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1. Introduction. In this work q denotes an integer ≥ 2 and c is a non-
integer positive real number. We use the notation e(x) for the exponential
function e2πix. If x is a real number then ‖x‖ denotes the distance from x
to the nearest integer and {x} is the fractional part of x.

Every integer n ≥ 0 has a unique representation in base q of the form

n =
ν∑
j=0

njq
j , nj ∈ {0, 1, . . . , q − 1},

with nν 6= 0. The sum-of-digits function sq(n) is defined by sq(n) =
∑ν

j=0 nj .
Gelfond [10] showed in 1968 that if q,m > 1 and r, `, a are integers with
(m, q − 1) = 1, then

#{n ≤ x : n ≡ ` mod r, sq(n) ≡ a mod m} =
x

mr
+O(xλ),(1.1)

where λ < 1 is a positive constant depending only on q and m. If one replaces
the arithmetic progression {n ≥ 0 : n ≡ ` mod r} by another sequence, then
the corresponding question is in general much harder to answer. A first result
concerning almost primes (positive integers consisting of at most two prime
factors) was obtained by Fouvry and Mauduit [9]. In particular, they gave
a lower bound on the number of almost primes m such that sq(m) lies in a
fixed residue class. Recently, Mauduit and Rivat [18] showed that (sq(p)),
where p ranges over all primes, is well distributed in arithmetic progressions.
(Drmota, Mauduit, and Rivat [7] also showed a local limit theorem.) The
treatment of the sequence (sq(P (n)))n∈N, where P (n) is a polynomial with
P (N) ⊆ N, seems to be even more complex. Dartyge and Tenenbaum showed
in [2] that if (m, q − 1) = 1, then

#{n ≤ x : sq(P (n)) ≡ a mod m} ≥ Cxmin(1,2/d!),
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where d is the degree of the polynomial P and C is a positive constant
depending on P , q and m. Mauduit and Rivat solved the problem in the
quadratic case for general q ≥ 2:

Theorem A. Let q and m be integers ≥ 2. Set d = (q − 1,m) and
Q(a, d) = #{0 ≤ n < d : n2 ≡ a mod d}. Then there exists a constant
σq,m > 0 such that for all a ∈ Z (1),

#{n ≤ x : sq(n2) ≡ a mod m} =
x

m
Q(a, d) +Oq,m(x1−σq,m).

Furthermore, the sequence (α sq(n2))n∈N is uniformly distributed modulo 1
if and only if α is irrational.

Recently, Drmota, Mauduit, and Rivat considered in [6] the sequence
(sq(P (n)))n∈N for sufficiently large prime bases q:

Theorem B. Let d ≥ 2 be an integer, q ≥ q0(d) a sufficiently large
prime number, P ∈ Z[X] of degree d such that P (N) ⊂ N for which the
leading coefficient ad is coprime to q, and m ≥ 1 an integer. Then there
exists σq,m > 0 such that for all integers a,

#{n ≤ x : sq(P (n)) ≡ a mod m} =
x

m
Q(a,D) +O(x1−σq,m),

where D = (q − 1,m) and Q(a,D) = #{0 ≤ n < D : P (n) ≡ a mod D}.
Furthermore, the sequence (α sq(P (n)))n∈N is uniformly distributed modulo 1
if and only if α is irrational.

A related question is whether a Gelfond type result also holds true for the
sequence (sq(bncc))n∈N, where c is a non-integer real number. This can be
understood as an intermediate case between polynomials of different degree.
Mauduit and Rivat gave a positive answer for c ∈ (1, 4/3) in 1995 (see [15])
and for c ∈ (1, 7/5) in 2005 (see [16]). They considered more generally q-
multiplicative functions and used, among other tools, the double large sieve
of Bombieri and Iwaniec to solve this problem. In particular, they showed
the following result:

Theorem C. Let c ∈ (1, 7/5) and q ≥ 2. If (a,m) ∈ N× N∗, then

lim
x→∞

1
x

#{n ≤ x : sq(bncc) ≡ a mod m} =
1
m
.(1.2)

Furthermore, the sequence (α sq(bncc))n∈N is uniformly distributed modulo 1
if and only if α is irrational.

As pointed out by Mauduit (see [14, Section II.4]), one can deduce from
a result of Harman and Rivat [12] that (1.2) holds for almost all c ∈ [1, 2).

(1) f = Or(g) means that there exists a constant κ (depending on r) such that
|f | ≤ κg.
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Indeed, if A is an infinite set of positive integers such that #{n ≤ x :
n ∈ A} � x, then [12, Theorem 3] implies that for almost all c ∈ (1, 2),

#{n ≤ x : bncc ∈ A} = γ
∑
n≤xc
n∈A

n−1+γ + o(x),(1.3)

where γ = 1/c. Setting A = {n ∈ N : sq(n) ≡ a mod m}, a refined version of
Gelfond’s work (cf. (1.1)) implies that #{n ≤ x : n ∈ A} � x. Elementary
discrete Fourier analysis and partial summation (similar to Section 6.1 be-
low) allow one to evaluate the sum occurring in (1.3) and we finally deduce
that (1.2) holds true for almost all c ∈ (1, 2) and for every integer q ≥ 2 and
(a,m) ∈ N× N∗.

This leads to the following conjecture which can be found in [14, Con-
jecture 1]:

Conjecture 1 (Mauduit). For almost all c > 1 we have, for every
integer q and m greater than 1 and 0 ≤ a < m,

lim
x→∞

1
x

#{n ≤ x : sq(bncc) ≡ a mod m} =
1
m
.(1.4)

Other interesting questions deal with the asymptotic behavior of the
sum-of-digits function of bncc. Using a method of Bassily and Kátai [1], it is
relatively easy to show that sq(bncc) satisfies a central limit theorem. More
precisely, we have

1
x

#
{
n ≤ x : sq(bncc) ≤ cµq logq x+ y

√
σ2
qc logq x

}
= Φ(y) + o(1),(1.5)

where

µq :=
q − 1

2
, σ2

q :=
q2 − 1

12
,

and Φ(y) denotes the normal distribution function (see [5]).

2. Main results. The main objective of this paper is to enlarge the
range of possible real numbers c in Theorem C for which we can show
uniform distribution results (Corollaries 1 and 2). We are able to deal with
all positive real numbers c which are not integers but we restrict ourselves
to bases q which are not too small. It turns out that the case c ∈ N is of
completely different nature. This makes it eventually impossible to treat
general numbers c with the methods presented in this paper. In Section 5
we will provide a precise analysis of this problem and discuss the differences
of our method from the methods used in [6] (see Remark 7).

Furthermore, we show a local limit theorem (Corollary 3) which gener-
alizes (1.5).

In our main theorem we study the exponential sum
∑

n e(α sq(bncc)):
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Theorem 1. Let c > 0 be a non-integer real number and let α ∈ R.
Then there exists a constant q0(c) such that for all q ≥ q0(c) we have (2)∑

1≤n≤x
e(α sq(bncc))�c,q (log x)x1−σc,q‖(q−1)α‖2 ,(2.1)

where σc,q > 0 is a computable positive constant. In the case 0 < c < 1
we have q0(c) = 2 and the exponent on the right hand side of (2.1) can be
replaced by 1− σc,q‖α‖2.

Remark 1. It follows from our proof that an admissible value of q0(c) is
explicitly computable and that this value is bounded by Kcc

4
, where K is an

absolute constant. We use different methods to show the result for different
values of c in order to optimize q0(c) (see Sections 4 and 5 and the end of
Section 6). If 1 < c < 7/5, then [16, Theorem 1] and partial summation
ensure that we can choose q0(c) = 2. The case 0 < c < 1 can be regarded
trivial but for completeness we give a short proof in Section 6.

Corollary 1. Let c > 0 be a non-integer real number. There exists
a constant q0(c) ≥ 2 such that for all q ≥ q0(c) the following holds: If
(a,m) ∈ N× N∗, then there exists a constant σq,m,c > 0 such that

#{n ≤ x : sq(bncc) ≡ a mod m} =
x

m
+Oc,q,m(x1−σq,m,c).

Remark 2. Corollary 1 does not solve Conjecture 1 entirely, but it
leads us to conjecture that (1.4) is valid for every c > 1 (c 6∈ N). If c > 1
is an integer, then elementary arithmetic calculations may yield a different
asymptotic formula which depends on a, m and q (cf. [6] and Theorem A).

Corollary 2. Let c > 0 be a non-integer real number. There exists a
constant q0(c) such that for all q ≥ q0(c) the sequence (α sq(bncc))n∈N is
uniformly distributed modulo 1 if and only if α is irrational.

Corollary 3. Let c > 0 be a non-integer real number. There exists a
constant q0(c) ≥ 2 such that for all q ≥ q0(c) the following holds: Uniformly
for all integers k ≥ 0 we have
1
x

#{n ≤ x : sq(bncc) = k}=
1√

2πσ2
qc logq x

(
e−∆

2
k/2 +Oc,q

(
(log log x)7

(log x)1/2

))
,

where ∆k =
k − µqc logq x√

σ2
qc logq x

.

The main idea of showing Theorem 1 is to divide the proof up into a
Fourier theory part and an exponential sums part (where no sum-of-digits
function occurs). In Section 3 we state some known results on the discrete

(2) The symbol f �r g means that f = Or(g).
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Fourier transform of the sum-of-digits function. In the two subsequent sec-
tions we discuss the sum

∑
n e(βbncc) (we present a method which works for

1 < c < 2 in Section 4 and a general method in Section 5). In Section 6 we
finally prove Theorem 1. Section 7 is devoted to the proofs of Corollaries 1
and 2. In the last section, we give a proof of Corollary 3.

3. Fourier transform of α sq(·). Let q ≥ 2, α ∈ R and λ ∈ N. The
discrete Fourier transform Fλ(·, α) of the function u 7→ e(α sq(·)) is defined
for all h ∈ Z by

Fλ(h, α) =
1
qλ

∑
0≤u<qλ

e(α sq(u)− huq−λ).

This function is periodic with period qλ in the first component and can be
represented by a trigonometric product. Indeed, we have

|Fλ(h, α)| = q−λ
∏

1≤j≤λ
ϕq(α− hq−j),

where ϕq is defined by

ϕq(t) =
{
|sinπqt|/|sinπt| if t ∈ R \ Z,
q if t ∈ Z.

(3.1)

Next, we state upper bounds of the L1 and L∞ norm of Fλ which are
of particular importance for the proof of our main theorem. For a thorough
analysis of ϕq and Fλ see [18, 17].

Lemma 1. Let q ≥ 2, α ∈ R, h ∈ Z, λ ≥ 1 and

σq =
π2

12 log q

(
1− 2

q + 1

)
.

Then

|Fλ(h, α)| ≤ eπ2/48q−σq‖(q−1)α‖2λ.

Proof. This is Lemma 9 of [17].

Lemma 2. For q ≥ 3, α ∈ R and λ ≥ 1 we have∑
0≤h<qλ

|Fλ(h, α)| ≤ qηqλ,

where ηq is defined by

qηq = max
t∈R

(
1
q

∑
0≤r<q

ϕq

(
t+

r

q

))
.

Proof. This is (a part of) Lemma 16 of [18].
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Remark 3. The Cauchy–Schwarz inequality (together with [18, Lemma
13]) implies that ηq ≤ 1/2. Mauduit and Rivat showed in [18, Lemma 14]
that

qηq =
1
q

q−1∑
r=0

1
sin π

q

(
1
2 + r

) ≤ 2
q sin π

2q

+
2
π

log
2q
π
.

This implies for example that ηq ≤ (log log q)/(log q) for q ≥ 15 and hence
ηq is arbitrarily small if q is large enough. Finally, we want to remark that
the case q = 2 is treated in [18, Lemma 18].

4. Exponential sums for 1 < c < 2. In this section we treat the
exponential sum

∑
n e(βbncc) for 1 < c < 2.

Proposition 1. Let 1 < c < 2 and x, ν ∈ N with qν−1 < x ≤ qν .
Furthermore, let β ∈ R \ Z. Then∑

qν−1<n≤x

e(βbncc)�c,q νq
ν(1−(2−c)/3) +

1
‖β‖

qν(1−c).

The method of proving this proposition is based on work of Mauduit and
Rivat [16] and uses the fact that an integer m has the form m = bncc if and
only if

b−mγc − b−(m+ 1)γc = 1,

where γ = 1/c. If we set Ψ(u) = u− buc − 1/2, then we obtain

(4.1)
∑

qν−1<n≤x

e(βbncc)

=
∑

q(ν−1)c<m≤xc
e(βm)(b−mγc − b−(m+ 1)γc)

=
∑

q(ν−1)c<m≤xc
e(βm)((m+ 1)γ −mγ)

+
∑

q(ν−1)c<m≤xc
e(βm)(Ψ(−(m+ 1)γ)− Ψ(−mγ)).

The first sum on the right hand side of (4.1) can be estimated by partial
summation (see Lemma 3). To treat the second sum we follow the proof
of [16, Lemma 3]. This leads us to consider the double sum

S(K, M̃, u) =
∑

K<|k|≤2K

∣∣∣ ∑
M<m≤M̃

f(m)e(k(m+ u)γ)
∣∣∣,(4.2)

where f(m) = e(βm). The main difference from the cited lemma of Mauduit
and Rivat is that they have to deal with q-multiplicative functions f(m)
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instead of e(βm). Using van der Corput’s method of estimating exponential
sums finally enables us to obtain the desired result (see Lemma 4).

Lemma 3. Let c > 1 and γ = 1/c. Furthermore, let x, ν ∈ N with
qν−1 < x ≤ qν and β ∈ R \ Z. Then

(4.3)
∑

q(ν−1)c<m≤xc
e(βm)((m+ 1)γ −mγ)

≤ γ

|sinπβ|
q(ν−1)(1−c)(2− q1−c) +

1
4
�c,q

1
‖β‖

qν(c−1) + 1.

Proof. Let S be the sum in question. First we recall a result of [16,
Lemma 2]. If θ ∈ [0, 1], then∑

m≥1

|(m+ 1)θ −mθ − θmθ−1| ≤ 1
4
.

Using this fact, we obtain

|S| ≤
∣∣∣ ∑
q(ν−1)c<m≤xc

γmγ−1e(βm)
∣∣∣+

1
4
.

Partial summation yields∑
q(ν−1)c<m≤xc

γmγ−1e(βm) = γxc(γ−1)
∑

q(ν−1)c<m≤xc
e(βm)

− γ(γ − 1)
xc�

q(ν−1)c

∑
q(ν−1)c<m≤u

e(βm)uγ−2 du.

Since β 6∈ Z, for all q(ν−1)c < u ≤ xc we have∣∣∣ ∑
q(ν−1)c<m≤u

e(βm)
∣∣∣ ≤ 1
|sinπβ|

.

We get (note that x ≤ qν)

S ≤ γ

|sinπβ|

(
q(ν−1)c(γ−1) −

xc�

q(ν−1)c

(γ − 1)uγ−2 du
)

+
1
4

≤ γ

|sinπβ|
q(ν−1)(1−c)(2− q1−c) +

1
4
,

and the result follows.

Lemma 4. Let c ∈ (1, 2) and β ∈ R. Furthermore, let x and ν be integers
with qν−1 < x ≤ qν . Then∑

q(ν−1)c<m≤xc
e(βm)(Ψ(−(m+ 1)γ)− Ψ(−mγ))�q νq

ν(1−(2−c)/3).
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Proof. We can write∑
q(ν−1)c<n≤xc

e(βm)(Ψ(−(m+ 1)γ)− Ψ(−mγ))

=
∑

0≤j<clog q/log 2

∑
q(ν−1)c2j<n≤q(ν−1)c2j+1

q(ν−1)c<n≤x

e(βm)(Ψ(−(m+ 1)γ)− Ψ(−mγ))

�q max
q(ν−1)c≤M≤qνc

max
M<M ′≤2M

∑
M<n≤M ′

e(βm)(Ψ(−(m+ 1)γ)− Ψ(−mγ)).

In order to prove Lemma 4, it suffices to show that for M > q(ν−1)c we have

SM :=
∣∣∣ ∑
M<m≤M ′

e(βm)(Ψ(−(m+ 1)γ)− Ψ(−mγ))
∣∣∣(4.4)

� (logM)Mγ(1−(2−c)/3).

The next steps are very similar to the proof of [16, Lemma 3]. Thus, we
give only a rough outline. We begin by approximating Ψ by trigonometric
polynomials. Let K ≥ 1 be an integer. Then it follows from a theorem of
Vaaler [22, Theorem 18] that there exist coefficients aK(k) with 0 ≤ aK(k)
≤ 1 such that the trigonometric polynomials

ΨK(t) = − 1
2iπ

∑
1≤|k|≤K

aK(k)
k

e(kt)

and

κK(t) =
∑
|k|≤K

(
1− |k|

K + 1

)
e(kt)(4.5)

satisfy

|Ψ(t)− ΨK(t)| ≤ 1
2K + 2

κK(t).

Note that κK(t) is the periodic and positive Fejér kernel and that
1

2K + 2

∑
M≤m≤2M

κK(mθ)�θ K
−1M +K1/2M θ/2 +K−1/2M1−θ/2(4.6)

for every 0 < θ < 1 and for every M ≥ 1 (this is [16, Lemma 5] and can be
shown by using [11, Theorem 2.2]). We set K0 := bM1−γ(1−δ)c, where δ > 0
will be chosen later on, and obtain

SM ≤
∣∣∣ ∑
M<m≤M ′

e(βm)(ΨK0(−(m+ 1)γ)− ΨK0(−mγ))
∣∣∣

+
1

2K + 2

∑
M<m≤M ′

κK0(−(m+ 1)γ) +
∑

M<m≤M ′
κK0(−mγ).
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The last two sums can be handled by (4.6). This yields

SM ≤
∣∣∣ ∑
M<m≤M ′

e(βm)(ΨK0(−(m+ 1)γ)− ΨK0(−mγ))
∣∣∣

+K−1
0 M +K

1/2
0 Mγ/2 +K

−1/2
0 M1−γ/2.

For our special choice of K0 we have

K
1/2
0 Mγ/2 = M1/2+γδ/2 ≥M1/2−γδ/2 = K

−1/2
0 M1−γ/2.

Thus

SM �
∣∣∣ ∑
M<m≤M ′

e(βm)(ΨK0(−(m+ 1)γ)− ΨK0(−mγ))
∣∣∣(4.7)

+Mγ(1−δ) +M1/2+γδ/2.

Next we treat the sum that arises in (4.7). Replacing ΨK0 by its expression
and following exactly the same steps as in [16, Section 2.3], we obtain

(4.8)
∑

M<m≤M ′
e(βm)(ΨK0(−(m+ 1)γ)− ΨK0(−mγ))

� (logK0) max
0<K≤K0

max
u∈{0,1}

max
M̃∈[M,2M ]

min(M1−γ ,K−1)S(K, M̃, u),

where S(K, M̃, u) is defined by (4.2). In the interval [M, 2M ] considered we
have the estimate

|k|Mγ−2 �
∣∣∣∣d2(βy + k(y + u)γ)

dy2

∣∣∣∣� |k|Mγ−2.

It follows from [11, Theorem 2.2] that

S(K, M̃, u)�
∑

K<k≤2K

(k1/2Mγ/2 + k−1/2M1−γ/2)

� K3/2Mγ/2 +K1/2M1−γ/2.

If K ≤M1−γ we have

Mγ−1S(K, M̃, u)� K3/2M3γ/2−1 +K1/2Mγ/2 �M1/2,

whereas

K−1S(K, M̃, u)� K1/2Mγ/2 +K−1/2M1−γ/2 � K1/2Mγ/2 +M1/2

if K > M1−γ . With (4.8) and the definition of K0 we get∑
M<m≤M ′

e(βm)(ΨK0(−(m+ 1)γ)− ΨK0(−mγ))

� (logK0)(K1/2
0 Mγ/2 +M1/2)� (logM)M1/2+γδ/2.
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Finally (see (4.7)),

SM � (logM)(Mγ(1−δ) +M1/2+γδ/2).

Now we choose δ > 0 such that the upper bound is as small as possible.
This is apparently the case if δ = (2− c)/3 and we are done.

Proof of Proposition 1. The proposition follows immediately from equa-
tion (4.1) and the previous two lemmas.

5. Exponential sums for c > 1, c 6∈ N. In this section we give a
non-trivial upper bound of the sum

∑
n e(βbncc) for all real numbers c > 1

which are different from an integer. If 1 < c < 19/11, then it turns out that
the method based on Mauduit and Rivat’s work gives a better result (see
Remark 4).

If ‖β‖ is relatively small, then the estimation of
∑

n e(βbncc) can be
reduced to a similar problem where e(βbncc) is replaced by e(βnc). This
leads to a simple application of the Kusmin–Landau Theorem. In the other
case, we enhance a method used by Deshouillers to obtain a non-trivial
upper bound.

Proposition 2. Let c be a real number > 1 and x and ν be integers
such that qν−1 < x ≤ qν . Furthermore, let β ∈ R with 0 < ‖β‖ < 1

2cq
ν(1−c).

Then ∑
qν−1<n≤x

e(βbncc)�c,q
1
‖β‖

qν(1−c) + qν(2−c).(5.1)

Proof. Let S be the sum in (5.1). Without loss of generality, we can
assume that 0 < β < 1

2cq
ν(1−c). Since

e(βbncc) = e(βnc)e(−β{nc}) = e(βnc)(1 +O(β)),

we obtain

|S| =
∣∣∣ ∑
qν−1<n≤x

e(βnc)e(−β{nc})
∣∣∣� ∣∣∣ ∑

qν−1<n≤x

e(βnc)
∣∣∣+

1
2c
qν(2−c).

Thus, it suffices to consider the last sum. If we set f(y) = βyc, then we have
for y ∈ [qν−1, qν ] the estimate

cβq(ν−1)(c−1) ≤ |f ′(y)| ≤ cβqν(c−1) ≤ 1/2.

Furthermore, f ′′(y) 6= 0 on the interval considered. Hence, we can use [11,
Theorem 2.1] (the Kusmin–Landau Theorem) to get∑

qν−1<n≤x

e(βnc)�c,q
1
β
qν(1−c).

This proves the desired result.
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In order to state the next proposition, we define the constant ρ = ρ(c)
by

ρ := max(ρ1, ρ2, ρ3, ρ4),(5.2)

where

ρ1 =
bcc+ 1− c
2bcc+1 − 1

, ρ3 =
(

3
⌊
c+

301
300

⌋2

log
(

125
⌊
c+

301
300

⌋))−1

,

ρ2 =
bcc+ 2− c
2bcc+2 − 1

, ρ4 = 2−18

(
c+

1
218c2

)−2

.

See Figure 1 for the terms considered in the definition of ρ in the interval
[1, 4] and Figure 2 in the interval [9, 12]. If c < 12 − 1365/(121 log 1375) ≈
10.4388, then ρ1 and ρ2 contribute to the size of ρ. If otherwise c > 12 −
1365/(121 log 1375) then ρ = ρ3 until ρ4 is significant.

2(2−c)/3

ρ1

ρ2

ρ3

ρ4

43.532.521.51
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 1. ρ in the interval [1, 4]

x 10
−4

ρ1

ρ2

ρ3

ρ4

1211.51110.59.59

0

2

4

6

8

10

10

Fig. 2. ρ in the interval [9, 12]
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Proposition 3. Let c > 1 be a real number. Furthermore, let x and ν
be integers with qν−1 < x ≤ qν and β ∈ R be such that ‖β‖ ≥ 1

2cq
ν(1−c).

Then ∑
qν−1<n≤x

e(βbncc)�c,q νq
ν(1−ρ/2),(5.3)

where ρ is defined by (5.2).

Remark 4. If 1 < c < 19/11, then Proposition 1 implies Proposition 3.
Indeed, 2(2−c)/3 is greater than ρ in this case (see Figure 1) and the method
of Mauduit and Rivat gives a better upper bound.

Remark 5. Let c > 1 be a non-integer real number and x and ν be
integers with qν−1 < x ≤ qν . If we set ρ̃ := max(2(2− c)/3, ρ), then Propo-
sition 1 together with Propositions 2 and 3 implies∑

qν−1<n≤x

e(βbncc)�c,q νq
ν(1−ρ̃/2) +

1
‖β‖

qν(1−c)

for every β ∈ R \ Z.

Remark 6. As already pointed out, the method of this section goes
back to Deshouillers [3]. He showed that if c > 12 (c 6∈ N) and ‖β‖ is not too
small, then the sum (5.3) is of order O(x1−ρ), where ρ = (6c2(log c+14))−1.
We improve this result by enhancing two main tools of his method. On the
one hand, we use van der Corput’s method for exponential sums with small
c and a refined version of Vinogradov’s method for exponential sums with
large c (see Lemma 5). On the other hand, we employ Vaaler’s method of
approximate functions with bounded variation.

Remark 7. The method presented in this section cannot be applied for
c ∈ N. Note that Lemma 5 is false for integer exponents (take for example
ξ = 1). The main difference for c ∈ N is that the mth derivative of xc is zero
if m ≥ c + 1 (cf. (5.5)). This makes it impossible to use van der Corput’s
and Vinogradov’s method for exponential sums (even for ξ < 1). To prove
Theorem B, Drmota et al. (see [6]) use a van der Corput-type inequality,
which leads them to study sums of the form∑

n

e(α sq(P (n+ r))− α sq(P (n))),

where P is a polynomial of degree d. If r is small (compared to n), then in
“most” of the cases the higher placed digits of P (n+r) are the same as those
of P (n). Using this fact, the authors of [6] are able to apply Fourier-analytic
tools in order to succeed. However, in doing so, they have to deal with
congruence conditions that seem to be difficult to handle if one replaces
P (n) by bncc for a non-integer valued positive real number c.
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Lemma 5. Let c > 1 be a non-integer real number and define ρ by (5.2).
Furthermore, let x and ν be integers satisfying qν−1 < x ≤ qν and let ξ ∈ R
be such that 1

2cq
ν(1−c) ≤ |ξ| ≤ q(ν−1)ρ. Then∑

qν−1<n≤x

e(ξnc)�c,q q
ν(1−ρ).

Proof. We can write∑
qν−1<n≤x

e(ξnc) =
∑

0≤j< log q
log 2

∑
qν−12j<n≤qν−12j+1

qν−1<n≤x

e(ξnc)

�q max
qν−1≤M≤qν

max
M<M ′≤2M

∑
M<n≤M ′

e(ξnc).

Since for any qν−1 ≤M ≤ qν we have
1
2c
q1−cM1−c ≤ 1

2c
qν(1−c) ≤ |ξ| ≤ q(ν−1)ρ ≤Mρ,

it suffices to show that for M ≥ 1, M < M ′ ≤ 2M and 1
2cq

1−cM1−c ≤ |ξ|
≤Mρ we have ∑

M<n≤M ′
e(ξnc)�c,q M

1−ρ.(5.4)

We set f(y) = ξys. Then we derive, for every m ≥ 1,∣∣∣∣ymm!
f (m)(y)

∣∣∣∣ = |ξ|
∣∣∣∣( cm

)∣∣∣∣yc.
A short calculation shows that

‖c‖
2mc+1

≤
∣∣∣∣( cm

)∣∣∣∣ ≤ cm.
Hence, there exists a constant A = A(c, q) > 1 such that

A−mF ≤
∣∣∣∣ymm!

f (m)(y)
∣∣∣∣ ≤ AmF(5.5)

for every y ∈ [M, 2M ] and m ≥ 1, where F = |ξ|M c. In order to get a
manageable notation, we set ` = (log |ξ|)/(logM). Then we have

M � 1
2c
q1−cM1−cM c ≤ |ξ|M c = F = M `+c ≤Mρ+c.

We can apply [11, Theorem 2.9] (a van der Corput estimate) and deduce
that for every r ≥ 0,∑

M<n≤M ′
e(ξnc)�c,q,r F

1
2r+2−2M

1− r+2

2r+2−2 = M
1− r+2−`−c

2r+2−2 .(5.6)
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Let us fix c. Then we find that ρ is equal to one of the four possible
choices ρ1, ρ2, ρ3 or ρ4 (see (5.2)). Recall that ρ can be equal to ρ3 or ρ4

only if c ≥ 12− 1365/(121 log 1375).
First, we assume that ρ = ρ1 = (bcc+ 1− c)/(2bcc+1− 1). Using inequal-

ity (5.6) with r = bcc − 1, we obtain∑
M<n≤M ′

e(ξnc)�c,q M
1− bcc+1−`−c

2bcc+1−2 �c,q M
1−ρ1 .

The last inequality follows from the fact that

bcc+ 1− `− c
2bcc+1 − 2

≥ bcc+ 1− ρ1 − c
2bcc+1 − 2

= ρ1.(5.7)

Next we consider the case ρ = ρ2 = (bcc + 2 − c)/(2bcc+2 − 1). We apply
inequality (5.6) with r = bcc and obtain∑

M<n≤M ′
e(ξnc)�c,q M

1− bcc+2−`−c
2bcc+2−2 �c,q M

1−ρ2 .

The same calculation as above (see (5.7)) verifies the last inequality. Note
that we cannot improve these estimates by employing (5.6) with other values
of r. Indeed, it is easy to show that for c > 1,

sup
r≥0

(
r + 2− c
2r+2 − 1

)
= max

(
bcc+ 1− c
2bcc+1 − 1

,
bcc+ 2− c
2bcc+2 − 1

)
.

If c is large (and ρ is small), then we use van der Corput’s method in
combination with Vinogradov’s method. Let us assume that ρ = ρ3. As
already noticed, c must be larger than 10 in this case. For ` < 10 − c we
use (5.6) with r = bc+ `c and obtain∑

M<n≤M ′
e(ξnc)�c,q M

1− 1

2bc+`c+2−2 .

Note that bc+ `c ≤ 9 and that we have, for c > 10,
1

211 − 2
> 0.000488 > 0.000382 >

1

3
⌊
10 + 301

300

⌋2 log
(
125
⌊
10 + 301

300

⌋) ≥ ρ3.

Hence, we get ∑
M<n≤M ′

e(ξnc)�c,q M
1−ρ3 .

If 10− c ≤ ` ≤ ρ, then

M ≤M−`−c+b`+c+1c+1 = F−1M b`+c+1c+1 ≤M2,

and b`+c+1c ≥ 11. This allows us to use a well-known result of Vinogradov
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[23, Theorem 2a, p. 109]. We get∑
M<n≤M ′

e(ξnc)�c,q M
1− 1

3b`+c+1c2 log(125b`+c+1c) �c,q M
1−ρ3

in this case too.
It remains to consider the case ρ = ρ4 = 2−18(c + 1/(218c2))−2. Again,

this is only possible if c > 10 > 4 and we employ (5.6) if ` < 4 − c with
r = b`+ cc. We get∑

M<n≤M ′
e(ξnc)�c,q M

1− 1

2bc+`c+2−2 �c,q M
1− 1

25−2 �c,q M
1−ρ4 .

On the contrary, if 4− c ≤ ` ≤ ρ4, then we can write

M4 = M4−cM c ≤M `+c = F ≤Mρ4+c.

Using this fact and (5.5), we can employ [13, Theorem 8.25] (again a Vino-
gradov-type estimate) and obtain∑

M<n≤M ′
e(ξnc)�c,q M

1− 1
218(`+c)2 �c,q M

1− 1
218(ρ4+c)2 �c,q M

1−ρ4 .

This finally shows (5.4) and finishes the proof of Lemma 5.

Proof of Proposition 3. We can assume that 1
2cq

ν(1−c) ≤ β ≤ 1/2. Let k
be a positive integer (which we choose later) and set

I` :=
[
`

k
,
`+ 1
k

)
, ` = 0, . . . , k − 1.

We start with the following correlation:∑
qν−1<n≤x

e(βbncc) =
∑

0≤`<k

∑
qν−1<n≤x
{nc}∈I`

e(βbncc).

If {nc} ∈ I`, then there exists a real number 0 ≤ θ < 1 such that

e(βbncc) = e
(
βnc − β `

k
− β θ

k

)
= e
(
βnc − β l

k

)(
1 +O

(
1
k

))
.

Thus, we obtain∣∣∣ ∑
qν−1<n≤x

e(βbncc)
∣∣∣� ∑

0≤`<k

∣∣∣ ∑
qν−1<n≤x
{nc}∈I`

e(βnc)
∣∣∣+

qν

k
.(5.8)

If we set f`(x) := 1I`({x}), where 1A denotes the characteristic function of
the set A, then inequality (5.8) reads as follows:∣∣∣ ∑

qν−1<n≤x

e(βbncc)
∣∣∣� ∑

0≤`<k

∣∣∣ ∑
qν−1<n≤x

e(βnc)f`(nc)
∣∣∣+

qν

k
.(5.9)
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Next, we approximate the function f` by trigonometric polynomials. Let
H ≥ 1 be an integer. Then there exist coefficients aH(h) with |aH(h)| ≤ 2,
such that the trigonometric polynomial

f∗`,H(t) =
1
k

+
1

2iπ

∑
1≤|h|≤H

aH(h)
h

e(ht)

verifies

|f`(t)− f∗`,H(t)| ≤ 1
2H + 2

(
κH

(
t− `

k

)
+ κH

(
t− `+ 1

k

))
,(5.10)

where κH is the periodic Fejér kernel already defined by (4.5). Indeed, this
can be deduced by another theorem of Vaaler [22, Theorem 19] (since the
functions f∗`,H and κH(t) are continuous, (5.10) follows from the cited the-
orem and a simple continuity argument even though f` does not satisfy
Vaaler’s normalizing condition). We obtain (the integer H will be chosen in
the last step of the proof)∣∣∣ ∑

qν−1<n≤x

e(βnc)f`(nc)
∣∣∣ ≤ ∣∣∣ ∑

qν−1<n≤x

e(βnc)f∗`,H(nc)
∣∣∣+R(H),(5.11)

where

R(H) :=
1

2H + 2

∑
qν−1<n≤x

(
κH

(
nc − `

k

)
+ κH

(
nc − `+ 1

k

))
.

The error term R(H) can be estimated by

1
2H + 2

∑
qν−1<n≤x

∑
0≤|h|≤H

(
1− |h|

H + 1

)(
1 + e

(
−h
k

))
e
(
−h`
k

)
e(hnc)

≤ 2
2H + 2

∑
0≤|h|≤H

∣∣∣ ∑
qν−1<n≤x

e(hnc)
∣∣∣.

We distinguish the cases h = 0 and h 6= 0 and apply Lemma 5. This is
admissible as long as H ≤ q(ν−1)ρ, where ρ is defined by (5.2). We ob-
tain

R(H)�c,q
qν

H
+ qν(1−ρ).

Next, we use the definition of f∗`,H to deal with the first expression on the
right hand side of (5.11). We can write
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qν−1<n≤x

e(βnc)f∗`,H(nc)
∣∣∣

=
∣∣∣∣ ∑
qν−1<n≤x

e(βnc)
(

1
k

+
1

2iπ

∑
1≤|h|≤H

aH(h)
h

e(hnc)
)∣∣∣∣

≤ 1
k

∣∣∣ ∑
qν−1<n≤x

e(βnc)
∣∣∣+

∑
1≤|h|≤H

1
h

∣∣∣ ∑
qν−1<n≤x

e((β + h)nc)
∣∣∣.

Applying Lemma 5 again (if H ≤ q(ν−1)ρ), we see that this is bounded
by

qν(1−ρ)

k
+ qν(1−ρ) logH.

We obtain ∑
qν−1<n≤x

e(βnc)f`(nc)�c,q
qν

H
+ qν(1−ρ) logH.

Together with inequality (5.9) this yields∑
qν−1<n≤x

e(βbncc)�c,q
kqν

H
+ kqν(1−ρ) logH +

qν

k
.

If we set k = bq(νρ)/2c and H = bq(ν−1)ρc (which actually shows that we
were allowed to use Lemma 5), we finally obtain∑

qν−1<n≤x

e(βbncc)�c,q νq
ν(1−ρ/2).

6. Proof of Theorem 1. In this section we prove Theorem 1. First
we briefly treat the (trivial) case 0 < c < 1. The second part of the proof
deals with the case c > 1 (c 6∈ N) and it is based on methods coming from
harmonic analysis (Sections 3) and on exponential sum estimates (Sections 4
and 5).

6.1. Case 0 < c < 1. We set γ = 1/c and am := #{n ≤ x : bncc = m}.
Then we can write∑

1≤n≤x
e(α sq(bncc)) =

∑
1≤m≤xc

e(α sq(m))am.

For m = bxcc we observe that am = x− (bxcc)γ +O(1) = O(x1−c), and for
m < bxcc that am = (m+ 1)γ −mγ +O(1) = γmγ−1 +O(mγ−2 + 1). Since∑

1≤m≤xc
(mγ−2 + 1)�c x

1−c + xc,
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we obtain∑
1≤n≤x

e(α sq(bncc))�c

∑
1≤m≤xc

e(α sq(m))mγ−1 + x1−c + xc.

By partial summation we can write the last sum as∑
1≤m≤xc

e(α sq(m))mγ−1

= x1−c
∑

1≤m≤xc
e(α sq(m))− (γ − 1)

xc�

1

∑
1≤m<u

e(α sq(m))uγ−2 du.

Thus, we get∑
1≤n≤x

e(α sq(bncc))�c x
1−c max

1≤N≤xc

∣∣∣ ∑
1≤m≤N

e(α sq(m))
∣∣∣+ x1−c + xc.(6.1)

Since sq(a+ bqj) = sq(a) + sq(b) for a < qj , a simple calculation shows that∣∣∣ ∑
0≤m<N

e(α sq(m))
∣∣∣�q N

logq ϕq(α),(6.2)

where ϕq is defined by (3.1) (see for example [15, Section 3]). By local
expansion we have

ϕq(t) ≤ q1−σ
′
q‖t‖2 ,

where σ′q is a positive computable constant only depending on q (see for
example [17, Lemmas 3 and 5]). Together with (6.1) and (6.2) this implies
Theorem 1 for 0 < c < 1.

6.2. Case c > 1. For the following part we assume that x and ν are
integers such that qν−1 < x ≤ qν . We set

S :=
∑

qν−1<n≤x

e(α sq(bncc)),

and use the abbreviation

λ := bνcc+ 1.(6.3)

Then we can write

S =
∑

0≤u<qλ

∑
qν−1<n≤x

e(α sq(u)) · 1
qλ

∑
0≤h<qλ

e
(
h(bncc − u)

qλ

)

=
∑

0≤h<qλ

1
qλ

∑
0≤u<qλ

e(α sq(u)− huq−λ)
∑

qν−1<n≤x

e
(
hbncc
qλ

)
.
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Using the notation of the Fourier transform, we have

|S| ≤
∑

0≤h<qλ
|Fλ(h, α)| ·

∣∣∣∣ ∑
qν−1<n≤x

e
(
hbncc
qλ

)∣∣∣∣.(6.4)

It follows from Lemma 1 that the contribution of the term where h = 0 is
bounded above by

|Fλ(0, α)|qν � qν−σq‖(q−1)α‖2λ.

If 0 < h < qλ, Remark 5 implies∑
qν−1<n≤x

e
(
hbncc
qλ

)
�c,q νq

ν(1−ρ̃/2) +
qν

min(h, qλ − h)
,

where ρ̃ := max(2(2− c)/3, ρ). We obtain (using Lemmas 1 and 2)∑
0≤h<qλ

|Fλ(h, α)|
(
νqν(1−ρ̃/2) +

qν

min(h, qλ − h)

)
� νqν(1−ρ̃/2)+ληq + log(qλ)qν−σq‖(q−1)α‖2λ.

Thus, we can bound the sum S by

S �c,q ν(qν(1−σq‖(q−1)α‖2c) + qν(1−ρ̃/2+cηq)).

If q is large enough (larger than some constant q0(c)), then it follows from
Remark 3 that

ρ̃/2− cηq > 0.(6.5)

Setting σc,q = min(σqc, ρ̃/2− ηqc), we have, for every q ≥ q0(c),∑
qν−1<n≤x

e(α sq(bncc))�c,q νq
ν(1−σc,q‖(q−1)α‖2).

Theorem 1 is a direct consequence of this fact. Let ν0 be the integer such
that qν0−1 < x ≤ qν0 . Then we can write∑

1≤n≤x
e(α sq(bncc))

=
∑

0≤ν<ν0

∑
qν−1<n≤qν

e(α sq(bncc)) +
∑

qν0−1<n≤x

e(α sq(bncc))

�c,q

∑
0≤ν≤ν0

νqν(1−σc,q‖(q−1)α‖2) �c,q ν0q
ν0(1−σc,q‖(q−1)α‖2).

Since ν0 ≤ blog x/log q + 1c, we obtain∑
1≤n≤x

e(α sq(bncc))�c,q (log x)x1−σc,q‖(q−1)α‖2 .



386 J. F. Morgenbesser

Finally, note that we can see from (6.5) that the constant ρ̃ determines
the size of an admissible (and computable) value q0(c). Inequality (6.5) is
satisfied if log log q/log q < ρ̃/(2c). This implies for example that such an
admissible value is given by Kcc

4
, where K is an absolute constant.

7. Proof of Corollaries 1 and 2. In order to show Corollary 1 we
need information on the distribution of bncc in arithmetic progressions. For
1 < c < 2 this has been studied for example in [4] (see also [21, 24]), and for
c > 12 (not an integer) in [4]. For the convenience of the reader we state and
prove the following lemma which holds true for all non-integral reals c > 1.
It confirms the already known result for 1 < c < 2 and slightly improves the
known results in the other cases. Note that a shorter proof can be obtained
by using Proposition 3 directly. However, the exponent 1 − ρ in (7.1) has
then to be replaced by 1− ρ/2.

Lemma 6. Let c > 1 be a non-integer real number and let (a, d) ∈ N×N∗.
Then

#{n ≤ x : bncc ≡ a mod d} =
x

d
+Oc,d((log x)x1−ρ),(7.1)

where ρ is defined by (5.2).

Proof. We begin with the following observation: The integer n satisfies
bncc ≡ a mod d if and only if a/d ≤ {nc/d} < (a+1)/d. In order to prove the
lemma, it suffices to show that the discrepancy D of (nc/d), where n ranges
from 1 to x, can be bounded by D �c,d (log x)x−ρ. We use the Erdős–Turán
inequality (see for example [19, Lemma 1] or [8, Theorem 1.21]) saying that

D ≤ 1
H + 1

+
H∑
h=1

1
h

∣∣∣∣1x ∑
1≤n≤x

e
(
h

d
nc
)∣∣∣∣,

where the integer H > 0 can be chosen arbitrarily. Let ν0 be the smallest
positive integer such that 1/d ≥ 1

2c2
ν0(1−c) and let λ be defined by 2λ−1 <

x ≤ 2λ. Lemma 5 implies∣∣∣∣ ∑
1≤n≤x

e
(
h

d
nc
)∣∣∣∣ ≤ 2ν0−1 +

∑
ν0≤ν≤λ

∑
2ν−1<n≤2ν

n≤x

e
(
h

d
nc
)

�c,d

λ∑
ν=ν0

2ν(1−ρ) �c,d x
1−ρ,

where ρ is defined by (5.2). If we set H := b2(λ−1)ρc, then the Erdős–Turán
inequality yields
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D � 2(1−λ)ρ +
1
x

b2(λ−1)ρc∑
h=1

1
h

∣∣∣∣ ∑
1≤n≤x

e
(
h

d
nc
)∣∣∣∣

�c,d 2(1−λ)ρ + log(2(λ−1)ρ)x−ρ �c,d (log x)x−ρ.

As indicated above, this shows the desired result.

Proof of Corollary 1. We can write

#{n ≤ x : sq(bncc) ≡ a mod m} =
∑
n≤x

1
m

∑
0≤`<m

e
(
`

sq(bncc)− a
m

)
.

Let us first consider the case 0 < c < 1. The main term comes from ` = 0
and equals x/m. Due to Theorem 1 there exists a constant σ′c,q,`/m for every
1 ≤ ` < m such that∑

n≤x
e
(
`

m
sq(bncc)

)
�c,q (log x)x1−σ′

c,q,`/m .

The result follows by setting σc,q,m = min1≤`<m(σ′c,q,`/m). If c > 1, then
we put d = (m, q − 1), m′ = m/d, J = {km′ : 0 ≤ k < d} and J ′ =
{0, . . . ,m − 1} \ J = {km′ + r : 0 ≤ k < d, 1 ≤ r < m′}. For ` = km′ ∈ J
we have

e
(
`

m
sq(bncc)

)
= e
(
k

d
sq(bncc)

)
= e
(
k

d
bncc

)
.

Hence, applying Lemma 6 yields
1
m

∑
`∈J

∑
n≤x

e
(
`

sq(bncc)− a
m

)
=

d

m

∑
n≤x

bncc≡amod d

1(7.2)

=
x

m
+Oc,d((log x)x1−ρ).

If J ′ = ∅, Lemma 6 already implies Corollary 1 (we can choose σc,q,m =
(9/10)ρ). If J ′ 6= ∅, we set q′ = (q − 1)/d. Since (q′,m′) = 1, we obtain, for
` = km′ + r ∈ J ′,

(q − 1)`
m

=
dq′(km′ + r)

dm′
= q′k +

q′r

m′
/∈ Z.

Theorem 1 implies that there exists a constant σ′c,q,`/m for every ` ∈ J ′ such
that ∑

n≤x
e
(
`

m
sq(bncc)

)
�c,q,m (log x)x1−σ′

c,q,`/m .

Put
σq,m,c =

9
10

min(min
`∈J ′

(σ′c,q,`/m), ρ) > 0.

Together with (7.2) this proves Corollary 1.
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Proof of Corollary 2. If α ∈ Q, then the sequence (α sq(bncc))n∈N takes
modulo 1 only a finite number of values and is therefore not uniformly
distributed modulo 1. If α ∈ R \ Q, then Theorem 1 and Weyl’s criterion
(see e.g. [8, Theorem 1.19]) imply the result.

8. Proof of Corollary 3. In this section we show Corollary 3. The
proof is very similar to that of [7, Theorem 1.1], where a local limit theorem
for the sum-of-digits function of primes is shown. A similar method is used
in [20, Section 6] for the proof of a local limit theorem in the Gaussian
integers. Thus, we only give a rough outline and refer at appropriate places
to [7].

The starting point of our considerations is the equality

#{n ≤ x : sq(bncc) = k} =
1�

0

S(α)e(−αk) dα,

where S(α) :=
∑

n≤x e(α sq(bncc)). Set I(x, k, c) := {0 ≤ n ≤ x : bncc ≡ k
mod q−1}. With Sk(α) :=

∑
n∈I(x,k,c) e(α sq(bncc)), we have (see [7, Section

5.1])
1�

0

S(α)e(−αk) dα = (q − 1)
1/(2(q−1))�

−1/(2(q−1))

Sk(α)e(−αk) dα.

The last integral is split up into two different domains:
1/(2(q−1))�

−1/(2(q−1))

=
�

|α|≤(log log x)(log x)−1/2

+
�

(log log x)(log x)−1/2<|α|≤1/(2(q−1))

.(8.1)

The second integral (where α is large) can be bounded above using Theo-
rem 1 (combined with discrete Fourier analysis). We obtain�

Sk(α)e(−αk) dα�c,q (log x)x1−σc,q(q−1)2(log log x)2(log x)−1 �c,q
x

log x
.

Here we used the fact that the estimate in Theorem 1 is uniform in α. To
calculate the first integral in (8.1), we set R(x, k, c) = #I(x, k, c). Note that
Lemma 6 implies R(x, k, c) = x/(q − 1) +Oc,q((log x)x1−ρ). Because of this
fact, the following proposition implies Corollary 3 (see [7, Section 5.1]).

Proposition 4. Let q ≥ 2. Then for every non-negative integer k we
have ∑

n∈I(x,k,c)

e(α sq(bncc)) = R(x, k, c)e(αµqc logq x)(8.2)

× (e−2π2α2σ2
qc logq x +Oc,q(|α|(log log x)5))

uniformly for real α with |α| ≤ (log log x)(log x)−1/2.
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Proposition 4 can be translated into a probabilistic language. If we as-
sume that every number in the set I(x, k, c) is equally likely, then the func-
tion which assigns to each number its jth digit is a random variable. Hence,
the sum-of-digits function Sx(n) := sq(bncc) for n ≤ x can also be inter-
preted as a random variable. Set L = log xc. Using this model, formula (8.2)
is equivalent to the relation (set α = t/(2πσqL1/2))

ϕ1(t) := E eit(Sx−Lµq)/(Lσ
2
q )

1/2
= e−t

2/2 +Oc,q

(
|t|(logL)5

L1/2

)
,(8.3)

which is uniform for |t| ≤ 2πσqL1/2(log log x)(log x)−1/2. Note that ϕ1(t) is
the characteristic function of (Sx−Lµq)/(Lσ2

q )
1/2 and that (8.3) is a refined

version of the central limit theorem (1.5).
In order to prove this, we approximate the sum-of-digits function with

a sum of uniformly and independently distributed random variables (at the
level of moments). The next lemma is the key to doing so. If σ > 1 (and x
is large enough), we set

L′ = #{j ∈ Z : (logL)σ ≤ j ≤ L− (logL)σ} = L− 2(logL)σ +O(1).

Lemma 7. Let 1 ≤ d ≤ L′ and σ > 1. Furthermore, let j1, . . . , jd and
l1, . . . , ld be integers with

(logL)σ ≤ j1 < j2 < · · · < jd ≤ L− (logL)σ

and l1, . . . , ld ∈ {0, 1, . . . , q − 1}. Then uniformly (3)

1
R(x, k, c)

#{n ∈ I(x, k, c) : εj1(bncc) = l1, . . . , εjd(bn
cc) = ld}

= q−d +Oc,q,σ(L(4(logL)σ)de−c
′(logL)σ),

where c′ = min(1, 1/c).

For proving Lemma 7 we need the Erdős–Turán inequality, which leads
to exponential sums of the form

∑
n e((A/Q)bncc):

Lemma 8. Let c > 0 be a non-integer real number. Furthermore, let
A,Q ∈ Z+ with (A,Q) = 1 and let σ ∈ Z+ be such that 1 < Q ≤
xce−(log log xc)σ . Then∑

1≤n≤x
e
(
A

Q
bncc

)
�c,σ (log x)xe−c

′(log log xc)σ ,

where c′ = min(1, 1/c).

(3) The notation εj(m) means the jth digit of m.
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Proof. Let S be the sum considered. We start the proof with the follow-
ing estimate: ∥∥∥∥AQ

∥∥∥∥−1

≤ Q ≤ xce−(log log xc)σ .(8.4)

If 0 < c < 1, then we deduce (using the same calculations as in Section 6.1)
that

S �c x
1−c max

1≤N≤xc

∣∣∣∣ ∑
1≤m≤N

e
(
A

Q
m

)∣∣∣∣+ x1−c + xc

�c x
1−c 1∣∣sinπAQ ∣∣ + x1−c + xc.

By (8.4), this leads to the desired result. Next, we treat the case c > 1. Let
ν be the integer defined by 2ν−1 < x ≤ 2ν . If x is sufficiently large, then

ν0 := ν −
⌊

1
c log 2

(log log xc)σ
⌋

is positive. Remark 5 implies

S ≤ 2ν0−1 +
ν∑

κ=ν0

∑
2κ−1<n≤2κ

n≤x

e
(
A

Q
bncc

)

�c,σ 2ν0−1 +
ν∑

κ=ν0

(
κ2κ(1−ρ̃/2) +

1
‖A/Q‖

2κ(1−c)
)
.

We finally obtain

S �c,σ 2ν0−1 + νqν(1−ρ̃/2) + νxce−(log log xc)σ2ν0(1−c)

�c,σ xe
−(log log xc)σ/c + (log x)xe−(log log xc)σ/c.

Proof of Lemma 7. The proof of this lemma goes exactly as in [7, Section
4.2]. We just give a short outline. We have

#{n ∈ I(x, k, c) : εj1(bncc) = l1, . . . , εjd(bn
cc) = ld}

=
∑

n∈I(x,k,c)

d∏
i=1

1[li/q,(li+1)/q)

({
bncc
qji+1

})
,

where 1A denotes the characteristic function of the set A. First, we approx-
imate 1[l/q,(l+1)/q)({x}) with the function

fl,∆(x) :=
1
∆

∆/2�

−∆/2

1[l/q,(l+1)/q)({x+ z}) dz,
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where ∆ = e−(logL)σ . This approximation yields an error term that can be
bounded above by using the Erdős–Turán inequality and Lemma 8 (cf. [7,
Lemma 4.4]). With the help of the Fourier expansion of fl,∆(x), Lemma 8
finally implies the desired result (cf. [7, Lemma 4.5]).

Proof of Proposition 4. First, we truncate the sum-of-digits function and
approximate it appropriately. Let σ be a real number greater than 1 (which
we choose at the end of the proof). Furthermore, let Zj be a sequence of
independent random variables with range {0, 1, . . . , q−1} and uniform prob-
ability distribution, and set

Tx :=
∑

(logL)σ≤j≤L−(logL)σ

εj(bncc), T x :=
∑

(logL)σ≤j≤L−(logL)σ

Zj .

Define the random variables X and Y by X := (Tx − L′µQ)/(L′σ2
Q)1/2 and

Y := (T x − L′µQ)/(L′σ2
Q)1/2, and let ϕ2(t) be the characteristic function

of X and ϕ3(t) the characteristic function of Y . Then (see [7, Lemma 4.1])

|ϕ1(t)− ϕ2(t)| = Oq(|t|(logL)σ/L1/2).

Furthermore, ϕ3(t) can be approximated by (see [7, Lemma 4.2])

ϕ3(t) = e−t
2/2(1 +O(t4/L))

whenever |t| ≤ L1/4. In what follows, we will show that T x is a good approx-
imation of the (truncated) sum-of-digits function. In order to prove (8.3), it
suffices to show that uniformly for real t with |t| �c,q logL,

|ϕ2(t)− ϕ3(t)| = Oc,q(|t|/L).

Using Taylor’s theorem we see that, for every even integer D > 0,

E eitX − E eitY =
∑
d<D

(it)d

d!
(EXd − EY d)

+O

(
|t|D

D!

∣∣E |X|D − E |Y |D
∣∣+ 2

|t|D

D!
E |Y |D

)
� |t|max

d≤D
(|EXd − EY d|)e|t| + |t|

D

D!
EY D.

We have (cf. [7, Section 4.3])

EY D � D!
DD/2e−D/2D1/2

whenever D = o((log x)1/2). Recall that |t| �c,q logL. If we choose D =
b(logL)3c (and assume without loss of generality that D is even), then

|t|D

D!
EY D �c,q |t|/L.
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In order to complete the proof of Proposition 4, it remains to compare the
moments of X and Y . Lemma 7 implies

|EXd − EY d| �c,q,σ

(
4q2

σq

)d
L1+d/2(logL)σde−c

′(logL)σ .

If we choose σ = 5, we finally obtain

max
d≤D
|EXd − EY d| �c,q e

−(logL)2 ,

which shows the desired result.
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[1] N. L. Bassily and I. Kátai, Distribution of the values of q-additive functions on
polynomial sequences, Acta Math. Hungar. 68 (1995), 353–361.

[2] C. Dartyge et G. Tenenbaum, Congruences de sommes de chiffres de valeurs poly-
nomiales, Bull. London Math. Soc. 38 (2006), 61–69.

[3] J.-M. Deshouillers, Problème de Waring avec exposants non entiers, Bull. Soc. Math.
France 101 (1973), 285–295.
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