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Two conjectures on an addition theorem

by

Xiangneng Zeng and Pingzhi Yuan (Guangzhou)

1. Introduction. In this paper, we follow the notation of [10]; we recall
some key notation in the next section.

In 1961, Erdős–Ginzburg–Ziv [4] proved the following theorem.

Theorem 1.1 (EGZ Theorem). Let G denote a cyclic group of order n
and S ∈ F(G) be a sequence of length 2n− 1 over G. Then 0 ∈

∑
n(S).

The length 2n− 1 is sharp in view of the example S = 0n−1gn−1, where
g is a generator of G.

The inverse problem to the EGZ Theorem is to investigate the structure
of S satisfying 0 6∈

∑
n(S). Let k = |S| − n. Peterson and Yuster [17] solved

the case of k = n− 2. Bialostocki and Dierker [1] and Flores and Ordaz [5]
solved the case of k = n−3. Gao [6] solved the case of n−b(n+1)/4c−1 ≤ k ≤
n−2. Gao et al. [7] solved the case when n is a prime and n−b(n+ 1)/3c−1 ≤
k ≤ n − 2. Finally, Savchev and Chen [18] gave a structural description of
sequences S of length n+k with b(n−1)/2c ≤ k ≤ n−2; this description does
not carry over to smaller values of k (see [9, 5.1.16 and 5.1.17]). Therefore
Gao, Thangadurai and Zhuang considered in [8] the maximal multiplicity of
sequences S with 0 6∈

∑
n(S) and stated the following two conjectures.

Conjecture 1.2 ([8]). Let G be a cyclic group of order n > 2, k ∈
[1, n− 2] and S ∈ F(G) a sequence of length |S| = n+ k. If h(S) ≤ k, then
0 ∈

∑
n(S).

Conjecture 1.3 ([8]). Let G be a cyclic group and S ∈ F(G \ {0}) a
sequence of length |S| = |G|. Then

∑
(S) =

∑
≤h(S)(S).

Many authors verified both conjectures for large k and h(S) respectively.
In [8], the proposers proved both conjectures when n = pl is a prime power
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and k ≥ n/p− 1 (h(S) ≥ n/p− 1, respectively). Cao [2] verified Conjecture
1.2 when n = pαqβ and k ≥ n/p−1, where p, q are primes and p < q. DeVos,
Goddyn and Mohar [3] proved the conjectures for any abelian group G when
k ≥ |G|/p−1 (h(S) ≥ |G|/p−1, respectively), where p is the smallest prime
divisor of |G|.

In this paper, we obtain the following result on Conjecture 1.2.

Theorem 1.4. Let n > 2. Conjecture 1.2 holds for k ≥ n/q − 1, where
q is the smallest divisor of n with q > 2.

Theorem 1.4 improves the related result of DeVos, Goddyn and Mohar
[3] for cyclic groups of even order n. We present the proof in Section 4. Also
we will show that the bound on k is sharp (see the remark after the proof).

For Conjecture 1.3, we have the following result.

Theorem 1.5. Let G be a cyclic group of order n > 2, H ≤ G a subgroup
of G, and BH the set of all sequences S ∈ F(G \ {0}) with |S| = |G| and
Stab(

∑
≤h(S)(S)) = H.

(i) If S ∈ BH with h(S) ≥ |G/H| − 1, then
∑
≤h(S)(S) =

∑
(S).

(ii) If S ∈ BH with h(S) ∈ [2, |G/H|] and |G/H| = h(S)t + r with
r ∈ [0, h(S)− 1], then

2 ≤ r ≤ h(S)− 2
|H| − 1

.

(iii) Let k ∈ [2, |G/H|] and set |G/H| = kt + r where r ∈ [0, k − 1]
is the remainder of |G/H| divided by k. Suppose 2 ≤ r ≤ k −
2/(|H|−1). Then there exists a sequence S ∈ BH such that h(S) = k
and

∑
≤h(S)(S) 6=

∑
(S).

In Theorem 1.5, part (i) implies that if h(S) is sufficiently large compared
with |G/H|, then

∑
≤h(S)(S) =

∑
(S), while (ii) and (iii) imply that if

S ∈ BH and h(S) is small, then it is possible that
∑
≤h(S)(S) 6=

∑
(S). Also,

the theorem shows that
∑
≤h(S)(S) =

∑
(S) holds for special n and h(S)

without any assumptions on the structure of S. For example, let n = pl be
a prime power and h(S) = p. Then the remainder of |G/H| divided by h(S)
is always 0, which implies that h(S) ≥ |G/H| − 1 and

∑
≤h(S)(S) =

∑
(S)

by the theorem.
Since Conjecture 1.3 is not always true, the length |S| or the restricted

length h(S) may not be large enough. This suggests investigating how large
|S| or h(S) should be to have

∑
≤h(S)(S) =

∑
(S). We define L(G) to be the

smallest integer l ∈ N0 such that every sequence S ∈ F(G \ {0}) of length
|S| ≥ l satisfies

∑
≤h(S)(S) =

∑
(S). We have
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Theorem 1.6. Let n ≥ 16 and G be a cyclic group of order n.

(i) If n is a prime, then L(G) = n.
(ii) If n is a composite number, then L(G) = 2n − 4a − b + 3 ≥ n + 1,

where the pair (a, b) ∈ N2 satisfies n = ab and |4a + b| is mini-
mal.

Theorem 1.7. Let n ≥ 16 and G be a cyclic group of order n. Let
S ∈ F(G \ {0}) be a sequence of length |S| = n.

(i) If n is a prime, then
∑
≤h(S)(S) =

∑
(S) and the restricted length

h(S) is the best possible.
(ii) If n is a composite number, then

∑
≤2h(S)−2(S) =

∑
(S).

2. Notation. Let a ∈ R. Then bac denotes the maximal integer not
exceeding a, and dae denotes the minimal integer not less than a. Let
a, b ∈ R. Then [a, b] = {x ∈ Z : a ≤ x ≤ b} denotes the integers between a
and b.

Let G be an abelian group and H a subgroup of G. Let ΦH : G→ G/H
be the natural homomorphism. Let A,B be subsets of G. A+B = {a+ b :
a ∈ A, b ∈ B} denotes the sum set of A and B and ΦH(A) denotes the image
of A, that is, ΦH(A) = {ΦH(g) : g ∈ A}.

We say A is H-periodic if A is a union of H-cosets (i.e. A + H = A),
where H is a subgroup of G, referred to as the period. Note that the triv-
ial subgroup {0} is a period of every A. If A is H-periodic for some non-
trivial subgroup H, then A is periodic, and otherwise A is aperiodic. Let
Stab(A) = {g ∈ G : A + g = A} denote the stabilizer of A. By the defi-
nition, any period of A is a subgroup of Stab(A) and thus Stab(A) is the
maximal period of A.

A quasi-periodic decomposition of A with quasi-period H, where H is a
non-trivial subgroup of G, is a partition A = A1∪A0 such that A1∩A0 = ∅,
A1 + H = A1 and A0 ⊂ a0 + H for some a0 ∈ G. Here A1 or A0 may be
empty. Note that every A has a quasi-periodic decomposition with H = G
and A1 = ∅. The set A is quasi-periodic if A1 is not empty in some quasi-
periodic decomposition A = A1 ∪A0.

Let A be a set. Then the free abelian monoid with basis A, written
multiplicatively, is denoted by F(A).

Let G be an additive finite abelian group, G0 ⊂ G a subset and F(G0)
the free abelian monoid over G0. An element S = a1 ·. . .·al =

∏
g∈G0

gvg(S) ∈
F(G0) is called a sequence over G0, where vg(S) is the multiplicity of g in S.
Let |S| = l =

∑
g∈G0

vg(S) denote the length of S, h(S) = max{vg(S) :
g ∈ G0} the maximal multiplicity of S and supp(S) = {g : vg(S) > 0} the
support of S. We say that T is a subsequence of S if T |S in F(G0).



398 X. N. Zeng and P. Z. Yuan

We write

σ(S) =
|S|∑
i=1

ai, the sum of S,∑
k(S) = {σ(T ) : T |S with |T | = k}, the set of k-term subsums of S,∑
≤k(S) =

⋃
j∈[1,k]

∑
j(S),

∑
(S) =

∑
≤|S|(S), the set of all subsums of S.

Any map φ : A → B can be naturally extended to φ : F(A) → F(B).
For example, ΦH(S) = ΦH(a1) · · ·ΦH(a|S|).

We denote by D(G) the Davenport constant of G, defined as the smallest
integer l ∈ N such that every sequence S ∈ F(G) of length |S| ≥ l satisfies
0 ∈

∑
(S) (see Chapter 5 in [10] for some of its main properties).

Let G be an additive abelian group. We need the concept of setpartitions
introduced by D. Grynkiewicz in [11] (see also [15, p. 562]). Let P denote the
set of non-empty finite subsets of G. The elements of F(P ) will be called
setpartitions (over G), and an n-setpartition A (over G) is an element of
F(P ) of length n (in other words, A is a formal product of n non-empty
subsets of G). In particular, a sequence over G can be viewed as a setparti-
tion. We denote by |A| the length of A. We call B a sub-setpartition of A if
B |A in F(P ).

Let A = A1 · · ·An ∈ F(P ) be an n-setpartition over G. We set

σ(A) =
n∑
i=1

Ai,
∑∪

k (A) = {x ∈ σ(B) : B |A with |B| = k}.

3. Preliminary results. For the proofs, we need the following results.

Theorem 3.1 (Kneser’s Theorem [16]). Let G be an abelian group, and
let A1, . . . , An be a collection of finite subsets of G. If H = Stab(

∑n
i=1Ai),

then ∣∣∣ n∑
i=1

ΦH(Ai)
∣∣∣ ≥ n∑

i=1

|ΦH(Ai)| − n+ 1.

Theorem 3.2 (DeVos–Goddyn–Mohar Theorem (DGM Theorem) [3]).
Let G be an abelian group, A = A1 · · ·Am a setpartition over G, and n ∈ N
with n ≤ m. Set H = Stab(

∑∪
n(A)). Then

|
∑∪

n(A)| ≥ |H|
( ∑
Q∈G/H

min{n, |{i ∈ [1,m] : Ai ∩Q 6= ∅}|} − n+ 1
)
.

Also we need the Kemperman Structure Theorem which was first proved
in [16]. We will use the notation from [14], where substantial progress was
made on this classical result.
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Definition 3.3. The pair (A,B) of non-empty finite subsets of the
abelian group G is said to be a critical pair if |A+B| = |A|+ |B| − 1.

Let G be an abelian group, A,B ⊆ G finite non-empty subsets of G, and
g ∈ G. We denote the number of expressions of g in A + B by rA,B(g) =
|A ∩ (g − B)| = |{(a, b) : a ∈ A, b ∈ B, a + b = g}|. We say that g is the
unique expression element if rA,B(g) = 1.

Definition 3.4. We call a pair (A,B) of non-empty, finite subsets of
an abelian group G an elementary pair if one of the following conditions
(I)–(IV) holds true.

(I) |A| = 1 or |B| = 1.
(II) |A| ≥ 2, |B| ≥ 2 and A and B are arithmetic progressions with

common difference d, where the order of d is at least |A|+ |B| − 1.
(III) A ⊂ a + H, B ⊂ b + H (for some a ∈ A, b ∈ B and H ≤ G),

|A|+ |B| = |H|+ 1 (thus A+B = a+ b+H), and a+ b is the only
unique expression element in A+B.

(IV) A ⊂ a+H, B ⊂ b+H (for some a ∈ A, b ∈ B and H ≤ G), A+B
contains no unique expression elements, A and B are aperiodic,
and A = g − (b+H) \B (for some g ∈ G).

Theorem 3.5 (Kemperman Structure Theorem (KST)). Let A and B
be finite, non-empty subsets of an abelian group G. Then

• |A + B| = |A| + |B| − 1, and either A + B is aperiodic or contains a
unique expression element

if and only if there exist quasi-periodic decompositions A = A1 ∪ A0 and
B = B1∪B0 with common quasi-period H, and A0 and B0 non-empty, such
that:

(i) rΦH(A),ΦH(B)(c) = 1, where c = ΦH(A0) + ΦH(B0),
(ii) |ΦH(A) + ΦH(B)| = |ΦH(A)|+ |ΦH(B)| − 1,
(iii) A1 +H = A1, B1 +H = B1,
(iv) (A0, B0) is an elementary pair,
(v) if rA,B(a+ b) = 1 where a ∈ A and b ∈ B, then a ∈ A0 and b ∈ B0.

Condition (v) was not stated in Kemperman’s original paper, but can
be derived from KST as shown in [12] and [13].

4. Proof of Theorem 1.4. For the proof of Theorem 1.4, we need some
lemmas.

Lemma 4.1. Let G be an abelian group of order n and S ∈ F(G) with
|S| = n+ k. If h(S) ≤ k, then

∑
n(S) is periodic.
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Proof. Since
∑

n(S) = σ(S)−
∑

k(S),
∑

n(S) and
∑

k(S) have the same
stabilizer. If h(S) ≤ k and

∑
n(S) is aperiodic, then by DGM Theorem,

|
∑

k(S)| ≥ |S| − k + 1 ≥ |G|+ 1, which is a contradiction.

Lemma 4.2. Let G be an abelian group of order n and S ∈ F(G) with
|S| = n + k. Suppose H = Stab(

∑
n(S)) and k ≥ |G/H| − 1. Then 0 ∈∑

n(S).

Proof. By the EGZ Theorem and the hypothesis, we get the decom-
position S = S1 · · ·S|H|T such that |Si| = |G/H| and σ(Si) ∈ H for all
i ∈ [1, |H|], and |T | = k. It follows that σ(S1 · · ·S|H|) ∈ H ∩

∑
n(S). Since

H = Stab(
∑

n(S)), we have 0 ∈
∑

n(S).

Definition 4.3. Let G be a cyclic group of order n and S, S′ ∈ F(G).
We say S is equivalent to S′ (written S ∼= S′) if there exists an integer t
with gcd(t, n) = 1 and b ∈ G such that S = tS′ + b, where S′ = a′0a

′
1 · · · a′m

and tS′ + b = (ta′0 + b)(ta′1 + b) · · · (ta′m + b).

It is easy to see that 0 ∈
∑

ln(S) if and only if 0 ∈
∑

ln(S′) for all l ∈ N,
thus we may consider equivalent forms of S in some cases.

Lemma 4.4. Let k, m be positive integers with 2 ≤ k ≤ m − 2 and K
a cyclic group of order m. Let S′ ∈ F(K) with |S′| = 2m + k, h(S′) ≤ 2k
and

∑
k(S
′) aperiodic. Suppose that k ≥ 2m/q − 1 where q is the minimal

divisor of 2m with q > 2. Then σ(S′) ∈
∑

k(S
′).

Before we give the proof of Lemma 4.4, we show how to deduce Theorem
1.4 from the above lemmas.

Proof of Theorem 1.4. By Lemma 4.1, h(S) ≤ k implies that
∑

n(S) is
periodic with the maximal period, say H. If k ≥ |G/H|−1, then 0 ∈

∑
n(S)

by Lemma 4.2. Thus we may assume k < |G/H| − 1. Since k ≥ n/q − 1, we
have 1 < |H| < q. Since q is the minimal divisor of n with q > 2, we have
|H| = 2 and 2 |n.

Consider the quotient group G/H which is a cyclic group of order n/2
and the image sequence ΦH(S) ∈ F(G/H). It is easy to see that h(ΦH(S)) ≤
k|H| = 2k and

∑
k(ΦH(S)) = σ(ΦH(S)) −

∑
n(ΦH(S)) is aperiodic. Ap-

plying Lemma 4.4 to ΦH(S), we have σ(ΦH(S)) ∈
∑

k(ΦH(S)) and 0 ∈∑
n(ΦH(S)) = σ(ΦH(S)) −

∑
k(ΦH(S)). Since

∑
n(S) is H-periodic, we

have 0 ∈
∑

n(S).

Remark. It follows that Conjecture 1.2 holds for the cyclic group of
order p or 2p with all k when p is a prime. However, Conjecture 1.2 is not
always true. The following examples show that the bound for k in Theorem
1.4 is sharp for large n:

Let n be a sufficiently large integer not of the form p or 2p, G the cyclic
group of order n and g ∈ G with ord(g) = n. Let q be the least divisor
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of n with q > 2, k = n/q − 2 ≥ 2 and H = (n/q)G < G the subgroup
of G of order q. Let S = UV be a sequence with h(S) = k, |S| = n + k,
U ∈ F(H), V ∈ F(g + H), and |V | = an/q − 1 for some a ≥ 1. Since
2kq − (n/q − 1) − (n + k) = n − 2n/q − 4q + 3 ≥ 0 for sufficiently large n,
such a structure of S is possible. Note that σ(S) ∈ (n/q − 1)g + H and∑

k(S) ∩ ((n/q − 1)g +H) = ∅, so σ(S) 6∈
∑

k(S) and 0 6∈
∑

n(S).
For example, let n = 60 and k = 18. Let S = 0k · (20g)k · (40g)3 · gk ·

(21g)k · (41g)3 be the sequence of length n + k = 78. An easy calculation
shows that

∑
n(S) = G \ {0, 20g, 40g}.

Proof of Lemma 4.4. We divide the proof into some claims and then
deduce the result.

Let I1 = {g ∈ K : vg(S′) ≥ k} and I2 = {g ∈ K : vg(S′) < k}. Let

U =
∏
g2∈I2

g
vg2 (S′)
2 and T =

∏
g1∈I1

gk1 · U.

Then

(4.1)
∑

k(S
′) =

∑
k(T ).

Hence it remains to consider the construction of T . Since
∑

k(S
′) is

aperiodic, it follows that |T | < m+k−1, otherwise the DGM Theorem would
imply that |

∑
k(T )| ≥ |T | − k + 1 ≥ m and

∑
k(T ) = K. Let m = tk + r

where r ∈ [0, k − 1].

Claim 4.1. |I1| = t+ 1 ≥ 2 and max{0, 2r − k} ≤ |U | ≤ r − 2.

Proof of Claim 4.1. If |I1| ≥ t + 2, then |T | ≥ k(t + 2) ≥ m + k, a
contradiction. If |I1| ≤ t, then |U | ≥ |S′| − 2k|I1| and |T | = k|I1| + |U | ≥
|S′| − k|I1| ≥ |S′| − tk = tk + 2r + k ≥ m + k, a contradiction. Therefore
|I1| = t+ 1.

It is easy to see that |U | = |T | − (t+ 1)k < r − 1. If 0 ≥ 2r − k, then it
is trivial that |U | ≥ 0. If 2r − k > 0, then |U | ≥ |S′| − 2k|I1| = 2r − k. This
completes the proof of Claim 4.1.

Let
U = b1 · · · b|U | =

∏
g2∈I2

g
vg(S′)
2 .

Consider the setpartition A = A1 · · ·Ak, where Ai = I1∪{bi} for i ∈ [1, |U |]
and Aj = I1 for j > |U |. Since |U | ≤ r − 2 < k, the structure of A is as
desired. We have

(4.2)
∑

k(T ) = σ(A) =
k∑
i=1

Ai.

Claim 4.2. I1 + I1 is aperiodic and |I1 + I1| = 2|I1| − 1.
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Proof of Claim 4.2. By the definition of A, Aj = I1 for j > |U |. By
Claim 4.1, k ≥ r + 1 ≥ |U | + 3, which implies Ak−2 = Ak−1 = Ak = I1.
Since

∑
k(T ) =

∑k
i=1Ai is aperiodic, I1 +I1 = Ak−1 +Ak is aperiodic. Thus

Kneser’s Theorem implies that |I1 + I1| ≥ 2|I1| − 1.
Suppose to the contrary that |I1 + I1| ≥ 2|I1|. Let δ = 0 when k− |U | is

even and δ = 1 when k − |U | is odd. Then

k∑
i=1

Ai =
|U |+δ∑
i=1

Ai + (I1 + I1) + · · ·+ (I1 + I1)︸ ︷︷ ︸
(k−|U |−δ)/2

.

Since
∑k

i=1Ai is aperiodic, we have∣∣∣ k∑
i=1

Ai

∣∣∣ ≥ |U |+δ∑
i=1

|Ai|+
k − |U | − δ

2
|I1 + I1| −

(
|U |+ δ +

k − |U | − δ
2

− 1
)

≥ |U |(|I1|+ 1) + δ|I1|+ (k − |U | − δ)|I1| −
(
k + |U |+ δ

2
− 1
)

= k|I1|+
|U | − k − δ

2
+ 1 ≥ tk +

|U |+ k − 1
2

+ 1

> tk + r = m,

by Kneser’s Theorem and Claim 4.1, a contradiction. This completes the
proof of Claim 4.2.

Let qm be the minimal divisor of m with qm > 1. Since k ≥ 2m/q − 1
and q is the minimal divisor of 2m with q > 2, we have k ≥ m/qm − 1 and
equality holds if and only if qm = 2, q = 4 and k = m/2 − 1. By Claim
4.1, we have r ≥ 2 and |I1| = t + 1. Thus if q 6= 4 or k 6= m/2 − 1, then
t = (m − r)/k implies that t ≤ qm − 1 and |I1| = t + 1 ≤ qm. Since (I1, I1)
is a critical pair such that I1 + I1 is aperiodic, we can use KST to deduce
the structure of I1.

Claim 4.3. I1 is one of the following forms:

(i) I1 is an arithmetic progression.
(ii) q = 4, k = m/2− 1 and I1 = g0 + {0, g1, g2} for some g0, g1, g2 ∈ K

with ord(g2) = 2. In this case, |U | = 0 and Ai = I1 for all i ∈ [1, k].

Proof of Claim 4.3. Since (I1, I1) is a critical pair such that I1 + I1
is aperiodic, the KST implies that there is a quasi-periodic decomposition
I1 = I ′ ∪ I ′′ with quasi-period L ≤ K such that I ′ + L = I ′, I ′′ ⊂ g + L for
some g ∈ K and (I ′′, I ′′) is an elementary pair.

First, we consider the case when I ′ = ∅, that is, (I1, I1) = (I ′′, I ′′) is an
elementary pair. By Claim 4.1, |I1| = t+ 1 ≥ 2, so (I1, I1) is not of the form
(I) of the elementary pair (Definition 3.4). By Claim 4.1, k ≥ r+1 ≥ |U |+3,
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which implies Ak−2 = Ak−1 = Ak = I1. Since
∑k

i=1Ai is aperiodic, I1 + I1
and I1 + I1 + I1 are both aperiodic, and so (I1, I1) is not of the form (III)
or (IV) of the elementary pair. Therefore (I1, I1) is of the form (II), so I1 is
an arithmetic progression.

Next, we assume I ′ 6= ∅. Since I1 = I ′ ∪ I ′′, we have t + 1 = |I1| ≥
|L| + 1 ≥ qm + 1. By the discussion before the claim, we have q = 4 and
k = m/2−1. Thus m = 2k+2, which implies that t = 2 and r = 2. Moreover
|I ′| = |L| = qm = t = 2 and |I ′′| = 1. Thus L = {0, g2} with ord(g2) = 2,
I ′ = g0 + L and I1 = g0 + {0, g1, g2} for some g0, g1 ∈ K. In this case,
|U | ≤ r − 2 = 0 by Claim 4.1, so Ai = I1 for all i ∈ [1, k]. This completes
the proof of Claim 4.3.

Now that we have more information about the structure of I1, we are
going to get the conclusion of the lemma.

For the case of Claim 4.3(ii), we have

Claim 4.4. Let q = 4, k = m/2 − 1 and I1 = g0 + {0, g1, g2} for some
g0, g1, g2 ∈ K with ord(g2) = 2. Then 0 ∈

∑
2m(S′), so σ(S′) ∈

∑
k(S
′).

Proof of Claim 4.4. Let S′′ be another sequence such that S′′ ∼= S′. Then
0 ∈

∑
2m(S′) if and only if 0 ∈

∑
2m(S′′) and σ(S′) ∈

∑
k(S
′) if and only if

σ(S′′) ∈
∑

k(S
′′). Thus it is sufficient to prove the claim for some equivalent

form of S′.
Without loss of generality, we may assume g0 = 0. By Claim 4.3, we

have Ai = I1 = {0, g1, g2} for all i ∈ [1, k] and |U | = 0.
We first show that vg(S′) ≥ m/2 + 1 for all g ∈ I1. Suppose to the

contrary that vg(S′) ≤ m/2 for some g ∈ I1. Then

5m/2− 1 = 2m+ k = |S′| ≤ 2k · 2 + vg(S′) ≤ 4k +m/2 = 5m/2− 4,

a contradiction. Thus vg(S′) ≥ m/2 + 1 for all g ∈ I1.
If (m/2)g1 = 0 in K, we choose a subsequence

S0 = g
m/2
1 gl203m/2−l |S′,

where
l = 2bvg2(S′)/2c.

It is easy to see that the above structure of S0 is possible. Also we have
|S0| = 2m and σ(S0) = 0.

If (m/2)g1 = m/2 in K, we choose a subsequence

S0 = g
m/2
1 (g2)l03m/2−l |S′,

where
l = 1 + 2

⌊
vg2(S′)− 1

2

⌋
.

Similarly, we have |S0| = 2m and σ(S0) = 0.
This completes the proof of Claim 4.4.
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For the case of Claim 4.3(i), we have the following claims.

Claim 4.5. Let I1 be an arithmetic progression with difference d. Then
Ai is an arithmetic progression with difference d for all i ∈ [bk/2c + 1, k]
(reorder if necessary), so at least half the Ai’s are arithmetic progressions
with common difference.

Proof of Claim 4.5. Recall that U = b1 · · · b|U | and A = A1 · · ·Ak, where
Ai = I1 ∪ {bi} for i ∈ [1, |U |] and Aj = I1 for j > |U |.

If |U | ≤ bk/2c, we are done.
If |U | > bk/2c, choose arbitrarily k − |U | terms of A1A2 · · ·A|U |, say

Aj1 · · ·Ajk−|U| . Let J = {j1, . . . , jk−|U |}. If |Aji + I1| ≥ |Aji | + |I1| for all
i ∈ [1, k − |U |], then

k∑
i=1

Ai =
k−|U |∑
i=1

(Aji +A|U |+i) +
∑

i∈[1,|U |]\J

Ai

and∣∣∣ k∑
i=1

Ai

∣∣∣ ≥ k∑
i=1

|Ai| − (k − |U |+ |U | − (k − |U |)) + 1 = k(t+ 1) + 1 > m,

a contradiction. Thus |Aji + I1| = |Aji |+ |I1| − 1 for some ji, which implies
that Aji is an arithmetic progression with difference d for such ji. Since the
choice of Aj1Aj2 · · ·Ajk−|U| is arbitrary, there are at most k−|U |−1 terms of
A1A2 · · ·Ak such that Ai is not an arithmetic progression with difference d.
Since |U | > bk/2c, we have k − |U | − 1 ≤ bk/2c. This completes the proof
of Claim 4.5.

Claim 4.6. Let I1 be an arithmetic progression with difference d. Then
ord(d) = m.

Proof of Claim 4.6. By Claim 4.5, Ai is an arithmetic progression with
difference d for all i ∈ [bk/2c+1, k]. It follows that

∑k
i=bk/2c+1Ai is an arith-

metic progression with difference d. Notice that
∑k

i=1Ai aperiodic implies
that

∑k
i=bk/2c+1Ai is aperiodic. Hence

ord(d) >
∣∣∣ k∑
i=bk/2c+1

Ai

∣∣∣ ≥ tdk/2e+ 1.

If t ≥ 2, then ord(d) > k + 1 ≥ m/qm, where qm is the minimal divisor
of m with qm > 1. It follows that ord(d) = m.

If t = 1, then |I1| = t+ 1 = 2, m = k+ r and ord(d) > dk/2e+ 1 > m/4.
We consider two cases.

If ord(d) = m/3, we may assume that I1 = {0, d} (equivalent form).
By Claim 4.1, k ≥ r + 1 ≥ |U | + 3 ≥ 3, so 3k − 3 ≥ 2k > m. Thus
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i=1 I1 = 〈d〉, as otherwise ord(d) > |

∑k−2
i=1 I1| = k− 1 > m/3. If there are

at least two terms (say b1, b2) of U = b1 · · · b|U | such that b1, b2 6∈ 〈d〉, then∑k
i=1Ai ⊃ {0, b1}+{0, b2}+

∑k−2
i=1 I1 = K, a contradiction. If there is exactly

one term (say b1) of U such that b1 6∈ 〈d〉, then
∑k

i=1Ai = 〈d〉 ∪ (b1 + 〈d〉),
a contradiction to

∑k
i=1Ai being aperiodic. If bi ∈ 〈d〉 for any term of U ,

then
∑k

i=1Ai = 〈d〉, a contradiction. This shows that ord(d) 6= m/3.
If ord(d) = m/2, we may assume that I1 = {0, d}. It is easy to see that∑k−1
i=1 I1 = 〈d〉, as otherwise ord(d) > k > m/2. If there is some term (say b1)

of U such that b1 6∈ 〈d〉, then
∑k

i=1Ai ⊃ {0, b1} +
∑k−1

i=1 I1 = K, a contra-
diction. If bi ∈ 〈d〉 for any term of U , then

∑k
i=1Ai = 〈d〉, a contradiction.

This shows that ord(d) 6= m/2.
This completes the proof of Claim 4.6.
Now we complete the proof of the lemma by the following claim.

Claim 4.7. Let I1 be an arithmetic progression with difference d. Then
σ(S′) ∈

∑
k(S
′).

Proof of Claim 4.7. By Claim 4.6, we have ord(d) = m. We may assume
I1 = {0, d, 2d, . . . , td}. For any g = ld ∈ K where l ∈ [0,m−1], we say g is on
the left if l ∈ [b(m+t)/2c+1,m−1] and on the right if l ∈ [t+1, b(m+t)/2c].
If g = ld is on the left, we call m− l its left distance, and if g is on the right,
we call l− t its right distance. We call it the distance for short if we do not
care about left or right.

If there is one term (say b1 = l1d) of U whose distance is greater than
r−1, so t+r ≤ l1 ≤ m−r, then

∑k
i=1Ai ⊃ {0, d, . . . , td, b1}+

∑k−1
i=1 I1 = K,

a contradiction. Thus the distance of bi is at most r − 1 for any term
of U .

If there are two terms (say b1 = l1d, b2 = l2d) of U whose distances are
both greater than r/2, then

∑k
i=1Ai ⊃ {0, d, . . . , td, b1}+{0, d, . . . , td, b2}+∑k−2

i=1 I1 = K, a contradiction. Thus, there is at most one term (say b1 if
such a term exists) whose distance is greater than r/2.

By Claim 4.5, Ai is an arithmetic progression with common difference d
for all i ∈ [bk/2c + 1, k]. Hence

∑k
i=bk/2c+1Ai is an arithmetic progression

of length |
∑k

i=bk/2c+1Ai| ≥ k/2 + 1 > r/2. Since the distance of bi is at

most r/2 for any 2 ≤ i ≤ |U |,
∑k

i=2Ai is an arithmetic progression of length
|
∑k

i=2Ai| ≥ k > r. Since the distance of b1 is at most r − 1,
∑k

i=1Ai is an
arithmetic progression.

Let ul and ur denote the numbers of terms of U which are on the left
and on the right respectively. Let sl and sr denote the sums of the distances
of the respective terms. Then ul ≤ sl, ur ≤ sr, sl + sr < r and
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k∑
i=1

Ai = {(m− sl)d, (m− sl + 1)d, . . . , (m− 1)d, 0, d, . . . , (kt+ sr)d}.

Let S0 be such that S′S0 = I2k
1 U . Then

σ(S′) + σ(S0) = σ(I2k
1 U) = (t(t+ 1)k + (urt+ sr) + (ulm− sl))d.

Since m = kt+ r = (t+ 1)k − (k − r), we have σ(S′) + σ(S0) = (kt+ sr −
rt+ urt− sl)d. It is easy to see that −sl ≤ kt+ sr − rt+ urt− sl ≤ kt+ sr,
which implies that σ(S′) + σ(S0) ∈

∑k
i=1Ai. The length of S0 is |S0| =

2k|I1|+|U |−(2m+k) = |U |+k−2r = ul+ur+k−2r ≥ 0. It is easy to see that
(ul +ur +k− 2r)t ≤ kt < m and σ(S0) ∈ {0, d, 2d, . . . , (ul +ur +k− 2r)td}.
Since kt+ sr − rt+ urt− sl − (ul + ur + k− 2r)t = rt− ult+ sr − sl ≥ −sl,
we have

σ(I2k
1 U)− {0, d, 2d, . . . , (ul + ur + k − 2r)td} ⊂

k∑
i=1

Ai

and

σ(S′) = σ(I2k
1 U)− σ(S0) ∈

k∑
i=1

Ai.

This completes the proof of Claim 4.7 and of Lemma 4.4.

5. Proofs of other theorems

Lemma 5.1 ([9, Proposition 4.2.6]). Let G be a finite abelian group and
S ∈ F(G) with |S| ≥ |G|. Then 0 ∈

∑
≤h(S)(S).

Lemma 5.2. Let S ∈ F(G) with |S| ≥ |G|. Suppose there exists a de-
composition S = UV where 0 6∈ supp(U), supp(V ) = {0} and |U | ≥ |G| − 1.
Let k ∈ N with k ≥ h(U). Then

∑
≤k(S) is periodic.

Proof. Let T = U · 0k. It is easy to see that
∑
≤k(S) =

∑
k(T ) by

Lemma 5.1.
If
∑
≤k(S) =

∑
k(T ) is not periodic, then we apply the Devos–Goddyn–

Mohar Theorem to T , and obtain
∑

k(T ) ≥ |T | − k + 1 ≥ |G|, a contradic-
tion.

By the definition of D(G), we have

Lemma 5.3. Let S ∈ F(G). Then∑
(S) ⊂

∑
≤D(G)−1(S) ∪ {0}.

Now we are ready to give the proofs of Theorems 1.5–1.7.

Proof of Theorem 1.5. By Lemma 5.2, H is not trivial, otherwise BH
is empty. Let ΦH : G → G/H be the natural homomorphism. Let SH =
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ΦH(S). Since H is the maximal period of
∑
≤h(S)(S),

∑
≤h(S)(SH) is aperi-

odic.
Let TH |SH be the maximal subsequence satisfying h(TH) ≤ h(S). It is

easy to see that

TH =
∏

g∈G/H

gmin(h(S),vg(SH)) and
∑
≤h(S)(SH) =

∑
≤h(TH)(TH).

By the pigeonhole principle, we have |TH | ≥ |G/H|. Since
∑
≤h(S)(SH) =∑

≤h(TH)(TH) is aperiodic, we have 0 ∈ supp(TH) by Lemma 5.2.
Let I1(S) = {g ∈ G/H : vg(SH) ≥ h(S) and g 6= 0} and I2(S) = {g ∈

G/H : vg(SH) < h(S) and g 6= 0}. Then

TH = 0min(h(S),v0(SH))
∏

g∈I1(S)

gh(S)
∏

g∈I2(S)

gvg(SH).

Let
UH =

∏
g∈I1(S)

gh(S)
∏

g∈I2(S)

gvg(SH)

denote the subsequence of non-zero terms of TH . Then |UH | ≤ |G/H| − 2
by Lemma 5.2.

(i) Suppose that h(S) ≥ |G/H| − 1.
If H = G, then

∑
≤h(S)(S) =

∑
(S) = G. Thus we may assume that

H < G and then
∑

(SH) ⊂
∑
≤|G/H|−1(SH) by Lemma 5.3 with D(G/H) =

|G/H| and 0∈ supp(TH) ⊂ supp(SH). Since
∑
≤|G/H|−1(SH)⊂

∑
≤h(S)(SH)

and
∑
≤h(S)(S) is H-periodic,

∑
(S) ⊂

∑
≤h(S)(S), which is the result.

(ii) Since |G/H| = h(S)t + r, we have n = |G| = h(S)t|H| + r|H|. It is
easy to see that the number of non-zero terms of SH is at least

n− (|H| − 1)h(S) = t|H|h(S) + r|H| − (|H| − 1)h(S)
≥ (t− 1)|H|h(S) + h(S).

If r ≤ 1, then by the pigeonhole principle, we have |UH | ≥ th(S) =
|G/H| − r ≥ |G/H| − 1, a contradiction. Therefore, r ≥ 2.

If r > h(S) − 2/(|H| − 1), then r|H| − (|H| − 1)h(S) ≥ r − 1. Thus
by the pigeonhole principle, we have |UH | ≥ th(S) + r − 1 = |G/H| − 1, a
contradiction. Therefore r ≤ h(S)− 2/(|H| − 1).

(iii) We construct S as follows. Let d ∈ G with ord(d) = n. Let t0 = t
when r|H| − (|H| − 1)k ≥ 0 and t0 = t− 1 when r|H| − (|H| − 1)k < 0. Set

S =
∏

g∈H\{0}

gk ·
t0∏
i=1

( ∏
g∈id+H

gk
)
· U,

where U ∈ F((t0 + 1)d+H) is any sequence of length n+ k − (t0 + 1)k|H|
with h(U) ≤ k. Since n+k− (t0 + 1)k|H| = (t− t0)k|H|+ r|H|− (|H|−1)k,
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we have 0 ≤ n+k− (t0 +1)k|H| ≤ k|H|. Thus the structure of S is possible.
It is easy to see that h(S) = k and

∑
≤k(S) is H-periodic.

Let SH , TH , UH , I1(S) and I2(S) be defined as above. Note that |UH | =
t0k+min{n+k−(t0+1)k|H|, k}. If n+k−(t0+1)k|H| ≥ k, that is, n/|H| ≥
(t0 + 1)k, then t0 = t − 1 and |UH | = (t0 + 1)k = |G/H| − r ≤ |G/H| − 2
(here we use r ≥ 2). If n+ k − (t0 + 1)k|H| < k, so that n/|H| < (t0 + 1)k,
then t0 = t and

|UH | = tk + n+ k − (t+ 1)k|H| = tk + r|H|+ k − k|H|
≤ tk + r − 2 = |G/H| − 2

(here we use k ≥ r + 2/(|H| − 1)). Therefore, |UH | ≤ |G/H| − 2 in both
cases. It is easy to see that∑

≤k(SH) =
∑
≤k(TH) = {0, Φ(d), . . . , |UH |Φ(d)},

which implies that
∑
≤k(SH) is aperiodic and S ∈ BH . As Φ((|UH |+ 1)d) ∈∑

(SH), we have
∑
≤h(S)(S) 6=

∑
(S).

Proof of Theorem 1.6. Let d ∈ G with ord(d) = n.
(i) Assume n is a prime. The sequence S = dn−2(2d) satisfies

∑
≤h(S)(S)

6=
∑

(S), since 0 6∈
∑
≤h(S)(S). Hence L(G) ≥ n. On the other hand, suppose

|S| = n. By Lemma 5.2,
∑
≤h(S)(S) is periodic, which implies

∑
≤h(S)(S) =

G =
∑

(S). Therefore, if G is a cyclic group of prime order n, then L(G) = n.
(ii) Assume n is a composite number. Let p |n be the minimal divisor of

n and let (a, b) be as in the theorem. It is easy to see that n/p− 4p ≤ n− 4
and 4p− n/p ≤ n− 4, so (a, b) 6= (1, n).

Let H ≤ G be a subgroup of order a. Then |G/H| = b. Let S = UV ,
where

V =
∏

g∈H\{0}

gb−2 and U =
∏

g∈d+H
gb−2.

Then |S| = |V |+ |U | = (a− 1)(b− 2) + a(b− 2) = 2n− 4a− b+ 2. Also, we
can see that

∑
≤h(S)(S) 6=

∑
(S), since (b − 1)d + H ⊂

∑
(S) \

∑
≤h(S)(S).

Therefore L(G) ≥ 2n− 4a− b+ 3.
On the other hand, let S ∈ F(G \ {0}) with |S| ≥ 2n − 4a − b + 3 ≥

n+ 1. By Lemma 5.2,
∑
≤h(S)(S) is periodic. Let H be the maximal period

of
∑
≤h(S)(S). Let ΦH : G → G/H be the natural homomorphism. Let

SH = ΦH(S) and TH be the maximal subsequence of SH such that h(TH) ≤
h(S). Then |TH | > n/|H| by the pigeonhole principle and

∑
≤h(S)(SH) =∑

≤h(S)(TH).
If H = G, we are done. Thus we may assume that H < G.
If 0 6∈ supp(TH), then

∑
≤h(S)(TH) is periodic by Lemma 5.2, which

contradicts H being the maximal period. Thus 0 ∈ supp(TH) ⊂ supp(SH).
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If h(S) ≥ n/|H| − 1, then by Lemma 5.3 and 0 ∈ supp(SH), we have∑
(SH) ⊂

∑
≤n/|H|−1(SH) ⊂

∑
≤h(S)(SH) ⊂

∑
(SH),

which implies the conclusion of theorem.
If h(S) ≤ n/|H| − 2, let n/|H| = th(S) + r with r ∈ [0, h(S) − 1]. Let

S = UV , where U ∈ F(G \ H) and V ∈ F(H). Since S ∈ F(G \ {0}), we
have |V | ≤ (|H| − 1)h(S). Hence

|U | = |S| − |V | = 2n− 4a− b+ 3− |V |
≥ (2n− 4|H| − n/|H|+ 3)− (|H| − 1)h(S)
= n+ (n/|H| − 4− h(S))(|H| − 1)− 1
= th(S)|H|+ ((t− 1)h(S) + 2r − 4)(|H| − 1) + (r − 1).

Let TH =UTVT where 0 6∈ supp(UT ) and supp(VT )={0}. Since
∑
≤h(S)(TH)

is aperiodic, by Lemma 5.2, we have |UT | ≤ n/|H| − 2. If r ≥ 2, then
|U | ≥ th(S)|H|+ r− 1. By the pigeonhole principle, |UT | ≥ th(S) + r− 1 =
n/|H| − 1, a contradiction. If r = 1, then

|U | ≥ (t− 1)h(S)|H|+ (th(S)− 2)(|H| − 1) + h(S) ≥ (t− 1)h(S)|H|+ h(S).

Thus |UT | ≥ (t− 1)h(S) + h(S) = n/|H| − 1, a contradiction. If r = 0, then

|U | ≥ (t− 1)h(S)|H|+ (th(S)− 4)(|H| − 1) + h(S)− 1.

Since h(S) ≤ n/|H| − 2, we have t ≥ 2. Since t ≥ 2 and h(S) ≥ 2, it follows
that |U | ≥ (t− 1)h(S)|H|+ h(S)− 1. Thus |UT | ≥ (t− 1)h(S) + h(S)− 1 =
n/|H| − 1, a contradiction.

Therefore, if G is a cyclic group of composite order n, then L(G) =
2n− 4a− b+ 3.

Proof of Theorem 1.7. Let d ∈ G with ord(d) = n.
(i) Assume n is a prime. By Lemma 5.2,

∑
≤h(S)(S) is periodic, which

implies that
∑
≤h(S)(S) = G =

∑
(S). On the other hand, the example

S = dn implies that the restricted length h(S) is the best possible.
(ii) Assume n is a composite number. By Lemma 5.2,

∑
≤2h(S)−2(S)

is periodic with maximal period, say H. Let ΦH : G → G/H be the
natural homomorphism. Let SH = ΦH(S) and TH be the maximal sub-
sequence of SH such that h(TH) ≤ 2h(S) − 2. Then |TH | > n/|H| and∑
≤2h(S)−2(SH) =

∑
≤2h(S)−2(TH). It is easy to see that 0 ∈ supp(TH), oth-

erwise
∑
≤2h(S)−2(TH) is periodic by Lemma 5.2, which contradicts H being

the maximal period.
If 2h(S)−2≥n/|H|−1, then

∑
(SH)⊂

∑
≤n/|H|−1(SH)⊂

∑
≤2h(S)−2(SH)

by Lemma 5.3, which implies
∑
≤2h(S)−2(S) =

∑
(S).
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If 2h(S) − 2 ≤ n/|H| − 2, then 2h(S) ≤ n/|H|. Let |G/H| = th(S) + r
where r ∈ [0, h(S)− 1], then the number of non-zero terms of SH is at least

n− (|H| − 1)h(S) = (t− 1)|H|h(S) + r|H|+ h(S).

Since S ∈ F(G \ {0}) with |S| = n, we have h(S) ≥ 2. Let UT denote
the subsequence consisting of the non-zero terms of TH . We have |UT | ≤
|G/H| − 2 by Lemma 5.2.

If r = 0, then n − (|H| − 1)h(S) = (t − 1)|H|h(S) + h(S) and |UT | ≥
(t− 1)(2h(S)− 2) + h(S) ≥ th(S) = |G/H|, a contradiction.

If r ≥ 1, then by the pigeonhole principle,

|UT | ≥ (t− 1)(2h(S)− 2) + min{r|H|+ h(S), 2h(S)− 2}.
Since

(t− 1)(2h(S)− 2) + r|H|+ h(S) ≥ th(S) + r

and
(t− 1)(2h(S)− 2) + 2h(S)− 2 ≥ th(S) + r − 1,

we have |UT | ≥ |G/H| − 1, a contradiction. This completes the proof.

Remark. The second part of Theorem 1.7 is sharp in view of the fol-
lowing example. Let n = pm where p ≥ 7 is odd and m is large. Let G be
a cyclic group of order n and H < G the subgroup of order m. Let d ∈ G
with ord(d) = n. Let k = (p+ 1)/2 and

S =
∏

g∈H\{0}

gk ·
∏

g∈d+H
gvg(S),

where vg(S)’s satisfy vg(S) ≤ k for all g ∈ d + H and k(|H| − 1) +∑
g∈d+H vg(S) = n. Since (|H| − 1)k+ |H|k ≥ n for sufficiently large m, the

structure of S is possible. Note that h(S) = k = (p + 1)/2. For such S, we
have ∑

≤2h(S)−3(S) =
∑
≤p−2(S) =

p−2⋃
i=0

(id+H)

and
∑

(S) = G, therefore
∑
≤2h(S)−3(S) 6=

∑
(S).
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