are distinct. Therefore,
as long as the roots are distinct, our choice of Q(z) is never zero at the
corresponding fixed points.

As in the previous case, since the fixed point multipliers of φ and ψ
coincide, φ(z) ∈ [ψ].

Finally, any other map with the form

θ(z) =
2z2 + (2− σ′1)z + (2− σ′1)
−z2 + (2 + σ′1)z + 2− σ′1 − σ′2

is conjugate to φ(z) if and only if σ1 = σ′1 and σ2 = σ′2, since these symmetric
functions completely determine the conjugacy class. Hence φ(z) is the unique
map in [ψ] of this form.

Remark 3.2. The map φ in equation (3.1) has degree two if and only
if the resultant satisfies Res(P,Q) 6= 0. We calculate that

Res(P,Q) = −2σ3
1 − σ2

1σ2 + σ2
1 + 8σ1σ2 + 4σ2

2 − 12σ1 − 12σ + 36.

In other words, the vanishing of the resultant corresponds exactly to the
symmetry locus given in equation (2.2). Thus we see that the converse of
Lemma 3.1 holds as well.

Example 3.3. Since the characteristic of K is not 3, the multiplier cubic
f(x) in equation (3.2) has distinct roots if it is irreducible. For instance, if
f(x) = x3 + 2, then σ1 = σ2 = 0, so we can take

ψ(z) =
2z2 + 2z + 2
−z2 + 2z + 2

.

Example 3.4. We can detect polynomials easily in this normal form.
If φ is a polynomial then it is conjugate over K to z2 + c (recall that we
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assume the characteristic is not 2). The multiplier at ∞ is zero, and since
the other fixed points satisfy z2 + c = z, the other two multipliers sum to 2
and multiply to 4c. Hence, the form presented in Lemma 3.1 is

ψ(z) =
2z2

−z2 + 4z − 4c
,

assuming that c 6= 0 (that is, excluding the case where Aut(φ) 6= id). This
may be helpful in checking the number of preperiodic points over Q, as we ex-
pect different upper bounds for polynomials compared with non-polynomials
(see [4, Theorem 2] and [6, Corollary 1]).

This completes part (a) of Theorem 1.1. It remains to consider the cases
where the maps in the conjugacy class [ψ] have nontrivial automorphism
group.

4. The case Aut(φ) ∼= C2. The following is Lemma 1 in [4].

Lemma 4.1. Let K be a field with char(K) 6= 2, 3 and let φ be a rational
map of degree 2 defined over K. Then Aut(φ) ∼= C2 if and only if φ is
conjugate over K to some map of the form

φk,b(z) = kz +
b

z

with k ∈ K r {0,−1/2} and b ∈ K∗. Furthermore, two such maps φk,b and
φk′,b′ are conjugate over K if and only if k = k′ and b/b′ ∈ (K∗)2. The map
φk,b has the automorphism z 7→ −z.

The fixed point multipliers for a map of the form φk,b(z) are {2k − 1,
2k − 1, 1/k}, thus φk,b and φk′,b′ are conjugate over K if and only if k = k′.

Recall that a quadratic rational map φ(z) has automorphism group C2

if and only if exactly two multipliers are equal and are not 1, or if all three
multipliers are 1. Hence, this completes part (b) of Theorem 1.1.

5. The case Aut(φ) ∼= S3. As described in Section 2, for a quadratic
rational map ψ, Aut(ψ) ∼= S3 if and only if all three multipliers are −2.
Hence, there is a single K-conjugacy class of maps [ψ] with Aut(ψ) ∼= S3,
and φ(z) = 1/z2 ∈ [ψ] since Aut(φ) is generated by z 7→ 1/z and z 7→ ωz
for ω a primitive cube root of unity. We will use φ as our “base map” from
which we find all possible K-conjugacy classes.

Lemma 5.1. Let ψ(z) ∈ K(z) be a quadratic rational map with Aut(ψ)
∼= S3. Then:

(a) The function ψ(z) is conjugate over K to a rational map of the form

θd,k(z) =
kz2 − 2dz + dk

z2 − 2kz + d
with k ∈ K, d ∈ K∗, and k2 6= d.
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Furthermore, θd,k(z) and θd′,k′(z) are conjugate over K if and only
if

d′ = b2d and k′ ∈
{
bd

k
,
b(d2γ3 + 3dkγ2 + 3dγ + k)
dkγ3 + 3dγ2 + 3kγ + 1

}
for some γ ∈ K and b ∈ K∗. (Note that the choices γ = 0 and
b = ±1 give ±k as possibilities for k′.)

(b) The function ψ(z) has a K-rational two-cycle if and only if it is
conjugate over K to θt(z) = t/z2. Furthermore, θt(z) and θt′(z) are
conjugate over K if and only if t/t′ ∈ (K∗)3 or tt′ ∈ (K∗)3.

Proof. Let ψ(z) ∈ K(z) be a quadratic rational map defined over K
with automorphism group S3. The proof of [5, Theorem 5.1] goes through
unchanged for fields of characteristic different from 2 and 3, so we conclude
that ψ(z) is conjugate over K to the map φ(z) = 1/z2. Choose g ∈ PGL2(K)
such that ψ = φg(z). Such a g must take the unique two-cycle (0↔∞) of φ
to a (necessarily unique) two-cycle of ψ.

There are polynomials P1, Q1, P2, Q2 ∈ K[z] with ψ(z) = P1(z)/Q1(z),
and the second iterate ψ2(z) = P2(z)/Q2(z). Then the second dynatomic
polynomial

P2(z)− zQ2(z)
P1(z)− zQ1(z)

is a polynomial in K[z] whose roots are the finite period-2 points for ψ. (For
details on dynatomic polynomials, see [9, Section 4.1].) If this dynatomic
polynomial is linear, then ∞ is on the two-cycle. In this case, we may con-
jugate by some element of PGL2(K) which sends the other (necessarily
rational) point of period two to 0. Then by an argument identical to the
one in [5, Theorem 5.1], this conjugacy in fact takes ψ(z) to θt(z) = t/z2 for
some t ∈ K. The rest follows from the proof of part (b) below.

If the second dynatomic polynomial is quadratic, the unique two-cycle for
ψ must be of the form a±b

√
d with a, b, d ∈ K. Let f(z) = bz+a ∈ PGL2(K).

Then ψf has the two-cycle (
√
d ↔ −

√
d), and the conjugacy is over K. So

we may assume that ψ(z) has its two-cycle at ±
√
d, with d ∈ K∗.

Again, choose g ∈ PGL2(K) such that ψ = φg(z); then based on our
knowledge about the two-cycles, it must have the form

g(z) =
α(z −

√
d)

z +
√
d

for some nonzero α ∈ K. We calculate

ψ(z) = g−1 ◦ φ ◦ g(z)

=

√
d ((α3 + 1)/(α3 − 1))z2 − 2dz + d

√
d ((α3 + 1)/(α3 − 1))

z2 − 2
√
d ((α3 + 1)/(α3 − 1))z + d

.
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Then ψ(z) ∈ K(z) if and only if
√
d ((α3 + 1)/(α3 − 1)) =: k ∈ K, which

leads to the map

θd,k(z) =
P (z)
Q(z)

=
kz2 − 2dz + dk

z2 − 2kz + d
.

As α 6= 0,∞, we have k 6= ±
√
d. (And in fact, θd,±

√
d are not quadratic

maps; the resultant of P (z) and Q(z) vanishes precisely when d ∈ {0, k2}.)
Since every θd,k is conjugate to φ(z) = 1/z2, each of these maps has

automorphism group S3. We have now proved that ψ is conjugate over K
to some θd,k, so it only remains to decide when two such maps are conjugate
to each other over K.

First, if two maps are conjugate over K, their two-cycles must generate
the same field extension of K, and

√
d and

√
d′ generate the same extension

if and only if d′/d ∈ (K∗)2. Hence, if θd,k is conjugate over K to θd′,k′ we
must have d′ = b2d for some b ∈ K∗.

Now assume that h ∈ PGL2(K) satisfies θh
d,k = θb2d,k′ . Because h must

send the two-cycle of θb2d,k to the two-cycle of θd,k, we can choose the sign
of b so that h(b

√
d) =

√
d and h(−b

√
d) = −

√
d. Therefore

h =
(
β −bdγ
−γ bβ

)
.

If β = 0, we conjugate θd,k by h to find that k′ = bd/k.
If β 6= 0, we may take h to be

h =
(

1 −bdγ
−γ b

)
.

In this case, we conjugate θd,k by h to find that

k′ =
b(d2γ3 + 3dkγ2 + 3dγ + k)
dkγ3 + 3dγ2 + 3kγ + 1

.

For part (b), if the two-cycle of ψ is rational, we may certainly conjugate
over PGL2(K) so that the two-cycle is (0↔∞).

If both period-2 points of ψ are finite, then it is clear from above that
the unique two-cycle of ψ is defined over K if and only if ψ is conjugate over
K to θd,k with d ∈ (K∗)2. In this case, conjugation by (z −

√
d)/(z +

√
d) ∈

PGL2(K) takes the two-cycle (
√
d ↔ −

√
d) of θd,k to (0 ↔ ∞), and the

resulting map is

θt =
t

z2
, where t =

−
√
d+ k√
d+ k

∈ K∗.

(Note that if one of the period-2 points is ∞, we can now conjugate θt(z) =
t/z2 into the form given in part (a).)
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Now suppose we have h ∈ PGL2(K) such that θh
t = θt′ . Since {0,∞} is

fixed by h, either h(z) = λz or h(z) = λ/z for some λ ∈ K∗. Conjugating
θt(z) by h(z) = λz and solving leads to t/t′ = λ3. Conjugating by h(z) = λ/z
leads to tt′ = λ3.

This shows part (c) of Theorem 1.1, and the proof is now complete.

Remark 5.2. It would, of course, be desirable to have the conjugacy
condition in Lemma 5.1 be more obviously symmetric in k and k′ and easier
to check for any two given quadratic rational maps.

In the case K = Q, we may alter Lemma 5.1 to take d ∈ Q∗ squarefree,
which then forces b = ±1. Furthermore, in this case a calculation shows the
following:

k′ = d/k ⇔ (k +
√
d)(k′ −

√
d)

(k −
√
d)(k′ +

√
d)

= −1,

k′ = −d/k ⇔ (k +
√
d)(k′ +

√
d)

(k −
√
d)(k′ −

√
d)

= −1,

k′ =
d2γ3 + 3dkγ2 + 3dγ + k

dkγ3 + 3dγ2 + 3kγ + 1
⇔ (k +

√
d)(k′ −

√
d)

(k −
√
d)(k′ +

√
d)

=
(

1− γ
√
d

1 + γ
√
d

)3

,

k′ = −d
2γ3 + 3dkγ2 + 3dγ + k

dkγ3 + 3dγ2 + 3kγ + 1
⇔ (k +

√
d)(k′ +

√
d)

(k −
√
d)(k′ −

√
d)

=
(

1− γ
√
d

1 + γ
√
d

)3

.

Now suppose

α =
1− γ

√
d

1 + γ
√
d
.

If α 6= −1, we may rearrange to find

γ
√
d =

1− α
1 + α

.

Since γ ∈ Q, this puts restrictions on α. Namely, we rationalize the denom-
inator to find

γN(1 + α)
√
d = (1− α)(1 + α),

where N is the usual norm in the quadratic number field Q(
√
d). Since

γN(1 + α) ∈ Q, we conclude that 1− αα = 0, or in other words N(α) = 1.
Conversely, if N(α) = 1, then (1 − α)(1 + α) = ξ

√
d for some ξ ∈ Q.

Note that if α 6= −1, then N(1 +α) 6= 0, so we may set γ = ξ/N(1 +α) and
reverse the argument above to get

α =
1− γ

√
d

1 + γ
√
d
.

In other words, for K = Q we have the following simplified version of
Lemma 5.1(a): The function ψ(z) is conjugate over Q to a rational map of
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the form

θd,k(z) =
kz2 − 2dz + dk

z2 − 2kz + d
with k ∈ K and d squarefree.

Furthermore, θd,k(z) and θd′,k′(z) are conjugate over K if and only if d′ = d,
and one of

(k +
√
d)(k′ −

√
d)

(k −
√
d)(k′ +

√
d)

or
(k +

√
d)(k′ +

√
d)

(k −
√
d)(k′ −

√
d)

is a perfect cube of norm 1 in the field Q(
√
d).
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