Two conjectures on an addition theorem

by
Xiangneng Zeng and Pingzhi Yuan (Guangzhou)

1. Introduction. In this paper, we follow the notation of [10]; we recall some key notation in the next section.

In 1961, Erdős-Ginzburg-Ziv [4] proved the following theorem.
Theorem 1.1 (EGZ Theorem). Let G denote a cyclic group of order n and $S \in \mathcal{F}(G)$ be a sequence of length $2 n-1$ over G. Then $0 \in \sum_{n}(S)$.

The length $2 n-1$ is sharp in view of the example $S=0^{n-1} g^{n-1}$, where g is a generator of G.

The inverse problem to the EGZ Theorem is to investigate the structure of S satisfying $0 \notin \sum_{n}(S)$. Let $k=|S|-n$. Peterson and Yuster [17] solved the case of $k=n-2$. Bialostocki and Dierker [1] and Flores and Ordaz [5] solved the case of $k=n-3$. Gao [6] solved the case of $n-\lfloor(n+1) / 4\rfloor-1 \leq k \leq$ $n-2$. Gao et al. [7] solved the case when n is a prime and $n-\lfloor(n+1) / 3\rfloor-1 \leq$ $k \leq n-2$. Finally, Savchev and Chen [18] gave a structural description of sequences S of length $n+k$ with $\lfloor(n-1) / 2\rfloor \leq k \leq n-2$; this description does not carry over to smaller values of k (see [9, 5.1.16 and 5.1.17]). Therefore Gao, Thangadurai and Zhuang considered in [8] the maximal multiplicity of sequences S with $0 \notin \sum_{n}(S)$ and stated the following two conjectures.

Conjecture 1.2 (8). Let G be a cyclic group of order $n>2, k \in$ $[1, n-2]$ and $S \in \mathcal{F}(G)$ a sequence of length $|S|=n+k$. If $\mathrm{h}(S) \leq k$, then $0 \in \sum_{n}(S)$.

Conjecture 1.3 ([8]). Let G be a cyclic group and $S \in \mathcal{F}(G \backslash\{0\})$ a sequence of length $|S|=|G|$. Then $\sum(S)=\sum_{\leq \mathrm{h}(S)}(S)$.

Many authors verified both conjectures for large k and $\mathrm{h}(S)$ respectively. In [8], the proposers proved both conjectures when $n=p^{l}$ is a prime power

Key words and phrases: zero-sum problems, EGZ theorem, Kneser's theorem, zero-sum free sequences.
and $k \geq n / p-1(\mathrm{~h}(S) \geq n / p-1$, respectively). Cao [2] verified Conjecture 1.2 when $n=p^{\alpha} q^{\beta}$ and $k \geq n / p-1$, where p, q are primes and $p<q$. DeVos, Goddyn and Mohar [3] proved the conjectures for any abelian group G when $k \geq|G| / p-1(\mathrm{~h}(S) \geq|G| / p-1$, respectively), where p is the smallest prime divisor of $|G|$.

In this paper, we obtain the following result on Conjecture 1.2 ,
Theorem 1.4. Let $n>2$. Conjecture 1.2 holds for $k \geq n / q-1$, where q is the smallest divisor of n with $q>2$.

Theorem 1.4 improves the related result of DeVos, Goddyn and Mohar [3] for cyclic groups of even order n. We present the proof in Section 4. Also we will show that the bound on k is sharp (see the remark after the proof).

For Conjecture 1.3 , we have the following result.
Theorem 1.5. Let G be a cyclic group of order $n>2, H \leq G$ a subgroup of G, and B_{H} the set of all sequences $S \in \mathcal{F}(G \backslash\{0\})$ with $|S|=|G|$ and $\operatorname{Stab}\left(\sum_{\leq \mathrm{h}(S)}(S)\right)=H$.
(i) If $S \in B_{H}$ with $\mathrm{h}(S) \geq|G / H|-1$, then $\sum_{\leq \mathrm{h}(S)}(S)=\sum(S)$.
(ii) If $S \in B_{H}$ with $\mathrm{h}(S) \in[2,|G / H|]$ and $|\bar{G} / H|=\mathrm{h}(S) t+r$ with $r \in[0, \mathrm{~h}(S)-1]$, then

$$
2 \leq r \leq \mathrm{h}(S)-\frac{2}{|H|-1}
$$

(iii) Let $k \in[2,|G / H|]$ and set $|G / H|=k t+r$ where $r \in[0, k-1]$ is the remainder of $|G / H|$ divided by k. Suppose $2 \leq r \leq k-$ $2 /(|H|-1)$. Then there exists a sequence $S \in B_{H}$ such that $\mathrm{h}(S)=k$ and $\sum_{\leq \mathrm{h}(S)}(S) \neq \sum(S)$.

In Theorem 1.5, part (i) implies that if $\mathrm{h}(S)$ is sufficiently large compared with $|G / H|$, then $\sum_{\leq \mathrm{h}(S)}(S)=\sum(S)$, while (ii) and (iii) imply that if $S \in B_{H}$ and $\mathrm{h}(S)$ is small, then it is possible that $\sum_{\leq \mathrm{h}(S)}(S) \neq \sum(S)$. Also, the theorem shows that $\sum_{\leq \mathrm{h}(S)}(S)=\sum(S)$ holds for special n and $\mathrm{h}(S)$ without any assumptions on the structure of S. For example, let $n=p^{l}$ be a prime power and $\mathrm{h}(S)=p$. Then the remainder of $|G / H|$ divided by $\mathrm{h}(S)$ is always 0 , which implies that $\mathrm{h}(S) \geq|G / H|-1$ and $\sum_{\leq \mathrm{h}(S)}(S)=\sum(S)$ by the theorem.

Since Conjecture 1.3 is not always true, the length $|S|$ or the restricted length $\mathrm{h}(S)$ may not be large enough. This suggests investigating how large $|S|$ or $\mathrm{h}(S)$ should be to have $\sum_{\leq \mathrm{h}(S)}(S)=\sum(S)$. We define $\mathrm{L}(G)$ to be the smallest integer $l \in \mathbb{N}_{0}$ such that every sequence $S \in \mathcal{F}(G \backslash\{0\})$ of length $|S| \geq l$ satisfies $\sum_{\leq \mathrm{h}(S)}(S)=\sum(S)$. We have

Theorem 1.6. Let $n \geq 16$ and G be a cyclic group of order n.
(i) If n is a prime, then $\mathrm{L}(G)=n$.
(ii) If n is a composite number, then $\mathrm{L}(G)=2 n-4 a-b+3 \geq n+1$, where the pair $(a, b) \in \mathbb{N}^{2}$ satisfies $n=a b$ and $|4 a+b|$ is minimal.

Theorem 1.7. Let $n \geq 16$ and G be a cyclic group of order n. Let $S \in \mathcal{F}(G \backslash\{0\})$ be a sequence of length $|S|=n$.
(i) If n is a prime, then $\sum_{\leq \mathrm{h}(S)}(S)=\sum(S)$ and the restricted length $\mathrm{h}(S)$ is the best possible.
(ii) If n is a composite number, then $\sum_{\leq 2 \mathrm{~h}(S)-2}(S)=\sum(S)$.
2. Notation. Let $a \in \mathbb{R}$. Then $\lfloor a\rfloor$ denotes the maximal integer not exceeding a, and $\lceil a\rceil$ denotes the minimal integer not less than a. Let $a, b \in \mathbb{R}$. Then $[a, b]=\{x \in \mathbb{Z}: a \leq x \leq b\}$ denotes the integers between a and b.

Let G be an abelian group and H a subgroup of G. Let $\Phi_{H}: G \rightarrow G / H$ be the natural homomorphism. Let A, B be subsets of G. $A+B=\{a+b$: $a \in A, b \in B\}$ denotes the sum set of A and B and $\Phi_{H}(A)$ denotes the image of A, that is, $\Phi_{H}(A)=\left\{\Phi_{H}(g): g \in A\right\}$.

We say A is H-periodic if A is a union of H-cosets (i.e. $A+H=A$), where H is a subgroup of G, referred to as the period. Note that the trivial subgroup $\{0\}$ is a period of every A. If A is H-periodic for some nontrivial subgroup H, then A is periodic, and otherwise A is aperiodic. Let $\operatorname{Stab}(A)=\{g \in G: A+g=A\}$ denote the stabilizer of A. By the definition, any period of A is a subgroup of $\operatorname{Stab}(A)$ and thus $\operatorname{Stab}(A)$ is the maximal period of A.

A quasi-periodic decomposition of A with quasi-period H, where H is a non-trivial subgroup of G, is a partition $A=A_{1} \cup A_{0}$ such that $A_{1} \cap A_{0}=\emptyset$, $A_{1}+H=A_{1}$ and $A_{0} \subset a_{0}+H$ for some $a_{0} \in G$. Here A_{1} or A_{0} may be empty. Note that every A has a quasi-periodic decomposition with $H=G$ and $A_{1}=\emptyset$. The set A is quasi-periodic if A_{1} is not empty in some quasiperiodic decomposition $A=A_{1} \cup A_{0}$.

Let A be a set. Then the free abelian monoid with basis A, written multiplicatively, is denoted by $\mathcal{F}(A)$.

Let G be an additive finite abelian group, $G_{0} \subset G$ a subset and $\mathcal{F}\left(G_{0}\right)$ the free abelian monoid over G_{0}. An element $S=a_{1} \cdot \ldots \cdot a_{l}=\prod_{g \in G_{0}} g^{\mathrm{v}_{g}(S)} \in$ $\mathcal{F}\left(G_{0}\right)$ is called a sequence over G_{0}, where $\mathrm{v}_{g}(S)$ is the multiplicity of g in S. Let $|S|=l=\sum_{g \in G_{0}} \mathrm{v}_{g}(S)$ denote the length of $S, \mathrm{~h}(S)=\max \left\{\mathrm{v}_{g}(S)\right.$: $\left.g \in G_{0}\right\}$ the maximal multiplicity of S and $\operatorname{supp}(S)=\left\{g: \vee_{g}(S)>0\right\}$ the support of S. We say that T is a subsequence of S if $T \mid S$ in $\mathcal{F}\left(G_{0}\right)$.

We write

$$
\begin{aligned}
\sigma(S) & =\sum_{i=1}^{|S|} a_{i}, \text { the sum of } S, \\
\sum_{k}(S) & =\{\sigma(T): T \mid S \text { with }|T|=k\}, \text { the set of } k \text {-term subsums of } S, \\
\sum_{\leq k}(S) & =\bigcup_{j \in[1, k]} \sum_{j}(S), \\
\sum(S) & =\sum_{\leq|S|}(S), \text { the set of all subsums of } S
\end{aligned}
$$

Any $\operatorname{map} \phi: A \rightarrow B$ can be naturally extended to $\phi: \mathcal{F}(A) \rightarrow \mathcal{F}(B)$. For example, $\Phi_{H}(S)=\Phi_{H}\left(a_{1}\right) \cdots \Phi_{H}\left(a_{|S|}\right)$.

We denote by $\mathrm{D}(G)$ the Davenport constant of G, defined as the smallest integer $l \in \mathbb{N}$ such that every sequence $S \in \mathcal{F}(G)$ of length $|S| \geq l$ satisfies $0 \in \sum(S)$ (see Chapter 5 in [10] for some of its main properties).

Let G be an additive abelian group. We need the concept of setpartitions introduced by D. Grynkiewicz in [11] (see also [15, p. 562]). Let P denote the set of non-empty finite subsets of G. The elements of $\mathcal{F}(P)$ will be called setpartitions (over G), and an n-setpartition \mathcal{A} (over G) is an element of $\mathcal{F}(P)$ of length n (in other words, \mathcal{A} is a formal product of n non-empty subsets of G). In particular, a sequence over G can be viewed as a setpartition. We denote by $|\mathcal{A}|$ the length of \mathcal{A}. We call \mathcal{B} a sub-setpartition of \mathcal{A} if $\mathcal{B} \mid \mathcal{A}$ in $\mathcal{F}(P)$.

Let $\mathcal{A}=A_{1} \cdots A_{n} \in \mathcal{F}(P)$ be an n-setpartition over G. We set

$$
\sigma(\mathcal{A})=\sum_{i=1}^{n} A_{i}, \quad \sum_{k}^{\cup}(\mathcal{A})=\{x \in \sigma(\mathcal{B}): \mathcal{B} \mid \mathcal{A} \text { with }|\mathcal{B}|=k\}
$$

3. Preliminary results. For the proofs, we need the following results.

Theorem 3.1 (Kneser's Theorem [16]). Let G be an abelian group, and let A_{1}, \ldots, A_{n} be a collection of finite subsets of G. If $H=\operatorname{Stab}\left(\sum_{i=1}^{n} A_{i}\right)$, then

$$
\left|\sum_{i=1}^{n} \Phi_{H}\left(A_{i}\right)\right| \geq \sum_{i=1}^{n}\left|\Phi_{H}\left(A_{i}\right)\right|-n+1
$$

Theorem 3.2 (DeVos-Goddyn-Mohar Theorem (DGM Theorem) [3]). Let G be an abelian group, $\mathcal{A}=A_{1} \cdots A_{m}$ a setpartition over G, and $n \in \mathbb{N}$ with $n \leq m$. Set $H=\operatorname{Stab}\left(\sum_{n}^{\cup}(\mathcal{A})\right)$. Then

$$
\left|\sum_{n}^{\cup}(\mathcal{A})\right| \geq|H|\left(\sum_{Q \in G / H} \min \left\{n,\left|\left\{i \in[1, m]: A_{i} \cap Q \neq \emptyset\right\}\right|\right\}-n+1\right)
$$

Also we need the Kemperman Structure Theorem which was first proved in [16]. We will use the notation from [14], where substantial progress was made on this classical result.

Definition 3.3. The pair (A, B) of non-empty finite subsets of the abelian group G is said to be a critical pair if $|A+B|=|A|+|B|-1$.

Let G be an abelian group, $A, B \subseteq G$ finite non-empty subsets of G, and $g \in G$. We denote the number of expressions of g in $A+B$ by $\mathrm{r}_{A, B}(g)=$ $|A \cap(g-B)|=|\{(a, b): a \in A, b \in B, a+b=g\}|$. We say that g is the unique expression element if $\mathrm{r}_{A, B}(g)=1$.

Definition 3.4. We call a pair (A, B) of non-empty, finite subsets of an abelian group G an elementary pair if one of the following conditions (I)-(IV) holds true.
(I) $|A|=1$ or $|B|=1$.
(II) $|A| \geq 2,|B| \geq 2$ and A and B are arithmetic progressions with common difference d, where the order of d is at least $|A|+|B|-1$.
(III) $A \subset a+H, B \subset b+H$ (for some $a \in A, b \in B$ and $H \leq G$), $|A|+|B|=|H|+1$ (thus $A+B=a+b+H)$, and $a+b$ is the only unique expression element in $A+B$.
(IV) $A \subset a+H, B \subset b+H$ (for some $a \in A, b \in B$ and $H \leq G$), $A+B$ contains no unique expression elements, A and B are aperiodic, and $A=g-(b+H) \backslash B$ (for some $g \in G)$.

Theorem 3.5 (Kemperman Structure Theorem (KST)). Let A and B be finite, non-empty subsets of an abelian group G. Then

- $|A+B|=|A|+|B|-1$, and either $A+B$ is aperiodic or contains a unique expression element
if and only if there exist quasi-periodic decompositions $A=A_{1} \cup A_{0}$ and $B=B_{1} \cup B_{0}$ with common quasi-period H, and A_{0} and B_{0} non-empty, such that:
(i) $\mathrm{r}_{\Phi_{H}(A), \Phi_{H}(B)}(c)=1$, where $c=\Phi_{H}\left(A_{0}\right)+\Phi_{H}\left(B_{0}\right)$,
(ii) $\left|\Phi_{H}(A)+\Phi_{H}(B)\right|=\left|\Phi_{H}(A)\right|+\left|\Phi_{H}(B)\right|-1$,
(iii) $A_{1}+H=A_{1}, B_{1}+H=B_{1}$,
(iv) $\left(A_{0}, B_{0}\right)$ is an elementary pair,
(v) if $\mathrm{r}_{A, B}(a+b)=1$ where $a \in A$ and $b \in B$, then $a \in A_{0}$ and $b \in B_{0}$.

Condition (v) was not stated in Kemperman's original paper, but can be derived from KST as shown in [12] and [13].
4. Proof of Theorem $\mathbf{1 . 4}$. For the proof of Theorem 1.4, we need some lemmas.

LEmma 4.1. Let G be an abelian group of order n and $S \in \mathcal{F}(G)$ with $|S|=n+k$. If $\mathrm{h}(S) \leq k$, then $\sum_{n}(S)$ is periodic.

Proof. Since $\sum_{n}(S)=\sigma(S)-\sum_{k}(S), \sum_{n}(S)$ and $\sum_{k}(S)$ have the same stabilizer. If $\mathrm{h}(S) \leq k$ and $\sum_{n}(S)$ is aperiodic, then by DGM Theorem, $\left|\sum_{k}(S)\right| \geq|S|-k+1 \geq|G|+1$, which is a contradiction.

Lemma 4.2. Let G be an abelian group of order n and $S \in \mathcal{F}(G)$ with $|S|=n+k$. Suppose $H=\operatorname{Stab}\left(\sum_{n}(S)\right)$ and $k \geq|G / H|-1$. Then $0 \in$ $\sum_{n}(S)$.

Proof. By the EGZ Theorem and the hypothesis, we get the decomposition $S=S_{1} \cdots S_{|H|} T$ such that $\left|S_{i}\right|=|G / H|$ and $\sigma\left(S_{i}\right) \in H$ for all $i \in[1,|H|]$, and $|T|=k$. It follows that $\sigma\left(S_{1} \cdots S_{|H|}\right) \in H \cap \sum_{n}(S)$. Since $H=\operatorname{Stab}\left(\sum_{n}(S)\right)$, we have $0 \in \sum_{n}(S)$.

Definition 4.3. Let G be a cyclic group of order n and $S, S^{\prime} \in \mathcal{F}(G)$. We say S is equivalent to S^{\prime} (written $S \cong S^{\prime}$) if there exists an integer t with $\operatorname{gcd}(t, n)=1$ and $b \in G$ such that $S=t S^{\prime}+b$, where $S^{\prime}=a_{0}^{\prime} a_{1}^{\prime} \cdots a_{m}^{\prime}$ and $t S^{\prime}+b=\left(t a_{0}^{\prime}+b\right)\left(t a_{1}^{\prime}+b\right) \cdots\left(t a_{m}^{\prime}+b\right)$.

It is easy to see that $0 \in \sum_{l n}(S)$ if and only if $0 \in \sum_{l n}\left(S^{\prime}\right)$ for all $l \in \mathbb{N}$, thus we may consider equivalent forms of S in some cases.

Lemma 4.4. Let k, m be positive integers with $2 \leq k \leq m-2$ and K a cyclic group of order m. Let $S^{\prime} \in \mathcal{F}(K)$ with $\left|S^{\prime}\right|=2 m+k, \mathrm{~h}\left(S^{\prime}\right) \leq 2 k$ and $\sum_{k}\left(S^{\prime}\right)$ aperiodic. Suppose that $k \geq 2 m / q-1$ where q is the minimal divisor of $2 m$ with $q>2$. Then $\sigma\left(S^{\prime}\right) \in \sum_{k}\left(S^{\prime}\right)$.

Before we give the proof of Lemma 4.4, we show how to deduce Theorem 1.4 from the above lemmas.

Proof of Theorem 1.4. By Lemma 4.1. $\mathrm{h}(S) \leq k$ implies that $\sum_{n}(S)$ is periodic with the maximal period, say H. If $k \geq|G / H|-1$, then $0 \in \sum_{n}(S)$ by Lemma 4.2. Thus we may assume $k<|G / H|-1$. Since $k \geq n / q-1$, we have $1<|H|<q$. Since q is the minimal divisor of n with $q>2$, we have $|H|=2$ and $2 \mid n$.

Consider the quotient group G / H which is a cyclic group of order $n / 2$ and the image sequence $\Phi_{H}(S) \in \mathcal{F}(G / H)$. It is easy to see that $\mathrm{h}\left(\Phi_{H}(S)\right) \leq$ $k|H|=2 k$ and $\sum_{k}\left(\Phi_{H}(S)\right)=\sigma\left(\Phi_{H}(S)\right)-\sum_{n}\left(\Phi_{H}(S)\right)$ is aperiodic. Applying Lemma 4.4 to $\Phi_{H}(S)$, we have $\sigma\left(\Phi_{H}(S)\right) \in \sum_{k}\left(\Phi_{H}(S)\right)$ and $0 \in$ $\sum_{n}\left(\Phi_{H}(S)\right)=\sigma\left(\Phi_{H}(S)\right)-\sum_{k}\left(\Phi_{H}(S)\right)$. Since $\sum_{n}(S)$ is H-periodic, we have $0 \in \sum_{n}(S)$.

Remark. It follows that Conjecture 1.2 holds for the cyclic group of order p or $2 p$ with all k when p is a prime. However, Conjecture 1.2 is not always true. The following examples show that the bound for k in Theorem 1.4 is sharp for large n :

Let n be a sufficiently large integer not of the form p or $2 p, G$ the cyclic group of order n and $g \in G$ with $\operatorname{ord}(g)=n$. Let q be the least divisor
of n with $q>2, k=n / q-2 \geq 2$ and $H=(n / q) G<G$ the subgroup of G of order q. Let $S=U V$ be a sequence with $\mathrm{h}(S)=k,|S|=n+k$, $U \in \mathcal{F}(H), V \in \mathcal{F}(g+H)$, and $|V|=a n / q-1$ for some $a \geq 1$. Since $2 k q-(n / q-1)-(n+k)=n-2 n / q-4 q+3 \geq 0$ for sufficiently large n, such a structure of S is possible. Note that $\sigma(S) \in(n / q-1) g+H$ and $\sum_{k}(S) \cap((n / q-1) g+H)=\emptyset$, so $\sigma(S) \notin \sum_{k}(S)$ and $0 \notin \sum_{n}(S)$.

For example, let $n=60$ and $k=18$. Let $S=0^{k} \cdot(20 g)^{k} \cdot(40 g)^{3} \cdot g^{k}$. $(21 g)^{k} \cdot(41 g)^{3}$ be the sequence of length $n+k=78$. An easy calculation shows that $\sum_{n}(S)=G \backslash\{0,20 g, 40 g\}$.

Proof of Lemma 4.4. We divide the proof into some claims and then deduce the result.

Let $I_{1}=\left\{g \in K: \mathrm{v}_{g}\left(S^{\prime}\right) \geq k\right\}$ and $I_{2}=\left\{g \in K: \mathrm{v}_{g}\left(S^{\prime}\right)<k\right\}$. Let

$$
U=\prod_{g_{2} \in I_{2}} g_{2}^{\mathrm{v}_{g_{2}}\left(S^{\prime}\right)} \quad \text { and } \quad T=\prod_{g_{1} \in I_{1}} g_{1}^{k} \cdot U
$$

Then

$$
\begin{equation*}
\sum_{k}\left(S^{\prime}\right)=\sum_{k}(T) \tag{4.1}
\end{equation*}
$$

Hence it remains to consider the construction of T. Since $\sum_{k}\left(S^{\prime}\right)$ is aperiodic, it follows that $|T|<m+k-1$, otherwise the DGM Theorem would imply that $\left|\sum_{k}(T)\right| \geq|T|-k+1 \geq m$ and $\sum_{k}(T)=K$. Let $m=t k+r$ where $r \in[0, k-1]$.

CLAim 4.1. $\left|I_{1}\right|=t+1 \geq 2$ and $\max \{0,2 r-k\} \leq|U| \leq r-2$.
Proof of Claim 4.1. If $\left|I_{1}\right| \geq t+2$, then $|T| \geq k(t+2) \geq m+k$, a contradiction. If $\left|I_{1}\right| \leq t$, then $|U| \geq\left|S^{\prime}\right|-2 k\left|I_{1}\right|$ and $|T|=k\left|I_{1}\right|+|U| \geq$ $\left|S^{\prime}\right|-k\left|I_{1}\right| \geq\left|S^{\prime}\right|-t k=t k+2 r+k \geq m+k$, a contradiction. Therefore $\left|I_{1}\right|=t+1$.

It is easy to see that $|U|=|T|-(t+1) k<r-1$. If $0 \geq 2 r-k$, then it is trivial that $|U| \geq 0$. If $2 r-k>0$, then $|U| \geq\left|S^{\prime}\right|-2 k\left|I_{1}\right|=2 r-k$. This completes the proof of Claim 4.1.

Let

$$
U=b_{1} \cdots b_{|U|}=\prod_{g_{2} \in I_{2}} g_{2}^{\mathrm{v}_{g}\left(S^{\prime}\right)}
$$

Consider the setpartition $\mathcal{A}=A_{1} \cdots A_{k}$, where $A_{i}=I_{1} \cup\left\{b_{i}\right\}$ for $i \in[1,|U|]$ and $A_{j}=I_{1}$ for $j>|U|$. Since $|U| \leq r-2<k$, the structure of \mathcal{A} is as desired. We have

$$
\begin{equation*}
\sum_{k}(T)=\sigma(\mathcal{A})=\sum_{i=1}^{k} A_{i} \tag{4.2}
\end{equation*}
$$

Claim 4.2. $I_{1}+I_{1}$ is aperiodic and $\left|I_{1}+I_{1}\right|=2\left|I_{1}\right|-1$.

Proof of Claim 4.2. By the definition of $\mathcal{A}, A_{j}=I_{1}$ for $j>|U|$. By Claim 4.1, $k \geq r+1 \geq|U|+3$, which implies $A_{k-2}=A_{k-1}=A_{k}=I_{1}$. Since $\sum_{k}(T)=\sum_{i=1}^{k} A_{i}$ is aperiodic, $I_{1}+I_{1}=A_{k-1}+A_{k}$ is aperiodic. Thus Kneser's Theorem implies that $\left|I_{1}+I_{1}\right| \geq 2\left|I_{1}\right|-1$.

Suppose to the contrary that $\left|I_{1}+I_{1}\right| \geq 2\left|I_{1}\right|$. Let $\delta=0$ when $k-|U|$ is even and $\delta=1$ when $k-|U|$ is odd. Then

$$
\sum_{i=1}^{k} A_{i}=\sum_{i=1}^{|U|+\delta} A_{i}+\underbrace{\left(I_{1}+I_{1}\right)+\cdots+\left(I_{1}+I_{1}\right)}_{(k-|U|-\delta) / 2}
$$

Since $\sum_{i=1}^{k} A_{i}$ is aperiodic, we have

$$
\begin{aligned}
\left|\sum_{i=1}^{k} A_{i}\right| & \geq \sum_{i=1}^{|U|+\delta}\left|A_{i}\right|+\frac{k-|U|-\delta}{2}\left|I_{1}+I_{1}\right|-\left(|U|+\delta+\frac{k-|U|-\delta}{2}-1\right) \\
& \geq|U|\left(\left|I_{1}\right|+1\right)+\delta\left|I_{1}\right|+(k-|U|-\delta)\left|I_{1}\right|-\left(\frac{k+|U|+\delta}{2}-1\right) \\
& =k\left|I_{1}\right|+\frac{|U|-k-\delta}{2}+1 \geq t k+\frac{|U|+k-1}{2}+1 \\
& >t k+r=m,
\end{aligned}
$$

by Kneser's Theorem and Claim 4.1, a contradiction. This completes the proof of Claim 4.2.

Let q_{m} be the minimal divisor of m with $q_{m}>1$. Since $k \geq 2 m / q-1$ and q is the minimal divisor of $2 m$ with $q>2$, we have $k \geq m / q_{m}-1$ and equality holds if and only if $q_{m}=2, q=4$ and $k=m / 2-1$. By Claim 4.1, we have $r \geq 2$ and $\left|I_{1}\right|=t+1$. Thus if $q \neq 4$ or $k \neq m / 2-1$, then $t=(m-r) / k$ implies that $t \leq q_{m}-1$ and $\left|I_{1}\right|=t+1 \leq q_{m}$. Since $\left(I_{1}, I_{1}\right)$ is a critical pair such that $I_{1}+I_{1}$ is aperiodic, we can use KST to deduce the structure of I_{1}.

Claim 4.3. I_{1} is one of the following forms:
(i) I_{1} is an arithmetic progression.
(ii) $q=4, k=m / 2-1$ and $I_{1}=g_{0}+\left\{0, g_{1}, g_{2}\right\}$ for some $g_{0}, g_{1}, g_{2} \in K$ with $\operatorname{ord}\left(g_{2}\right)=2$. In this case, $|U|=0$ and $A_{i}=I_{1}$ for all $i \in[1, k]$.
Proof of Claim 4.3. Since $\left(I_{1}, I_{1}\right)$ is a critical pair such that $I_{1}+I_{1}$ is aperiodic, the KST implies that there is a quasi-periodic decomposition $I_{1}=I^{\prime} \cup I^{\prime \prime}$ with quasi-period $L \leq K$ such that $I^{\prime}+L=I^{\prime}, I^{\prime \prime} \subset g+L$ for some $g \in K$ and ($I^{\prime \prime}, I^{\prime \prime}$) is an elementary pair.

First, we consider the case when $I^{\prime}=\emptyset$, that is, $\left(I_{1}, I_{1}\right)=\left(I^{\prime \prime}, I^{\prime \prime}\right)$ is an elementary pair. By Claim 4.1, $\left|I_{1}\right|=t+1 \geq 2$, so $\left(I_{1}, I_{1}\right)$ is not of the form (I) of the elementary pair (Definition 3.4). By Claim $4.1, k \geq r+1 \geq|U|+3$,
which implies $A_{k-2}=A_{k-1}=A_{k}=I_{1}$. Since $\sum_{i=1}^{k} A_{i}$ is aperiodic, $I_{1}+I_{1}$ and $I_{1}+I_{1}+I_{1}$ are both aperiodic, and so $\left(I_{1}, I_{1}\right)$ is not of the form (III) or (IV) of the elementary pair. Therefore $\left(I_{1}, I_{1}\right)$ is of the form (II), so I_{1} is an arithmetic progression.

Next, we assume $I^{\prime} \neq \emptyset$. Since $I_{1}=I^{\prime} \cup I^{\prime \prime}$, we have $t+1=\left|I_{1}\right| \geq$ $|L|+1 \geq q_{m}+1$. By the discussion before the claim, we have $q=4$ and $k=m / 2-1$. Thus $m=2 k+2$, which implies that $t=2$ and $r=2$. Moreover $\left|I^{\prime}\right|=|L|=q_{m}=t=2$ and $\left|I^{\prime \prime}\right|=1$. Thus $L=\left\{0, g_{2}\right\}$ with $\operatorname{ord}\left(g_{2}\right)=2$, $I^{\prime}=g_{0}+L$ and $I_{1}=g_{0}+\left\{0, g_{1}, g_{2}\right\}$ for some $g_{0}, g_{1} \in K$. In this case, $|U| \leq r-2=0$ by Claim 4.1, so $A_{i}=I_{1}$ for all $i \in[1, k]$. This completes the proof of Claim 4.3.

Now that we have more information about the structure of I_{1}, we are going to get the conclusion of the lemma.

For the case of Claim 4.3(ii), we have
CLAim 4.4. Let $q=4, k=m / 2-1$ and $I_{1}=g_{0}+\left\{0, g_{1}, g_{2}\right\}$ for some $g_{0}, g_{1}, g_{2} \in K$ with $\operatorname{ord}\left(g_{2}\right)=2$. Then $0 \in \sum_{2 m}\left(S^{\prime}\right)$, so $\sigma\left(S^{\prime}\right) \in \sum_{k}\left(S^{\prime}\right)$.

Proof of Claim 4.4. Let $S^{\prime \prime}$ be another sequence such that $S^{\prime \prime} \cong S^{\prime}$. Then $0 \in \sum_{2 m}\left(S^{\prime}\right)$ if and only if $0 \in \sum_{2 m}\left(S^{\prime \prime}\right)$ and $\sigma\left(S^{\prime}\right) \in \sum_{k}\left(S^{\prime}\right)$ if and only if $\sigma\left(S^{\prime \prime}\right) \in \sum_{k}\left(S^{\prime \prime}\right)$. Thus it is sufficient to prove the claim for some equivalent form of S^{\prime}.

Without loss of generality, we may assume $g_{0}=0$. By Claim 4.3, we have $A_{i}=I_{1}=\left\{0, g_{1}, g_{2}\right\}$ for all $i \in[1, k]$ and $|U|=0$.

We first show that $\mathrm{v}_{g}\left(S^{\prime}\right) \geq m / 2+1$ for all $g \in I_{1}$. Suppose to the contrary that $\mathrm{v}_{g}\left(S^{\prime}\right) \leq m / 2$ for some $g \in I_{1}$. Then

$$
5 m / 2-1=2 m+k=\left|S^{\prime}\right| \leq 2 k \cdot 2+\mathrm{v}_{g}\left(S^{\prime}\right) \leq 4 k+m / 2=5 m / 2-4
$$

a contradiction. Thus $\mathrm{v}_{g}\left(S^{\prime}\right) \geq m / 2+1$ for all $g \in I_{1}$.
If $(m / 2) g_{1}=0$ in K, we choose a subsequence

$$
S_{0}=g_{1}^{m / 2} g_{2}^{l} 0^{3 m / 2-l} \mid S^{\prime}
$$

where

$$
l=2\left\lfloor\mathrm{v}_{g_{2}}\left(S^{\prime}\right) / 2\right\rfloor
$$

It is easy to see that the above structure of S_{0} is possible. Also we have $\left|S_{0}\right|=2 m$ and $\sigma\left(S_{0}\right)=0$.

If $(m / 2) g_{1}=m / 2$ in K, we choose a subsequence

$$
S_{0}=g_{1}^{m / 2}\left(g_{2}\right)^{l} 0^{3 m / 2-l} \mid S^{\prime}
$$

where

$$
l=1+2\left\lfloor\frac{\mathrm{v}_{g_{2}}\left(S^{\prime}\right)-1}{2}\right\rfloor .
$$

Similarly, we have $\left|S_{0}\right|=2 m$ and $\sigma\left(S_{0}\right)=0$.
This completes the proof of Claim 4.4.

For the case of Claim 4.3(i), we have the following claims.
Claim 4.5. Let I_{1} be an arithmetic progression with difference d. Then A_{i} is an arithmetic progression with difference d for all $i \in[\lfloor k / 2\rfloor+1, k]$ (reorder if necessary), so at least half the A_{i} 's are arithmetic progressions with common difference.

Proof of Claim 4.5. Recall that $U=b_{1} \cdots b_{|U|}$ and $\mathcal{A}=A_{1} \cdots A_{k}$, where $A_{i}=I_{1} \cup\left\{b_{i}\right\}$ for $i \in[1,|U|]$ and $A_{j}=I_{1}$ for $j>|U|$.

If $|U| \leq\lfloor k / 2\rfloor$, we are done.
If $|U|>\lfloor k / 2\rfloor$, choose arbitrarily $k-|U|$ terms of $A_{1} A_{2} \cdots A_{|U|}$, say $A_{j_{1}} \cdots A_{j_{k-|U|}}$. Let $J=\left\{j_{1}, \ldots, j_{k-|U|}\right\}$. If $\left|A_{j_{i}}+I_{1}\right| \geq\left|A_{j_{i}}\right|+\left|I_{1}\right|$ for all $i \in[1, k-|U|]$, then

$$
\sum_{i=1}^{k} A_{i}=\sum_{i=1}^{k-|U|}\left(A_{j_{i}}+A_{|U|+i}\right)+\sum_{i \in[1,|U|] \backslash J} A_{i}
$$

and

$$
\left|\sum_{i=1}^{k} A_{i}\right| \geq \sum_{i=1}^{k}\left|A_{i}\right|-(k-|U|+|U|-(k-|U|))+1=k(t+1)+1>m
$$

a contradiction. Thus $\left|A_{j_{i}}+I_{1}\right|=\left|A_{j_{i}}\right|+\left|I_{1}\right|-1$ for some j_{i}, which implies that $A_{j_{i}}$ is an arithmetic progression with difference d for such j_{i}. Since the choice of $A_{j_{1}} A_{j_{2}} \cdots A_{j_{k-|U|}}$ is arbitrary, there are at most $k-|U|-1$ terms of $A_{1} A_{2} \cdots A_{k}$ such that A_{i} is not an arithmetic progression with difference d. Since $|U|>\lfloor k / 2\rfloor$, we have $k-|U|-1 \leq\lfloor k / 2\rfloor$. This completes the proof of Claim 4.5.

Claim 4.6. Let I_{1} be an arithmetic progression with difference d. Then $\operatorname{ord}(d)=m$.

Proof of Claim 4.6. By Claim 4.5, A_{i} is an arithmetic progression with difference d for all $i \in[\lfloor k / 2\rfloor+1, k]$. It follows that $\sum_{i=\lfloor k / 2\rfloor+1}^{k} A_{i}$ is an arithmetic progression with difference d. Notice that $\sum_{i=1}^{k} A_{i}$ aperiodic implies that $\sum_{i=\lfloor k / 2\rfloor+1}^{k} A_{i}$ is aperiodic. Hence

$$
\operatorname{ord}(d)>\left|\sum_{i=\lfloor k / 2\rfloor+1}^{k} A_{i}\right| \geq t\lceil k / 2\rceil+1
$$

If $t \geq 2$, then $\operatorname{ord}(d)>k+1 \geq m / q_{m}$, where q_{m} is the minimal divisor of m with $q_{m}>1$. It follows that $\operatorname{ord}(d)=m$.

If $t=1$, then $\left|I_{1}\right|=t+1=2, m=k+r$ and $\operatorname{ord}(d)>\lceil k / 2\rceil+1>m / 4$. We consider two cases.

If $\operatorname{ord}(d)=m / 3$, we may assume that $I_{1}=\{0, d\}$ (equivalent form). By Claim 4.1, $k \geq r+1 \geq|U|+3 \geq 3$, so $3 k-3 \geq 2 k>m$. Thus
$\sum_{i=1}^{k-2} I_{1}=\langle d\rangle$, as otherwise $\operatorname{ord}(d)>\left|\sum_{i=1}^{k-2} I_{1}\right|=k-1>m / 3$. If there are at least two terms (say b_{1}, b_{2}) of $U=b_{1} \cdots b_{|U|}$ such that $b_{1}, b_{2} \notin\langle d\rangle$, then $\sum_{i=1}^{k} A_{i} \supset\left\{0, b_{1}\right\}+\left\{0, b_{2}\right\}+\sum_{i=1}^{k-2} I_{1}=K$, a contradiction. If there is exactly one term (say b_{1}) of U such that $b_{1} \notin\langle d\rangle$, then $\sum_{i=1}^{k} A_{i}=\langle d\rangle \cup\left(b_{1}+\langle d\rangle\right)$, a contradiction to $\sum_{i=1}^{k} A_{i}$ being aperiodic. If $b_{i} \in\langle d\rangle$ for any term of U, then $\sum_{i=1}^{k} A_{i}=\langle d\rangle$, a contradiction. This shows that $\operatorname{ord}(d) \neq m / 3$.

If $\operatorname{ord}(d)=m / 2$, we may assume that $I_{1}=\{0, d\}$. It is easy to see that $\sum_{i=1}^{k-1} I_{1}=\langle d\rangle$, as otherwise $\operatorname{ord}(d)>k>m / 2$. If there is some term (say b_{1}) of U such that $b_{1} \notin\langle d\rangle$, then $\sum_{i=1}^{k} A_{i} \supset\left\{0, b_{1}\right\}+\sum_{i=1}^{k-1} I_{1}=K$, a contradiction. If $b_{i} \in\langle d\rangle$ for any term of U, then $\sum_{i=1}^{k} A_{i}=\langle d\rangle$, a contradiction. This shows that $\operatorname{ord}(d) \neq m / 2$.

This completes the proof of Claim 4.6.
Now we complete the proof of the lemma by the following claim.
Claim 4.7. Let I_{1} be an arithmetic progression with difference d. Then $\sigma\left(S^{\prime}\right) \in \sum_{k}\left(S^{\prime}\right)$.

Proof of Claim 4.7. By Claim 4.6, we have $\operatorname{ord}(d)=m$. We may assume $I_{1}=\{0, d, 2 d, \ldots, t d\}$. For any $g=l d \in K$ where $l \in[0, m-1]$, we say g is on the left if $l \in[\lfloor(m+t) / 2\rfloor+1, m-1]$ and on the right if $l \in[t+1,\lfloor(m+t) / 2\rfloor]$. If $g=l d$ is on the left, we call $m-l$ its left distance, and if g is on the right, we call $l-t$ its right distance. We call it the distance for short if we do not care about left or right.

If there is one term (say $b_{1}=l_{1} d$) of U whose distance is greater than $r-1$, so $t+r \leq l_{1} \leq m-r$, then $\sum_{i=1}^{k} A_{i} \supset\left\{0, d, \ldots, t d, b_{1}\right\}+\sum_{i=1}^{k-1} I_{1}=K$, a contradiction. Thus the distance of b_{i} is at most $r-1$ for any term of U.

If there are two terms (say $b_{1}=l_{1} d, b_{2}=l_{2} d$) of U whose distances are both greater than $r / 2$, then $\sum_{i=1}^{k} A_{i} \supset\left\{0, d, \ldots, t d, b_{1}\right\}+\left\{0, d, \ldots, t d, b_{2}\right\}+$ $\sum_{i=1}^{k-2} I_{1}=K$, a contradiction. Thus, there is at most one term (say b_{1} if such a term exists) whose distance is greater than $r / 2$.

By Claim 4.5, A_{i} is an arithmetic progression with common difference d for all $i \in[\lfloor k / 2\rfloor+1, k]$. Hence $\sum_{i=\lfloor k / 2\rfloor+1}^{k} A_{i}$ is an arithmetic progression of length $\left|\sum_{i=\lfloor k / 2\rfloor+1}^{k} A_{i}\right| \geq k / 2+1>r / 2$. Since the distance of b_{i} is at most $r / 2$ for any $2 \leq i \leq|U|, \sum_{i=2}^{k} A_{i}$ is an arithmetic progression of length $\left|\sum_{i=2}^{k} A_{i}\right| \geq k>r$. Since the distance of b_{1} is at most $r-1, \sum_{i=1}^{k} A_{i}$ is an arithmetic progression.

Let u_{l} and u_{r} denote the numbers of terms of U which are on the left and on the right respectively. Let s_{l} and s_{r} denote the sums of the distances of the respective terms. Then $u_{l} \leq s_{l}, u_{r} \leq s_{r}, s_{l}+s_{r}<r$ and

$$
\sum_{i=1}^{k} A_{i}=\left\{\left(m-s_{l}\right) d,\left(m-s_{l}+1\right) d, \ldots,(m-1) d, 0, d, \ldots,\left(k t+s_{r}\right) d\right\}
$$

Let S_{0} be such that $S^{\prime} S_{0}=I_{1}^{2 k} U$. Then

$$
\sigma\left(S^{\prime}\right)+\sigma\left(S_{0}\right)=\sigma\left(I_{1}^{2 k} U\right)=\left(t(t+1) k+\left(u_{r} t+s_{r}\right)+\left(u_{l} m-s_{l}\right)\right) d
$$

Since $m=k t+r=(t+1) k-(k-r)$, we have $\sigma\left(S^{\prime}\right)+\sigma\left(S_{0}\right)=\left(k t+s_{r}-\right.$ $\left.r t+u_{r} t-s_{l}\right) d$. It is easy to see that $-s_{l} \leq k t+s_{r}-r t+u_{r} t-s_{l} \leq k t+s_{r}$, which implies that $\sigma\left(S^{\prime}\right)+\sigma\left(S_{0}\right) \in \sum_{i=1}^{k} A_{i}$. The length of S_{0} is $\left|S_{0}\right|=$ $2 k\left|I_{1}\right|+|U|-(2 m+k)=|U|+k-2 r=u_{l}+u_{r}+k-2 r \geq 0$. It is easy to see that $\left(u_{l}+u_{r}+k-2 r\right) t \leq k t<m$ and $\sigma\left(S_{0}\right) \in\left\{0, d, 2 d, \ldots,\left(u_{l}+u_{r}+k-2 r\right) t d\right\}$. Since $k t+s_{r}-r t+u_{r} t-s_{l}-\left(u_{l}+u_{r}+k-2 r\right) t=r t-u_{l} t+s_{r}-s_{l} \geq-s_{l}$, we have

$$
\sigma\left(I_{1}^{2 k} U\right)-\left\{0, d, 2 d, \ldots,\left(u_{l}+u_{r}+k-2 r\right) t d\right\} \subset \sum_{i=1}^{k} A_{i}
$$

and

$$
\sigma\left(S^{\prime}\right)=\sigma\left(I_{1}^{2 k} U\right)-\sigma\left(S_{0}\right) \in \sum_{i=1}^{k} A_{i}
$$

This completes the proof of Claim 4.7 and of Lemma 4.4.

5. Proofs of other theorems

Lemma 5.1 (9 , Proposition 4.2.6]). Let G be a finite abelian group and $S \in \mathcal{F}(G)$ with $|S| \geq|G|$. Then $0 \in \sum_{\leq \mathrm{h}(S)}(S)$.

Lemma 5.2. Let $S \in \mathcal{F}(G)$ with $|S| \geq|G|$. Suppose there exists a decomposition $S=U V$ where $0 \notin \operatorname{supp}(U), \operatorname{supp}(V)=\{0\}$ and $|U| \geq|G|-1$. Let $k \in \mathbb{N}$ with $k \geq \mathrm{h}(U)$. Then $\sum_{\leq k}(S)$ is periodic.

Proof. Let $T=U \cdot 0^{k}$. It is easy to see that $\sum_{\leq k}(S)=\sum_{k}(T)$ by Lemma 5.1.

If $\sum_{<k}(S)=\sum_{k}(T)$ is not periodic, then we apply the Devos-GoddynMohar Theorem to T, and obtain $\sum_{k}(T) \geq|T|-k+1 \geq|G|$, a contradiction.

By the definition of $\mathrm{D}(G)$, we have
Lemma 5.3. Let $S \in \mathcal{F}(G)$. Then

$$
\sum(S) \subset \sum_{\leq \mathrm{D}(G)-1}(S) \cup\{0\}
$$

Now we are ready to give the proofs of Theorems 1.5 1.7.
Proof of Theorem 1.5. By Lemma 5.2, H is not trivial, otherwise B_{H} is empty. Let $\Phi_{H}: G \rightarrow G / H$ be the natural homomorphism. Let $S_{H}=$
$\Phi_{H}(S)$. Since H is the maximal period of $\sum_{\leq \mathrm{h}(S)}(S), \sum_{\leq \mathrm{h}(S)}\left(S_{H}\right)$ is aperiodic.

Let $T_{H} \mid S_{H}$ be the maximal subsequence satisfying $\mathrm{h}\left(T_{H}\right) \leq \mathrm{h}(S)$. It is easy to see that

$$
T_{H}=\prod_{g \in G / H} g^{\min \left(\mathrm{h}(S), \mathrm{v}_{g}\left(S_{H}\right)\right)} \quad \text { and } \quad \sum_{\leq \mathrm{h}(S)}\left(S_{H}\right)=\sum_{\leq \mathrm{h}\left(T_{H}\right)}\left(T_{H}\right) .
$$

By the pigeonhole principle, we have $\left|T_{H}\right| \geq|G / H|$. Since $\sum_{\leq \mathrm{h}(S)}\left(S_{H}\right)=$ $\sum_{\leq \mathrm{h}\left(T_{H}\right)}\left(T_{H}\right)$ is aperiodic, we have $0 \in \operatorname{supp}\left(T_{H}\right)$ by Lemma 5.2 .

Let $I_{1}(S)=\left\{g \in G / H: \mathrm{v}_{g}\left(S_{H}\right) \geq \mathrm{h}(S)\right.$ and $\left.g \neq 0\right\}$ and $I_{2}(S)=\{g \in$ $G / H: \mathrm{v}_{g}\left(S_{H}\right)<\mathrm{h}(S)$ and $\left.g \neq 0\right\}$. Then

$$
T_{H}=0^{\min \left(\mathrm{h}(S), \mathrm{v}_{0}\left(S_{H}\right)\right)} \prod_{g \in I_{1}(S)} g^{\mathrm{h}(S)} \prod_{g \in I_{2}(S)} g^{\mathrm{v}_{g}\left(S_{H}\right)}
$$

Let

$$
U_{H}=\prod_{g \in I_{1}(S)} g^{\mathrm{h}(S)} \prod_{g \in I_{2}(S)} g^{\mathrm{v}_{g}\left(S_{H}\right)}
$$

denote the subsequence of non-zero terms of T_{H}. Then $\left|U_{H}\right| \leq|G / H|-2$ by Lemma 5.2 .
(i) Suppose that $\mathrm{h}(S) \geq|G / H|-1$.

If $H=G$, then $\sum_{\leq \mathrm{h}(S)}(S)=\sum(S)=G$. Thus we may assume that $H<G$ and then $\sum\left(S_{H}\right) \subset \sum_{\leq|G / H|-1}\left(S_{H}\right)$ by Lemma 5.3 with $\mathrm{D}(G / H)=$ $|G / H|$ and $0 \in \operatorname{supp}\left(T_{H}\right) \subset \operatorname{supp}\left(S_{H}\right)$. Since $\sum_{\leq|G / H|-1}\left(S_{H}\right) \subset \sum_{\leq \mathrm{h}(S)}\left(S_{H}\right)$ and $\sum_{\leq \mathrm{h}(S)}(S)$ is H-periodic, $\sum(S) \subset \sum_{\leq \mathrm{h}(S)}(S)$, which is the result.
(ii) Since $|G / H|=\mathrm{h}(S) t+r$, we have $n=|G|=\mathrm{h}(S) t|H|+r|H|$. It is easy to see that the number of non-zero terms of S_{H} is at least

$$
\begin{aligned}
n-(|H|-1) \mathrm{h}(S) & =t|H| \mathrm{h}(S)+r|H|-(|H|-1) \mathrm{h}(S) \\
& \geq(t-1)|H| \mathrm{h}(S)+\mathrm{h}(S)
\end{aligned}
$$

If $r \leq 1$, then by the pigeonhole principle, we have $\left|U_{H}\right| \geq t h(S)=$ $|G / H|-r \geq|G / H|-1$, a contradiction. Therefore, $r \geq 2$.

If $r>\mathrm{h}(S)-2 /(|H|-1)$, then $r|H|-(|H|-1) \mathrm{h}(S) \geq r-1$. Thus by the pigeonhole principle, we have $\left|U_{H}\right| \geq t \mathrm{~h}(S)+r-1=|G / H|-1$, a contradiction. Therefore $r \leq \mathrm{h}(S)-2 /(|H|-1)$.
(iii) We construct S as follows. Let $d \in G$ with $\operatorname{ord}(d)=n$. Let $t_{0}=t$ when $r|H|-(|H|-1) k \geq 0$ and $t_{0}=t-1$ when $r|H|-(|H|-1) k<0$. Set

$$
S=\prod_{g \in H \backslash\{0\}} g^{k} \cdot \prod_{i=1}^{t_{0}}\left(\prod_{g \in i d+H} g^{k}\right) \cdot U
$$

where $U \in \mathcal{F}\left(\left(t_{0}+1\right) d+H\right)$ is any sequence of length $n+k-\left(t_{0}+1\right) k|H|$ with $\mathrm{h}(U) \leq k$. Since $n+k-\left(t_{0}+1\right) k|H|=\left(t-t_{0}\right) k|H|+r|H|-(|H|-1) k$,
we have $0 \leq n+k-\left(t_{0}+1\right) k|H| \leq k|H|$. Thus the structure of S is possible. It is easy to see that $\mathrm{h}(S)=k$ and $\sum_{\leq k}(S)$ is H-periodic.

Let $S_{H}, T_{H}, U_{H}, I_{1}(S)$ and $I_{2}(S)$ be defined as above. Note that $\left|U_{H}\right|=$ $t_{0} k+\min \left\{n+k-\left(t_{0}+1\right) k|H|, k\right\}$. If $n+k-\left(t_{0}+1\right) k|H| \geq k$, that is, $n /|H| \geq$ $\left(t_{0}+1\right) k$, then $t_{0}=t-1$ and $\left|U_{H}\right|=\left(t_{0}+1\right) k=|G / H|-r \leq|G / H|-2$ (here we use $r \geq 2$). If $n+k-\left(t_{0}+1\right) k|H|<k$, so that $n /|H|<\left(t_{0}+1\right) k$, then $t_{0}=t$ and

$$
\begin{aligned}
\left|U_{H}\right| & =t k+n+k-(t+1) k|H|=t k+r|H|+k-k|H| \\
& \leq t k+r-2=|G / H|-2
\end{aligned}
$$

(here we use $k \geq r+2 /(|H|-1)$). Therefore, $\left|U_{H}\right| \leq|G / H|-2$ in both cases. It is easy to see that

$$
\sum_{\leq k}\left(S_{H}\right)=\sum_{\leq k}\left(T_{H}\right)=\left\{0, \Phi(d), \ldots,\left|U_{H}\right| \Phi(d)\right\}
$$

which implies that $\sum_{\leq k}\left(S_{H}\right)$ is aperiodic and $S \in B_{H}$. As $\Phi\left(\left(\left|U_{H}\right|+1\right) d\right) \in$ $\sum\left(S_{H}\right)$, we have $\sum_{\leq \mathrm{h}(S)}(S) \neq \sum(S)$.

Proof of Theorem 1.6. Let $d \in G$ with $\operatorname{ord}(d)=n$.
(i) Assume n is a prime. The sequence $S=d^{n-2}(2 d)$ satisfies $\sum_{\leq \mathrm{h}(S)}(S)$ $\neq \sum(S)$, since $0 \notin \sum_{\leq \mathrm{h}(S)}(S)$. Hence $\mathrm{L}(G) \geq n$. On the other hand, suppose $|S|=n$. By Lemma 5.2, $\sum_{\leq \mathrm{h}(S)}(S)$ is periodic, which implies $\sum_{\leq \mathrm{h}(S)}(S)=$ $G=\sum(S)$. Therefore, if G is a cyclic group of prime order n, then $\mathrm{L}(G)=n$.
(ii) Assume n is a composite number. Let $p \mid n$ be the minimal divisor of n and let (a, b) be as in the theorem. It is easy to see that $n / p-4 p \leq n-4$ and $4 p-n / p \leq n-4$, so $(a, b) \neq(1, n)$.

Let $H \leq G$ be a subgroup of order a. Then $|G / H|=b$. Let $S=U V$, where

$$
V=\prod_{g \in H \backslash\{0\}} g^{b-2} \text { and } \quad U=\prod_{g \in d+H} g^{b-2}
$$

Then $|S|=|V|+|U|=(a-1)(b-2)+a(b-2)=2 n-4 a-b+2$. Also, we can see that $\sum_{\leq \mathrm{h}(S)}(S) \neq \sum(S)$, since $(b-1) d+H \subset \sum(S) \backslash \sum_{\leq \mathrm{h}(S)}(S)$. Therefore $\mathrm{L}(G) \geq 2 n-4 a-b+3$.

On the other hand, let $S \in \mathcal{F}(G \backslash\{0\})$ with $|S| \geq 2 n-4 a-b+3 \geq$ $n+1$. By Lemma 5.2, $\sum_{\leq \mathrm{h}(S)}(S)$ is periodic. Let H be the maximal period of $\sum_{\leq \mathrm{h}(S)}(S)$. Let $\Phi_{H}: G \rightarrow G / H$ be the natural homomorphism. Let $S_{H}=\Phi_{H}(S)$ and T_{H} be the maximal subsequence of S_{H} such that $\mathrm{h}\left(T_{H}\right) \leq$ $\mathrm{h}(S)$. Then $\left|T_{H}\right|>n /|H|$ by the pigeonhole principle and $\sum_{\leq \mathrm{h}(S)}\left(S_{H}\right)=$ $\sum_{\leq \mathrm{h}(S)}\left(T_{H}\right)$.

If $H=G$, we are done. Thus we may assume that $H<G$.
If $0 \notin \operatorname{supp}\left(T_{H}\right)$, then $\sum_{\leq \mathrm{h}(S)}\left(T_{H}\right)$ is periodic by Lemma 5.2 , which contradicts H being the maximal period. Thus $0 \in \operatorname{supp}\left(T_{H}\right) \subset \operatorname{supp}\left(S_{H}\right)$.

If $\mathrm{h}(S) \geq n /|H|-1$, then by Lemma 5.3 and $0 \in \operatorname{supp}\left(S_{H}\right)$, we have

$$
\sum\left(S_{H}\right) \subset \sum_{\leq n /|H|-1}\left(S_{H}\right) \subset \sum_{\leq \mathrm{h}(S)}\left(S_{H}\right) \subset \sum\left(S_{H}\right)
$$

which implies the conclusion of theorem.
If $\mathrm{h}(S) \leq n /|H|-2$, let $n /|H|=t \mathrm{~h}(S)+r$ with $r \in[0, \mathrm{~h}(S)-1]$. Let $S=U V$, where $U \in \mathcal{F}(G \backslash H)$ and $V \in \mathcal{F}(H)$. Since $S \in \mathcal{F}(G \backslash\{0\})$, we have $|V| \leq(|H|-1) \mathrm{h}(S)$. Hence

$$
\begin{aligned}
|U| & =|S|-|V|=2 n-4 a-b+3-|V| \\
& \geq(2 n-4|H|-n /|H|+3)-(|H|-1) \mathrm{h}(S) \\
& =n+(n /|H|-4-\mathrm{h}(S))(|H|-1)-1 \\
& =t \mathrm{~h}(S)|H|+((t-1) \mathrm{h}(S)+2 r-4)(|H|-1)+(r-1) .
\end{aligned}
$$

Let $T_{H}=U_{T} V_{T}$ where $0 \notin \operatorname{supp}\left(U_{T}\right)$ and $\operatorname{supp}\left(V_{T}\right)=\{0\}$. Since $\sum_{\leq \mathrm{h}(S)}\left(T_{H}\right)$ is aperiodic, by Lemma 5.2, we have $\left|U_{T}\right| \leq n /|H|-2$. If $r \geq 2$, then $|U| \geq t \mathrm{~h}(S)|H|+r-1$. By the pigeonhole principle, $\left|U_{T}\right| \geq t \mathrm{~h}(S)+r-1=$ $n /|H|-1$, a contradiction. If $r=1$, then
$|U| \geq(t-1) \mathrm{h}(S)|H|+(t \mathrm{~h}(S)-2)(|H|-1)+\mathrm{h}(S) \geq(t-1) \mathrm{h}(S)|H|+\mathrm{h}(S)$.
Thus $\left|U_{T}\right| \geq(t-1) \mathrm{h}(S)+\mathrm{h}(S)=n /|H|-1$, a contradiction. If $r=0$, then

$$
|U| \geq(t-1) \mathrm{h}(S)|H|+(t \mathrm{~h}(S)-4)(|H|-1)+\mathrm{h}(S)-1
$$

Since $\mathrm{h}(S) \leq n /|H|-2$, we have $t \geq 2$. Since $t \geq 2$ and $\mathrm{h}(S) \geq 2$, it follows that $|U| \geq(t-1) \mathrm{h}(S)|H|+\mathrm{h}(S)-1$. Thus $\left|U_{T}\right| \geq(t-1) \mathrm{h}(S)+\mathrm{h}(S)-1=$ $n /|H|-1$, a contradiction.

Therefore, if G is a cyclic group of composite order n, then $\mathrm{L}(G)=$ $2 n-4 a-b+3$.

Proof of Theorem 1.7. Let $d \in G$ with $\operatorname{ord}(d)=n$.
(i) Assume n is a prime. By Lemma 5.2, $\sum_{\leq \mathrm{h}(S)}(S)$ is periodic, which implies that $\sum_{\leq \mathrm{h}(S)}(S)=G=\sum(S)$. On the other hand, the example $S=d^{n}$ implies that the restricted length $\mathrm{h}(S)$ is the best possible.
(ii) Assume n is a composite number. By Lemma 5.2, $\sum_{\leq 2 \mathrm{~h}(S)-2}(S)$ is periodic with maximal period, say H. Let $\Phi_{H}: G \rightarrow G / H$ be the natural homomorphism. Let $S_{H}=\Phi_{H}(S)$ and T_{H} be the maximal subsequence of S_{H} such that $\mathrm{h}\left(T_{H}\right) \leq 2 \mathrm{~h}(S)-2$. Then $\left|T_{H}\right|>n /|H|$ and $\sum_{\leq 2 \mathrm{~h}(S)-2}\left(S_{H}\right)=\sum_{\leq 2 \mathrm{~h}(S)-2}\left(T_{H}\right)$. It is easy to see that $0 \in \operatorname{supp}\left(T_{H}\right)$, otherwise $\sum_{\leq 2 \mathrm{~h}(S)-2}\left(T_{H}\right)$ is periodic by Lemma 5.2 , which contradicts H being the maximal period.

If $2 \mathrm{~h}(S)-2 \geq n /|H|-1$, then $\sum\left(S_{H}\right) \subset \sum_{\leq n /|H|-1}\left(S_{H}\right) \subset \sum_{\leq 2 \mathrm{~h}(S)-2}\left(S_{H}\right)$ by Lemma 5.3, which implies $\sum_{\leq 2 \mathrm{~h}(S)-2}(S)=\sum(S)$.

If $2 \mathrm{~h}(S)-2 \leq n /|H|-2$, then $2 \mathrm{~h}(S) \leq n /|H|$. Let $|G / H|=t \mathrm{~h}(S)+r$ where $r \in[0, \mathrm{~h}(S)-1]$, then the number of non-zero terms of S_{H} is at least

$$
n-(|H|-1) \mathrm{h}(S)=(t-1)|H| \mathrm{h}(S)+r|H|+\mathrm{h}(S)
$$

Since $S \in \mathcal{F}(G \backslash\{0\})$ with $|S|=n$, we have $\mathrm{h}(S) \geq 2$. Let U_{T} denote the subsequence consisting of the non-zero terms of T_{H}. We have $\left|U_{T}\right| \leq$ $|G / H|-2$ by Lemma 5.2.

If $r=0$, then $n-(|H|-1) \mathrm{h}(S)=(t-1)|H| \mathrm{h}(S)+\mathrm{h}(S)$ and $\left|U_{T}\right| \geq$ $(t-1)(2 \mathrm{~h}(S)-2)+\mathrm{h}(S) \geq t \mathrm{~h}(S)=|G / H|$, a contradiction.

If $r \geq 1$, then by the pigeonhole principle,

$$
\left|U_{T}\right| \geq(t-1)(2 \mathrm{~h}(S)-2)+\min \{r|H|+\mathrm{h}(S), 2 \mathrm{~h}(S)-2\}
$$

Since

$$
(t-1)(2 \mathrm{~h}(S)-2)+r|H|+\mathrm{h}(S) \geq t \mathrm{~h}(S)+r
$$

and

$$
(t-1)(2 \mathrm{~h}(S)-2)+2 \mathrm{~h}(S)-2 \geq t \mathrm{~h}(S)+r-1
$$

we have $\left|U_{T}\right| \geq|G / H|-1$, a contradiction. This completes the proof.
Remark. The second part of Theorem 1.7 is sharp in view of the following example. Let $n=p m$ where $p \geq 7$ is odd and m is large. Let G be a cyclic group of order n and $H<G$ the subgroup of order m. Let $d \in G$ with $\operatorname{ord}(d)=n$. Let $k=(p+1) / 2$ and

$$
S=\prod_{g \in H \backslash\{0\}} g^{k} \cdot \prod_{g \in d+H} g^{\vee_{g}(S)}
$$

where $\mathrm{v}_{g}(S)$'s satisfy $\mathrm{v}_{g}(S) \leq k$ for all $g \in d+H$ and $k(|H|-1)+$ $\sum_{g \in d+H} \vee_{g}(S)=n$. Since $(|H|-1) k+|H| k \geq n$ for sufficiently large m, the structure of S is possible. Note that $\mathrm{h}(S)=k=(p+1) / 2$. For such S, we have

$$
\sum_{\leq 2 \mathrm{~h}(S)-3}(S)=\sum_{\leq p-2}(S)=\bigcup_{i=0}^{p-2}(i d+H)
$$

and $\sum(S)=G$, therefore $\sum_{\leq 2 \mathrm{~h}(S)-3}(S) \neq \sum(S)$.
Acknowledgments. This research was supported by a grant from the Guangdong Provincial Natural Science Foundation (No. 8151027501000114) and a grant from NSF of China (No. 10971072).

References

[1] A. Bialostocki and P. Dierker, On Erdős-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math. 110 (1992), 1-8.
[2] H. Q. Cao, An addition theorem on the cyclic group $\mathbb{Z}_{p^{\alpha} q^{\beta}}$, Electron. J. Combin. 13 (2006), no. 1, note 9, 4 pp .
[3] M. DeVos, L. Goddyn and B. Mohar, A generalization of Kneser's addition theorem, Adv. Math. 220 (2009), 1531-1548.
[4] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Counc. Israel 10F (1961), 41-43.
[5] C. Flores and O. Ordaz, On the Erdős-Ginzburg-Ziv theorem, Discrete Math. 152 (1996), 321-324.
[6] W. D. Gao, An addition theorem for finite cyclic groups, ibid. 163 (1996), 257-265.
[7] W. D. Gao, A. Panigrahi and R. Thangadurai, On the structure of p-zero-sum free sequences and its application to a variant of Erdös-Ginzburg-Ziv theorem, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), 67-77.
[8] W. D. Gao, R. Thangadurai and J. Zhuang, Addition theorems on the cyclic groups of order p^{l}, Discrete Math. 308 (2008), 2030-2033.
[9] A. Geroldinger, Additive group theory and non-unique factorizations, in: Combinatorial Number Theory and Additive Group Theory, A. Geroldinger and I. Ruzsa (eds.), Adv. Courses Math. CRM Barcelona, Birkhäuser, 2009, 1-86.
[10] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. 278, Chapman \& Hall/CRC, 2006.
[11] D. J. Grynkiewicz, On a partition analog of the Cauchy-Davenport theorem, Acta Math. Hungar. 107 (2005), 161-174.
[12] -, Quasi-periodic decompositions and the Kemperman structure theorem, Eur. J. Combin. 26 (2005), 559-575.
[13] -, Sumsets, zero-sums and extremal combinatorics, Ph.D. Dissertation, Caltech, 2006.
[14] -, A step beyond Kemperman's structure theorem, Mathematika 55 (2009), 67-114.
[15] D. J. Grynkiewicz, L. E. Marchan and O. Ordaz, Representation of finite abelian group elements by subsequence sums, J. Théor. Nombres Bordeaux 21 (2009), 559587.
[16] J. H. B. Kemperman, On small sumsets in an abelian group, Acta Math. 103 (1960), 63-88.
[17] B. Peterson and T. Yuster, A generalization of an addition theorem for solvable groups, Canad. J. Math. 36 (1984), 529-536.
[18] S. Savchev and F. Chen, Long n-zero-free sequences in finite cyclic groups, Discrete Math. 308 (2008), 1-8.

Xiangneng Zeng
School of Mathematics
Sun Yat-Sen University
Guangzhou 510275, P.R. China
E-mail: junevab@163.com

Pingzhi Yuan
School of Mathematics
South China Normal University
Guangzhou 510631, P.R. China
E-mail: mcsypz@mail.sysu.edu.cn

Received on 8.7.2010
and in revised form on 13.10.2010

