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Kakutani–von Neumann maps on simplexes
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Giovanni Panti (Udine)

1. Introduction. We are going to construct certain Kakutani–von Neu-
mann type transformations—namely, maps which are the push-forward of
the adding machine—on unit simplexes. Let {0, 1}N be the Cantor space,
i.e., the space of all countable 0-1 sequences a = a0a1a2 . . . endowed with
the product topology. It is a key topological fact that every compact met-
ric space—and in particular every n-dimensional simplex—is the image of
{0, 1}N under a continuous surjection [6, Theorem 3.28]. Since {0, 1}N is
compact and every simplex is Hausdorff, such a surjection is a closed map,
and hence a topological quotient map (i.e., the final topology induced by
the map is the usual Euclidean topology).

In addition to the topological structure, the Cantor space carries the
algebraic structure of the group Z2 of 2-adic integers, the addition of two
elements a = a0a1a2 . . . and b = b0b1b2 . . . being defined componentwise
from left to right with carry. The Haar measure on the compact topological
group Z2 is the product measure determined by giving equal mass to the
points in {0, 1}. The adding machine (Z2,+1) is the topological dynamical
system induced by addition of 1 = 10∞ in Z2. It is the prototypical exam-
ple of a minimal uniquely ergodic dynamical system with zero topological
entropy [2, IV.1], [7, §15.4]. By a Kakutani–von Neumann transformation
on a unit simplex Γ we mean a Borel map from Γ to itself which is the
push-forward—in some reasonable sense—of the adding machine by a topo-
logical quotient map.

In dimension 1, the simplest choice for such a quotient map is provided
by the binary expansion ϕ(a) =

∑
ai2−(i+1). This choice yields the classi-

cal Kakutani–von Neumann transformation (also called the van der Corput
map [3, §5.2.3]) N : [0, 1]→ [0, 1], whose graph is shown in Figure 1.

The quotient map ϕ is induced by the doubling map Dx = 2x (mod 2)
on [0, 1]. Indeed, ϕ(a) = p iff a is a symbolic orbit for p under D (i.e., for
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Fig. 1. Graph of N . The small dots clarify the definition of the function at break points.

every t ≥ 0, at = 0 implies Dtp ≤ 1/2 and at = 1 implies 1/2 ≤ Dtp). The
point p is dyadic iff it belongs to the ring Z[1/2] iff its binary expansion is
not unique iff either p = 0, or p = 1, or Dtp = 1/2 for some t ≥ 0. For
points which are not dyadic, N is safely defined by Np = ϕ(ϕ−1(p) + 1).
Things get problematic with dyadic points; namely, the points whose twin
expansions are 1t10∞ and 1t01∞ (i.e., the points 1/2, 3/4, 7/8, . . .) force us
to make choices, expressed by a dot in graphs such as the one in Figure 1.
Usually these choices pass unnoticed, since they involve sets of Lebesgue
measure 0. If, however, we are interested in questions such as unique ergod-
icity, then we cannot discard sets so easily, as they could support invariant
measures.

The dot placing in Figure 1 is the usual one; it corresponds to choosing
the finite expansion (i.e., the one ending with 0∞) for each problematic
dyadic point. We thus obtain an injective minimal uniquely ergodic map
which is not invertible (of course, it is invertible modulo nullsets). Note that
it is not possible to arrange things so as to obtain an invertible uniquely
ergodic map. Indeed, a few moments reflection on the graph of Figure 1
shows that the only possibility of achieving a true bijection is to “switch
dots” at domain points of the form (2i − 1)/2i, for i odd. In other words,
one is forced to map 1/2 to 1 (rather than to 1/4), 7/8 to 1/4, and so on.
The resulting bijection has finite orbits, such as 0 7→ 1/2 7→ 1 7→ 0, and
hence is not minimal nor uniquely ergodic. Note also that restricting the
domain to the half-open interval [0, 1), or gluing 0 and 1 together, is of no
help, since then 0 does not have a counterimage.

The key idea of this paper is to substitute the doubling map D with an
n-dimensional version of the tent map T . In dimension 1, T is the usual tent
map of ergodic theory [7, p. 78], defined by Tα = 2α on [0, 1/2], and Tα =
−2α+ 2 on [1/2, 1]. In dimension n ≥ 1, T is the transformation introduced
in [10] as a linearized version of the Mönkemeyer map. It is a continuous
piecewise-linear map on the n-dimensional simplex Γ = {(α1, . . . , αn) ∈ Rn :
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0 ≤ αn ≤ αn−1 ≤ · · · ≤ α1 ≤ 1}, defined by

T (α1, . . . , αn) =

{
(α1 + αn, α1 − αn, . . . , αn−1 − αn) if α1 + αn ≤ 1,

(2− α1 − αn, α1 − αn, . . . , αn−1 − αn) if α1 + αn ≥ 1.

Replacing D with T allows us to construct Kakutani–von Neumann trans-
formations K on unit simplexes of arbitrary dimension. The maps K are
piecewise-linear bijections of Γ , invertible (not just modulo nullsets), mini-
mal and uniquely ergodic, the unique K-invariant Borel measure being the
Lebesgue measure. Actually, we will prove a stronger result, namely that
the K-orbit of every point in Γ is uniformly distributed. We will also prove
that the set of points in Γ having dyadic coordinates coincides with the for-
ward K-orbit of the vertex (0, . . . , 0), thus obtaining a uniformly distributed
enumeration of these points. By conjugating K by the Minkowski question
mark function introduced in [10] this yields an enumeration of all rational
points in Γ . In the course of establishing the above results, we will introduce
a family of {+1,−1}-valued functions on Γ , constituting an n-dimensional
analogue of the classical Walsh functions.

2. Preliminaries. We refer to [2], [13], [7], for all unexplained notions
in topological dynamics and ergodic theory, and to [11] for the few needed
facts on simplicial complexes. For the reader’s convenience we repeat here
the main definitions of [10]. Fix an integer n ≥ 1, and consider the following
(n+ 1)× (n+ 1) matrices:

V =



0 1 1 · · · 1 1
0 1 1 · · · 1 0
0 1 1 · · · 0 0
...

...
...

...
...

0 1 0 · · · 0 0
1 1 1 · · · 1 1


,

A0 =



1 0 0 · · · 0 1
0 0 0 · · · 0 1
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
0 0 0 · · · 1 0


, A1 =



0 0 0 · · · 0 1
1 0 0 · · · 0 1
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
0 0 0 · · · 1 0


.

More precisely: all entries of V are 0 except those in position ij with either
i = n + 1, or j ≥ 2 and i + j ≤ n + 2, that have value 1. All entries of A0
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and A1 are 0 except (A0)11, (A1)21, and all elements in positions 1(n + 1),
2(n+ 1), (j + 1)j for 2 ≤ j ≤ n, that have value 1.

For a = 0, 1, let Ba be the matrix which is identical to Aa except for the
last column, where the two entries 1 are replaced by 1/2. Let Ca = V AaV

−1

and Da = V BaV
−1. We write points (α1, . . . , αn) ∈ Rn as column vectors in

projective coordinates (α1 · · · αn 1)tr, and we let Γ be the n-dimensional
simplex in Rn whose ith vertex vi is given by the (i+ 1)th column of V , for
0 ≤ i ≤ n; in affine coordinates, Γ = {(α1, . . . , αn) ∈ Rn : 0 ≤ αn ≤ αn−1 ≤
· · · ≤ α1 ≤ 1}.

The matrix B1 is column-stochastic and primitive (i.e., some power is
strictly positive). By Perron–Frobenius theory its conjugate D1 has exactly
one eigenvector (α1 · · · αn 1)tr such that the point (α1, . . . , αn), which
we denote by v−1, is in Γ . The corresponding eigenvalue is 1, and hence
α1, . . . , αn are rational numbers; for example, for n = 1, 2, 3 we have v−1 =
2/3, (4/5, 2/5), (6/7, 4/7, 2/7), respectively. For a = 0, 1, let τa : Γ → Γ be
the affine map determined by Da, namely τa(α1, . . . , αn) = (β1, . . . , βn) iff
Da(α1 · · · αn 1)tr = (β1 · · · βn 1)tr. As proved in [10], τ0 and τ1 are the
two inverse branches of the tent map T defined in the Introduction. Let Γ o

be the set of all points
∑
xivi ∈ Γ such that x0, . . . , xn ≥ 0,

∑
xi = 1, and

x0 > 0; one easily computes that Γ o = {(α1, . . . , αn) ∈ Γ : α1 < 1}.

Proposition 2.1. The sets {v−1}, τ0Γ o, τ1τ0Γ o, τ2
1 τ0Γ

o, τ3
1 τ0Γ

o, . . .
constitute a partition of Γ ; the same holds for the sets {v0}, τ1Γ o, τ0τ1Γ o,
τ2
0 τ1Γ

o, τ3
0 τ1Γ

o, . . . .

Proof. We claim that for every k ≥ 0 the sets τ0Γ o, τ1τ0Γ o, . . . , τk1 τ0Γ
o,

τk+1
1 Γ constitute a partition of Γ . This is true for k = 0 since, as proved

in [10], Γ = τ0Γ ∪ τ1Γ and τ0Γ \ τ1Γ = τ0Γ
o. Assume the statement is

true for k. Since τ1 : Γ → τ1Γ is a bijection, so is τk+1
1 : Γ → τk+1

1 Γ ,
and hence the partition τ0Γ o, τ1Γ of Γ induces a partition τk+1

1 τ0Γ
o, τk+2

1 Γ

of τk+1
1 Γ ; this settles our claim. The first statement now follows readily

since, by construction,
⋂
k≥1 τ

k
1 Γ = {v−1}. The proof of the second state-

ment is analogous, using τ1Γ
o, τ0Γ as base partition and observing that⋂

k≥1 τ
k
0 Γ = {v0}.

We can now define our Kakutani–von Neumann transformation K :
Γ → Γ . First, we set Kv−1 = v0; second, for every k ≥ 0 we have bijections

τk1 τ0Γ
o τk

1 τ0←−−− Γ o
τk
0 τ1−−−→ τk0 τ1Γ

o,

and we define K = τk0 τ1(τk1 τ0)−1 on τk1 τ0Γ
o.

A couple of pictures may be helpful. In Figure 2 we draw the graph of K
for n = 1 and Γ = [0, 1]. In Figure 3 we draw the partitions {τ0Γ o, τ1τ0Γ o,
τ2
1 τ0Γ

o, τ3
1 τ0Γ

o, τ4
1 τ0Γ

o, τ5
1Γ} and {τ1Γ o, τ0τ1Γ o, τ2

0 τ1Γ
o, τ3

0 τ1Γ
o, τ4

0 τ1Γ
o,
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Fig. 2. Graph of K in dimension 1
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Fig. 3. Partitions of Γ in dimension 2

τ5
0Γ}, for n = 2; here Γ = {(α, β) : 0 ≤ β ≤ α ≤ 1}. For the reader’s

convenience we label the triangles in the partitions in the obvious way: e.g.,
τ3
1 τ0Γ

o is labelled 1110.
A good way of comparing the classical Kakutani–von Neumann map

N : [0, 1]→ [0, 1] with the 1-dimensional version of our K is by noting that
N is definable by a cut-and-stack procedure [4]. At stage 1, the interval
[0, 1] is cut into two equal pieces, and the right-hand piece [1/2, 1] is stacked
on top of the left-hand one [0, 1/2) in an orientation-preserving way. At
stage k + 1, the 2k layers of stage k are all cut in two equal pieces, and the
resulting right-hand pieces are stacked on top of the left-hand ones, again
in an orientation-preserving way. At stage k a map Nk is defined as the
map that moves every point of every layer (except the top one) to the point
immediately above in the next layer. A clear limiting process then defines
N from the partial maps Nk, and shows that N is a bijection modulo λ-
nullsets (we always use λ to denote the Lebesgue measure, normalized so that
λ(Γ ) = 1). Now, if we are happy to neglect λ-nullsets (namely, the endpoints
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of the cut intervals), then the same cut-and-stack procedure defines our K,
except that now at each stage the right-hand half-intervals must be put on
top of the left-hand ones in an orientation-reversing way. We leave to the
reader the straightforward verification that this construction is correct, i.e.,
defines a map λ-everywhere identical to K. We stress however that K is a
true bijection on Γ in every dimension n ≥ 1, not just a mod 0 one.

3. Coding points. For t ≥ 1 and a0, . . . , at−1 ∈ {0, 1}, let Γa0...at−1 be
the simplex τa0τa1 · · · τat−1Γ . We have the identity

(3.1) Γa0...at−1 = Γa0 ∩ T−1Γa1 ∩ T−2Γa2 ∩ · · · ∩ T−(t−1)Γat−1 .

Moreover, for a fixed t the set of all faces of all n-dimensional simplexes
Γa0...at−1 forms a simplicial complex Bt whose support is Γ . Each complex
in the chain B0,B1,B2, . . . refines the preceding ones; see [10, Proposition 2.2]
for the above statements.

By [10, Lemma 2.3], for every a = a0a1a2 . . . ∈ Z2 the set
⋂
{Γa0...at−1 :

t ≥ 0} is a singleton {p}, and the map υ : Z2 → Γ defined by υ(a) = p is
a topological quotient map. The υ-counterimage of Γa0...at−1 is the cylinder
[a0, . . . , at−1] whose elements are all sequences b such that bi = ai for every
0 ≤ i < t.

Definition 3.1. If υ(a) = p, we say that a is a symbolic orbit of p
under T . By (3.1), this amounts to saying that T tp ∈ Γat for every t ≥ 0.
Since Γ0 ∩ Γ1 6= ∅, the symbolic orbit is not unique. The simplex Γa0...at−1

is the set of points that have a symbolic orbit beginning with a0 . . . at−1.
Let now c ∈ {0, 1, ∗}N; we say that c is the ∗-orbit of p if ct equals 0, 1,
or ∗ whenever T tp belongs to Γ0 \Γ1, Γ1 \Γ0, or Γ0∩Γ1, respectively. Every
point has a unique ∗-orbit, and replacing all ∗’s in it by 0 or 1, arbitrarily, we
obtain its various symbolic orbits. The final orbit of p is its unique symbolic
orbit a such that T tp ∈ Γ0∩Γ1 implies at = 1; it is obtained from the ∗-orbit
by replacing all ∗’s by 1.

Theorem 3.2. Every p ∈ Γ has at most 2n(n+1)/2 symbolic orbits.

Proof. We will show that the ∗-orbit of p contains at most 1 + · · · + n
asterisks. Consider the following cones in Rn+1:

C = {(β1 · · · βn+1)tr : βi ≥ 0 for every i, and βi > 0 for at least one i},
C0 = {(β1 · · · βn+1)tr ∈ C : β1 ≥ β2},
C1 = {(β1 · · · βn+1)tr ∈ C : β1 ≤ β2}.

Let M : C → C be defined by

M(β1 · · · βn+1)tr =
{

(β1 − β2 β3 β4 · · · βn+1 β2)tr if β1 ≥ β2,
(β2 − β1 β3 β4 · · · βn+1 β1)tr if β1 ≤ β2.
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By explicit computation one sees that M is induced by left multiplication
by the inverses of the matrices A0, A1 defined in Section 2. The map M is
the projective version of a conjugate of the Mönkemeyer map M : Γ → Γ
in [10, p. 250] (note that in [10] our Γ is denoted ∆). More precisely, if q =
(α1 · · · αn 1)tr ∈ Γ , then M(q) is the projection to Γ of the point VMV −1q.
Let now Φ : Γ → Γ be the Minkowski question mark homeomorphism
of [10, Theorem 2.1], and let P = V −1Φ−1(p) ∈ C; as above, Φ−1(p) is
written as a column vector in projective coordinates. By [10, Lemma 2.5]
we have T tp ∈ Γa iff MtP ∈ Ca, for every t ≥ 0 and a = 0, 1. Hence the set
of T -symbolic orbits of p coincides with the set ofM-symbolic orbits (taken
with respect to the partition C0, C1) of P .

For simplicity, write MtP = P t = (βt1 · · · βtn+1)tr, and refer to a time
t at which P t ∈ C0 ∩ C1 as a hitting time. The hitting time t is primary
if β1 = β2 6= 0, and is secondary if β1 = β2 = 0. Let 0 ≤ z(t) ≤ n be the
number of symbols 0 appearing in (βt1 · · · βtn+1)tr. By the definition of M
we always have z(t+ 1) = z(t), except when t is a primary hitting time, in
which case z(t+1) = z(t)+1. Therefore, following theM-orbit of P we will
encounter at most n primary hitting times. Say that r ≥ 0 is one of these,
and let

P r+1 = (0 · · · 0 βr+1
m+1 · · · β

r+1
n+1)tr,

with βr+1
m+1 6= 0 and m ≥ 1. Then r+1, . . . , r+m−1 are all secondary hitting

times (there are none if m = 1), and P r+m = (0 βr+1
m+1 · · · β

r+1
n+1 0 · · · 0)tr.

Since βr+1
m+1 6= 0, a moment’s reflection shows that the first hitting time

t > r + m must be a primary one. Since m ≤ z(r + 1) = z(r) + 1, we have
m− 1 ≤ z(r); in other words, every primary hitting time r is followed by at
most z(r) secondary hitting times. By the same argument, if the first hitting
time r is secondary, then it is followed by at most z(r)−2 secondary hitting
times. Since the number of 0 symbols in the coordinates of points in C varies
from 0 to n, it is clear that the number of hitting times along the M-orbit
of P is bounded by the triangular number 1 + · · ·+ n = n(n+ 1)/2.

Remark 3.3. The set of admissible ∗-orbits depends on the dimension n.
For example, consider the sequence c = 0010∗∗10∞. By Theorem 3.2, c is
not realizable as a ∗-orbit in dimension 1. Let n ≥ 2; the only point in
Γ whose ∗-orbit may possibly equal c is p = τ2

0 τ1τ0τ
3
1 v0 (see Lemma 3.4

below). By actual computation, one checks that in dimension 2, p equals
(3/8, 3/8), whose ∗-orbit is indeed c. On the other hand, in dimension 3,
p equals (3/4, 1/4, 1/4) and has ∗-orbit ∗∗1∗∗∗10∞, while in dimension 4,
p = (1/2, 1/2, 0, 0), whose ∗-orbit is 00∗∗∗∗10∞.

By saying that a is a final orbit we mean that a is the final orbit of some
point, necessarily the point υ(a).
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Lemma 3.4.

(i) If b is a symbolic orbit of p, then ab is a symbolic orbit of τap, for
a = 0, 1.

(ii) We have
τ0Γ

o = Γ \ Γ1 = Γ0 \ Γ1 = {p ∈ Γ : the final orbit of p begins with 0},
τ1Γ = Γ1 = {p ∈ Γ : the final orbit of p begins with 1}.

(iii) If p ∈ Γ o has final orbit b, then τap has final orbit ab, for a = 0, 1.
(iv) If p ∈ Γ \ Γ o has final orbit b, then τ0p = τ1p ∈ Γ0 ∩ Γ1 and has

final orbit 1b.
(v) If wb is a final orbit, with w a finite {0, 1}-word, then 1tb is a final

orbit for every t ≥ 0.
(vi) 0∞ and 1∞ are the unique symbolic orbits of the points v0 and v−1,

respectively.

Proof. Since Tτa = idΓ , (i) is clear. The second identity in (ii) is a special
case of (3.1), and the first follows by taking complements and looking at the
proof of Proposition 2.1. (iii) follows from (ii), and (iv) from (i) and the
observation that τ0 = τ1 on Γ \Γ o. (v) If wb is the final orbit of p, then 1tb
is the final orbit of τ t1T

|w|p, by (iii) and (iv). We obtain (vi) by noting that
v0 and v−1 are the only fixed points for τ0 and τ1, respectively.

In the following main Theorem 3.5 we will give an alternative descrip-
tion of K. As corollaries, we will deduce that the forward K-orbit of v0
contains precisely all dyadic points in Γ (a point is dyadic if all its coor-
dinates are dyadic), each such point appearing exactly once. We will also
conclude that the measure-preserving system (Γ, λ,K) is metrically isomor-
phic to the adding machine (Z2,Haar measure,+1).

Let a ∈ Z2 and, for each t ∈ Z, let at = a+t. Consider the doubly infinite
bilateral orbit A of a under +1, namely A = . . . ,a−2,a−1,a0 = a,a1,a2, . . . .
If a ends with either 0∞ or 1∞, then the elements of A are all sequences
b such that b ends with either 0∞ or 1∞. Otherwise, the elements of A
are all sequences b that have the same tail as a (i.e., there exists t ≥ 0,
depending on b, with ar = br for every r ≥ t). Let p ∈ Γ be such that A
contains at least one symbolic orbit of p. From Theorem 3.2 and the above
characterization of the elements of A, it follows that A contains all sym-
bolic orbits of p. For each such p, remove from A all these symbolic orbits
except the last one (it is precisely the final orbit of p, whence the name).
Write A′ = . . . ,ar−2 ,ar−1 ,ar0 ,ar1 ,ar2 , . . . for the resulting pruned sequence.
By Theorem 3.2, A′ is surely infinite to the right, and the following Theo-
rem 3.5 implies, since K is a bijection, that it is infinite to the left as well.

Theorem 3.5. Let ark ∈ A′ be the final orbit of p. Then the final orbit
of Kp is ark+1.
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Proof. Without loss of generality a0 is a final orbit and rk = r0 = 0. If
a0 = 1∞, then a0 is the final orbit of v−1 and a1 = 0∞ is the final orbit
of v0 = Kv−1. By the definition of A′ we have ar1 = a1 and we are done.
Otherwise, write uniquely a0 = 1t0b for a certain t ≥ 0, and let q = T t+1p;
then q has final orbit b. We claim that q ∈ Γ o. Indeed, the point T tp
has final orbit 0b, and hence is in τ0Γ

o by Lemma 3.4(ii). Since Tτ0 is the
identity map, we have q = TT tp ∈ Tτ0Γ o = Γ o. By (iii) and (iv) of the same
lemma, the point τ t1τ0q has final orbit a0, and hence is p. By the definition
of K, we have Kp = τ t0τ1q, and by (i) one of the symbolic orbits of Kp (not
necessarily the final one) is 0t1b = a1. We will show that υ(a1) = υ(ar1),
thus concluding the proof.

Define numbers t1, t2, . . . in the following inductive way:

• t1 is the maximum number ≥ 0 and ≤ t such that 0t11b is a final orbit.
• Assume ti has been defined. If si = (t + 1) −

∑i
j=1(tj + 1) = 0, then

the procedure stops at ti. Otherwise ti+1 is the maximum number ≥ 0
and ≤ t− si such that 0ti+110ti1 · · · 0t210t11b is a final orbit.

After finitely many steps the procedure stops, say at td. For 1 ≤ i ≤ d, let
now ui be the integer whose binary expansion (written from left to right)
is 0si0ti10ti−11 · · · 0t11; this expansion contains exactly t+ 1 digits. Let li =
ui − (2t − 1); observe that 2t − 1 has binary expansion 1t0. We then have
1 = l1 < l2 < · · · < ld. By construction, ali = 0si0ti10ti−11 · · · 0t11b, which
is a final orbit iff i = d (note that sd = 0). Now, let 1 ≤ i ≤ d be maximum
such that υ(al1) = · · · = υ(ali) and for every l1 ≤ l < li the orbit al is not
final. We shall show that i = d, so that ld = r1 (since ald is a final orbit)
and υ(a1) = υ(ar1), thus concluding the proof.

Assume towards a contradiction i < d. Then 0si0ti10ti−11 · · · 0t11b is
not final. By the definition of ti, the orbit 0ti10ti−11 · · · 0t11b is final, while
00ti10ti−11 · · · 0t11b is not. Therefore, the point z = υ(0ti10ti−11 · · · 0t11b)
does not belong to Γ o by Lemma 3.4(iii). Applying (iv), we obtain υ(ali)
= τ si

0 z = τ si−1
0 τ1z = υ(ali+1). Moreover, for every li ≤ l < li+1 the orbit al

is not final, since it has 00ti10ti−11 · · · 0t11b as a tail. This contradicts the
maximality of i and concludes the proof.

Corollary 3.6. Two points belong to the same K-orbit iff either their
final orbits have the same tail, or one of them has tail 0∞ and the other 1∞

(one can use equivalently any symbolic orbit, or the ∗-orbit).

Proof. Immediate from Theorem 3.5.

Corollary 3.7. The forward K-orbit of v0 constitutes an enumeration
without repetitions of all dyadic points in Γ .

Proof. By [10, Theorem 3.5(ii)] the dyadic points in Γ are exactly the
points whose symbolic orbits have tail 0∞. Since v0 has symbolic orbit 0∞,
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if we set a0 = 0∞ and construct A′ as above, then the points in A′ to the
right of a0 are exactly the final orbits of the dyadic points.

Since the proof of Corollary 3.7 makes crucial use of [10, Theorem 3.5],
we take this opportunity to correct the annoying—albeit apparent—typo in
the statement (iii) of the above reference, where “iff” must read “if”.

Corollary 3.8. The map K preserves the Lebesgue measure λ. The
measure-preserving system (Γ, λ,K) is metrically isomorphic to the adding
machine (Z2, µ,+1), where µ is the Haar measure on Z2.

Proof. The matrix Ek = Dk
0D1D

−1
0 D−k1 induces K on τk1 τ0Γ

o. We have
|det(D0)| = |det(D1)| = 1/2, and hence |det(Ek)| = 1. The row vector
(1 · · · 1 1) is a left eigenvector for the column-stochastic matrices B0 and
B1, and therefore (1 · · · 1 1)V −1 = (0 · · · 0 1) is a left eigenvector for D0

and D1, with corresponding eigenvalue 1. This implies that the last row of
Ek is (0 · · · 0 1), and hence the Jacobian matrix of K on τk1 τ0Γ

o is the n×n
minor given by the first n rows and columns of Ek. Such a matrix has deter-
minant of absolute value 1, and hence K preserves the Lebesgue measure.

For every t > 0 and every (a0, . . . , at−1) ∈ {0, 1}t the Lebesgue mea-
sure 2−t of Γa0...at−1 coincides with the Haar measure of its υ-counterimage
[a0, . . . , at−1]. Since the sets Γa0...at−1 generate the Borel σ-algebra of Γ , the
push-forward of µ via υ is λ. Let Y = {p ∈ Γ : the symbolic orbit of p
is not unique}. Then Y is a λ-nullset, since it is contained in the λ-nullset⋃
t≥0 T

−t[Γ0 ∩Γ1]. Therefore X = Γ \
⋃
t∈ZK

tY has full Lebesgue measure,
and υ−1X has full Haar measure. By construction, υ is a bijection between
υ−1X and X. If a ∈ υ−1X and p = υ(a), then all the elements in the K-orbit
of p have a unique symbolic orbit. Hence the sequence A constructed from
a coincides with A′, and by Theorem 3.5, υ(a + 1) = Kυ(a).

4. T -Walsh functions on simplexes. In this section we will prove that
every K-orbit is λ-uniformly distributed. Remember [9, Definition III.1.1]
that a countable sequence {pi}i∈N in a compact metric space X endowed
with a Borel probability measure ν is ν-uniformly distributed if for every
continuous function f : X → R we have

(4.1) lim
k→∞

1
k

k−1∑
i=0

f(pi) =
�

X

f dν.

Let ι : Γ → {0, 1}N be the function that associates to a point its final
orbit. It is a right inverse to υ, so it is injective. For t ≥ 1 and a0, . . . , at−1 ∈
{0, 1}, let Γ fa0...at−1 = ι−1[a0, . . . , at−1] = {p ∈ Γ : the final orbit of p begins
with a0 . . . at−1}. For a fixed t, the collection of all sets Γ fa0...at−1 is a true
partition of Γ , not just a mod 0 one.
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Lemma 4.1. The set Γ fa0...at−1 is obtained from the simplex Γa0...at−1 by
removing some of its proper faces. In particular, Γ fa0...at−1 and Γa0...at−1 have
the same Lebesgue measure 2−t. The embedding ι is Borel, discontinuous,
and has dense range.

Proof. Let w = a0 . . . at−1 be a finite word, let 0 ≤ i < t, and let w(i, 1)
be the word obtained from w by setting ai = 1. We immediately have from
the definitions

Γ fw = Γw \
⋃
{Γw(i,1) : ai = 0}.

Since Bt is a simplicial complex, if ai = 0 then Γw ∩ Γw(i,1) is a proper face
(possibly empty) of Γw, and our first two statements follow. As the clopen
cylinders [a0, . . . , at−1] generate the topology of the Cantor space, ι is Borel;
it is not continuous since ι−1[0] = Γ f0 = Γ0 \ Γ1 is not closed. Finally, ι has
dense range because no Γ fa0...at−1 is empty.

We now change the group structure on the Cantor space, by endowing it
with the structure of the direct product ZN

2 of countably many copies of the
two-element group Z2 (no blackboard type here). Addition of two elements
a and b is done componentwise without carry, the topology and the Haar
measure being the same as those of Z2.

Just as a Kakutani–von Neumann map is the push-forward of the adding
machine (Z2,+1) by a topological quotient map, a Walsh function is the
push-forward of a character χ of ZN

2 by the same map; in our case, it is
simply the composition χι. By the Pontryagin duality, the character group
of ZN

2 is the direct sum
⊕N Z2 with the discrete topology; since ZN

2 has ex-
ponent 2, each character has range in {+1,−1}. By associating the element
(d0, d1, . . . , dt−1, 0, 0, . . .) (with dt−1 = 1) to m =

∑t−1
i=0 di2

i, we identify⊕N Z2 with N; under this identification the sum of m and l is the natural
number m ⊕ l whose ith binary digit is the mod 2 sum of the ith binary
digits of m and l. In short, we obtain the following definition.

Definition 4.2. Given m ∈ N whose binary expansion is m =
∑t−1

i=0 di2
i

(with dt−1 = 1) and p ∈ Γ fa0...at−1 , write 〈m, p〉 for d0a0+d1a1+· · ·+dt−1at−1

(mod 2). The mth T -Walsh function um = χmι : Γ → {+1,−1} is defined
by um(p) = (−1)〈m,p〉; we have u0 = 1Γ . For m ≥ 1 the level of um is t ≥ 1,
and the set Ut of T -Walsh functions of level t has cardinality 2t−1.

The name T -Walsh refers to the rôle of the map T—that stays on the
stage through the ι embedding—in generating the group U = {u0}∪

⋃
t≥1 Ut;

see Proposition 4.3(i) below. Write r = u1 for the first T -Walsh function;
then r(p) equals +1 or −1 according to whether p belongs to Γ f0 or not. The
functions r, rT, rT 2, . . . correspond to the classical Rademacher functions;
see Remark 4.4.
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Proposition 4.3. Let m =
∑t−1

i=0 di2
i be as above. Then:

(i) We have

um =
t−1∏
i=0

(rT i)di ;

this expression is unique and includes the case m = 0, since an
empty product equals 1 by definition.

(ii) um ·ul = um⊕l, and hence the group algebra R[U ] coincides with the
R-span of U .

(iii) The family U forms an orthonormal set in L2(Γ,R).
(iv) The closure of R[U ] in L∞(Γ,R) contains all continuous real-valued

functions on Γ .

Proof. (i) Under the identification of the character group of ZN
2 with⊕NZ2, the function r=χ1ι corresponds to (1, 0, 0, . . .). Applying T amounts

to shifting the final orbit of a point by one, and therefore rT i corresponds
to (0, . . . , 0, 1, 0, . . .), with 1 in the ith position. Our identity then reduces
to the unique expansion of m in base 2.

(ii) is immediate from the definitions.
(iii) Let [a0, . . . , at−1] be a cylinder in ZN

2 . By Lemma 4.1 the Lebesgue
measure of its ι-counterimage equals its Haar measure µ([a0, . . . , at−1]).
Since the cylinders generate the Borel σ-algebra of ZN

2 , the push-forward
of λ by ι is µ. In particular,

	
Γ um dλ =

	
ZN

2
χm dµ, and (iii) amounts to the

well known orthonormality of elements of the character group.
(iv) Let f ∈ C(Γ,R) and ε > 0. Then fυ ∈ C(ZN

2 ,R) and, since the
R-span of the characters is dense in the uniform topology, there exists
ϕ =

∑s
i=0 αiχi such that ‖ϕ − fυ‖∞ < ε. But then |ϕι(p) − fυι(p)| =

|(
∑s

i=0 αiui)(p)− f(p)| < ε for every p ∈ Γ .

Remark 4.4. Let w0, w1, w2, . . . denote the classical Walsh functions
on [0, 1]. They are definable in a manner analogous to the one in Propo-
sition 4.3(i), namely by wm =

∏t−1
i=0(rDi)di , with the doubling map D in

place of the tent map T ; the functions rDi are the classical Rademacher
functions [9, p. 116]. Let Wt = {wm : 2t−1 ≤ m < 2t} be the set of Walsh
functions of level t ≥ 1. Then Wt = Ut for every t (we neglect the behav-
ior at points of discontinuity). Indeed, the above identity is true for t = 1
(since w1 = r = u1) and for t = 2 (since w2 = rD = rT · r = u3 and
w3 = rD · r = rT = u2). Now observe that:

(i) TD = T 2;
(ii) we have

Ut+1 =
⋃
u∈Ut

{uT, uT · r}.
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Applying the identity (ii) twice yields

Ut+1 =
⋃

v∈Ut−1

{vT 2, vT 2 · rT, vT 2 · r, vT 2 · rT · r},

and similar identities hold for Wt+1, with D replacing T . We thus obtain by
induction

Wt+1 =
⋃

w∈Wt

{wD,wD · r} =
⋃
u∈Ut

{uD, uD · r}

=
⋃

v∈Ut−1

{vTD, vTD · rD, vTD · r, vTD · rD · r}

=
⋃

v∈Ut−1

{vT 2, vT 2 · rT · r, vT 2 · r, vT 2 · rT} = Ut+1.

Remark 4.5. For n ≥ 3 our T -Walsh functions are rather different from
the usual multidimensional Walsh functions [5]. Indeed, the latter assume
constant value ±1 on each cube of a partition of [0, 1]n defined by equations
of the form xi = c, with c a dyadic rational. On the other hand, the T -Walsh
function um of level t assumes constant value on the interior of each simplex
of the partition Bt. The equations defining the simplexes of Bt have rational
coefficients, but definitely not dyadic ones. Actually, pictures drawn for the
2-dimensional case—such as Figure 3, or the second picture on [10, p. 252],
displaying B4—are rather misleading, since they suggest that the simplexes
constituting Bt are always congruent to each other, and are definable by
equations of the form

∑n
i=1 bixi = c with bi ∈ {0, 1,−1} and c ∈ Z[1/2].

These facts are true for n = 1, 2, but false for n ≥ 3; for example, one of the
planes bounding τ11

1 Γ in dimension 3 has equation 20x1−12x2 +16x3 = 15.
See also the remark after [10, Corollary 2.4].

The main result in this section is the following.

Theorem 4.6. For every p ∈ Γ , the sequence p,Kp,K2p, . . . is λ-
uniformly distributed.

It is well known that the ν-uniform distribution of all orbits implies
that a dynamical system admits only ν as an invariant measure, i.e., is
uniquely ergodic. Note that this fact is usually stated for homeomorphisms
(in which case the two conditions are equivalent), but the proof of the above
implication holds for all Borel maps; see, e.g., [2, Theorem I.8.2].

By [9, Theorem III.1.1] and Proposition 4.3(iv), the class of T -Walsh
functions is convergence-determining, so the validity of (4.1)—with ν = λ—
for all T -Walsh functions implies its validity for all continuous functions.
Taking Proposition 4.3(iii) into account, and noting that (4.1) surely holds
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for u0 = 1Γ , we must prove that for every m > 0 and every p ∈ Γ we have

(4.2) lim
k→∞

1
k

k−1∑
i=0

um(Kip) = 0.

Fix therefore um of level t ≥ 1; then um is constant on each Γ fa0...at−1 .
By Lemma 4.1, um is constant on the topological interior of each of the
n-dimensional simplexes in Bt. Let X be the union of these interiors, and
Y = Γ \X be the union of all the (n− 1)-dimensional simplexes in Bt.

Choose now p, and let a0 be its final orbit. Construct the sequences
A = a0,a1,a2, . . . and A′ as in Section 3, now taking them infinite to the
right only. Partition A in blocks B0, B1, B2, . . . of consecutive elements: the
block B0 contains a0 and all subsequent elements until and including the
first one, say aj0 , beginning with 1t. The block B1 now contains aj0+1 (that
begins with 0t) and all subsequent elements till the first one, aj1 , beginning
with 1t; the blocks B2, B3, . . . are constructed analogously. Let us call the
last element of the block B the pivot of B; it is the only element of B
beginning with 1t.

Lemma 4.7. Let B be a block in A with pivot b = 1tc. Then:

(i) If a ∈ B is a final orbit, then b is a final orbit.
(ii) Assume that b is a final orbit, while a ∈ B is not. Then {υ(d) :

d ∈ B} ⊂ Y .

Proof. Note first that the elements of B are exactly the symbolic orbits
of the form wc with w a word of length t. Hence, if wc is a final orbit, then
1tc is a final orbit by Lemma 3.4(v); this proves (i). For (ii), let a = wc be
not final, d = d0 . . . dt−1c ∈ B, q = υ(a), z = υ(d). Since the final orbit of q
is not a, while the final orbit of T tq is c (because c is a final orbit, again by
Lemma 3.4(v) applied to b), we must have T iq ∈ Γ0∩Γ1 for some 0 ≤ i < t.
Therefore T tq = T tz lies in a proper face of Γ . By Lemma 3.4(i) and the
proof of [10, Proposition 2.2], z = τd0 · · · τdt−1T

tz ∈ Y .

Rename the elements of A′ by writing

A′ = b0, . . . ,bs0 ,bs0+1, . . . ,bs1 ,bs1+1, . . . ,bs2 , . . .

where bsi is the ith surviving pivot; since a0 is a final orbit, we have b0 = a0

and bs0 is the pivot of B0, by Lemma 4.7(i). The reduced blocks B′i are
defined by B′0 = {b0, . . . ,bs0} and B′i+1 = {bsi+1, . . . ,bsi+1}. The elements
of B′i are exactly the final orbits in the block B ⊂ A to which bsi belongs.
The cardinality of B′i varies from 1 (if only the pivot survives) to 2t. Applying
Theorem 3.5, let pj = Kjp be the point whose final orbit is bj , and let Si =∑
{um(pj) : bj ∈ B′i}. Since the length of the reduced blocks is bounded,

and um is bounded too, we can establish (4.2) by computing the limit along
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the surviving pivots, i.e., by establishing

(4.3) lim
k→∞

1
sk + 1

k∑
i=0

Si = 0.

Consider the reduced block B′i. If B′i contains 2t elements, then one sees
easily that Si = 0. By Lemma 4.7(ii), if B′i contains less than 2t elements,
then {pj : bj ∈ B′i} ⊂ Y . Therefore (4.3) follows immediately from the
following claim.

Claim. The set {j ∈ N : pj ∈ Y } has density zero.

Proof of Claim. Let us backtrack to the unpruned sequence A, and let
qi = υ(ai). The sequence q0, q1, q2, . . . may have repetitions, but is surely
λ-uniformly distributed. Indeed, every continuous function f : Γ → R gives
rise to a continuous function fυ on Z2. One then uses the fact that A is
µ-uniformly distributed [9, Theorem IV.4.2], and that λ is the push-forward
of µ by υ, as noted in the proof of Corollary 3.8.

Choose now ε > 0. By the above, we can find an index i0 such that for
each i1 ≥ i0 we have

]{0 ≤ i < i1 : qi ∈ Y }
i1

<
ε

2n(n−1)/2
,

where ] denotes cardinality. Without loss of generality ai0 is a surviving
pivot, say ai0 = bj0 . Let j1 ≥ j0, so that bj1 = ai1 for a certain i1 ≥ i0. By
Theorem 3.2, every point in q0, q1, q2, . . . repeats at most 2n(n−1)/2 times.
Therefore j1 ≥ i1/2n(n−1)/2, and we obtain

]{0 ≤ j < j1 : pj ∈ Y }
j1

≤ 2n(n−1)/2 ]{0 ≤ j < j1 : pj ∈ Y }
i1

≤ 2n(n−1)/2 ]{0 ≤ i < i1 : qi ∈ Y }
i1

< ε.

This proves our claim, and concludes the proof of Theorem 4.6.

5. An arithmetical conjugate. In this final section we discuss a con-
jugate of our map K that has arithmetical significance. Since the facts we
are presenting derive in a rather formal fashion from the results proved in
the previous sections, we will be somewhat brief.

Recall the matrices C0 and C1 introduced in Section 2. Define a map
ψ0 : Γ → Γ as follows: if p = (α1, . . . , αn) ∈ Γ , then ψ0p is the unique point
(β1, . . . , βn) such that (β1 · · · βm 1)tr is proportional to C0(α1 · · · αm 1)tr.
Define analogously ψ1 in terms of C1. For every t ≥ 1 and every t-uple
(a0, . . . , at−1) ∈ {0, 1}t the image ψa0 · · ·ψat−1Γ is a simplex, and the set of
all faces of these 2t n-dimensional simplexes form a simplicial complex Ft
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supported on Γ . The complexes Ft and Bt are combinatorially isomorphic,
and there exists a unique orientation-preserving homeomorphism Φ : Γ → Γ
that restricts to homeomorphisms between ψa0 · · ·ψat−1Γ and τa0 · · · τat−1Γ ,
for each t and a0, . . . , at−1. See [10] for the above results; the map Φ is an n-
dimensional generalization of the Minkowski question mark function [8], [12].

Since K was defined via a combinatorial property (namely, the existence
of the partitions in Proposition 2.1), it is no surprise that the conjugate
Φ−1KΦ is definable via an analogous combinatorial construction. Namely,
we define a bijection E : Γ → Γ by setting E = ψk0ψ1(ψk1ψ0)−1 on ψk1ψ0Γ

o.
We also set Ev′−1 = v0, where v′−1 is the only element in

⋂
{ψk1Γ : k ≥ 0}.

By [10, Proposition 3.1] the following diagram commutes:

ψk1ψ0Γ
o

Φ
��

Γ o
ψk

1ψ0oo

Φ

��

ψk
0ψ1 // ψk0ψ1Γ

o

Φ
��

τk1 τ0Γ
o Γ o

τk
1 τ0oo

τk
0 τ1 // τk0ψ1Γ

o

Since Φv′−1 = v−1 and Φv0 = v0, we have E = Φ−1KΦ, as expected.
The bijection E is piecewise-fractional-linear with integer coefficients.

Indeed, let (ei1 · · · ein+1) be the ith row of Ck0C1C
−1
0 C−k1 . Then on ψk1ψ0Γ

o

the ith component Ei of E (i.e., E followed by the projection on the ith
coordinate) has the form

Ei(α1, . . . , αn) =
ei1α1 + · · ·+ einαn + ein+1

en+1
1 α1 + · · ·+ en+1

n αn + en+1
n+1

.

In the 1-dimensional case a conjugate of the classical Kakutani–von Neu-
mann map via the Minkowski function was introduced in [1, Theorem 2.3].

Theorem 5.1. The homeomorphism E is minimal and uniquely ergodic,
with the Minkowski measure Φ∗λ as its unique invariant probability. All
points of Γ have a Φ∗λ-uniformly distributed E-orbit. The orbit of v0 con-
stitutes an enumeration without repetitions of all points in Γ having rational
coordinates.

Proof. By definition Φ∗λ is the pullback of λ via Φ, i.e., (Φ∗λ)(A) =
λ(ΦA) for every Borel subset A of Γ . All statements are immediate from
our previous results, upon noting that by [10, Theorem 3.5] the set of rational
points in Γ is mapped bijectively by Φ to the set of dyadic points.

Basic ergodic theory implies that the Minkowski and the Lebesgue mea-
sures are mutually singular [10, p. 262]. The enumeration of all rational
points given by Theorem 5.1 gives a nice and effective representation of the
mass distribution determined by the Minkowski measure, so we conclude
this paper by drawing the first 6000 points in the E-orbit of v0.
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Fig. 4. The set {Etv0 : 0 ≤ t < 6000}
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