Two conjectures on an addition theorem

by

XIANGNENG ZENG and PINGZHI YUAN (Guangzhou)

1. Introduction. In this paper, we follow the notation of [10]; we recall some key notation in the next section.

In 1961, Erdős–Ginzburg–Ziv [4] proved the following theorem.

THEOREM 1.1 (EGZ Theorem). Let G denote a cyclic group of order n and $S \in \mathcal{F}(G)$ be a sequence of length 2n - 1 over G. Then $0 \in \sum_{n}(S)$.

The length 2n - 1 is sharp in view of the example $S = 0^{n-1}g^{n-1}$, where g is a generator of G.

The inverse problem to the EGZ Theorem is to investigate the structure of S satisfying $0 \notin \sum_n(S)$. Let k = |S| - n. Peterson and Yuster [17] solved the case of k = n - 2. Bialostocki and Dierker [1] and Flores and Ordaz [5] solved the case of k = n - 3. Gao [6] solved the case of $n - \lfloor (n+1)/4 \rfloor - 1 \le k \le$ n-2. Gao et al. [7] solved the case when n is a prime and $n - \lfloor (n+1)/3 \rfloor - 1 \le$ $k \le n - 2$. Finally, Savchev and Chen [18] gave a structural description of sequences S of length n+k with $\lfloor (n-1)/2 \rfloor \le k \le n-2$; this description does not carry over to smaller values of k (see [9, 5.1.16 and 5.1.17]). Therefore Gao, Thangadurai and Zhuang considered in [8] the maximal multiplicity of sequences S with $0 \notin \sum_n(S)$ and stated the following two conjectures.

CONJECTURE 1.2 ([8]). Let G be a cyclic group of order n > 2, $k \in [1, n-2]$ and $S \in \mathcal{F}(G)$ a sequence of length |S| = n + k. If $h(S) \leq k$, then $0 \in \sum_n (S)$.

CONJECTURE 1.3 ([8]). Let G be a cyclic group and $S \in \mathcal{F}(G \setminus \{0\})$ a sequence of length |S| = |G|. Then $\sum(S) = \sum_{\leq h(S)}(S)$.

Many authors verified both conjectures for large k and h(S) respectively. In [8], the proposers proved both conjectures when $n = p^l$ is a prime power

²⁰¹⁰ Mathematics Subject Classification: Primary 11B50; Secondary 11B75.

 $Key\ words\ and\ phrases:$ zero-sum problems, EGZ theorem, Kneser's theorem, zero-sum free sequences.

and $k \ge n/p - 1$ ($h(S) \ge n/p - 1$, respectively). Cao [2] verified Conjecture 1.2 when $n = p^{\alpha}q^{\beta}$ and $k \ge n/p - 1$, where p, q are primes and p < q. DeVos, Goddyn and Mohar [3] proved the conjectures for any abelian group G when $k \ge |G|/p - 1$ ($h(S) \ge |G|/p - 1$, respectively), where p is the smallest prime divisor of |G|.

In this paper, we obtain the following result on Conjecture 1.2.

THEOREM 1.4. Let n > 2. Conjecture 1.2 holds for $k \ge n/q - 1$, where q is the smallest divisor of n with q > 2.

Theorem 1.4 improves the related result of DeVos, Goddyn and Mohar [3] for cyclic groups of even order n. We present the proof in Section 4. Also we will show that the bound on k is sharp (see the remark after the proof).

For Conjecture 1.3, we have the following result.

THEOREM 1.5. Let G be a cyclic group of order n > 2, $H \le G$ a subgroup of G, and B_H the set of all sequences $S \in \mathcal{F}(G \setminus \{0\})$ with |S| = |G| and $\operatorname{Stab}(\sum_{\leq h(S)}(S)) = H$.

- (i) If $S \in B_H$ with $h(S) \ge |G/H| 1$, then $\sum_{\leq h(S)} (S) = \sum (S)$.
- (ii) If $S \in B_H$ with $h(S) \in [2, |G/H|]$ and $|\overline{G}/H| = h(S)t + r$ with $r \in [0, h(S) 1]$, then

$$2 \le r \le \mathsf{h}(S) - \frac{2}{|H| - 1}$$

(iii) Let $k \in [2, |G/H|]$ and set |G/H| = kt + r where $r \in [0, k - 1]$ is the remainder of |G/H| divided by k. Suppose $2 \le r \le k - 2/(|H|-1)$. Then there exists a sequence $S \in B_H$ such that h(S) = kand $\sum_{\le h(S)} (S) \ne \sum(S)$.

In Theorem 1.5, part (i) implies that if h(S) is sufficiently large compared with |G/H|, then $\sum_{\leq h(S)}(S) = \sum(S)$, while (ii) and (iii) imply that if $S \in B_H$ and h(S) is small, then it is possible that $\sum_{\leq h(S)}(S) \neq \sum(S)$. Also, the theorem shows that $\sum_{\leq h(S)}(S) = \sum(S)$ holds for special n and h(S)without any assumptions on the structure of S. For example, let $n = p^l$ be a prime power and h(S) = p. Then the remainder of |G/H| divided by h(S)is always 0, which implies that $h(S) \geq |G/H| - 1$ and $\sum_{\leq h(S)}(S) = \sum(S)$ by the theorem.

Since Conjecture 1.3 is not always true, the length |S| or the restricted length h(S) may not be large enough. This suggests investigating how large |S| or h(S) should be to have $\sum_{\leq h(S)}(S) = \sum(S)$. We define L(G) to be the smallest integer $l \in \mathbb{N}_0$ such that every sequence $S \in \mathcal{F}(G \setminus \{0\})$ of length $|S| \geq l$ satisfies $\sum_{\leq h(S)}(S) = \sum(S)$. We have THEOREM 1.6. Let $n \ge 16$ and G be a cyclic group of order n.

- (i) If n is a prime, then L(G) = n.
- (ii) If n is a composite number, then $L(G) = 2n 4a b + 3 \ge n + 1$, where the pair $(a, b) \in \mathbb{N}^2$ satisfies n = ab and |4a + b| is minimal.

THEOREM 1.7. Let $n \ge 16$ and G be a cyclic group of order n. Let $S \in \mathcal{F}(G \setminus \{0\})$ be a sequence of length |S| = n.

- (i) If n is a prime, then $\sum_{\leq h(S)}(S) = \sum(S)$ and the restricted length h(S) is the best possible.
- (ii) If n is a composite number, then $\sum_{\leq 2h(S)-2} (S) = \sum (S)$.

2. Notation. Let $a \in \mathbb{R}$. Then $\lfloor a \rfloor$ denotes the maximal integer not exceeding a, and $\lceil a \rceil$ denotes the minimal integer not less than a. Let $a, b \in \mathbb{R}$. Then $[a, b] = \{x \in \mathbb{Z} : a \le x \le b\}$ denotes the integers between a and b.

Let G be an abelian group and H a subgroup of G. Let $\Phi_H : G \to G/H$ be the natural homomorphism. Let A, B be subsets of G. $A + B = \{a + b : a \in A, b \in B\}$ denotes the sum set of A and B and $\Phi_H(A)$ denotes the image of A, that is, $\Phi_H(A) = \{\Phi_H(g) : g \in A\}$.

We say A is *H*-periodic if A is a union of *H*-cosets (i.e. A + H = A), where H is a subgroup of G, referred to as the period. Note that the trivial subgroup $\{0\}$ is a period of every A. If A is *H*-periodic for some nontrivial subgroup H, then A is periodic, and otherwise A is aperiodic. Let $\operatorname{Stab}(A) = \{g \in G : A + g = A\}$ denote the stabilizer of A. By the definition, any period of A is a subgroup of $\operatorname{Stab}(A)$ and thus $\operatorname{Stab}(A)$ is the maximal period of A.

A quasi-periodic decomposition of A with quasi-period H, where H is a non-trivial subgroup of G, is a partition $A = A_1 \cup A_0$ such that $A_1 \cap A_0 = \emptyset$, $A_1 + H = A_1$ and $A_0 \subset a_0 + H$ for some $a_0 \in G$. Here A_1 or A_0 may be empty. Note that every A has a quasi-periodic decomposition with H = Gand $A_1 = \emptyset$. The set A is quasi-periodic if A_1 is not empty in some quasiperiodic decomposition $A = A_1 \cup A_0$.

Let A be a set. Then the free abelian monoid with basis A, written multiplicatively, is denoted by $\mathcal{F}(A)$.

Let G be an additive finite abelian group, $G_0 \subset G$ a subset and $\mathcal{F}(G_0)$ the free abelian monoid over G_0 . An element $S = a_1 \cdots a_l = \prod_{g \in G_0} g^{\mathsf{v}_g(S)} \in \mathcal{F}(G_0)$ is called a *sequence* over G_0 , where $\mathsf{v}_g(S)$ is the *multiplicity* of g in S. Let $|S| = l = \sum_{g \in G_0} \mathsf{v}_g(S)$ denote the *length* of S, $\mathsf{h}(S) = \max\{\mathsf{v}_g(S) : g \in G_0\}$ the *maximal multiplicity* of S and $\operatorname{supp}(S) = \{g : \mathsf{v}_g(S) > 0\}$ the support of S. We say that T is a subsequence of S if $T \mid S$ in $\mathcal{F}(G_0)$. We write

$$\begin{split} \sigma(S) &= \sum_{i=1}^{|S|} a_i, \text{ the sum of } S, \\ \sum_k(S) &= \{\sigma(T) : T \mid S \text{ with } |T| = k\}, \text{ the set of } k\text{-term subsums of } S, \\ \sum_{\leq k}(S) &= \bigcup_{j \in [1,k]} \sum_j(S), \\ \sum(S) &= \sum_{\leq |S|}(S), \text{ the set of all subsums of } S. \end{split}$$

Any map $\phi : A \to B$ can be naturally extended to $\phi : \mathcal{F}(A) \to \mathcal{F}(B)$. For example, $\Phi_H(S) = \Phi_H(a_1) \cdots \Phi_H(a_{|S|})$.

We denote by $\mathsf{D}(G)$ the *Davenport constant* of G, defined as the smallest integer $l \in \mathbb{N}$ such that every sequence $S \in \mathcal{F}(G)$ of length $|S| \ge l$ satisfies $0 \in \sum(S)$ (see Chapter 5 in [10] for some of its main properties).

Let G be an additive abelian group. We need the concept of setpartitions introduced by D. Grynkiewicz in [11] (see also [15, p. 562]). Let P denote the set of non-empty finite subsets of G. The elements of $\mathcal{F}(P)$ will be called *setpartitions* (over G), and an *n*-setpartition \mathcal{A} (over G) is an element of $\mathcal{F}(P)$ of length n (in other words, \mathcal{A} is a formal product of n non-empty subsets of G). In particular, a sequence over G can be viewed as a setpartition. We denote by $|\mathcal{A}|$ the length of \mathcal{A} . We call \mathcal{B} a sub-setpartition of \mathcal{A} if $\mathcal{B} | \mathcal{A}$ in $\mathcal{F}(P)$.

Let
$$\mathcal{A} = A_1 \cdots A_n \in \mathcal{F}(P)$$
 be an *n*-setpartition over *G*. We set
 $\sigma(\mathcal{A}) = \sum_{i=1}^n A_i, \quad \sum_{k=1}^{\cup} (\mathcal{A}) = \{x \in \sigma(\mathcal{B}) : \mathcal{B} \mid \mathcal{A} \text{ with } |\mathcal{B}| = k\}.$

3. Preliminary results. For the proofs, we need the following results.

THEOREM 3.1 (Kneser's Theorem [16]). Let G be an abelian group, and let A_1, \ldots, A_n be a collection of finite subsets of G. If $H = \text{Stab}(\sum_{i=1}^n A_i)$, then

$$\left|\sum_{i=1}^{n} \Phi_H(A_i)\right| \ge \sum_{i=1}^{n} |\Phi_H(A_i)| - n + 1.$$

THEOREM 3.2 (DeVos–Goddyn–Mohar Theorem (DGM Theorem) [3]). Let G be an abelian group, $\mathcal{A} = A_1 \cdots A_m$ a setpartition over G, and $n \in \mathbb{N}$ with $n \leq m$. Set $H = \operatorname{Stab}(\sum_{n=1}^{U} (\mathcal{A}))$. Then

$$|\sum_{n=0}^{\cup}(\mathcal{A})| \ge |H| \Big(\sum_{Q \in G/H} \min\{n, |\{i \in [1,m] : A_i \cap Q \neq \emptyset\}|\} - n + 1\Big).$$

Also we need the Kemperman Structure Theorem which was first proved in [16]. We will use the notation from [14], where substantial progress was made on this classical result.

398

DEFINITION 3.3. The pair (A, B) of non-empty finite subsets of the abelian group G is said to be a *critical pair* if |A + B| = |A| + |B| - 1.

Let G be an abelian group, $A, B \subseteq G$ finite non-empty subsets of G, and $g \in G$. We denote the number of expressions of g in A + B by $\mathsf{r}_{A,B}(g) = |A \cap (g - B)| = |\{(a, b) : a \in A, b \in B, a + b = g\}|$. We say that g is the unique expression element if $\mathsf{r}_{A,B}(g) = 1$.

DEFINITION 3.4. We call a pair (A, B) of non-empty, finite subsets of an abelian group G an *elementary pair* if one of the following conditions (I)-(IV) holds true.

- (I) |A| = 1 or |B| = 1.
- (II) $|A| \ge 2$, $|B| \ge 2$ and A and B are arithmetic progressions with common difference d, where the order of d is at least |A| + |B| 1.
- (III) $A \subset a + H$, $B \subset b + H$ (for some $a \in A$, $b \in B$ and $H \leq G$), |A| + |B| = |H| + 1 (thus A + B = a + b + H), and a + b is the only unique expression element in A + B.
- (IV) $A \subset a + H$, $B \subset b + H$ (for some $a \in A$, $b \in B$ and $H \leq G$), A + B contains no unique expression elements, A and B are aperiodic, and $A = g (b + H) \setminus B$ (for some $g \in G$).

THEOREM 3.5 (Kemperman Structure Theorem (KST)). Let A and B be finite, non-empty subsets of an abelian group G. Then

• |A + B| = |A| + |B| - 1, and either A + B is aperiodic or contains a unique expression element

if and only if there exist quasi-periodic decompositions $A = A_1 \cup A_0$ and $B = B_1 \cup B_0$ with common quasi-period H, and A_0 and B_0 non-empty, such that:

- (i) $r_{\Phi_H(A),\Phi_H(B)}(c) = 1$, where $c = \Phi_H(A_0) + \Phi_H(B_0)$,
- (ii) $|\Phi_H(A) + \Phi_H(B)| = |\Phi_H(A)| + |\Phi_H(B)| 1,$
- (iii) $A_1 + H = A_1, B_1 + H = B_1,$
- (iv) (A_0, B_0) is an elementary pair,
- (v) if $r_{A,B}(a+b) = 1$ where $a \in A$ and $b \in B$, then $a \in A_0$ and $b \in B_0$.

Condition (v) was not stated in Kemperman's original paper, but can be derived from KST as shown in [12] and [13].

4. Proof of Theorem 1.4. For the proof of Theorem 1.4, we need some lemmas.

LEMMA 4.1. Let G be an abelian group of order n and $S \in \mathcal{F}(G)$ with |S| = n + k. If $h(S) \leq k$, then $\sum_{n}(S)$ is periodic.

Proof. Since $\sum_n (S) = \sigma(S) - \sum_k (S)$, $\sum_n (S)$ and $\sum_k (S)$ have the same stabilizer. If $h(S) \leq k$ and $\sum_n (S)$ is aperiodic, then by DGM Theorem, $|\sum_k (S)| \geq |S| - k + 1 \geq |G| + 1$, which is a contradiction. ■

LEMMA 4.2. Let G be an abelian group of order n and $S \in \mathcal{F}(G)$ with |S| = n + k. Suppose $H = \operatorname{Stab}(\sum_n (S))$ and $k \ge |G/H| - 1$. Then $0 \in \sum_n (S)$.

Proof. By the EGZ Theorem and the hypothesis, we get the decomposition $S = S_1 \cdots S_{|H|}T$ such that $|S_i| = |G/H|$ and $\sigma(S_i) \in H$ for all $i \in [1, |H|]$, and |T| = k. It follows that $\sigma(S_1 \cdots S_{|H|}) \in H \cap \sum_n (S)$. Since $H = \operatorname{Stab}(\sum_n (S))$, we have $0 \in \sum_n (S)$.

DEFINITION 4.3. Let G be a cyclic group of order n and $S, S' \in \mathcal{F}(G)$. We say S is *equivalent* to S' (written $S \cong S'$) if there exists an integer t with gcd(t,n) = 1 and $b \in G$ such that S = tS' + b, where $S' = a'_0a'_1 \cdots a'_m$ and $tS' + b = (ta'_0 + b)(ta'_1 + b) \cdots (ta'_m + b)$.

It is easy to see that $0 \in \sum_{ln}(S)$ if and only if $0 \in \sum_{ln}(S')$ for all $l \in \mathbb{N}$, thus we may consider equivalent forms of S in some cases.

LEMMA 4.4. Let k, m be positive integers with $2 \leq k \leq m-2$ and Ka cyclic group of order m. Let $S' \in \mathcal{F}(K)$ with |S'| = 2m + k, $h(S') \leq 2k$ and $\sum_k (S')$ aperiodic. Suppose that $k \geq 2m/q - 1$ where q is the minimal divisor of 2m with q > 2. Then $\sigma(S') \in \sum_k (S')$.

Before we give the proof of Lemma 4.4, we show how to deduce Theorem 1.4 from the above lemmas.

Proof of Theorem 1.4. By Lemma 4.1, $h(S) \leq k$ implies that $\sum_{n}(S)$ is periodic with the maximal period, say H. If $k \geq |G/H| - 1$, then $0 \in \sum_{n}(S)$ by Lemma 4.2. Thus we may assume k < |G/H| - 1. Since $k \geq n/q - 1$, we have 1 < |H| < q. Since q is the minimal divisor of n with q > 2, we have |H| = 2 and 2 | n.

Consider the quotient group G/H which is a cyclic group of order n/2and the image sequence $\Phi_H(S) \in \mathcal{F}(G/H)$. It is easy to see that $h(\Phi_H(S)) \leq k|H| = 2k$ and $\sum_k (\Phi_H(S)) = \sigma(\Phi_H(S)) - \sum_n (\Phi_H(S))$ is aperiodic. Applying Lemma 4.4 to $\Phi_H(S)$, we have $\sigma(\Phi_H(S)) \in \sum_k (\Phi_H(S))$ and $0 \in \sum_n (\Phi_H(S)) = \sigma(\Phi_H(S)) - \sum_k (\Phi_H(S))$. Since $\sum_n (S)$ is *H*-periodic, we have $0 \in \sum_n (S)$.

REMARK. It follows that Conjecture 1.2 holds for the cyclic group of order p or 2p with all k when p is a prime. However, Conjecture 1.2 is not always true. The following examples show that the bound for k in Theorem 1.4 is sharp for large n:

Let n be a sufficiently large integer not of the form p or 2p, G the cyclic group of order n and $g \in G$ with $\operatorname{ord}(g) = n$. Let q be the least divisor of *n* with q > 2, $k = n/q - 2 \ge 2$ and H = (n/q)G < G the subgroup of *G* of order *q*. Let S = UV be a sequence with h(S) = k, |S| = n + k, $U \in \mathcal{F}(H), V \in \mathcal{F}(g + H)$, and |V| = an/q - 1 for some $a \ge 1$. Since $2kq - (n/q - 1) - (n + k) = n - 2n/q - 4q + 3 \ge 0$ for sufficiently large *n*, such a structure of *S* is possible. Note that $\sigma(S) \in (n/q - 1)g + H$ and $\sum_k (S) \cap ((n/q - 1)g + H) = \emptyset$, so $\sigma(S) \notin \sum_k (S)$ and $0 \notin \sum_n (S)$.

For example, let n = 60 and k = 18. Let $S = 0^k \cdot (20g)^k \cdot (40g)^3 \cdot g^k \cdot (21g)^k \cdot (41g)^3$ be the sequence of length n + k = 78. An easy calculation shows that $\sum_n (S) = G \setminus \{0, 20g, 40g\}$.

Proof of Lemma 4.4. We divide the proof into some claims and then deduce the result.

Let
$$I_1 = \{g \in K : \mathsf{v}_g(S') \ge k\}$$
 and $I_2 = \{g \in K : \mathsf{v}_g(S') < k\}$. Let
 $U = \prod_{g_2 \in I_2} g_2^{\mathsf{v}_{g_2}(S')}$ and $T = \prod_{g_1 \in I_1} g_1^k \cdot U$.

Then

(4.1)
$$\sum_{k} (S') = \sum_{k} (T).$$

Hence it remains to consider the construction of T. Since $\sum_k (S')$ is aperiodic, it follows that |T| < m+k-1, otherwise the DGM Theorem would imply that $|\sum_k (T)| \ge |T| - k + 1 \ge m$ and $\sum_k (T) = K$. Let m = tk + r where $r \in [0, k-1]$.

CLAIM 4.1. $|I_1| = t + 1 \ge 2$ and $\max\{0, 2r - k\} \le |U| \le r - 2$.

Proof of Claim 4.1. If $|I_1| \ge t+2$, then $|T| \ge k(t+2) \ge m+k$, a contradiction. If $|I_1| \le t$, then $|U| \ge |S'| - 2k|I_1|$ and $|T| = k|I_1| + |U| \ge |S'| - k|I_1| \ge |S'| - tk = tk + 2r + k \ge m+k$, a contradiction. Therefore $|I_1| = t+1$.

It is easy to see that |U| = |T| - (t+1)k < r-1. If $0 \ge 2r-k$, then it is trivial that $|U| \ge 0$. If 2r-k > 0, then $|U| \ge |S'| - 2k|I_1| = 2r-k$. This completes the proof of Claim 4.1.

Let

$$U = b_1 \cdots b_{|U|} = \prod_{g_2 \in I_2} g_2^{\mathsf{v}_g(S')}$$

Consider the set partition $\mathcal{A} = A_1 \cdots A_k$, where $A_i = I_1 \cup \{b_i\}$ for $i \in [1, |U|]$ and $A_j = I_1$ for j > |U|. Since $|U| \le r - 2 < k$, the structure of \mathcal{A} is as desired. We have

(4.2)
$$\sum_{k} (T) = \sigma(\mathcal{A}) = \sum_{i=1}^{k} A_i$$

CLAIM 4.2. $I_1 + I_1$ is aperiodic and $|I_1 + I_1| = 2|I_1| - 1$.

Proof of Claim 4.2. By the definition of \mathcal{A} , $A_j = I_1$ for j > |U|. By Claim 4.1, $k \ge r+1 \ge |U|+3$, which implies $A_{k-2} = A_{k-1} = A_k = I_1$. Since $\sum_k (T) = \sum_{i=1}^k A_i$ is aperiodic, $I_1 + I_1 = A_{k-1} + A_k$ is aperiodic. Thus Kneser's Theorem implies that $|I_1 + I_1| \ge 2|I_1| - 1$.

Suppose to the contrary that $|I_1 + I_1| \ge 2|I_1|$. Let $\delta = 0$ when k - |U| is even and $\delta = 1$ when k - |U| is odd. Then

$$\sum_{i=1}^{k} A_i = \sum_{i=1}^{|U|+\delta} A_i + \underbrace{(I_1 + I_1) + \dots + (I_1 + I_1)}_{(k-|U|-\delta)/2}.$$

Since $\sum_{i=1}^{k} A_i$ is aperiodic, we have

$$\begin{split} \left|\sum_{i=1}^{k} A_{i}\right| &\geq \sum_{i=1}^{|U|+\delta} |A_{i}| + \frac{k - |U| - \delta}{2} |I_{1} + I_{1}| - \left(|U| + \delta + \frac{k - |U| - \delta}{2} - 1\right) \\ &\geq |U|(|I_{1}| + 1) + \delta|I_{1}| + (k - |U| - \delta)|I_{1}| - \left(\frac{k + |U| + \delta}{2} - 1\right) \\ &= k|I_{1}| + \frac{|U| - k - \delta}{2} + 1 \geq tk + \frac{|U| + k - 1}{2} + 1 \\ &> tk + r = m, \end{split}$$

by Kneser's Theorem and Claim 4.1, a contradiction. This completes the proof of Claim 4.2.

Let q_m be the minimal divisor of m with $q_m > 1$. Since $k \ge 2m/q - 1$ and q is the minimal divisor of 2m with q > 2, we have $k \ge m/q_m - 1$ and equality holds if and only if $q_m = 2$, q = 4 and k = m/2 - 1. By Claim 4.1, we have $r \ge 2$ and $|I_1| = t + 1$. Thus if $q \ne 4$ or $k \ne m/2 - 1$, then t = (m - r)/k implies that $t \le q_m - 1$ and $|I_1| = t + 1 \le q_m$. Since (I_1, I_1) is a critical pair such that $I_1 + I_1$ is aperiodic, we can use KST to deduce the structure of I_1 .

CLAIM 4.3. I_1 is one of the following forms:

(i) I_1 is an arithmetic progression.

(ii) q = 4, k = m/2 - 1 and $I_1 = g_0 + \{0, g_1, g_2\}$ for some $g_0, g_1, g_2 \in K$ with $\operatorname{ord}(g_2) = 2$. In this case, |U| = 0 and $A_i = I_1$ for all $i \in [1, k]$.

Proof of Claim 4.3. Since (I_1, I_1) is a critical pair such that $I_1 + I_1$ is aperiodic, the KST implies that there is a quasi-periodic decomposition $I_1 = I' \cup I''$ with quasi-period $L \leq K$ such that $I' + L = I', I'' \subset g + L$ for some $g \in K$ and (I'', I'') is an elementary pair.

First, we consider the case when $I' = \emptyset$, that is, $(I_1, I_1) = (I'', I'')$ is an elementary pair. By Claim 4.1, $|I_1| = t + 1 \ge 2$, so (I_1, I_1) is not of the form (I) of the elementary pair (Definition 3.4). By Claim 4.1, $k \ge r+1 \ge |U|+3$,

which implies $A_{k-2} = A_{k-1} = A_k = I_1$. Since $\sum_{i=1}^k A_i$ is aperiodic, $I_1 + I_1$ and $I_1 + I_1 + I_1$ are both aperiodic, and so (I_1, I_1) is not of the form (III) or (IV) of the elementary pair. Therefore (I_1, I_1) is of the form (II), so I_1 is an arithmetic progression.

Next, we assume $I' \neq \emptyset$. Since $I_1 = I' \cup I''$, we have $t + 1 = |I_1| \ge |L| + 1 \ge q_m + 1$. By the discussion before the claim, we have q = 4 and k = m/2 - 1. Thus m = 2k + 2, which implies that t = 2 and r = 2. Moreover $|I'| = |L| = q_m = t = 2$ and |I''| = 1. Thus $L = \{0, g_2\}$ with $\operatorname{ord}(g_2) = 2$, $I' = g_0 + L$ and $I_1 = g_0 + \{0, g_1, g_2\}$ for some $g_0, g_1 \in K$. In this case, $|U| \le r - 2 = 0$ by Claim 4.1, so $A_i = I_1$ for all $i \in [1, k]$. This completes the proof of Claim 4.3.

Now that we have more information about the structure of I_1 , we are going to get the conclusion of the lemma.

For the case of Claim 4.3(ii), we have

CLAIM 4.4. Let q = 4, k = m/2 - 1 and $I_1 = g_0 + \{0, g_1, g_2\}$ for some $g_0, g_1, g_2 \in K$ with $\operatorname{ord}(g_2) = 2$. Then $0 \in \sum_{2m}(S')$, so $\sigma(S') \in \sum_k(S')$.

Proof of Claim 4.4. Let S'' be another sequence such that $S'' \cong S'$. Then $0 \in \sum_{2m}(S')$ if and only if $0 \in \sum_{2m}(S'')$ and $\sigma(S') \in \sum_k(S')$ if and only if $\sigma(S'') \in \sum_k(S'')$. Thus it is sufficient to prove the claim for some equivalent form of S'.

Without loss of generality, we may assume $g_0 = 0$. By Claim 4.3, we have $A_i = I_1 = \{0, g_1, g_2\}$ for all $i \in [1, k]$ and |U| = 0.

We first show that $v_g(S') \ge m/2 + 1$ for all $g \in I_1$. Suppose to the contrary that $v_g(S') \le m/2$ for some $g \in I_1$. Then

$$5m/2 - 1 = 2m + k = |S'| \le 2k \cdot 2 + \mathsf{v}_g(S') \le 4k + m/2 = 5m/2 - 4,$$

a contradiction. Thus $v_g(S') \ge m/2 + 1$ for all $g \in I_1$.

If $(m/2)g_1 = 0$ in K, we choose a subsequence

$$S_0 = g_1^{m/2} g_2^l 0^{3m/2-l} \,|\, S',$$

where

$$l = 2\lfloor \mathsf{v}_{g_2}(S')/2 \rfloor.$$

It is easy to see that the above structure of S_0 is possible. Also we have $|S_0| = 2m$ and $\sigma(S_0) = 0$.

If $(m/2)g_1 = m/2$ in K, we choose a subsequence

$$S_0 = g_1^{m/2} (g_2)^l 0^{3m/2-l} \,|\, S',$$

where

$$l = 1 + 2\left\lfloor \frac{\mathsf{v}_{g_2}(S') - 1}{2} \right\rfloor.$$

Similarly, we have $|S_0| = 2m$ and $\sigma(S_0) = 0$.

This completes the proof of Claim 4.4.

For the case of Claim 4.3(i), we have the following claims.

CLAIM 4.5. Let I_1 be an arithmetic progression with difference d. Then A_i is an arithmetic progression with difference d for all $i \in [\lfloor k/2 \rfloor + 1, k]$ (reorder if necessary), so at least half the A_i 's are arithmetic progressions with common difference.

Proof of Claim 4.5. Recall that $U = b_1 \cdots b_{|U|}$ and $\mathcal{A} = A_1 \cdots A_k$, where $A_i = I_1 \cup \{b_i\}$ for $i \in [1, |U|]$ and $A_j = I_1$ for j > |U|.

If $|U| \leq \lfloor k/2 \rfloor$, we are done.

If $|U| > \lfloor k/2 \rfloor$, choose arbitrarily k - |U| terms of $A_1 A_2 \cdots A_{|U|}$, say $A_{j_1} \cdots A_{j_{k-|U|}}$. Let $J = \{j_1, \ldots, j_{k-|U|}\}$. If $|A_{j_i} + I_1| \ge |A_{j_i}| + |I_1|$ for all $i \in [1, k - |U|]$, then

$$\sum_{i=1}^{k} A_i = \sum_{i=1}^{k-|U|} (A_{j_i} + A_{|U|+i}) + \sum_{i \in [1,|U|] \setminus J} A_i$$

and

$$\left|\sum_{i=1}^{k} A_{i}\right| \geq \sum_{i=1}^{k} |A_{i}| - (k - |U| + |U| - (k - |U|)) + 1 = k(t+1) + 1 > m,$$

a contradiction. Thus $|A_{j_i} + I_1| = |A_{j_i}| + |I_1| - 1$ for some j_i , which implies that A_{j_i} is an arithmetic progression with difference d for such j_i . Since the choice of $A_{j_1}A_{j_2}\cdots A_{j_{k-|U|}}$ is arbitrary, there are at most k - |U| - 1 terms of $A_1A_2\cdots A_k$ such that A_i is not an arithmetic progression with difference d. Since $|U| > \lfloor k/2 \rfloor$, we have $k - |U| - 1 \leq \lfloor k/2 \rfloor$. This completes the proof of Claim 4.5.

CLAIM 4.6. Let I_1 be an arithmetic progression with difference d. Then $\operatorname{ord}(d) = m$.

Proof of Claim 4.6. By Claim 4.5, A_i is an arithmetic progression with difference d for all $i \in [\lfloor k/2 \rfloor + 1, k]$. It follows that $\sum_{i=\lfloor k/2 \rfloor + 1}^{k} A_i$ is an arithmetic progression with difference d. Notice that $\sum_{i=1}^{k} A_i$ aperiodic implies that $\sum_{i=\lfloor k/2 \rfloor + 1}^{k} A_i$ is aperiodic. Hence

$$\operatorname{ord}(d) > \Big| \sum_{i=\lfloor k/2 \rfloor + 1}^{k} A_i \Big| \ge t \lceil k/2 \rceil + 1.$$

If $t \ge 2$, then $\operatorname{ord}(d) > k + 1 \ge m/q_m$, where q_m is the minimal divisor of m with $q_m > 1$. It follows that $\operatorname{ord}(d) = m$.

If t = 1, then $|I_1| = t + 1 = 2$, m = k + r and $\operatorname{ord}(d) > \lceil k/2 \rceil + 1 > m/4$. We consider two cases.

If $\operatorname{ord}(d) = m/3$, we may assume that $I_1 = \{0, d\}$ (equivalent form). By Claim 4.1, $k \ge r+1 \ge |U|+3 \ge 3$, so $3k-3 \ge 2k > m$. Thus
$$\begin{split} \sum_{i=1}^{k-2} I_1 &= \langle d \rangle, \text{ as otherwise } \operatorname{ord}(d) > |\sum_{i=1}^{k-2} I_1| = k-1 > m/3. \text{ If there are} \\ \text{at least two terms } (\operatorname{say } b_1, b_2) \text{ of } U &= b_1 \cdots b_{|U|} \text{ such that } b_1, b_2 \notin \langle d \rangle, \text{ then} \\ \sum_{i=1}^k A_i \supset \{0, b_1\} + \{0, b_2\} + \sum_{i=1}^{k-2} I_1 = K, \text{ a contradiction. If there is exactly} \\ \text{one term } (\operatorname{say } b_1) \text{ of } U \text{ such that } b_1 \notin \langle d \rangle, \text{ then } \sum_{i=1}^k A_i = \langle d \rangle \cup (b_1 + \langle d \rangle), \\ \text{ a contradiction to } \sum_{i=1}^k A_i \text{ being aperiodic. If } b_i \in \langle d \rangle \text{ for any term of } U, \\ \text{then } \sum_{i=1}^k A_i = \langle d \rangle, \text{ a contradiction. This shows that } \operatorname{ord}(d) \neq m/3. \end{split}$$

If $\operatorname{ord}(d) = m/2$, we may assume that $I_1 = \{0, d\}$. It is easy to see that $\sum_{i=1}^{k-1} I_1 = \langle d \rangle$, as otherwise $\operatorname{ord}(d) > k > m/2$. If there is some term (say b_1) of U such that $b_1 \notin \langle d \rangle$, then $\sum_{i=1}^{k} A_i \supset \{0, b_1\} + \sum_{i=1}^{k-1} I_1 = K$, a contradiction. If $b_i \in \langle d \rangle$ for any term of U, then $\sum_{i=1}^{k} A_i = \langle d \rangle$, a contradiction. This shows that $\operatorname{ord}(d) \neq m/2$.

This completes the proof of Claim 4.6.

Now we complete the proof of the lemma by the following claim.

CLAIM 4.7. Let I_1 be an arithmetic progression with difference d. Then $\sigma(S') \in \sum_k (S')$.

Proof of Claim 4.7. By Claim 4.6, we have $\operatorname{ord}(d) = m$. We may assume $I_1 = \{0, d, 2d, \ldots, td\}$. For any $g = ld \in K$ where $l \in [0, m-1]$, we say g is on the left if $l \in \lfloor \lfloor (m+t)/2 \rfloor + 1, m-1 \rfloor$ and on the right if $l \in \lfloor t+1, \lfloor (m+t)/2 \rfloor \rfloor$. If g = ld is on the left, we call m-l its left distance, and if g is on the right, we call l-t its right distance. We call it the distance for short if we do not care about left or right.

If there is one term (say $b_1 = l_1 d$) of U whose distance is greater than r-1, so $t+r \leq l_1 \leq m-r$, then $\sum_{i=1}^k A_i \supset \{0, d, \dots, td, b_1\} + \sum_{i=1}^{k-1} I_1 = K$, a contradiction. Thus the distance of b_i is at most r-1 for any term of U.

If there are two terms (say $b_1 = l_1d$, $b_2 = l_2d$) of U whose distances are both greater than r/2, then $\sum_{i=1}^{k} A_i \supset \{0, d, \dots, td, b_1\} + \{0, d, \dots, td, b_2\} + \sum_{i=1}^{k-2} I_1 = K$, a contradiction. Thus, there is at most one term (say b_1 if such a term exists) whose distance is greater than r/2.

By Claim 4.5, A_i is an arithmetic progression with common difference d for all $i \in [\lfloor k/2 \rfloor + 1, k]$. Hence $\sum_{i=\lfloor k/2 \rfloor+1}^{k} A_i$ is an arithmetic progression of length $|\sum_{i=\lfloor k/2 \rfloor+1}^{k} A_i| \geq k/2 + 1 > r/2$. Since the distance of b_i is at most r/2 for any $2 \leq i \leq |U|, \sum_{i=2}^{k} A_i$ is an arithmetic progression of length $|\sum_{i=2}^{k} A_i| \geq k > r$. Since the distance of b_1 is at most $r-1, \sum_{i=1}^{k} A_i$ is an arithmetic progression.

Let u_l and u_r denote the numbers of terms of U which are on the left and on the right respectively. Let s_l and s_r denote the sums of the distances of the respective terms. Then $u_l \leq s_l$, $u_r \leq s_r$, $s_l + s_r < r$ and

$$\sum_{i=1}^{k} A_i = \{ (m-s_l)d, (m-s_l+1)d, \dots, (m-1)d, 0, d, \dots, (kt+s_r)d \}.$$

Let S_0 be such that $S'S_0 = I_1^{2k}U$. Then

$$\sigma(S') + \sigma(S_0) = \sigma(I_1^{2k}U) = (t(t+1)k + (u_rt + s_r) + (u_lm - s_l))d.$$

Since m = kt + r = (t+1)k - (k-r), we have $\sigma(S') + \sigma(S_0) = (kt + s_r - rt + u_rt - s_l)d$. It is easy to see that $-s_l \leq kt + s_r - rt + u_rt - s_l \leq kt + s_r$, which implies that $\sigma(S') + \sigma(S_0) \in \sum_{i=1}^k A_i$. The length of S_0 is $|S_0| = 2k|I_1|+|U|-(2m+k) = |U|+k-2r = u_l+u_r+k-2r \geq 0$. It is easy to see that $(u_l+u_r+k-2r)t \leq kt < m$ and $\sigma(S_0) \in \{0,d,2d,\ldots,(u_l+u_r+k-2r)td\}$. Since $kt + s_r - rt + u_rt - s_l - (u_l + u_r + k - 2r)t = rt - u_lt + s_r - s_l \geq -s_l$, we have

$$\sigma(I_1^{2k}U) - \{0, d, 2d, \dots, (u_l + u_r + k - 2r)td\} \subset \sum_{i=1}^k A_i$$

and

$$\sigma(S') = \sigma(I_1^{2k}U) - \sigma(S_0) \in \sum_{i=1}^k A_i.$$

This completes the proof of Claim 4.7 and of Lemma 4.4. \blacksquare

5. Proofs of other theorems

LEMMA 5.1 ([9, Proposition 4.2.6]). Let G be a finite abelian group and $S \in \mathcal{F}(G)$ with $|S| \geq |G|$. Then $0 \in \sum_{\leq \mathsf{h}(S)}(S)$.

LEMMA 5.2. Let $S \in \mathcal{F}(G)$ with $|S| \geq |G|$. Suppose there exists a decomposition S = UV where $0 \notin \operatorname{supp}(U)$, $\operatorname{supp}(V) = \{0\}$ and $|U| \geq |G| - 1$. Let $k \in \mathbb{N}$ with $k \geq h(U)$. Then $\sum_{\langle k}(S)$ is periodic.

Proof. Let $T = U \cdot 0^k$. It is easy to see that $\sum_{\leq k} (S) = \sum_k (T)$ by Lemma 5.1.

If $\sum_{\leq k}(S) = \sum_{k}(T)$ is not periodic, then we apply the Devos–Goddyn–Mohar Theorem to T, and obtain $\sum_{k}(T) \geq |T| - k + 1 \geq |G|$, a contradiction.

By the definition of $\mathsf{D}(G)$, we have

LEMMA 5.3. Let $S \in \mathcal{F}(G)$. Then

$$\sum(S) \subset \sum_{\leq \mathsf{D}(G)-1}(S) \cup \{0\}.$$

Now we are ready to give the proofs of Theorems 1.5–1.7.

Proof of Theorem 1.5. By Lemma 5.2, H is not trivial, otherwise B_H is empty. Let $\Phi_H : G \to G/H$ be the natural homomorphism. Let $S_H =$

 $\Phi_H(S)$. Since H is the maximal period of $\sum_{\leq h(S)}(S)$, $\sum_{\leq h(S)}(S_H)$ is aperiodic.

Let $T_H|S_H$ be the maximal subsequence satisfying $h(T_H) \leq h(S)$. It is easy to see that

$$T_H = \prod_{g \in G/H} g^{\min(\mathsf{h}(S), \mathsf{v}_g(S_H))} \quad \text{and} \quad \sum_{\leq \mathsf{h}(S)} (S_H) = \sum_{\leq \mathsf{h}(T_H)} (T_H).$$

By the pigeonhole principle, we have $|T_H| \ge |G/H|$. Since $\sum_{\le h(S)} (S_H) = \sum_{\le h(T_H)} (T_H)$ is aperiodic, we have $0 \in \text{supp}(T_H)$ by Lemma 5.2.

Let $I_1(S) = \{g \in G/H : \mathsf{v}_g(S_H) \ge \mathsf{h}(S) \text{ and } g \ne 0\}$ and $I_2(S) = \{g \in G/H : \mathsf{v}_g(S_H) < \mathsf{h}(S) \text{ and } g \ne 0\}$. Then

$$T_H = 0^{\min(\mathsf{h}(S), \mathsf{v}_0(S_H))} \prod_{g \in I_1(S)} g^{\mathsf{h}(S)} \prod_{g \in I_2(S)} g^{\mathsf{v}_g(S_H)}.$$

Let

$$U_H = \prod_{g \in I_1(S)} g^{\mathsf{h}(S)} \prod_{g \in I_2(S)} g^{\mathsf{v}_g(S_H)}$$

denote the subsequence of non-zero terms of T_H . Then $|U_H| \leq |G/H| - 2$ by Lemma 5.2.

(i) Suppose that $h(S) \ge |G/H| - 1$.

If H = G, then $\sum_{\leq h(S)}(S) = \sum(S) = G$. Thus we may assume that H < G and then $\sum(S_H) \subset \sum_{\leq |G/H|-1}(S_H)$ by Lemma 5.3 with $\mathsf{D}(G/H) = |G/H|$ and $0 \in \operatorname{supp}(T_H) \subset \operatorname{supp}(S_H)$. Since $\sum_{\leq |G/H|-1}(S_H) \subset \sum_{\leq h(S)}(S_H)$ and $\sum_{\leq h(S)}(S)$ is H-periodic, $\sum(S) \subset \sum_{\leq h(S)}(S)$, which is the result.

(ii) Since |G/H| = h(S)t + r, we have n = |G| = h(S)t|H| + r|H|. It is easy to see that the number of non-zero terms of S_H is at least

$$n - (|H| - 1)h(S) = t|H|h(S) + r|H| - (|H| - 1)h(S)$$

$$\geq (t - 1)|H|h(S) + h(S).$$

If $r \leq 1$, then by the pigeonhole principle, we have $|U_H| \geq th(S) = |G/H| - r \geq |G/H| - 1$, a contradiction. Therefore, $r \geq 2$.

If r > h(S) - 2/(|H| - 1), then $r|H| - (|H| - 1)h(S) \ge r - 1$. Thus by the pigeonhole principle, we have $|U_H| \ge th(S) + r - 1 = |G/H| - 1$, a contradiction. Therefore $r \le h(S) - 2/(|H| - 1)$.

(iii) We construct S as follows. Let $d \in G$ with $\operatorname{ord}(d) = n$. Let $t_0 = t$ when $r|H| - (|H| - 1)k \ge 0$ and $t_0 = t - 1$ when r|H| - (|H| - 1)k < 0. Set

$$S = \prod_{g \in H \setminus \{0\}} g^k \cdot \prod_{i=1}^{t_0} \left(\prod_{g \in id+H} g^k\right) \cdot U,$$

where $U \in \mathcal{F}((t_0 + 1)d + H)$ is any sequence of length $n + k - (t_0 + 1)k|H|$ with $h(U) \le k$. Since $n + k - (t_0 + 1)k|H| = (t - t_0)k|H| + r|H| - (|H| - 1)k$, we have $0 \le n + k - (t_0 + 1)k|H| \le k|H|$. Thus the structure of S is possible. It is easy to see that h(S) = k and $\sum_{\le k} (S)$ is H-periodic.

Let S_H , T_H , U_H , $I_1(S)$ and $I_2(S)$ be defined as above. Note that $|U_H| = t_0k + \min\{n+k-(t_0+1)k|H|, k\}$. If $n+k-(t_0+1)k|H| \ge k$, that is, $n/|H| \ge (t_0+1)k$, then $t_0 = t-1$ and $|U_H| = (t_0+1)k = |G/H| - r \le |G/H| - 2$ (here we use $r \ge 2$). If $n+k-(t_0+1)k|H| < k$, so that $n/|H| < (t_0+1)k$, then $t_0 = t$ and

$$|U_H| = tk + n + k - (t+1)k|H| = tk + r|H| + k - k|H|$$

$$\leq tk + r - 2 = |G/H| - 2$$

(here we use $k \ge r + 2/(|H| - 1)$). Therefore, $|U_H| \le |G/H| - 2$ in both cases. It is easy to see that

$$\sum_{\leq k} (S_H) = \sum_{\leq k} (T_H) = \{0, \Phi(d), \dots, |U_H| \Phi(d)\},\$$

which implies that $\sum_{\leq k} (S_H)$ is aperiodic and $S \in B_H$. As $\Phi((|U_H| + 1)d) \in \sum(S_H)$, we have $\sum_{\leq h(S)} (S) \neq \sum(S)$.

Proof of Theorem 1.6. Let $d \in G$ with $\operatorname{ord}(d) = n$.

(i) Assume *n* is a prime. The sequence $S = d^{n-2}(2d)$ satisfies $\sum_{\leq h(S)}(S) \neq \sum(S)$, since $0 \notin \sum_{\leq h(S)}(S)$. Hence $L(G) \geq n$. On the other hand, suppose |S| = n. By Lemma 5.2, $\sum_{\leq h(S)}(S)$ is periodic, which implies $\sum_{\leq h(S)}(S) = G = \sum(S)$. Therefore, if G is a cyclic group of prime order n, then L(G) = n.

(ii) Assume n is a composite number. Let $p \mid n$ be the minimal divisor of n and let (a, b) be as in the theorem. It is easy to see that $n/p - 4p \le n - 4$ and $4p - n/p \le n - 4$, so $(a, b) \ne (1, n)$.

Let $H \leq G$ be a subgroup of order *a*. Then |G/H| = b. Let S = UV, where

$$V = \prod_{g \in H \setminus \{0\}} g^{b-2} \quad \text{and} \quad U = \prod_{g \in d+H} g^{b-2}.$$

Then |S| = |V| + |U| = (a - 1)(b - 2) + a(b - 2) = 2n - 4a - b + 2. Also, we can see that $\sum_{\leq h(S)} (S) \neq \sum (S)$, since $(b - 1)d + H \subset \sum (S) \setminus \sum_{\leq h(S)} (S)$. Therefore $L(G) \geq 2n - 4a - b + 3$.

On the other hand, let $S \in \mathcal{F}(G \setminus \{0\})$ with $|S| \geq 2n - 4a - b + 3 \geq n + 1$. By Lemma 5.2, $\sum_{\leq h(S)}(S)$ is periodic. Let H be the maximal period of $\sum_{\leq h(S)}(S)$. Let $\Phi_H : G \to G/H$ be the natural homomorphism. Let $S_H = \Phi_H(S)$ and T_H be the maximal subsequence of S_H such that $h(T_H) \leq h(S)$. Then $|T_H| > n/|H|$ by the pigeonhole principle and $\sum_{\leq h(S)}(S_H) = \sum_{\leq h(S)}(T_H)$.

If H = G, we are done. Thus we may assume that H < G.

If $0 \notin \operatorname{supp}(T_H)$, then $\sum_{\leq h(S)}(T_H)$ is periodic by Lemma 5.2, which contradicts H being the maximal period. Thus $0 \in \operatorname{supp}(T_H) \subset \operatorname{supp}(S_H)$.

If
$$h(S) \ge n/|H| - 1$$
, then by Lemma 5.3 and $0 \in \operatorname{supp}(S_H)$, we have
 $\sum(S_H) \subset \sum_{\le n/|H|-1}(S_H) \subset \sum_{\le h(S)}(S_H) \subset \sum(S_H)$,

which implies the conclusion of theorem.

If $h(S) \leq n/|H| - 2$, let n/|H| = th(S) + r with $r \in [0, h(S) - 1]$. Let S = UV, where $U \in \mathcal{F}(G \setminus H)$ and $V \in \mathcal{F}(H)$. Since $S \in \mathcal{F}(G \setminus \{0\})$, we have $|V| \leq (|H| - 1)h(S)$. Hence

$$\begin{split} |U| &= |S| - |V| = 2n - 4a - b + 3 - |V| \\ &\geq (2n - 4|H| - n/|H| + 3) - (|H| - 1)\mathsf{h}(S) \\ &= n + (n/|H| - 4 - \mathsf{h}(S))(|H| - 1) - 1 \\ &= t\mathsf{h}(S)|H| + ((t - 1)\mathsf{h}(S) + 2r - 4)(|H| - 1) + (r - 1). \end{split}$$

Let $T_H = U_T V_T$ where $0 \notin \operatorname{supp}(U_T)$ and $\operatorname{supp}(V_T) = \{0\}$. Since $\sum_{\leq h(S)}(T_H)$ is aperiodic, by Lemma 5.2, we have $|U_T| \leq n/|H| - 2$. If $r \geq 2$, then $|U| \geq th(S)|H| + r - 1$. By the pigeonhole principle, $|U_T| \geq th(S) + r - 1 = n/|H| - 1$, a contradiction. If r = 1, then

$$|U| \ge (t-1)\mathsf{h}(S)|H| + (t\mathsf{h}(S) - 2)(|H| - 1) + \mathsf{h}(S) \ge (t-1)\mathsf{h}(S)|H| + \mathsf{h}(S).$$

Thus $|U_T| \ge (t-1)h(S) + h(S) = n/|H| - 1$, a contradiction. If r = 0, then

$$|U| \ge (t-1)\mathsf{h}(S)|H| + (t\mathsf{h}(S) - 4)(|H| - 1) + \mathsf{h}(S) - 1$$

Since $h(S) \leq n/|H| - 2$, we have $t \geq 2$. Since $t \geq 2$ and $h(S) \geq 2$, it follows that $|U| \geq (t-1)h(S)|H| + h(S) - 1$. Thus $|U_T| \geq (t-1)h(S) + h(S) - 1 = n/|H| - 1$, a contradiction.

Therefore, if G is a cyclic group of composite order n, then L(G) = 2n - 4a - b + 3.

Proof of Theorem 1.7. Let $d \in G$ with $\operatorname{ord}(d) = n$.

(i) Assume *n* is a prime. By Lemma 5.2, $\sum_{\leq h(S)}(S)$ is periodic, which implies that $\sum_{\leq h(S)}(S) = G = \sum(S)$. On the other hand, the example $S = d^n$ implies that the restricted length h(S) is the best possible.

(ii) Assume *n* is a composite number. By Lemma 5.2, $\sum_{\leq 2h(S)-2}(S)$ is periodic with maximal period, say *H*. Let $\Phi_H : G \to G/H$ be the natural homomorphism. Let $S_H = \Phi_H(S)$ and T_H be the maximal subsequence of S_H such that $h(T_H) \leq 2h(S) - 2$. Then $|T_H| > n/|H|$ and $\sum_{\leq 2h(S)-2}(S_H) = \sum_{\leq 2h(S)-2}(T_H)$. It is easy to see that $0 \in \text{supp}(T_H)$, otherwise $\sum_{\leq 2h(S)-2}(T_H)$ is periodic by Lemma 5.2, which contradicts *H* being the maximal period.

If $2h(S) - 2 \ge n/|H| - 1$, then $\sum (S_H) \subset \sum_{\le n/|H| - 1} (S_H) \subset \sum_{\le 2h(S) - 2} (S_H)$ by Lemma 5.3, which implies $\sum_{\le 2h(S) - 2} (S) = \sum (S)$. If $2h(S) - 2 \le n/|H| - 2$, then $2h(S) \le n/|H|$. Let |G/H| = th(S) + rwhere $r \in [0, h(S) - 1]$, then the number of non-zero terms of S_H is at least

$$n - (|H| - 1)\mathsf{h}(S) = (t - 1)|H|\mathsf{h}(S) + r|H| + \mathsf{h}(S).$$

Since $S \in \mathcal{F}(G \setminus \{0\})$ with |S| = n, we have $h(S) \geq 2$. Let U_T denote the subsequence consisting of the non-zero terms of T_H . We have $|U_T| \leq |G/H| - 2$ by Lemma 5.2.

If r = 0, then n - (|H| - 1)h(S) = (t - 1)|H|h(S) + h(S) and $|U_T| \ge (t - 1)(2h(S) - 2) + h(S) \ge th(S) = |G/H|$, a contradiction.

If $r \geq 1$, then by the pigeonhole principle,

$$|U_T| \ge (t-1)(2h(S)-2) + \min\{r|H| + h(S), 2h(S)-2\}.$$

Since

$$(t-1)(2h(S)-2) + r|H| + h(S) \ge th(S) + r$$

and

$$(t-1)(2h(S)-2) + 2h(S) - 2 \ge th(S) + r - 1$$

we have $|U_T| \ge |G/H| - 1$, a contradiction. This completes the proof.

REMARK. The second part of Theorem 1.7 is sharp in view of the following example. Let n = pm where $p \ge 7$ is odd and m is large. Let G be a cyclic group of order n and H < G the subgroup of order m. Let $d \in G$ with $\operatorname{ord}(d) = n$. Let k = (p+1)/2 and

$$S = \prod_{g \in H \setminus \{0\}} g^k \cdot \prod_{g \in d+H} g^{\mathsf{v}_g(S)},$$

where $\mathsf{v}_g(S)$'s satisfy $\mathsf{v}_g(S) \leq k$ for all $g \in d + H$ and $k(|H| - 1) + \sum_{g \in d+H} \mathsf{v}_g(S) = n$. Since $(|H| - 1)k + |H|k \geq n$ for sufficiently large m, the structure of S is possible. Note that $\mathsf{h}(S) = k = (p+1)/2$. For such S, we have

$$\sum_{\leq 2h(S)-3}(S) = \sum_{\leq p-2}(S) = \bigcup_{i=0}^{p-2}(id+H)$$

and $\sum(S) = G$, therefore $\sum_{\leq 2h(S)-3}(S) \neq \sum(S)$.

Acknowledgments. This research was supported by a grant from the Guangdong Provincial Natural Science Foundation (No. 8151027501000114) and a grant from NSF of China (No. 10971072).

References

- A. Bialostocki and P. Dierker, On Erdős-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math. 110 (1992), 1–8.
- [2] H. Q. Cao, An addition theorem on the cyclic group $\mathbb{Z}_{p^{\alpha}q^{\beta}}$, Electron. J. Combin. 13 (2006), no. 1, note 9, 4 pp.

- M. DeVos, L. Goddyn and B. Mohar, A generalization of Kneser's addition theorem, Adv. Math. 220 (2009), 1531–1548.
- P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Counc. Israel 10F (1961), 41–43.
- [5] C. Flores and O. Ordaz, On the Erdős-Ginzburg-Ziv theorem, Discrete Math. 152 (1996), 321–324.
- [6] W. D. Gao, An addition theorem for finite cyclic groups, ibid. 163 (1996), 257–265.
- [7] W. D. Gao, A. Panigrahi and R. Thangadurai, On the structure of p-zero-sum free sequences and its application to a variant of Erdős-Ginzburg-Ziv theorem, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), 67–77.
- [8] W. D. Gao, R. Thangadurai and J. Zhuang, Addition theorems on the cyclic groups of order p^l, Discrete Math. 308 (2008), 2030–2033.
- [9] A. Geroldinger, Additive group theory and non-unique factorizations, in: Combinatorial Number Theory and Additive Group Theory, A. Geroldinger and I. Ruzsa (eds.), Adv. Courses Math. CRM Barcelona, Birkhäuser, 2009, 1–86.
- [10] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. 278, Chapman & Hall/CRC, 2006.
- D. J. Grynkiewicz, On a partition analog of the Cauchy-Davenport theorem, Acta Math. Hungar. 107 (2005), 161–174.
- [12] —, Quasi-periodic decompositions and the Kemperman structure theorem, Eur. J. Combin. 26 (2005), 559–575.
- [13] —, Sumsets, zero-sums and extremal combinatorics, Ph.D. Dissertation, Caltech, 2006.
- [14] —, A step beyond Kemperman's structure theorem, Mathematika 55 (2009), 67–114.
- [15] D. J. Grynkiewicz, L. E. Marchan and O. Ordaz, Representation of finite abelian group elements by subsequence sums, J. Théor. Nombres Bordeaux 21 (2009), 559– 587.
- [16] J. H. B. Kemperman, On small sumsets in an abelian group, Acta Math. 103 (1960), 63–88.
- [17] B. Peterson and T. Yuster, A generalization of an addition theorem for solvable groups, Canad. J. Math. 36 (1984), 529–536.
- [18] S. Savchev and F. Chen, Long n-zero-free sequences in finite cyclic groups, Discrete Math. 308 (2008), 1–8.

Xiangneng ZengPingzhi YuanSchool of MathematicsSchool of MathematicsSun Yat-Sen UniversitySouth China Normal UniversityGuangzhou 510275, P.R. ChinaGuangzhou 510631, P.R. ChinaE-mail: junevab@163.comE-mail: mcsypz@mail.sysu.edu.cn

Received on 8.7.2010 and in revised form on 13.10.2010 (6446)