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1. Introduction. While studying the transformation properties of

η(z) := eπiz/12
∏
n≥1

(1− e2πinz),

under SL2(Z), Dedekind, in the 1880’s [9], naturally arrived at the following
arithmetic function: Let ((x)) be the sawtooth function defined by

(1.1) ((x)) :=

{
{x} − 1/2 if x 6∈ Z,

0 if x ∈ Z.

Here {x} = x − bxc denotes the fractional part of x. For a, b ∈ N := {n ∈
Z : n > 0}, we define the Dedekind sum as

(1.2) s(a, b) :=
∑

k mod b

((
ka

b

))((
k

b

))
.

The Dedekind sum and its generalizations have since intrigued mathemati-
cians from various areas such as analytic [1, 9, 10] and algebraic number
theory [17, 28], topology [13, 18, 31], algebraic [7, 22, 30] and combinatorial
geometry [6, 20], and algorithmic complexity [16].

By means of the discrete Fourier series of the sawtooth function (see, for
example, [25, p. 14]), it is not hard to write the Dedekind sum in terms of
cotangents:

(1.3) s(a, b) =
1
4b

b−1∑
k=1

cot
πka

b
cot

πk

b
.
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Starting with these two representations (1.2) and (1.3) of s(a, b), various
generalizations of the Dedekind sum have been introduced. A previous pa-
per [5] by the first author attempted to unify generalizations of the Dedekind
sum in its “cotangent representation” (1.3). The present paper complements
this by introducing a vast generalization of the “sawtooth representation”
(1.2) of the Dedekind sum. The sawtooth function is the first periodized
Bernoulli polynomial B1(u), where the Bernoulli polynomial Bk(u) is de-
fined, as usual, through

euz

ez − 1
=
∑
k≥0

Bk(u)
k!

zk−1,

and its periodized counterpart Bk(u) is defined as the unique function that is
periodic with period 1 and coincides with Bk(u) on [0, 1), except that we set
B1(u) = 0 for u∈Z. To define our generalization, let p1, . . . , pn, a1, . . . , an∈N,
x1, . . . , xn ∈ R, and

Ak := (a1, . . . , âk, . . . , an), Xk := (x1, . . . , x̂k, . . . , xn),

Pk := (p1, . . . , p̂k, . . . , pn),

where âk means we omit the entry ak. Then we define the Bernoulli–Dede-
kind sum as

(1.4) SPk

(
Ak ak

Xk xk

)
:=

∑
hmod ak

n∏
i=1
i 6=k

Bpi

(
ai
h+ xk
ak

− xi
)
.

The Bernoulli–Dedekind sums include as special cases various previously
defined Dedekind-like sums, which we will discuss in detail in Section 2.

The most fundamental and important theorems for any of the generalized
Dedekind sums are the reciprocity laws: an appropriate sum of generalized
Dedekind sums (usually permuting the arguments in a cyclic fashion) gives
a simple rational expression. The famous reciprocity law for the classical
Dedekind sum is as old as the sum itself:

Theorem 1.1 (Dedekind). If a, b ∈ N are coprime then

s(a, b) + s(b, a) = −1
4

+
1
12

(
a

b
+

1
ab

+
b

a

)
.

Our main goal in this paper is to prove a reciprocity theorem for the
Bernoulli–Dedekind sums, which is most conveniently stated in terms of
generating functions. For nonzero variables y1, . . . , yn, let Yk := (y1, . . .
. . . , ŷk, . . . , yn) and
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Ω

Ak ak

Xk xk

Yk


:=

∑
(p1,...,cpk,...,pn)∈Zn−1

≥0

1
p1! · · · pk−1!pk+1! · · · pn!

SPk

(
Ak ak

Xk xk

) n∏
i=1
i 6=k

(
yi
ai

)pi−1

.

Our main result is as follows.

Theorem 1.2. Let a1, . . . , an ∈ N be pairwise coprime, x1, . . . , xn ∈ R,
and let y1, . . . , yn be nonzero variables such that y1 + · · · + yn = 0. If
(xu − hu)/au − (xv − hv)/av 6∈ Z whenever 1 ≤ u < v ≤ n and hu, hv ∈ Z,
then

n∑
k=1

Ω

Ak ak

Xk xk

Yk

 = 0.

The next section will illustrate the span from (1.2) to (1.4) (and from
Theorem 1.1 to Theorem 1.2). Section 3 is devoted to the proof of Theo-
rem 1.2. As an interlude, we exhibit in Section 4 a Petersson–Knopp identity
[15] for the Bernoulli–Dedekind sum. In Section 5, we show that—within
limits—our ideas can also be applied to more general reciprocity theorems,
namely versions of Theorem 1.2 in which the condition (xu − hu)/au −
(xv − hv)/av 6∈ Z can be omitted.

2. Various Dedekind-like sums. In this section we give an overview
of previously defined generalizations of the Dedekind sum (rather, of its
“sawtooth representation” (1.2)). We do not claim any completeness but
hope to give some picture of what has been introduced in the past.

Apostol [2] replaced one of the sawtooth functions in (1.2) by an arbitrary
Bernoulli function:

(2.1)
∑

k mod b

((
k

b

))
Bn

(
ka

b

)
.

Apostol’s idea was generalized by Carlitz [8] and Mikolás [19] to∑
k mod b

Bm

(
kb

a

)
Bn

(
kc

a

)
.

Another way of generalizing (1.2) is to shift the argument of the sawtooth
functions. This was introduced by Meyer [17] and Dieter [10], and brought
to a solid ground by Rademacher [24]: For a, b ∈ N, x, y ∈ R, the Dedekind–
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Rademacher sum is defined by∑
k mod b

((
a
k + y

b
− x
))((

k + y

b

))
.

The ideas of Apostol and Rademacher can also be combined: Takács [29]
introduced a shift in Apostol’s sum (2.1):∑

k mod b

((
k + y

b

))
Bn

(
a
k + y

b
− x
)
.

This was further generalized by Halbritter [11] and later by Hall, Wilson,
and Zagier [12] to∑

h mod c

Bm

(
a
h+ z

c
− x
)
Bn

(
b
h+ z

c
− y
)
,

where a, b, c,m, n ∈ N and x, y, z ∈ R. The Hall–Wilson–Zagier sum, in turn,
is a special case of our Bernoulli–Dedekind sum, namely,

Sm,n

(
A3 a3

X3 x3

)
,

where (a1, a2, a3) = (a, b, c), (x1, x2, x3) = (x, y, z), and P3 = (m,n) (and
thus A3 = (a, b) and X3 = (x, y)).

The central theorems of all of the above-cited papers are reciprocity
theorems for each generalized Dedekind sum. To give one example, we state
the reciprocity theorem of [12].

Theorem 2.1 (Hall–Wilson–Zagier). Let a1, a2, a3 ∈ N be pairwise co-
prime, x1, x2, x3 ∈ R, and let y1, y2, y3 be nonzero variables such that y1 +
y2 + y3 = 0. Then

Ω

a1 a2 a3

x1 x2 x3

y1 y2

+Ω

a2 a3 a1

x2 x3 x1

y2 y3

+Ω

a3 a1 a2

x3 x1 x2

y3 y1


=
{
−1/4 if (x1, x2, x3) ∈ (a1, a2, a3)R + Z3,

0 otherwise.
As noted elsewhere, the statement of this theorem in [12] missed the

minus sign in front of 1/4 (the proof is correct nevertheless). We should
also remark that it is a somewhat nontrivial (but funny) exercise to derive
Dedekind’s Theorem 1.1 from Hall–Wilson–Zagier’s Theorem 2.1.

It is the generic (“otherwise”) case of Theorem 2.1 that our Theorem 1.2
extends. The other case (which essentially deals with Bernoulli–Dedekind
sums for which x1 = · · · = xn = 0) was recently extended by Bayad and
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Raouj [4]. For Theorem 2.1, there are essentially only these two “extreme”
cases; however, for higher-dimensional Bernoulli–Dedekind sums, there are
more intermediate cases (in which we have a partial linear relation such as
(x1, x2, x3) ∈ (a1, a2, a3)R + Z3), and it is not clear to us how one can easily
deal with them. We address this issue in Section 6.

It is worth mentioning Hu’s thesis [14], which contains another variant of
a “multidimensional” Hall–Wilson–Zagier sum. Hu’s reciprocity theorem is
equivalent to Theorem 2.1 for n = 3 but Hu’s generalized Dedekind sums and
their reciprocity theorems become different from our Bernoulli–Dedekind
sums for n ≥ 4.

Finally, we note that both Theorems 1.2 and 2.1 can be implicitly seen
in the work of Sczech [26, 27]. Our main contribution is to give a unifying
picture and a simple combinatorial reciprocity proof for Bernoulli–Dedekind
sums.

3. Proof of Theorem 1.2. We start our journey towards a proof of
Theorem 1.2 with the following lemma on fractional parts, whose easy proof
is left to the reader.

Lemma 3.1. Given a, b, c ∈ R,

{a− b} − {a− c} ≥ 0 ⇒ {a− b} − {a− c} = {c− b},
{a− b} − {a− c} ≤ 0 ⇒ {a− b} − {a− c} = −{b− c}.

Almost as easy is the proof of the following well-known lemma [23].

Lemma 3.2 (Raabe’s formula). For a ∈ N and x ∈ R,∑
h mod a

Bm

(
x+

h

a

)
= a1−m Bm(ax) .

Consequently, we can manipulate a Bernoulli–Dedekind sum as follows:

SPk

(
Ak ak

Xk xk

) n∏
j=1
j 6=k

a
1−mj

j =
∑

hmod ak

n∏
j=1
j 6=k

Bpj

(
aj
h+ xk
ak

− xj
)
a

1−mj

j(3.1)

=
∑

h1 mod a1
···

hn mod an

n∏
j=1
j 6=k

Bpj

(
xk + hk
ak

− xj + hj
aj

)
,

where the sum includes the original summand h we now call hk. With the
short-hand rj := (xj + hj)/aj , (3.1) gives
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(3.2) Ω

Ak ak

Xk xk

Yk


=

∑
(p1,...,cpk,...,pn)∈Zn−1

≥0

1
p1! · · · pk−1!pk+1! · · · pn!

SPk

(
Ak ak

Xk xk

) n∏
j=1
j 6=k

(
yj
aj

)pj−1

=
∑

h1 mod a1
···

hn mod an

∑
(p1,...,cpk,...,pn)∈Zn−1

≥0

1
p1! · · · pk−1!pk+1! · · · pn!

n∏
j=1
j 6=k

Bpj (rk−rj)y
pj−1
i

=
∑

h1 mod a1
···

hn mod an

n∏
j=1
j 6=k

β(rk − rj , yj),

where
β(u, z) :=

∑
k≥0

Bk(u)
k!

zk−1.

Note that

(3.3) β(u, z) =


1
2
ez + 1
ez − 1

if u ∈ Z,

e{u}z

ez − 1
if u /∈ Z,

and so it is clear that (3.2) depends on the differences rk − rj , and the
β(rk − rj , yj) depend on whether or not these differences are integers. This
is the reason for our crucial assumption that (xu − hu)/au−(xv − hv)/av 6∈ Z
whenever 1 ≤ u < v ≤ n and hu, hv ∈ Z in Theorem 1.2: it allows us to use
the second case of (3.3) throughout. For the rest of this section, we assume
the differences rk − rj are not integers. Then

n∑
k=1

Ω

Ak ak

Xk xk

Yk

 =
n∑
k=1

∑
h1 mod a1
···

hn mod an

n∏
j=1
j 6=k

β(rk − rj , yj)

=
∑

h1 mod a1
···

hn mod an

n∑
k=1

n∏
j=1
j 6=k

e{rk−rj}yj

eyj − 1
eyk − 1
eyk − 1

=
∑

h1 mod a1
···

hn mod an

∑n
k=1 e

yk
∏n
j=1, j 6=k e

{rk−rj}yj −
∑n

k=1

∏n
j=1, j 6=k e

{rk−rj}yj∏n
j=1 (eyj − 1)

.
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Theorem 1.2 will be proved once we can show that the numerator

N :=
n∑
k=1

eyk

n∏
j=1
j 6=k

e{rk−rj}yj −
n∑
k=1

n∏
j=1
j 6=k

e{rk−rj}yj

in this expression vanishes. We separate the k = n terms and use the as-
sumption y1 + · · ·+ yn = 0:

N =
n−1∑
k=1

e{rk−rn}yn+yk

n−1∏
j=1
j 6=k

e{rk−rj}yj −
n−1∑
k=1

e{rk−rn}yn

n−1∏
j=1
j 6=k

e{rk−rj}yj

+ eyn

n−1∏
j=1

e{rn−rj}yj −
n−1∏
j=1

e{rn−rj}yj

=
n−1∑
k=1

e{rk−rn}(−y1−···−yn−1)+yk

n−1∏
j=1
j 6=k

e{rk−rj}yj

−
n−1∑
k=1

e{rk−rn}(−y1−···−yn−1)
n−1∏
j=1
j 6=k

e{rk−rj}yj

+ e−y1−···−yn−1

n−1∏
j=1

e{rn−rj}yj −
n−1∏
j=1

e{rn−rj}yj .

Note that 1− {rk − rn} = {rn − rk} since rk − rn 6∈ Z. Thus

N =
n−1∑
k=1

e{rn−rk}yk

n−1∏
j=1
j 6=k

e({rk−rj}−{rk−rn})yj(3.4)

−
n−1∑
k=1

e−{rk−rn}yk

n−1∏
j=1
j 6=k

e({rk−rj}−{rk−rn})yj

+
n−1∏
j=1

e−{rj−rn}yj −
n−1∏
j=1

e{rn−rj}yj .

We will show that we can find identical pairs of exponents in terms with
opposite signs in this expression, and so the sum vanishes. Only three types
of exponents appear in (3.4):

{rn − rk}yk, −{rk − rn}yk, and ({rk − rj} − {rk − rn})yj .
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By Lemma 3.1, ({rk− rj}−{rk− rn})yj equals {rn− rj}yj or −{rj− rn}yj ,
and so the exponents can be condensed to just the first two types. Moreover,
the sign of {rk − rj} − {rk − rn} determines if it is equal to {rn − rj} or
−{rj−rn}, and so all the information of N can be encoded by a sign matrix:
the term {rn − rk}yk gets encoded by +, the term −{rj − rn}yj by −, and
the term ({rk−rj}−{rk− rn})yj by the sign of {rk−rj}−{rk−rn}, which
we denote by σkj . For example, the exponent corresponding to k = 1 in the
first sum

(3.5)
n−1∑
k=1

e{rn−rk}yk

n−1∏
j=1
j 6=k

e({rk−rj}−{rk−rn})yj

is

{rn− r1}y1 + ({r1− r2}−{r1− rn})y2 + · · ·+ ({r1− rn−1}−{r1− rn})yn−1

and is represented by the sign vector (+, σ12, . . . , σ1, n−1). In general, the kth
term in (3.5) is represented by the sign vector (σk,1, . . . , σk,k−1,+, σk,k+1, . . .
. . . , σk,n−1). Similarly, the kth term in the second sum of (3.4),

−
n−1∑
k=1

e−{rk−rn}yk

n−1∏
j=1
j 6=k

e({rk−rj}−{rk−rn})yj ,

is represented by the sign vector (σk,1, . . . , σk,k−1,−, σk,k+1, . . . , σk,n−1). The
two final terms in (3.4),

n−1∏
j=1

e−{rj−rn}yj −
n−1∏
j=1

e{rn−rj}yj ,

are represented by the respective sign vectors (−, . . . ,−) and (+, . . . ,+).
Let Mpos, resp. Mneg, be the matrix of all sign vectors representing the

exponents of the positive, resp. negative, terms of N , where we place the
sign vector representing, e.g., an exponent from the kth positive term in the
kth row of the matrix Mpos. Thus we have constructed the matrices

Mpos =



+ σ12 σ13 · · · σ1,n−1

σ21 + σ23 · · · σ2,n−1

σ31 σ32 + · · · σ3,n−1

...
...

...
. . .

...
σn−1,1 σn−1,2 σn−1,3 · · · +
− − − · · · −


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and

Mneg =



− σ12 σ13 · · · σ1,n−1

σ21 − σ23 · · · σ2,n−1

σ31 σ32 − · · · σ3,n−1

...
...

...
. . .

...
σn−1,1 σn−1,2 σn−1,3 · · · −

+ + + · · · +


,

and our goal N = 0 will follow from proving that Mpos = Mneg after row
swapping. To show the latter, we first collect some properties of Mpos and
Mneg.

Lemma 3.3.

(a) The matrix Mpos has + entries on the diagonal and the last row
consists entirely of − entries; Mneg has − entries on the diagonal
and the last row consists entirely of + entries.

(b) σij = + if and only if σji = −.
(c) If σij = + and σik = − then σjk = −.

Proof. (a) follows by construction.
(b) follows with Lemma 3.1.
(c) Assume σij = + and σik = −. Then {ri − rj} − {ri − rn} > 0 and

{ri − rk} − {ri − rn} < 0, and by Lemma 3.1,

{ri − rj} − {ri − rn} = {rn − rj},(3.6)
{ri − rk} − {ri − rn} = −{rk − ri}.(3.7)

Then the difference (3.6)− (3.7) is positive and we get

{ri − rj} − {ri − rk} = {rn − rj}+ {rk − ri}.

The final identity is positive, which means the left-hand side is positive.
Then by Lemma 3.1 again,

{ri − rj} − {ri − rk} = {rk − rj},

and so
{rk − rj} = {rn − rj}+ {rk − ri}.

But then σjk = − follows from

{rj − rk} − {rj − rn} = {rj − rk} − 1 + 1− {rj − rn}
= −{rk − rj}+ {rn − rj} = −{rk − ri}.
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Part (b) of this lemma allows us to update the sign matrices:

Mpos =



+ σ12 σ13 · · · σ1,n−1

−σ12 + σ23 · · · σ2,n−1

−σ13 −σ23 + · · · σ3,n−1

...
...

...
. . .

...
−σ1,n−1 −σ2,n−1 −σ3,n−1 · · · +
− − − · · · −


,

Mneg =



− σ12 σ13 · · · σ1,n−1

−σ12 − σ23 · · · σ2,n−1

−σ13 −σ23 − · · · σ3,n−1

...
...

...
. . .

...
−σ1,n−1 −σ2,n−1 −σ3,n−1 · · · −

+ + + · · · +


.

Lemma 3.4. Each of the matrices Mpos and Mneg has a unique row with
k +’s, for each 0 ≤ k ≤ n− 1.

Proof. We will prove this for Mpos; the statement for Mneg then follows
immediately.

We begin by showing that every row of the matrix Mpos is unique. Sup-
pose on the contrary that row m and row l of Mpos are equal. Then these
rows look as follows:

row m: −σ1m −σ2m · · · + · · · σml · · · σm,n−1,

row l: −σ1l −σ2l · · · −σml · · · + · · · σl,n−1.

Then σml = + and −σml = +, which contradicts Lemma 3.3(b).
Next we will show that no two rows contain the same number of +’s.

Suppose on the contrary that row m and row l of Mpos contain the same
number of +’s (and are not equal).

Assume σml = +. Since the mth row does not entirely consist of +’s,
there exists a − in column, say, k. Then by Lemma 3.3(c), the entry σkl
is −. So, for every − in row m, Lemma 3.3(c) can be applied to show there
is a − in the same column entry of row l. But −σml = −, and so row l
contains at least one more − than row m, a contradiction. If, on the other
hand, σml = −, then we can repeat the above argument for row l, starting
with the entry −σml = +.

We have shown that no two rows contain the same number of +’s and
so, for each 0 ≤ k ≤ n− 1, there exists a unique row with k +’s.
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Lemma 3.4 allows us to match up the unique rows of k +’s in Mpos

and Mneg. Thus, after row swapping, Mpos = Mneg, which, by our previous
argument, finally proves Theorem 1.2.

4. Petersson–Knopp identities. Another basic identity on the clas-
sical Dedekind sum is the following ([15]):

Theorem 4.1 (Petersson–Knopp). Suppose a, b ∈ N are coprime. Then∑
d|m

∑
kmod d

s

(
m

d
b+ ka, ad

)
= σ(m)s(b, a).

Here σ(m) denotes the sum of the positive divisors of m.

This result has been extended to certain generalized Dedekind sums
[3, 21, 32] and takes its most general form [5] for sums

S(a; a1, . . . , an) :=
∑

kmod a

f1

(
ka1

a

)
· · · fn

(
kan
a

)
of Dedekind type with weight (m1, . . . ,mn), i.e., when for all j = 1, . . . , n we
have fj(x+ 1) = fj(x) and, for all a ∈ N,

(4.1)
∑

kmod a

fj

(
x+

k

a

)
= amjfj(ax).

Note that the Bernoulli functions Bk(x) satisfy (4.1) (with “weight” 1− k),
due to Lemma 3.2. The following extension of Theorem 4.1 was proved in [5].

Theorem 4.2. Let a, a1, . . . , an ∈ N. If

S(a; a1, . . . , an) :=
∑

kmod a

f1

(
ka1

a

)
· · · fn

(
kan
a

)
is of Dedekind type with weight (m1, . . . ,mn) then∑

d|m

d−m1−···−mn
∑

r1,...,rn mod d

S

(
ad;

m

d
a1 + r1a, . . . ,

m

d
an + rna

)
= mσn−1−m1−···−mn(m)S(a; a1, . . . , an).

This theorem together with Lemma 3.2 immediately gives a Petersson–
Knopp identity for the Bernoulli–Dedekind sums

Sp1,...,pn

(
(a1, . . . , an) a0

(0, . . . , 0) 0

)
=

∑
h mod a0

n∏
i=1

Bpi

(
ai
h

a0

)
.
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Corollary 4.3.∑
d|m

dp1+···+pn−n+1
∑

r1,...,rn mod d

Sp1,...,pn

((m
d a1 + r1a0, . . . ,

m
d an + rna0

)
a0

(0, . . . , 0) 0

)

= mσp1+···+pn(m)Sp1,...,pn

(
(a1, . . . , an) a0

(0, . . . , 0) 0

)
.

5. Hall–Wilson–Zagier revisited. In this section, we show how our
ideas can be used to prove Hall–Wilson–Zagier’s Theorem 2.1.

Proof of Theorem 2.1. We want to show that

Ω

a1 a2 a3

x1 x2 x3

y1 y2

+Ω

a2 a3 a1

x2 x3 x1

y2 y3

+Ω

a3 a1 a2

x3 x1 x2

y3 y1


=
{
−1/4 if (x1, x2, x3) ∈ (a1, a2, a3)R + Z3,

0 otherwise.

By (3.2),

3∑
k=1

Ω

Ak ak

Xk xk

Yk

 =
3∑

k=1

∑
h1 mod a1
h2 mod a2
h3 mod a3

3∏
i=1
i 6=k

β (rk − ri, yi) ,

where ri = (xi + hi)/ai. We have to examine the following cases:

(i) (x1, x2, x3) ∈ (a1, a2, a3)R + Z3;
(ii) (xi, xj) ∈ (ai, aj)R + Z2 for some 1 ≤ i < j ≤ 3 but not (i);

(iii) none of the above.

Case (iii) is covered by Theorem 1.2.
Case (i). We have xi = λai + zi for each i, for some λ ∈ R and zi ∈ Z.

Thus

ri − rj =
hi + λai + zi

ai
− hj + λaj + zj

aj
=
hi + zi
ai

− hj + zj
aj

and so the zi’s simply permute the indices hi. But since each hi gets summed
over a complete residue system mod ai,
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Ω

a1 a2 a3

x1 x2 x3

y1 y2

+Ω

a2 a3 a1

x2 x3 x1

y2 y3

+Ω

a3 a1 a2

x3 x1 x2

y3 y1


=

∑
h1 mod a1
h2 mod a2
h3 mod a3

3∑
k=1

3∏
i=1
i 6=k

β

(
hk
ak
− hi
ai
, yi

)
.

Since (ai, aj) = 1, hi/ai − hj/aj ∈ Z occurs only when hi = hj = 0. Thus,
we can split up the above sum:

Ω

a1 a2 a3

x1 x2 x3

y1 y2

+Ω

a2 a3 a1

x2 x3 x1

y2 y3

+Ω

a3 a1 a2

x3 x1 x2

y3 y1


= β(0, y2)β(0, y3) + β(0, y1)β(0, y3) + β(0, y1)β(0, y2)

+
∑

h1,h2,h3

(h1,h2,h3)6=(0,0,0)

3∑
k=1

3∏
i=1
i 6=k

β

(
hk
ak
− hi
ai
, yi

)
,

where the last sum is over all triples (h1 mod a1, h2 mod a2, h3 mod a3) 6=
(0, 0, 0). This term vanishes for the same reasons as in Section 3, since the
crucial assumption hk/ak − hi/ai /∈ Z holds.

For the remaining terms we use the cotangent identity

cotα+ cotβ =
cotα cotβ − 1

cot(α+ β)

and note that, by the definition of cot y,

β(0, y) = −i cot
y

2i
.

Let y∗k := yk/2i. Then

Ω

a1 a2 a3

x1 x2 x3

y1 y2

+Ω

a2 a3 a1

x2 x3 x1

y2 y3

+Ω

a3 a1 a2

x3 x1 x2

y3 y1


= β(0, y2)β(0, y3) + β(0, y1)β(0, y3) + β(0, y1)β(0, y2)

= −1
4

(cot y∗2 cot y∗3 + cot y∗1 cot y∗3 + cot y∗1 cot y∗2)

= −1
4

(
cot y∗2

(
cot y∗1 cot y∗3 − 1

cot(y∗1 + y∗3)

)
+ cot y∗1 cot y∗3

)
.
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By assumption, y1 + y2 + y3 = 0, so

cot(y∗1 + y∗3) = cot(−y∗2) = − cot y∗2,

which yields

Ω

a1 a2 a3

x1 x2 x3

y1 y2

+Ω

a2 a3 a1

x2 x3 x1

y2 y3

+Ω

a3 a1 a2

x3 x1 x2

y3 y1

 = −1
4
.

Case (ii). Without loss of generality, we assume (x1, x2) ∈ (a1, a2)R + Z2

(but not (x1, x2, x3) ∈ (a1, a2, a3)R + Z3). Then, as in case (i),

r1 − r2 =
h1 + λa1 + z1

a1
− h2 + λa2 + z2

a2
=
h1 + z1

a1
− h2 + z2

a2
.

Since z1 and z2 permute the summands over h1 and h2, we introduce a
change of variables and let h̄1 := h1 + z1, h̄2 := h2 + z2, and h̄3 := h3. We
can rewrite the differences involving r3 as

ri − r3 =
h̄i
ai

+ λ− r3 =
h̄i
ai
− r̃3.

Again we will split up our reciprocity sum into two parts:

(5.1) Ω

a1 a2 a3

x1 x2 x3

y1 y2

+Ω

a2 a3 a1

x2 x3 x1

y2 y3

+Ω

a3 a1 a2

x3 x1 x2

y3 y1


=

∑
h̄3 mod a3

(β(0, y2)β(−r̃3, y3) + β(0, y1)β(−r̃3, y3) + β(r̃3, y1)β(r̃3, y2))

+
∑

h̄1,h̄2,h̄3

(h̄1,h̄2)6=(0,0)

3∑
k=1

3∏
i=1
i 6=k

β

(
h̄k
ak
− h̄i
ai
, yi

)
,

where the last sum is over all triples
(
h̄1 mod a1, h̄2 mod a2, h̄3 mod a3

)
such

that (h̄1, h̄2) 6= (0, 0). As before, the last term in (5.1) vanishes for the same
reasons as in Section 3. Thus

Ω

a1 a2 a3

x1 x2 x3

y1 y2

+Ω

a2 a3 a1

x2 x3 x1

y2 y3

+Ω

a3 a1 a2

x3 x1 x2

y3 y1


=

∑
h̄3 mod a3

(β(0, y2)β(−r̃3, y3) + β(0, y1)β(−r̃3, y3) + β(r̃3, y1)β(r̃3, y2))

=
∑

h̄3 mod a3

(
1
2
ey2 + 1
ey2 − 1

e{−r̃3}y3

ey3 − 1
+

1
2
ey1 + 1
ey1 − 1

e{−r̃3}y3

ey3 − 1
+
e{r̃3}y1

ey1 − 1
e{r̃3}y2

ey2 − 1

)
.
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After bringing the fractions to a common denominator, we obtain the nu-
merator

ey1+y2+{−r̃3}y3 − ey2+{−r̃3}y3 + ey1+{−r̃3}y3 − e{−r̃3}y3 + ey1+y2+{−r̃3}y3

− ey1+{−r̃3}y3 + ey2+{−r̃3}y3 − e{−r̃3}y3

+ 2e{r̃3}y1+{r̃3}y2+y3 − 2e{r̃3}y1+{r̃3}y2

= e{r̃3}y1+{r̃3}y2 − e−{−r̃3}y1+{r̃3}y2 + e{r̃3}y1−{−r̃3}y2 − e−{−r̃3}y1−{−r̃3}y2

+ e{r̃3}y1+{r̃3}y2 − e{r̃3}y1−{−r̃3}y2 + e−{−r̃3}y1+{r̃3}y2 − e−{−r̃3}y1−{−r̃3}y2

+ 2e−{−r̃3}y1−{−r̃3}y2 − 2e{r̃3}y1+{r̃3}y2 = 0.

6. Final remarks. Trying to extend Hall–Wilson–Zagier’s Theorem 2.1
to the next case of four sets of variables, the task is to study the reciprocity
sum

Ω

a1 a2 a3 a4

x1 x2 x3 x4

y1 y2 y3

+Ω

a2 a3 a4 a1

x2 x3 x4 x1

y2 y3 y4



+Ω

a3 a4 a1 a2

x3 x4 x1 x2

y3 y4 y1

+Ω

a4 a1 a2 a3

x4 x1 x2 x3

y4 y1 y2


in the four cases

(i) (x1, x2, x3, x4) ∈ (a1, a2, a3, a4)R + Z4;
(ii) (xi, xj , xk) ∈ (ai, aj , ak)R + Z3 for some 1 ≤ i < j < k ≤ 4 but

not (i);
(iii) (xi, xj) ∈ (ai, aj)R + Z2 for some 1 ≤ i < j ≤ 4 but not (i) or (ii);
(iv) none of the above.

Case (i) is covered by [4] (and can be easily recovered with a calculation
similar to that in the last section); in this case the reciprocity sum equals

i

8

(
cot

y0

2i
+ cot

y1

2i
+ cot

y2

2i
+ cot

y3

2i

)
.

Case (iv) is covered by Theorem 1.2.
For case (iii), a calculation similar to that in the last section reveals that

the reciprocity sum vanishes.
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For case (ii), similar calculations yield

Ω

a1 a2 a3 a4

x1 x2 x3 x4

y1 y2 y3

+Ω

a2 a3 a4 a1

x2 x3 x4 x1

y2 y3 y4



+Ω

a3 a4 a1 a2

x3 x4 x1 x2

y3 y4 y1

+Ω

a4 a1 a2 a3

x4 x1 x2 x3

y4 y1 y2



=
∑

h4 mod a4

 e{r̃4}y1+{r̃4}y2−{−r̃4}y3 − e−{−r̃4}y1−{−r̃4}y2+{r̃4}y3

+ e{r̃4}y1−{−r̃4}y2+{r̃4}y3 − e−{−r̃4}y1+{r̃4}y2−{−r̃4}y3

+ 2e−{−r̃4}y1+{r̃4}y2+{r̃4}y3 − 2e{r̃4}y1−{−r̃4}y2−{−r̃4}y3


4(ey1 − 1)(ey2 − 1)(ey3 − 1)(ey4 − 1)

,

where r̃4 is defined analogously to the way we defined r̃3 in the previous sec-
tion. As with all the previous summands, this final sum exhibits an intriguing
symmetry, but it is not clear to us if it vanishes or evaluates to a simple ex-
pression. As mentioned earlier, for higher-dimensional Bernoulli–Dedekind
sums (i.e., for larger n), there are more intermediate cases, in which we have
a partial linear relation such as (x1, x2, x3) ∈ (a1, a2, a3)R+Z3, and it is not
clear to us how one can easily deal with them.

We conclude with one more open problem, namely, that of the compu-
tational complexity of Bernoulli–Dedekind sums. Any Dedekind-like sum
that obeys a two-term reciprocity law is instantly computable through the
Euclidean algorithm. However, the computational complexity of “higher-
dimensional” Dedekind-like sums is more subtle. It was proved in [5] that the
cotangent-generalizations of the Dedekind sum are polynomial-time com-
putable (in the input length of the integer parameters). It is not clear to
us how the argument in [5] could be modified to say anything about the
complexity of Bernoulli–Dedekind sums.
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