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Introduction. As pointed out by A. Schinzel, there is an error in the
proof of [5, Proposition 1.4] which is a crucial part of the stability theorem for
arithmetic additive functions [5, Theorem 1.5]. Namely, we are considering a
certain submeasure ¢: 2° — [0, 00) and, following the proof of [3, Theorem
4.1] by N. J. Kalton and J. W. Roberts, we need to estimate the covering
index of the family C = {C C S : p(C) < 9¢/2}. To this end J. L. Kelley’s
theorem [4, Corollary 6] is used: we claim that there is no additive set
function x: 2% — [0, 00) satisfying #(S) = 1 and x(A) < 1/2 for all A € C.
Unfortunately, it is not clear why this should be true in our situation.

In the first section we provide a modified version of [5, Theorem 1.5] in
which we assume that a given mapping is not only almost additive but al-
most strongly additive. The results from [5] which concern the multiplicative
case are suitably modified as well; this is done in the last section.

1. Stability results for strongly additive functions. The main re-
sult of this section will be proved by slightly modifying the proof of the
following theorem on nearly additive set functions which is Theorem 4.1
from [3].

THEOREM 1.1 (Kalton, Roberts). There is an absolute constant K <89/2
with the following property: If X is a non-empty set, A is an algebra of
subsets of X and a function v: A — R satisfies

(AL Be A, ANB=10) = |[v(AUB) —v(A)—v(B)|<e
with some € > 0, then there exists an additive set function p: A — R such
that [v(A) — u(A)| < Ke for A € A.
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Let us recall some definitions and results used in the proof by Kalton
and Roberts.

DEFINITION 1.2. Let X be a non-empty set and A be an algebra of
subsets of X. A mapping A\: A — R is called a submeasure if:
(i) A(0) =0,
(ii)) M(A) < A(B) for A,Be A, AC B,
(iii) (AU B) < A(A)+ A(B) for A,B € A.
The following notion was introduced in [4], together with the next result

which is Corollary 6 therein. For any set A we denote by 1 4 the characteristic
function of A.

DEeFINITION 1.3 (Kelley). Let X be a non-empty set and () # C C 2.
The covering index J(C) of C is the supremum of all ¢ > 0 for which there
are some C1,...,C, € C such that

1 n
tly < — E 1c,;.
n
=1

THEOREM 1.4 (Kelley). Let X be a non-empty set, let A be an algebra
of subsets of X and let ) # C C A. Then there exists an additive set function
p: A —[0,00) such that

u(C) < J(C) forCelC and p(X)=1.
Now, we recall the notion of concentrator and an existence result from [7]

that is proved by probabilistic methods. For m € N denote [m] = {1,...,m}.
If m,p € N and R: [m] — 2/, then for each E C [m] we define

R[E] = | R(i).
S
For any set A we denote by # A the cardinality of A.

DEFINITION 1.5. Let m, p, ¢,7 €N and ¢ <p<m. A function R: [m]— 2!
is called an (m, p, ¢, 7)-concentrator if:

(i) m™' 35 #R(i) <,

(il) #E < #R[E] for E C [m] with #E <q.

THEOREM 1.6 (Pippenger). There exists a (6m,4m,3m,6)-concentrator
for each m € N.

The following useful notation was introduced in [3].

DEFINITION 1.7. For r € N and 0,7 € (0, 1) we say that H(r,d,n) holds
true if there exist sequences (my)ken, (Pr)ken, (qk)ken of natural numbers
such that my — oo and for every k € N we have pi/my <, qx/my > n and
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there exists a (mg, pg, gk, r)-concentrator. For r € N and n € (0,1) we put
Y¥(r,n) = inf{d € (0,1) : H(r,d,n) holds true}.
Theorem translates now into the inequality
(1.1) 9(6,1/2) < 2/3.

The next result is Lemma 3.1 from [3] which gives a connection between
concentrators and some estimates for submeasures.

LEMMA 1.8 (Kalton, Roberts). Let X be a non-empty set and A be
an algebra of subsets of X. Assume that \: A — R is a submeasure and
there are some constants o, 3 > 0 such that for any pairwise disjoint sets

Aq,..., A, € A we have
Z AMA;) <an+p.
i=1
Ifn € (0,1) and By, ..., B, € A satisfy
1 m
72131‘ > (1 -n)lx,
gt
then for each r € N with r > 3 we have
1 m
— > ABi) = MX) = ar = §i(r,n).
i=1
Let P be the set of all primes, let S = {p* : p € P, k € N} and for each

x € Nlet P, = {p € P: p|z}. Our result concerning stability for strongly
additive functions reads as follows.

THEOREM 1.9. There is an absolute constant K* < 89/2 having the
property: If a function f: N — R satisfies

(1.2) z,y €N, (z,y) =1 = |f(zy) — f(z) = fly)| <e
and
(1.3) z,yeN, P, =P, = |f(z)— f(y)] <2

with some € > 0, then there exists a strongly additive function f: N—-R

such that |f(x) — f(x)] < K*e for x € N.
We will derive this theorem from the following lemma.

LEMMA 1.10. There is an absolute constant K* < 89/2 having the prop-
erty: Let X be a non-empty finite set and let R = {X1,...,Xn} be a family
of mon-empty pairwise disjoint subsets of X whose sum is X. Put

(1.4) A={ACX :#(ANX;) <1 for1<i< N}
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and let ~ be the relation in A defined by
A~B & #(ANX;,)=#(BNX;) for1 <i<N.
If a function v: A — R satisfies
(1.5) (A,B,AUB e Aand ANB=0) = [v(AUB)—v(A)—v(B)|<e
and
(1.6) (A, Be Aand A~ B) = |v(A) —v(B)| <2
with some € > 0, then there exists a function p: A — R such that
(1.7) (A,B,AUBeAand ANB=0) = u(AUB) = u(A) + u(B),

(1.8) (A,Be Aand A~ B) = pu(A) = u(B)
and
(1.9) v(A) —u(A)| < K*e  for A€ A

Proof. We divide the proof into several steps.

STEP 1. Each function p: A — R satisfying (|1.7]) and ([1.8)) will be called
strongly R-additive. For any function f: A — R put

V() = max (f(4) - F(B).

)

Let ~ be the equivalence relation in R* given by
(f ~g) < (f—gisa constant function);
then (RA/~, p) is a metric space with p([f]~, [g]~) := V(f — g). Define
M = {[p]~ : p is strongly R-additive}.
Take a sequence of [u,]~ € M, n € N, such that
dist([v]~, M) =: 1 < p([v]~, [pn]~) < T+1/n.

The set {jn fnen is pointwise bounded on A, and hence it is contained in a
compact subset of R4 (with the topology of pointwise convergence). Let
be the limit of some convergent subsequence of (pi,)nen. Then p is strongly
R-additive and we have V(v — pu) = .

Define g = v — p and

= A), b= —ming(A);
a glgjg( ) glelgg( );

we may assume that a > b (otherwise consider —g instead of g). We are to
prove that a < 89¢/2.

Choose S € A with g(S) = a. Since S € A, we have 2° C A. Assumptions
, , jointly with the fact that p is strongly R-additive, imply that

(A,B,AUBe Aand ANB=0) = |g(AUB) — g(A) — g(B)| < ¢
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and
(A, Be Aand A~ B) = |g(A) — g(B)| < 2e.

Hence, the mapping \: 2° — R defined by
0 if A=1,
AA) = {5+ sup g(C) if A #0,
CcA
is a submeasure. In fact, for each A, B C S and every C' C AU B we have

9(C) e +g(CNA) +9(CN(B\A)).

Moreover, for arbitrary non-empty pairwise disjoint Aq,..., A, C S there
exist B; C A; (1 <14 <mn) such that

(1.10) D AA) =en+ Y g(By)
i=1 =1

<en+en—1)+g(B1U---UBy) <2en+ (a—e¢).
Note also that A(S) =a +e¢.

STEP 2. Let
C={C CS:\C)<9/2}.

We will show that J(C) > 1/2. In the light of Theorem we shall show
that for every additive set function x: 25 — [0, 00) satisfying x(S) = ¢ there
exists a set A € C with x(A) > ¢/2.

Suppose, on the contrary, that x: 2% — [0, 00) is an additive set function
satisfying k(S) = ¢ and k(A) < ¢/2 for each A € C. For any A € A let
ms(A) be the maximal (with respect to set inclusion) subset of S satisfying
mg(A) ~ C for some C C A (notice that all the subsets of S which have
this property form a finite chain with respect to inclusion, thus wg(A) is
uniquely determined). For arbitrary A, B € A the conditions AUB € A and
AN B =0 imply that mg(A) N ws(B) = 0 and hence

r(ms(A) Ums(B)) = k(rs(A)) + k(rs(B)),

whereas the condition A ~ B implies 7g(A) = wg(B) and hence k(7g(A)) =
k(mg(B)). This shows that the function
(1.11) A3 A k(rg(A))
is strongly R-additive.

Define h: A — R by h(A) = ¢g(A) — k(ws(A)). By the definition of
w and the fact that the mapping (1.11) is strongly R-additive, we have
V(h) > V(g) = a + b. However, we will show that

—b—e/2<h(A)<a—¢e/2 for Aec A,

which yields a contradiction.
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Suppose h(A) > a — /2 for some A € A. Then g(A) > a — /2. Let A*
be the subset of A for which A* ~ mg(A). We have

gANA") <e+g((A\AT)US) —g(5) <e,
therefore
9(A") = g(A) —g(A\ A7) —e > a —5¢/2.
Hence, for every B C S\ mg(A) we have
9(B) <e+g(A"UB) —g(A") < 7e/2.
It follows that A(S \ ms(A4)) < 9¢/2, ie. S\ ms(A) € C. Therefore,
k(S \ ms(A)) < /2 and thus k(ms(A)) > €/2, which proves that h(A) <
g(A) —e/2 < a — ¢/2; a contradiction.

Now, suppose h(A) < —b—¢/2 for some A € A. Then g(A) < —b+¢/2.
For every B C A* we have

—b+¢/2>g(A) > g(B)+g(A\B) —ec > g(B) —b—c¢,

hence g(B) < 3¢/2. Consequently, if C' € A satisfies B ~ C, then ¢(C)
< Te/2. This shows that for each C' C mg(A) we have g(C) < 7¢/2, i.e.
Ams(A)) < 9¢/2, thus mg(A) € C and k(mg(A)) < €/2. Hence, h(A) >
g(A) —e/2 > —b — £/2; a contradiction.

STEP 3. Define

fy:inf{Zxc : Zxclc >1g and z¢ > 0 for C EC}.
ceC ceC

It follows from Definition |1.3| that J(C) = 1/v. The set

7 .= {(IEC)CEC : Zxclc >1gand z¢ > 0 for C € C}
CceC

is an unbounded polyhedron in R#C. Either there exists a unique point
x = (zc)cec of Z that minimizes the sum ) ... xc, and it is then an
extreme point of Z, or the set of all such points is a polyhedron Z’ C Z,
and then every extreme point of Z’ is also an extreme point of Z.

In both cases there is at least one extreme point x = (z¢)cec of Z such

that
7= ac
ceC

Such a point is uniquely determined as the intersection of finitely many
hyperspaces in R#C, defined by equations with rational coefficients. The
only solution of the system of those equations (which is &) has all coefficients
rational. Therefore, v € Q and hence J(C) € Q.
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Since J(C) > 1/2, we have

1
Z J(C)xcle > 515.

Moreover, all the numbers J(C)z¢c (C € C) are rational. Denoting by m the
least common multiple of their denominators and repeating each set C € C
as required, we may find a sequence C1,...,C, € C such that

1 — 1
— E 1c, > -1g.
m 4 2
=1
By Lemma and inequality ((1.10)), for every r € N, r > 3, we have
1 m
9¢/2 > - g 1 AMNCy) > (a+¢e) —2er — (a—e)d(r,1/2).
i

Putting » = 6 and making use of (1.1)) we arrive at a < 89¢/2. m

Proof of Theorem[1.9. Let K* be the constant from the above lemma.
Consider the topological space

z = [Jlrw) — K*e, f(p) + K]
peP

with the compact Tikhonov topology. If z € N, & > 2, has a factorization
x=pit-...-phr (ie. p; € P are pairwise different and «; € N), then we put

Zy ={((P))per € Z 2 |f(2) = (€(p1) + -+ +E(pm))| < K7e}.

Plainly, Z, is a closed subspace of Z.

Fix an arbitrary finite set of natural numbers z1,...,z, > 2 with fac-
torizations x; = s;1 - ... Sim,; (1-€. Si1,...,Sim; € S are pairwise relatively
prime for each 1 < i < n), where s;; = p,?;-” with p;; € P, ai; € N. Put

X:{sij:izl,...,n,jzl,...,mi}.
Enlarging the set {z1,..., 2y} if necessary, we may assume that p;; € X for
1<i<n,1<j<m Let R ={Xy,...,Xn} be the partition of X into
non-empty and pairwise disjoint subsets, defined by the condition that s;;,

sk belong to the same element of R if and only if (s;;, sk) > 1. Let also A
be defined by formula ([1.4)).

Since condition (|1.2)) implies ([1.5]), whereas ((1.3) implies (|1.6]), we may
apply Lemma to the function v: A — R defined by

v(A) = f(H a,).
acA
Thus there exists a function p: A — R satisfying (1.7)—(1.9). In particular,
putting A = {s;1,...,Sim, }, for 1 <i < n, we get

[f (i) = (({si}) + -+ p{sim, }))| < K7,
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and putting A = {p;;}, for 1 <i <n, 1 <j < m;, we infer that

w({pi;}) € [f(pij) — K¢, f(pij) + K e].

Moreover, in view of ((1.8)), forany 1 < i <n, 1 < j < m; we have pu({s;;}) =
p({pij}). This shows that the sequence (£(p))pep given by

w({pij}) if p=pi; for some 1 <i<n,1<j<my,
¢(p) = :
f(p) otherwise,

belongs to the set (), Z;,.We have thus proved that the family {Z, : x > 2}
has the finite intersection property, hence there exists

(1.12) (E@)pez € () 2o

r>2

Now, we define f as the unique strongly additive function satisfying

f(p) = &(p) for every p € P. Then for each z € N, x > 2, the inequality

|f(x) — f(x)| < K*e follows directly from ((1.12); for x = 1 this inequality
follows from f(1) =0 and |f(1)| <e. m

Let K be the least possible value of the constant from Theorem
and let K* be the least possible value of the constant from Theorem
(equivalently: from Lemma [1.10)). By considering the partition R = {{xz} :
xr € X}, we see that Lemma is a generalization of Theorem in the
case where X is finite. On the other hand, the finite case is enough to prove
this theorem in its full generality (by some compactness arguments; cf. the
proof of [3, Theorem 4.1]). Therefore, K < K*. Taking into account the
counterexample of B. Pawlik [6], which shows that K > 3/2, we may write

3/2< K < K* <89/2.

It is not known whether any of these three inequalities is sharp.

For the time being I have not succeeded in fixing the proof of [5, Theo-
rem 1.5] completely. Therefore, the following question remains open: Assume
that f: N — R satisfies with some € > 0. Does there exist an additive
arithmetic function f: N — R such that | f(z)— f(#)| < Le for z € N, where
L < oo is an absolute constant?

Let us now proceed to other stability results for additive functions from
[5] which require revision. Remark 1.6 should be rewritten in the following
form.

THEOREM 1.11. If a function f: N — C satisfies (1.2) and (1.3) with
some € > 0, then there exists a strongly additive function f: N — C such
that for each n > 0 the set

{zeN:[f(z) - fx)] <e+n}
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contains a subset of the form N\ (P - N) with some finite set P C P. In
particular, it has a positive natural density.

The proof remains the same except that instead of [5, Theorem 1.5] we
use Theorem [L.9 above.

The proof of [5, Theorem 1.11] requires some modification. Instead of ap-
plying Theorem 1.5 therein, we first fix an arbitrary sequence R = (Z,)men
of pairwise coprime natural numbers greater than 1 satisfying

sup w(zm) < oo.
meN

Next, we define
Sr={r€S:r| z, for some m € N}

and we let Tr be the set of all natural numbers having canonical factoriza-
tions with all factors belonging to Si. Now, we consider a function g: N — C
which is an extension of f|7,, and for which both conditions and
are valid after replacing f by g. To see that such a function exists denote
Q(z) ={r € Sg:r| =} and put

g(z) :f< H r) for x € N.
reQ(z)
Applying Theorem[I.9to the real and imaginary parts of g we get a strongly
additive complex-valued function f such that

If(z) — f(z)] < V2K*e for x € Tg.

The rest of the proof needs only minor adjustments.

A correction should also be made to the proof of [5, Theorem 1.8].
Namely, in all estimates one has to replace (z1,z2) by pF. Since p* || zy
and p¥ || 29, the numbers z;/p* and p* are relatively prime for i = 1,2,
which is not necessarily true for x;/(x1,z2) and (x1,x2). The assumption of
that theorem can be slightly weakened; the new version is the following.

We denote by P the set of all pairs of relatively prime natural numbers.

THEOREM 1.12. Given ¢: P — [0,00) assume that a function f: N — R
satisfies

2y €N, (z,y) =1 = [f(zy) — f(z) = f¥)| < ¢(z,9).
Let : N — [0,00) be any function satisfying
Y(xz) +¥(yz) 2 () +(y) + ez, 2) + oy, 2)

for allz,y,z € N such that (z,2), (y, Z)NE P. Then there is a real arithmetic
additive function f such that |f(x) — f(x)| < ¢(x) for x € N.
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2. Stability results for strongly multiplicative functions. In this
section we give a corrected version of the stability result [5, Theorem 2.2]
concerning arithmetic multiplicative functions.

THEOREM 2.1. If a function f: N — C\ {0} satisfies
_ f(zy)
(2.1) z,yeN, (z,y) =1 = 'f(x)f(y)—llgs
with some € € [0,1) and

(2.2) z,yeN, P, =P, = “;23—1‘<p

with some p € [0,+/3/2] satisfying
(2.3) p < min{2e — &%, 2e1/1 — €2},

then there exists a strongly multiplicative function f: N — C \ {0} such that

'j;g;—l‘gé(s) and 'jﬁg;—l‘gé(e) for x € N,
where
2 cos(K* arcsine) 1 . .o
5(e) = \/1— TEOLS +(1—5)2K* zf€<smﬁ,

14+ (1—¢) & iersin%.

We will follow the methodology of the proof of a stability result for the
exponential equation given in [I] by R. Ger and P. Semrl. Let us start with
a certain version of M. Hosszi’s theorem [2].

LEMMA 2.2. If a function ¢: P — R satisfies
(2.4) U(z,y) =P(y,z) for (z,y) € P,

and

(2.5)  U(zy,2) +¥(z,y) =d(z,y2) +¥(y, 2) for (z,y),(y,2),(z,2) € P,
then there exists a mapping B: N — R such that

(2.6) Y(x,y) = Bzy) — B(x) — Bly) for (z,y) € P.

Proof. Put (1) = —(1,1) and for any r € S let 5(r) be an arbitrarily
chosen real number. We are going to define the values of § for arguments
having at least two different prime factors.

Let p1,p2,... be the increasing sequence of all primes. For each
x € N with a canonical factorization x = pf;ll S pﬁj‘n , where m > 2 and
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ny < -+ < Ny, we define

m m—1 m
B@) = > Bws) + > w(e, T o)
Jj=1 j=1 i=j+1

For simplicity we will write canonical factorizations in the form ri ... 7y,
assuming implicitly that r; € S are labeled according to the natural order of
primes of which they are powers. For an arbitrary = € N with factorization
T=281"...Sm, Where m > 2, we have

(2.7) B(x) = B(sm) +B(s1 . Sm—1) (S ... Sm—1, Sm)-
Indeed, by the definition of B(x) and (2.5)), we infer that

m—1
B) =3 Bs) + 3 v(sin IT 1)
J=1 J=1 i=7+1
m m—3 m
= Zﬂ(sj) + @Z)(S]’, H Si) + ¢(Sm727 Smflsm) + @Z)(Smfla Sm)
=1 =1 i=j+1
m—3 m
= Z/B(S]) + 77[)(5]'7 H 51) + ¢(3m—25m—1’ Sm) + w(sm—% Sm—l)
j=1 j=1 1=j+1
: m m—2 m—1
=3 B+ (s smenism) + >0 6 (si [T s)
j=1 j=1 i=j+1
=0 Sm> +ﬁ(81 et Sm—l) —|—w(31 SR sm_l,sm).

Putting x =y =1, z = s € S in (2.5)) yields ¥(1,s) = ¥(1,1) = —5(1),
hence ([2.7)) is also valid in the case where x € S.

We shall prove equality by induction on w(z) +w(y). If w(z) +w(y)
=0, then = y = 1 and the equality holds. So, assume that some relatively
prime x,y € N have factorizations * = ¢q; ... ¢mn and y = 11 - ... - Ty,
where m +n > 0. Let xy have a factorization s; - ... $y1p, with suitably
numbered s;’s. Either ¢, = Spmyn, OF Ty = Sm4n; We may assume the former.

Then, using ([2.7)), the inductive hypothesis and ({2.4)), (2.5, we get
Blxy) — B(x) — By)

= B(sman) +B(s1+ -+ Sman—1) V(51 -+ Smin—1, Sm+n)
- /B(Sm+n) - ﬁ(‘h e Qme1) — ¢(QI e Qm—1, Sm4n)
—Bry-...-my)
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=U(@r o Gma1T1 T Gm) — (@1 Q1 Om)
+ (g1 Q1,71 TR)

- w(xy,qm> —w(x,qm> +w<x,y>
am qm dm
= ¢<qx,y> +w<qm,qmy> —zb(qm,;) = w(élmqm,?/> =¢(z,y). =

LEMMA 2.3. If a function a: N — R satisfies
r,yeN, (z,y) =1 = a(zy) — a(z) — aly) € [-¢,e] + Z

with some € € [0,1/4) and
(2.8) z,yeN, P, =P, = a(z)—aly) €[-nn +Z
with some n € [0,1/3) satisfying n < 2e and 2 + 3n < 1, then there exists
a mapping a: N — R such that

z,y €N, (z,y) =1 = a(zy) —a(z) —aly) € Z,

z,yeN, P, =P, = a(z)—a(y) € Z

and

la(z) — a(z)] < K*e forx € N.
Proof. For some functions ¢: P — Z and ¢: P — [—¢,¢| we have
(29)  a(zy) —a(z) —aly) =v(x,y) + ¢(z,y) for (z,y) € P.
Since the left-hand side is symmetric with respect to « and y, we infer that
Z> w(%y) - w(y,l’) = QO(y,:ZI) - QO(ZE, y) € [_257 28] C (_1/27 1/2)7
which implies (2.4). Moreover, for all (x,v), (v, 2), (z,x) € P we have

Pz, yz) + ¥y, 2) + (r,yz) + (Y, 2)
= a(zyz) — a(r) — ayz) + alyz) — aly) — a(z)
= afzyz) — alzy) — a(z) + a(zy) — a(z) — a(y)
= ¢(l’y, Z) + %Z)(m» y) + (70($ya Z) + QD(I', y)
Therefore,
Z 3Pz, yz) + Yy, 2) — Y(xy, 2) — ¥(,y)
= o(z,y2) + ¢y, 2) — o(zy, 2) — (z,y) € [4e,4e] C (-1,1),
which implies . By Lemma there exists a mapping #: N — R
satisfying .
Let Q stand for the set of all pairs of natural numbers x,y > 1 such that
P, = P,. Assumption implies that there are some functions ¥1: Q@ — Z
and ¢1: Q — [—n,n] satisfying,
(2.10) a(r) — aly) = i(z,y) +ei(z,y)  for (z,y) € Q.
An inspection of the proof of Lemma shows that the values of § for
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arguments from the set S may be defined arbitrarily (this is also seen from
condition (2.6 which remains valid if we add to # any additive function). Fix
p € P; we may assume that for each k € N we have 3(p*) = 11 (p*, p) + B(p).
For all k,I,m € N we then have

Z3 10", p') + (0, 0") = =1 (0", 0') — o1 (0, ") € [-21, 20,
thus

(2.11) (", p) = =i (0, ).
Moreover,
Z3 1 (p*,p™) — i (", p") — e (P p™)
= —p1(p",p™) + <P1( Pl + o0 p™) € [—3n, 3n),
thus
(2.12) (P, p") + (' p™) = i (0", p™).

By (2.11)) and (2.12)), we have
(2.13)  BOY) =B = 1", p) — 10, p) = L1 (", p) + ¥1(p,p)
=1 (p*, ).
Now, we will show that
(2.14) Ui(z,y) = B(x) — Bly) for (z,y) € Q.

Equality (2.13]) means precisely that the above equality holds true when x
and y are powers of the same prime. Fix natural numbers m > 2, = and

y satisfying P, = P, and having canonical factorizations x = q1 - ... - gpm,
Y=T1"... Tm; assume also that (2.14]) holds true for numbers having less
than m prime divisors. Define 2’ = ¢ - ... - ¢pn_1 and ¥/ =71 - ... - Tp_1.

By (2.7)), we have

(2.15)  B(z) - B(y)
= B(qm) = B(rm) + B(z") = B(y) + (2, gm) — V(Y 7m)
= U1(gm, rm) + 12", y) + (@ gm) — DY, ) € Z.
Observe also that
Z 3 Y1(z,y) = a(z) — ay) — ¢i1(z,y)
= (a(z) — (@) — algm)) — (a(y) — a(y’) — alrm))
+ (@) = ay) + (algm) — arm)) — ¢1(z,y)
= (', qm) + 0@, gm) — V(Y rm) — o(y',7m)
+1(2’,y") + 1@ ¥) + P1(@ms ) + 01(ms Tm) — 01(2,y)
€ Y1(gmsrm) + ¥1(2'y') + (@, gm) — (Y rm)
+ [—2e — 3n, 2¢ + 37],
which, jointly with , yields formula .
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Define v: N — R by v = a — 3. Then, in view of and ,
Blay) = Blx) = Bly) € Z for (z,y) € P
and
V(y) = () = v(y) = ¢(x,y) € [-¢,¢] for (z,y) € P.
Moreover, by and , we have
B(x) —B(y) € Z for (z,y) € Q
and
V(@) =(y) = e1(2,y) € [=n,n]  for (z,y) € Q.

By Theorem there exists a strongly additive function §: N — R such
that |y(z) — d(x)] < K*e for x € N. It remains to define @: N — R by
a= ,3 +4. m

Proof of Theorem[2.1 For every z € N, f(z) = | f(z)|exp(i arg(f(x))),
where —7m < arg(f(z)) < 7. Inequality (2.1]) implies for all relatively prime

x,y € N that
|log| f(xy)| —log|f(z)| — log |f(y)|| =
Similarly, for x,y € N satisfying P, = P, inequality yields
log £(2)| ~ o | £(0)]| = [1og| £

f(y)
It follows from p < 2¢ — &2 that
—log(1 —p) < —2log(1 —¢),

log

f(zy) log(1 —
f(ac>f<y>HS log(1 = ¢).

log < —log(1 - p).

which means that the function N 3 z — log | f(z)| satisfies the assumptions
of Theorem With —log(1 —¢) instead of €. Hence, there exists a strongly
additive function g: N — R such that

(2.16) llog | f(z)| — g(z)| < —K*log(1 —¢) for z € N.

Define a: N — R by the formula a(z) = arg(f(z)) (where —m <
arg(f(z)) < m) and observe that, in view of (2.1), for all relatively prime
x,y € N we have

alzy) — a(z) —a(y) € arg(%) +27Z

C [—arcsine, arcsine] + 27Z.
Similarly, for x,y € N satisfying P, = P, inequality ([2.2)) yields
f(x)

alz) —a(y) € arg<m> + 277 C [—arcsin p, arcsin p] + 27Z.
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To apply Lemma to the function (27)~la notice that: (27)~!arcsine
< 1/4 and (27) "t arcsin p < 1/3, which is obvious; further,

arcsin p < 2 arcsine,
which is equivalent to the assumed inequality p < 2ev/1 — €2; finally,
2arcsine + Jarcsin p < 27,

which follows from the assumption p < v/3/2.
By Lemma [2.3] there exists a function a: N — R satisfying the following
conditions:
T,y € N7 (‘T)y) =1 = a($y) - &(.’E) - &(y) € 27TZ7
z,yeN, P, =P, = a(z)—aly) € 2nZ,
and

(2.17) la(z) — a(x)| < K*arcsine for z € N.

Define f: N — C\ {0} by f(z) = exp(g(z) + ia(x)). Then f is strongly
multiplicative and for every x € N inequalities (2.16)) and (2.17) imply that

0| _ expiog |£(@)] - g(@)) € [(1— )<, (1 — )]

f(z)

and

‘arg(%)‘ < |a(z) — &(z)| < K* arcsiis.

The same estimates are of course valid for the quotient f(z)/f(z). In other

words, for each € N both f(x)/f(z) and f(x)/f(z) belong to the set
Z={zeC: (1-e)f <]z <(1—¢)"% and |arg(z)| < K*arcsine}.
Let ¢ = sup,cy |z — 1|. It is easily seen that independently of the value
of ¢ we have ¢ < 1+ (1 —¢)7%". In the case where ¢ < sin(7/K*) we have
K*arcsine < m and hence
c=|(1—¢e) % exp(iK*arcsine) — 1| = d(e),
which completes the proof. =

Remark 2.3 from [5] should now be rewritten in the following form.

THEOREM 2.4. If a function f: N — C\ {0} satisfies (2.1) with some
e € [0,1) and (2.2) with some p € [O,ﬁ/ﬂ satisfying (2.3)), then there
exists a strongly multiplicative function f: N — C\ {0} such that for each
n € (0,7 — arcsine) the set
f(x) ‘ }
—— -1/ <d(e,m) ¢,
f) =0

{xeN: ';{3 —1’ < d(e,n) and
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where

2eM cos(n + arcsine) e2n
5(8777): - 1—¢ +(1_8)27

contains a subset of the form N\ (P - N) with some finite set P C P. In
particular, it has a positive natural density.
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