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Büchi’s problem in any power for finite fields

by

Hector Pasten (Concepción and Kingston)

1. Introduction. In an unpublished work of J. R. Büchi communicated
by Lipshitz (see [11]), the following number-theoretical question was formu-
lated:

Question 1.1 (BP2(Z)). Does there exist an integer M such that,
if a sequence of length M formed by integer squares has constant sec-
ond differences equal to 2, then necessarily the squares are of the form
(ν + 1)2, (ν + 2)2, . . . , (ν +M)2 for some integer ν?

A positive answer to this problem would imply a very strong undecid-
ability result for Z improving the known negative answer to Hilbert’s Tenth
Problem (see [11, 12]).

If σ is a sequence in a ring, we will denote by ∆(k)σ the sequence of its
kth differences. One can extend Büchi’s problem in a natural way to other
powers and (commutative unitary) rings (see [15] for implications in logic).

Question 1.2 (BPk(Z)). Does there exist an integer M such that, if
a sequence of integers (xi)Mi=1 satisfies ∆(k)(xki )

M
i=1 = (k!, . . . , k!) then there

exists an integer ν such that xki = (ν + i)k for each i?

Over Z, these are open problems for all k ≥ 2. In the case k = 2 a lot of
progress has been achieved. See for example [8, 19, 16, 17]. We also refer the
reader to [14] for a survey on Büchi’s problem.

On the other hand, the only known example of a positive answer to
BPk(A) with k > 2 is for A = F [z] and k = 3 (see [18]). The aim of this
paper is to provide, for any k ≥ 2, examples of rings A where BPk(A)
has a positive answer. Unfortunately, the examples shown below do not
give new results in logic (in an obvious way) since the rings considered are
finite.

Before stating our results, let us introduce some notation.
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Notation 1.3.

(1) If S is a set, |S| denotes the cardinality of S.
(2) P (K, k) is the set of kth powers in the field K.
(3) If F is a polynomial, V(F ) is the zero locus of F .

Theorem 1.4. Let k ≥ 2 be an integer, c its least prime factor and p
a prime of the form kl + 1 such that p > 4k2. Consider the constant

M =
⌊

1
c
p+ (k − 1)

√
p− k

⌋
and let f ∈ Fp[x] be a monic polynomial of degree k. We have M ≤ p and,
if f(n) is a kth power for at least M values of n ∈ Fp then f is a kth
power in Fp[x]. Moreover, in the particular case k = 2 the result holds with
M = (p+ 3)/2 and for any odd prime.

As a consequence of the above result, we solve the problem BPk(Fp) (see
Section 2).

Corollary 1.5. Let k ≥ 2 be an integer. The problem BPk(Fp) has
a positive answer for any prime p > 4k2 of the form kl + 1, taking

M =
⌊

1
c
p+ (k − 1)

√
p− k

⌋
where c is the least prime divisor of k. Moreover, BP2(Fp) has a positive
answer for any prime p > 2, with M = (p+ 3)/2.

Known results on incomplete character sums give the following improve-
ment of Corollary 1.5 (see Section 3).

Corollary 1.6. Let k ≥ 2 be an integer and consider p ranging in the
set of primes of the form kl + 1. For p large enough, the problem BPk(Fp)
has a positive answer with constant M = M(p) where M(p) = O(p1/2 log p).

The approach to Büchi’s Problem by means of Theorem 1.4 seems rele-
vant because of its analogy with the following result in the case of fields of
functions (see [13]).

Theorem 1.7. Let A be the field of p-adic meromorphic functions over
the field Cp, the field of complex meromorphic functions, or the function
field of a curve in characteristic zero. There exists a (computable) constant
M depending on A such that the following holds: for any monic polynomial
P ∈ A[X] of degree two, if P (a) is a square in A for at least M values of a
in the constant field of A, then either P has constant coefficients or P is
a square in A[X].

For some related results in the context of finite fields, see for example
[3–7, 9]. In these works, the authors investigated the problem of showing
that a polynomial (possibly in several variables) over a finite field with all
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its values being kth powers, must be a kth power. We improve these results
for the class of polynomials f ∈ Fp[x] by effectively bounding the number of
elements in Fp where it is enough to check whether the value of f is a kth
power or not, in order to conclude that f is itself a kth power or not.

2. Representation of kth powers by a polynomial of degree k

Notation 2.1. Let k ≥ 2 be an integer and let A be an integral domain
such that the polynomial xk − 1 ∈ A[x] has all its zeros in A. We define µk
as the multiplicative group formed by the zeros of xk − 1. It is clear that µk
is cyclic. Note that if d divides k then xd − 1 has all its zeros in A and µd is
a subgroup of µk.

Lemma 2.2. Let k ≥ 2 be an integer, let A be an integrally closed domain
containing µk, and let a ∈ A be a non-zero element. Let d ≥ 1 be the largest
integer dividing k such that a is a dth power in A and fix a root b = d

√
a ∈ A.

Write e = k/d. Consider the following factorization of yk − a in A[y]:

(2.1) yk − a =
∏
εd=1

(ye − εb)

where the product takes into account the multiplicities of the zeros of xk − 1.
Then (2.1) is the factorization of yk − a into irreducible elements of A[y].

Proof. We know that each irreducible factor in A[y] is non-constant (that
is, not in A), because yk − a is a monic polynomial. Write F for the field of
fractions of A. Since A is integrally closed, d is the largest integer dividing
k such that a is a dth power in F , and we reduce the factorization problem
to F [y] where we can conclude by applying standard results in Kummer
theory.

Lemma 2.3. Let k ≥ 2 be an integer, let K be a field of characteristic
p > 0 and choose an algebraic closure Ωp for K. If a polynomial h ∈ K[x]
is a kth power in Ωp[x], then h can be written in the form h = αgku where
α ∈ K, g ∈ K[x] is monic, and u ∈ K[xp] is a monic polynomial not divisible
by a non-constant kth power in K[x].

Proof. Write h in the form h = αgku where α ∈ K, g ∈ K[x] is monic
and has degree as large as possible, and u ∈ K[x] is monic. If u is constant
we are done, so we assume that u is non-constant. Since h is a kth power
in Ωp[x] it follows that u is a kth power in Ωp[x], hence, each root of u in
Ωp has multiplicity at least k. On the other hand, each irreducible factor
of u in K[x] has multiplicity at most k − 1 by definition of g, therefore the
irreducible factors of u are not separable and u ∈ K[xp].

Corollary 2.4. Let k ≥ 2 be an integer, let K be a field of character-
istic p > k containing all the kth roots of 1, and let f ∈ K[x] be a monic
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polynomial of degree k. Write d for the largest integer dividing k such that f
is a dth power in K[x], fix g ∈ K[x] satisfying f = gd and define e = k/d.
The polynomial g can be chosen monic and the factorization of the polyno-
mial yk − f ∈ K[x, y] into irreducible elements of K[x, y] is

yk − f =
∏
ε∈µd

(ye − εg)

where each factor is absolutely irreducible.

Proof. Since f is monic, its dth roots have as leading coefficients the
elements of µd, hence we can take g monic.

Write F = yk − f . Since the total degree of F is the same as the degree
in x and in y, each non-constant factor of F must depend on both x and y.
Hence, instead of considering the factorization of F in K[x, y] we will rather
consider the factorization of F in K[x][y]. By Lemma 2.2, the only remaining
part is to show that the factors ye − εg are absolutely irreducible.

Assume that ye − εg is reducible in Ωp[x, y] where Ωp is an algebraic
closure of K. Since the total degree of ye − εg is the same as the degree in
x and in y, each non-constant factor of it must depend on both x and y.
Hence ye − εg is reducible in Ωp(x)[y] and Lemma 2.2 implies that εg is a
rth power in Ωp(x) for some r > 1 dividing e, hence in Ωp[x]. Note that εg
has no non-constant factor in K[xp] because k < p; moreover, g is monic
and the only s dividing e such that g is an sth power in K[x] is s = 1, by
maximality of d. This contradicts Lemma 2.3.

Definition 2.5. If K is a field, k an integer and f ∈ K[x] a polynomial,
then we define the set

S(K, k, f) = {x ∈ K : f(x) ∈ P (K, k)}.

Proposition 2.6. Let k ≥ 2 be an integer and p be a prime of the form
kl + 1. Let f ∈ Fp[x] be a monic polynomial of degree k and let d be the
largest divisor of k such that f is a dth power in Fp[x]. If we write e = k/d
then

|S(Fp, k, f)| ≤ 1
e

(p+ 1) +
(e− 1)(e− 2)

e

√
p+ k − 2.

Proof. Since p = kl + 1, Fp contains k different kth roots of 1. Define
F = yk − f(x) ∈ Fp[x, y] and let Z = V(F ) ⊆ A2 be the zero locus of F . By
Corollary 2.4, Z has d reduced absolutely irreducible components X1, . . . , Xd

each one of degree e. By the Riemann Hypothesis for curves (see [1] for the
case of singular curves) we conclude that the number of Fp-rational points
of the projective closure of each Xi is at most

p+ 1 + (e− 1)(e− 2)
√
p.
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The projective closure of Z meets the line at infinity at the points [1 : ε : 0]
where ε ranges in µk, therefore we get

(2.2) |Z(Fp)| ≤ d(p+ 1) + d(e− 1)(e− 2)
√
p− k.

A similar bound would be obtained from Exercise 6.67 in [10] applied to this
case:

(2.3) |Z(Fp)| ≤ d(p+ 1) + d(e− 1)(e− 1)
√
p− d.

Let us now estimate |Z(Fp)| in a different way. We write P = P (Fp, k)
and S = S(Fp, k, f). Note that a point (x, y) ∈ Z(Fp) is a solution of the
system {

f(x) = r,

yk = r,

where r ∈ P . Let us write

Sr = {x : f(x) = r}.

It is clear that the sets Sr are disjoint. Indeed they form a partition of S
because by hypothesis we have f(x) ∈ P if and only if x ∈ S. Since deg f = k,
for each r ∈ P we have |Sr| ≤ k. Also, since p = kl+ 1, the second equation
has k solutions for each non-zero r ∈ P and just one solution for r = 0.
Hence the total number of solutions of the system is

|Z(Fp)| ≥ |S0|+
∑

r∈Pr{0}

k|Sr| = (1− k)|S0|+
∑
r∈P

k|Sr|

≥ (1− k)k + k|S|,

therefore we have

k|S| − k(k − 1) ≤ |Z(Fp)| ≤ d(p+ 1) + d(e− 1)(e− 2)
√
p− k,

which gives the desired bound.

Proof of Theorem 1.4. Under the definitions and the hypotheses of The-
orem 1.4 we will prove that, if f is not a kth power in Fp[x] then |S(Fp, k, f)|
< M . We write S = S(Fp, k, f). From the previous proposition we have

|S| ≤ 1
e

(p+ 1) +
(e− 1)(e− 2)

e

√
p+ k − 2

where e is a divisor of k depending on f . Note that e ≥ 2 because f is not
a kth power. When k = 2 the conclusion follows, so we consider the general
case with p > 4k2. We have
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|S| ≤ 1
e

(p+ 1) +
(e− 1)(e− 2)

e

√
p+ k − 2

≤ 1
c

(p+ 1) + (k − 2)
√
p+ k − 2

≤ 1
c
p+ (k − 1)

√
p+ k +

1
c
− 2− 2k because

√
p > 2k

<
1
c
p+ (k − 1)

√
p− (k + 1) < M.

Moreover, one can check that M < p for √p > 2k, thus the bound is non-
trivial.

Proof of Corollary 1.5. Let (xn)Mn=1 be a sequence in Fp satisfying

∆(k)(xkn)Mn=1 = (k!, . . . , k!),

with M as in the hypothesis. Solving the recurrence for the xki in terms of
the index i and the first initial values xk1, . . . , xkk, we get xkn = f(n) where
f ∈ Fp[x] is a monic polynomial of degree k. Hence Theorem 1.4 implies that
there exists ν ∈ Fp such that xkn = (ν + n)k.

3. A refinement. Here we prove Corollary 1.6. Let ε be a primitive kth
root of 1 in C and let g be a primitive root in Fp. Define the character χ
by setting χ(g) = ε, so that n is a kth power in Fp if and only if χ(n) = 1
or χ(n) = 0. Note that χ is a k-order character. Let f ∈ Fp[x] be a monic
polynomial of degree k which is not a kth power. It is known (see for example
[2]) that under these hypotheses, for 0 < V ≤ p we have∣∣∣ U+V∑

x=U+1

χ(f(x))
∣∣∣ = O(p1/2 log p)

where the implicit constant depends only on the degree of f , in this case k.
Since χ(f(x)) = 0 can happen at most k times, the result follows.
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