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Introduction. As pointed out by A. Schinzel, there is an error in the
proof of [5, Proposition 1.4] which is a crucial part of the stability theorem for
arithmetic additive functions [5, Theorem 1.5]. Namely, we are considering a
certain submeasure ϕ : 2S → [0,∞) and, following the proof of [3, Theorem
4.1] by N. J. Kalton and J. W. Roberts, we need to estimate the covering
index of the family C = {C ⊂ S : ϕ(C) ≤ 9ε/2}. To this end J. L. Kelley’s
theorem [4, Corollary 6] is used: we claim that there is no additive set
function κ : 2S → [0,∞) satisfying κ(S) = 1 and κ(A) < 1/2 for all A ∈ C.
Unfortunately, it is not clear why this should be true in our situation.

In the first section we provide a modified version of [5, Theorem 1.5] in
which we assume that a given mapping is not only almost additive but al-
most strongly additive. The results from [5] which concern the multiplicative
case are suitably modified as well; this is done in the last section.

1. Stability results for strongly additive functions. The main re-
sult of this section will be proved by slightly modifying the proof of the
following theorem on nearly additive set functions which is Theorem 4.1
from [3].

Theorem 1.1 (Kalton, Roberts). There is an absolute constant K≤89/2
with the following property: If X is a non-empty set, A is an algebra of
subsets of X and a function ν : A → R satisfies

(A,B ∈ A, A ∩B = ∅) ⇒ |ν(A ∪B)− ν(A)− ν(B)| ≤ ε
with some ε ≥ 0, then there exists an additive set function µ : A → R such
that |ν(A)− µ(A)| ≤ Kε for A ∈ A.
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Let us recall some definitions and results used in the proof by Kalton
and Roberts.

Definition 1.2. Let X be a non-empty set and A be an algebra of
subsets of X. A mapping λ : A → R is called a submeasure if:

(i) λ(∅) = 0,
(ii) λ(A) ≤ λ(B) for A,B ∈ A, A ⊂ B,
(iii) λ(A ∪B) ≤ λ(A) + λ(B) for A,B ∈ A.

The following notion was introduced in [4], together with the next result
which is Corollary 6 therein. For any set A we denote by 1A the characteristic
function of A.

Definition 1.3 (Kelley). Let X be a non-empty set and ∅ 6= C ⊂ 2X .
The covering index J(C) of C is the supremum of all t ≥ 0 for which there
are some C1, . . . , Cn ∈ C such that

t1X ≤
1
n

n∑
i=1

1Ci .

Theorem 1.4 (Kelley). Let X be a non-empty set, let A be an algebra
of subsets of X and let ∅ 6= C ⊂ A. Then there exists an additive set function
µ : A → [0,∞) such that

µ(C) ≤ J(C) for C ∈ C and µ(X) = 1.

Now, we recall the notion of concentrator and an existence result from [7]
that is proved by probabilistic methods. For m ∈ N denote [m] = {1, . . . ,m}.
If m, p ∈ N and R : [m]→ 2[p], then for each E ⊂ [m] we define

R[E] =
⋃
i∈E

R(i).

For any set A we denote by #A the cardinality of A.

Definition 1.5. Let m, p, q, r∈N and q≤p≤m. A function R : [m]→2[p]

is called an (m, p, q, r)-concentrator if:

(i) m−1
∑m

i=1 #R(i) ≤ r,
(ii) #E ≤ #R[E] for E ⊂ [m] with #E ≤ q.

Theorem 1.6 (Pippenger). There exists a (6m, 4m, 3m, 6)-concentrator
for each m ∈ N.

The following useful notation was introduced in [3].

Definition 1.7. For r ∈ N and δ, η ∈ (0, 1) we say that H(r, δ, η) holds
true if there exist sequences (mk)k∈N, (pk)k∈N, (qk)k∈N of natural numbers
such that mk →∞ and for every k ∈ N we have pk/mk ≤ δ, qk/mk ≥ η and
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there exists a (mk, pk, qk, r)-concentrator. For r ∈ N and η ∈ (0, 1) we put

ϑ(r, η) = inf{δ ∈ (0, 1) : H(r, δ, η) holds true}.

Theorem 1.6 translates now into the inequality

(1.1) ϑ(6, 1/2) ≤ 2/3.

The next result is Lemma 3.1 from [3] which gives a connection between
concentrators and some estimates for submeasures.

Lemma 1.8 (Kalton, Roberts). Let X be a non-empty set and A be
an algebra of subsets of X. Assume that λ : A → R is a submeasure and
there are some constants α, β ≥ 0 such that for any pairwise disjoint sets
A1, . . . , An ∈ A we have

n∑
i=1

λ(Ai) ≤ αn+ β.

If η ∈ (0, 1) and B1, . . . , Bm ∈ A satisfy

1
m

m∑
i=1

1Bi ≥ (1− η)1X ,

then for each r ∈ N with r ≥ 3 we have

1
m

m∑
i=1

λ(Bi) ≥ λ(X)− αr − βϑ(r, η).

Let P be the set of all primes, let S = {pk : p ∈ P, k ∈ N} and for each
x ∈ N let Px = {p ∈ P : p |x}. Our result concerning stability for strongly
additive functions reads as follows.

Theorem 1.9. There is an absolute constant K∗ ≤ 89/2 having the
property: If a function f : N→ R satisfies

(1.2) x, y ∈ N, (x, y) = 1 ⇒ |f(xy)− f(x)− f(y)| ≤ ε
and

(1.3) x, y ∈ N, Px = Py ⇒ |f(x)− f(y)| ≤ 2ε

with some ε ≥ 0, then there exists a strongly additive function f̃ : N → R
such that |f(x)− f̃(x)| ≤ K∗ε for x ∈ N.

We will derive this theorem from the following lemma.

Lemma 1.10. There is an absolute constant K∗ ≤ 89/2 having the prop-
erty: Let X be a non-empty finite set and let R = {X1, . . . , XN} be a family
of non-empty pairwise disjoint subsets of X whose sum is X. Put

(1.4) A = {A ⊂ X : #(A ∩Xi) ≤ 1 for 1 ≤ i ≤ N}
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and let ' be the relation in A defined by

A ' B ⇔ #(A ∩Xi) = #(B ∩Xi) for 1 ≤ i ≤ N.
If a function ν : A → R satisfies

(1.5) (A,B,A ∪B ∈ A and A∩B = ∅) ⇒ |ν(A∪B)− ν(A)− ν(B)| ≤ ε
and

(1.6) (A,B ∈ A and A ' B) ⇒ |ν(A)− ν(B)| ≤ 2ε

with some ε ≥ 0, then there exists a function µ : A → R such that

(A,B,A ∪B ∈ A and A ∩B = ∅) ⇒ µ(A ∪B) = µ(A) + µ(B),(1.7)
(A,B ∈ A and A ' B) ⇒ µ(A) = µ(B)(1.8)

and

(1.9) |ν(A)− µ(A)| ≤ K∗ε for A ∈ A.

Proof. We divide the proof into several steps.

Step 1. Each function µ : A → R satisfying (1.7) and (1.8) will be called
strongly R-additive. For any function f : A → R put

V (f) = max
A,B∈A

(f(A)− f(B)) .

Let ∼ be the equivalence relation in RA given by

(f ∼ g) ⇔ (f − g is a constant function);

then (RA/∼, ρ) is a metric space with ρ([f ]∼, [g]∼) := V (f − g). Define

M = {[µ]∼ : µ is strongly R-additive}.
Take a sequence of [µn]∼ ∈M, n ∈ N, such that

dist([ν]∼,M) =: l ≤ ρ([ν]∼, [µn]∼) ≤ l + 1/n.

The set {µn}n∈N is pointwise bounded on A, and hence it is contained in a
compact subset of RA (with the topology of pointwise convergence). Let µ
be the limit of some convergent subsequence of (µn)n∈N. Then µ is strongly
R-additive and we have V (ν − µ) = l.

Define g = ν − µ and

a = max
A∈A

g(A), b = −min
A∈A

g(A);

we may assume that a ≥ b (otherwise consider −g instead of g). We are to
prove that a ≤ 89ε/2.

Choose S ∈ A with g(S) = a. Since S ∈ A, we have 2S ⊂ A. Assumptions
(1.5), (1.6), jointly with the fact that µ is strongly R-additive, imply that

(A,B,A ∪B ∈ A and A ∩B = ∅) ⇒ |g(A ∪B)− g(A)− g(B)| ≤ ε
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and
(A,B ∈ A and A ' B) ⇒ |g(A)− g(B)| ≤ 2ε.

Hence, the mapping λ : 2S → R defined by

λ(A) =

{ 0 if A = ∅,
ε+ sup

C⊂A
g(C) if A 6= ∅,

is a submeasure. In fact, for each A,B ⊂ S and every C ⊂ A ∪B we have

g(C) ≤ ε+ g(C ∩A) + g(C ∩ (B \A)).

Moreover, for arbitrary non-empty pairwise disjoint A1, . . . , An ⊂ S there
exist Bi ⊂ Ai (1 ≤ i ≤ n) such that

n∑
i=1

λ(Ai) = εn+
n∑
i=1

g(Bi)(1.10)

≤ εn+ ε(n− 1) + g(B1 ∪ · · · ∪Bn) ≤ 2εn+ (a− ε).
Note also that λ(S) = a+ ε.

Step 2. Let
C = {C ⊂ S : λ(C) ≤ 9ε/2}.

We will show that J(C) ≥ 1/2. In the light of Theorem 1.4, we shall show
that for every additive set function κ : 2S → [0,∞) satisfying κ(S) = ε there
exists a set A ∈ C with κ(A) ≥ ε/2.

Suppose, on the contrary, that κ : 2S → [0,∞) is an additive set function
satisfying κ(S) = ε and κ(A) < ε/2 for each A ∈ C. For any A ∈ A let
πS(A) be the maximal (with respect to set inclusion) subset of S satisfying
πS(A) ' C for some C ⊂ A (notice that all the subsets of S which have
this property form a finite chain with respect to inclusion, thus πS(A) is
uniquely determined). For arbitrary A,B ∈ A the conditions A∪B ∈ A and
A ∩B = ∅ imply that πS(A) ∩ πS(B) = ∅ and hence

κ(πS(A) ∪ πS(B)) = κ(πS(A)) + κ(πS(B)),

whereas the condition A ' B implies πS(A) = πS(B) and hence κ(πS(A)) =
κ(πS(B)). This shows that the function

(1.11) A 3 A 7→ κ(πS(A))

is strongly R-additive.
Define h : A → R by h(A) = g(A) − κ(πS(A)). By the definition of

µ and the fact that the mapping (1.11) is strongly R-additive, we have
V (h) ≥ V (g) = a+ b. However, we will show that

−b− ε/2 < h(A) < a− ε/2 for A ∈ A,
which yields a contradiction.
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Suppose h(A) ≥ a− ε/2 for some A ∈ A. Then g(A) ≥ a− ε/2. Let A∗

be the subset of A for which A∗ ' πS(A). We have

g(A \A∗) ≤ ε+ g((A \A∗) ∪ S)− g(S) ≤ ε,

therefore
g(A∗) ≥ g(A)− g(A \A∗)− ε ≥ a− 5ε/2.

Hence, for every B ⊂ S \ πS(A) we have

g(B) ≤ ε+ g(A∗ ∪B)− g(A∗) ≤ 7ε/2.

It follows that λ(S \ πS(A)) ≤ 9ε/2, i.e. S \ πS(A) ∈ C. Therefore,
κ(S \ πS(A)) < ε/2 and thus κ(πS(A)) > ε/2, which proves that h(A) <
g(A)− ε/2 ≤ a− ε/2; a contradiction.

Now, suppose h(A) ≤ −b− ε/2 for some A ∈ A. Then g(A) ≤ −b+ ε/2.
For every B ⊂ A∗ we have

−b+ ε/2 ≥ g(A) ≥ g(B) + g(A \B)− ε ≥ g(B)− b− ε,

hence g(B) ≤ 3ε/2. Consequently, if C ∈ A satisfies B ' C, then g(C)
≤ 7ε/2. This shows that for each C ⊂ πS(A) we have g(C) ≤ 7ε/2, i.e.
λ(πS(A)) ≤ 9ε/2, thus πS(A) ∈ C and κ(πS(A)) < ε/2. Hence, h(A) >
g(A)− ε/2 ≥ −b− ε/2; a contradiction.

Step 3. Define

γ = inf
{∑
C∈C

xC :
∑
C∈C

xC1C ≥ 1S and xC ≥ 0 for C ∈ C
}
.

It follows from Definition 1.3 that J(C) = 1/γ. The set

Z :=
{

(xC)C∈C :
∑
C∈C

xC1C ≥ 1S and xC ≥ 0 for C ∈ C
}

is an unbounded polyhedron in R#C . Either there exists a unique point
x = (xC)C∈C of Z that minimizes the sum

∑
C∈C xC , and it is then an

extreme point of Z, or the set of all such points is a polyhedron Z ′ ⊂ Z,
and then every extreme point of Z ′ is also an extreme point of Z.

In both cases there is at least one extreme point x = (xC)C∈C of Z such
that

γ =
∑
C∈C

xC .

Such a point is uniquely determined as the intersection of finitely many
hyperspaces in R#C , defined by equations with rational coefficients. The
only solution of the system of those equations (which is x) has all coefficients
rational. Therefore, γ ∈ Q and hence J(C) ∈ Q.
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Since J(C) ≥ 1/2, we have∑
C∈C

J(C)xC1C ≥
1
2
1S .

Moreover, all the numbers J(C)xC (C ∈ C) are rational. Denoting by m the
least common multiple of their denominators and repeating each set C ∈ C
as required, we may find a sequence C1, . . . , Cm ∈ C such that

1
m

m∑
i=1

1Ci ≥
1
2
1S .

By Lemma 1.8 and inequality (1.10), for every r ∈ N, r ≥ 3, we have

9ε/2 ≥ 1
m

m∑
i=1

λ(Ci) ≥ (a+ ε)− 2εr − (a− ε)ϑ(r, 1/2).

Putting r = 6 and making use of (1.1) we arrive at a ≤ 89ε/2.

Proof of Theorem 1.9. Let K∗ be the constant from the above lemma.
Consider the topological space

Z :=
∏
p∈P

[f(p)−K∗ε, f(p) +K∗ε]

with the compact Tikhonov topology. If x ∈ N, x ≥ 2, has a factorization
x = pα1

1 · . . . ·pαm
m (i.e. pi ∈ P are pairwise different and αi ∈ N), then we put

Zx = {(ξ(p))p∈P ∈ Z : |f(x)− (ξ(p1) + · · ·+ ξ(pm))| ≤ K∗ε}.
Plainly, Zx is a closed subspace of Z.

Fix an arbitrary finite set of natural numbers x1, . . . , xn ≥ 2 with fac-
torizations xi = si1 · . . . · simi (i.e. si1, . . . , simi ∈ S are pairwise relatively
prime for each 1 ≤ i ≤ n), where sij = p

αij

ij with pij ∈ P, αij ∈ N. Put

X = {sij : i = 1, . . . , n, j = 1, . . . ,mi}.
Enlarging the set {x1, . . . , xn} if necessary, we may assume that pij ∈ X for
1 ≤ i ≤ n, 1 ≤ j ≤ mi. Let R = {X1, . . . , XN} be the partition of X into
non-empty and pairwise disjoint subsets, defined by the condition that sij ,
skl belong to the same element of R if and only if (sij , skl) > 1. Let also A
be defined by formula (1.4).

Since condition (1.2) implies (1.5), whereas (1.3) implies (1.6), we may
apply Lemma 1.10 to the function ν : A → R defined by

ν(A) = f
(∏
a∈A

a
)
.

Thus there exists a function µ : A → R satisfying (1.7)–(1.9). In particular,
putting A = {si1, . . . , simi}, for 1 ≤ i ≤ n, we get

|f(xi)− (µ({si1}) + · · ·+ µ({simi}))| ≤ K∗ε,
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and putting A = {pij}, for 1 ≤ i ≤ n, 1 ≤ j ≤ mi, we infer that

µ({pij}) ∈ [f(pij)−K∗ε, f(pij) +K∗ε].

Moreover, in view of (1.8), for any 1 ≤ i ≤ n, 1 ≤ j ≤ mi we have µ({sij}) =
µ({pij}). This shows that the sequence (ξ(p))p∈P given by

ξ(p) =
{
µ({pij}) if p = pij for some 1 ≤ i ≤ n, 1 ≤ j ≤ mi,

f(p) otherwise,

belongs to the set
⋂n
i=1Zxi .We have thus proved that the family {Zx : x ≥ 2}

has the finite intersection property, hence there exists

(1.12) (ξ(p))p∈P ∈
⋂
x≥2

Zx.

Now, we define f̃ as the unique strongly additive function satisfying
f̃(p) = ξ(p) for every p ∈ P. Then for each x ∈ N, x ≥ 2, the inequality
|f(x) − f̃(x)| ≤ K∗ε follows directly from (1.12); for x = 1 this inequality
follows from f̃(1) = 0 and |f(1)| ≤ ε.

Let K be the least possible value of the constant from Theorem 1.1
and let K∗ be the least possible value of the constant from Theorem 1.9
(equivalently: from Lemma 1.10). By considering the partition R = {{x} :
x ∈ X}, we see that Lemma 1.10 is a generalization of Theorem 1.1 in the
case where X is finite. On the other hand, the finite case is enough to prove
this theorem in its full generality (by some compactness arguments; cf. the
proof of [3, Theorem 4.1]). Therefore, K ≤ K∗. Taking into account the
counterexample of B. Pawlik [6], which shows that K ≥ 3/2, we may write

3/2 ≤ K ≤ K∗ ≤ 89/2.

It is not known whether any of these three inequalities is sharp.
For the time being I have not succeeded in fixing the proof of [5, Theo-

rem 1.5] completely. Therefore, the following question remains open: Assume
that f : N→ R satisfies (1.2) with some ε ≥ 0. Does there exist an additive
arithmetic function f̃ : N→ R such that |f(x)− f̃(x)| ≤ Lε for x ∈ N, where
L <∞ is an absolute constant?

Let us now proceed to other stability results for additive functions from
[5] which require revision. Remark 1.6 should be rewritten in the following
form.

Theorem 1.11. If a function f : N → C satisfies (1.2) and (1.3) with
some ε ≥ 0, then there exists a strongly additive function f̃ : N → C such
that for each η > 0 the set

{x ∈ N : |f(x)− f̃(x)| < ε+ η}
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contains a subset of the form N \ (P · N) with some finite set P ⊂ P. In
particular, it has a positive natural density.

The proof remains the same except that instead of [5, Theorem 1.5] we
use Theorem 1.9 above.

The proof of [5, Theorem 1.11] requires some modification. Instead of ap-
plying Theorem 1.5 therein, we first fix an arbitrary sequence R = (xm)m∈N
of pairwise coprime natural numbers greater than 1 satisfying

sup
m∈N

ω(xm) <∞.

Next, we define

SR = {r ∈ S : r ‖ xm for some m ∈ N}

and we let TR be the set of all natural numbers having canonical factoriza-
tions with all factors belonging to SR. Now, we consider a function g : N→ C
which is an extension of f |TR

, and for which both conditions (1.2) and (1.3)
are valid after replacing f by g. To see that such a function exists denote
Q(x) = {r ∈ SR : r ‖ x} and put

g(x) = f
( ∏
r∈Q(x)

r
)

for x ∈ N.

Applying Theorem 1.9 to the real and imaginary parts of g we get a strongly
additive complex-valued function f̃ such that

|f(x)− f̃(x)| ≤
√

2K∗ε for x ∈ TR.

The rest of the proof needs only minor adjustments.
A correction should also be made to the proof of [5, Theorem 1.8].

Namely, in all estimates one has to replace (x1, x2) by pk. Since pk ‖ x1

and pk ‖ x2, the numbers xi/pk and pk are relatively prime for i = 1, 2,
which is not necessarily true for xi/(x1, x2) and (x1, x2). The assumption of
that theorem can be slightly weakened; the new version is the following.

We denote by P the set of all pairs of relatively prime natural numbers.

Theorem 1.12. Given ϕ : P → [0,∞) assume that a function f : N→ R
satisfies

x, y ∈ N, (x, y) = 1 ⇒ |f(xy)− f(x)− f(y)| ≤ ϕ(x, y).

Let ψ : N→ [0,∞) be any function satisfying

ψ(xz) + ψ(yz) ≥ ψ(x) + ψ(y) + ϕ(x, z) + ϕ(y, z)

for all x, y, z ∈ N such that (x, z), (y, z) ∈ P. Then there is a real arithmetic
additive function f̃ such that |f(x)− f̃(x)| ≤ ψ(x) for x ∈ N.
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2. Stability results for strongly multiplicative functions. In this
section we give a corrected version of the stability result [5, Theorem 2.2]
concerning arithmetic multiplicative functions.

Theorem 2.1. If a function f : N→ C \ {0} satisfies

(2.1) x, y ∈ N, (x, y) = 1 ⇒
∣∣∣∣ f(xy)
f(x)f(y)

− 1
∣∣∣∣ ≤ ε

with some ε ∈ [0, 1) and

(2.2) x, y ∈ N, Px = Py ⇒
∣∣∣∣f(x)
f(y)

− 1
∣∣∣∣ ≤ ρ

with some ρ ∈ [0,
√

3/2] satisfying

(2.3) ρ ≤ min{2ε− ε2, 2ε
√

1− ε2},

then there exists a strongly multiplicative function f̃ : N→ C \ {0} such that∣∣∣∣f(x)

f̃(x)
− 1
∣∣∣∣ ≤ δ(ε) and

∣∣∣∣ f̃(x)
f(x)

− 1
∣∣∣∣ ≤ δ(ε) for x ∈ N,

where

δ(ε) =


√

1− 2 cos(K∗ arcsin ε)
(1− ε)K∗ +

1
(1− ε)2K∗ if ε < sin

π

K∗
,

1 + (1− ε)−K∗
if ε ≥ sin

π

K∗
.

We will follow the methodology of the proof of a stability result for the
exponential equation given in [1] by R. Ger and P. Šemrl. Let us start with
a certain version of M. Hosszú’s theorem [2].

Lemma 2.2. If a function ψ : P → R satisfies

(2.4) ψ(x, y) = ψ(y, x) for (x, y) ∈ P,

and

(2.5) ψ(xy, z) + ψ(x, y) = ψ(x, yz) + ψ(y, z) for (x, y), (y, z), (z, x) ∈ P,

then there exists a mapping β : N→ R such that

(2.6) ψ(x, y) = β(xy)− β(x)− β(y) for (x, y) ∈ P.

Proof. Put β(1) = −ψ(1, 1) and for any r ∈ S let β(r) be an arbitrarily
chosen real number. We are going to define the values of β for arguments
having at least two different prime factors.

Let p1, p2, . . . be the increasing sequence of all primes. For each
x ∈ N with a canonical factorization x = pk1n1

· . . . · pkm
nm

, where m ≥ 2 and
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n1 < · · · < nm, we define

β(x) =
m∑
j=1

β(pkj
nj ) +

m−1∑
j=1

ψ
(
p
kj
nj ,

m∏
i=j+1

pki
ni

)
.

For simplicity we will write canonical factorizations in the form r1 · . . . · rm
assuming implicitly that ri ∈ S are labeled according to the natural order of
primes of which they are powers. For an arbitrary x ∈ N with factorization
x = s1 · . . . · sm, where m ≥ 2, we have

(2.7) β(x) = β(sm) + β(s1 · . . . · sm−1) + ψ(s1 · . . . · sm−1, sm).

Indeed, by the definition of β(x) and (2.5), we infer that

β(x) =
m∑
j=1

β(sj) +
m−1∑
j=1

ψ
(
sj ,

m∏
i=j+1

si

)

=
m∑
j=1

β(sj) +
m−3∑
j=1

ψ
(
sj ,

m∏
i=j+1

si

)
+ ψ(sm−2, sm−1sm) + ψ(sm−1, sm)

=
m∑
j=1

β(sj) +
m−3∑
j=1

ψ
(
sj ,

m∏
i=j+1

si

)
+ ψ(sm−2sm−1, sm) + ψ(sm−2, sm−1)

...

=
m∑
j=1

β(sj) + ψ(s1 · . . . · sm−1, sm) +
m−2∑
j=1

ψ
(
sj ,

m−1∏
i=j+1

si

)
= β(sm) + β(s1 · . . . · sm−1) + ψ(s1 · . . . · sm−1, sm).

Putting x = y = 1, z = s ∈ S in (2.5) yields ψ(1, s) = ψ(1, 1) = −β(1),
hence (2.7) is also valid in the case where x ∈ S.

We shall prove equality (2.6) by induction on ω(x)+ω(y). If ω(x)+ω(y)
= 0, then x = y = 1 and the equality holds. So, assume that some relatively
prime x, y ∈ N have factorizations x = q1 · . . . · qm and y = r1 · . . . · rn,
where m + n > 0. Let xy have a factorization s1 · . . . · sm+n with suitably
numbered si’s. Either qm = sm+n, or rn = sm+n; we may assume the former.
Then, using (2.7), the inductive hypothesis and (2.4), (2.5), we get

β(xy)− β(x)− β(y)

= β(sm+n) + β(s1 · . . . · sm+n−1) + ψ(s1 · . . . · sm+n−1, sm+n)
− β(sm+n)− β(q1 · . . . · qm−1)− ψ(q1 · . . . · qm−1, sm+n)
− β(r1 · . . . · rn)
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= ψ(q1 · . . . · qm−1r1 · . . . · rn, qm)− ψ(q1 · . . . · qm−1, qm)
+ ψ(q1 · . . . · qm−1, r1 · . . . · rn)

= ψ

(
x

qm
y, qm

)
− ψ

(
x

qm
, qm

)
+ ψ

(
x

qm
, y

)
= ψ

(
x

qm
, y

)
+ ψ

(
qm,

x

qm
y

)
− ψ

(
qm,

x

qm

)
= ψ

(
qm

x

qm
, y

)
= ψ(x, y).

Lemma 2.3. If a function α : N→ R satisfies

x, y ∈ N, (x, y) = 1 ⇒ α(xy)− α(x)− α(y) ∈ [−ε, ε] + Z
with some ε ∈ [0, 1/4) and

(2.8) x, y ∈ N, Px = Py ⇒ α(x)− α(y) ∈ [−η, η] + Z
with some η ∈ [0, 1/3) satisfying η ≤ 2ε and 2ε + 3η < 1, then there exists
a mapping α̃ : N→ R such that

x, y ∈ N, (x, y) = 1 ⇒ α̃(xy)− α̃(x)− α̃(y) ∈ Z,
x, y ∈ N, Px = Py ⇒ α̃(x)− α̃(y) ∈ Z

and
|α(x)− α̃(x)| ≤ K∗ε for x ∈ N.

Proof. For some functions ψ : P → Z and ϕ : P → [−ε, ε] we have

(2.9) α(xy)− α(x)− α(y) = ψ(x, y) + ϕ(x, y) for (x, y) ∈ P.
Since the left-hand side is symmetric with respect to x and y, we infer that

Z 3 ψ(x, y)− ψ(y, x) = ϕ(y, x)− ϕ(x, y) ∈ [−2ε, 2ε] ⊂ (−1/2, 1/2),

which implies (2.4). Moreover, for all (x, y), (y, z), (z, x) ∈ P we have

ψ(x, yz) + ψ(y, z) + ϕ(x, yz) + ϕ(y, z)

= α(xyz)− α(x)− α(yz) + α(yz)− α(y)− α(z)
= α(xyz)− α(xy)− α(z) + α(xy)− α(x)− α(y)
= ψ(xy, z) + ψ(x, y) + ϕ(xy, z) + ϕ(x, y).

Therefore,

Z 3 ψ(x, yz) + ψ(y, z)− ψ(xy, z)− ψ(x, y)
= ϕ(x, yz) + ϕ(y, z)− ϕ(xy, z)− ϕ(x, y) ∈ [−4ε, 4ε] ⊂ (−1, 1),

which implies (2.5). By Lemma 2.2, there exists a mapping β : N → R
satisfying (2.6).

Let Q stand for the set of all pairs of natural numbers x, y > 1 such that
Px = Py. Assumption (2.8) implies that there are some functions ψ1 : Q → Z
and ϕ1 : Q → [−η, η] satisfying,

(2.10) α(x)− α(y) = ψ1(x, y) + ϕ1(x, y) for (x, y) ∈ Q.
An inspection of the proof of Lemma 2.2 shows that the values of β for
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arguments from the set S may be defined arbitrarily (this is also seen from
condition (2.6) which remains valid if we add to β any additive function). Fix
p ∈ P; we may assume that for each k ∈ N we have β(pk) = ψ1(pk, p)+β(p).
For all k, l,m ∈ N we then have

Z 3 ψ1(pk, pl) + ψ1(pl, pk) = −ϕ1(pk, pl)− ϕ1(pl, pk) ∈ [−2η, 2η],
thus

(2.11) ψ1(pk, pl) = −ψ1(pl, pk).

Moreover,

Z 3 ψ1(pk, pm)− ψ1(pk, pl)− ψ1(pl, pm)

= −ϕ1(pk, pm) + ϕ1(pk, pl) + ϕ1(pl, pm) ∈ [−3η, 3η],
thus

(2.12) ψ1(pk, pl) + ψ1(pl, pm) = ψ1(pk, pm).

By (2.11) and (2.12), we have

β(pk)− β(pl) = ψ1(pk, p)− ψ1(pl, p) = ψ1(pk, p) + ψ1(p, pl)(2.13)

= ψ1(pk, pl).

Now, we will show that

(2.14) ψ1(x, y) = β(x)− β(y) for (x, y) ∈ Q.
Equality (2.13) means precisely that the above equality holds true when x
and y are powers of the same prime. Fix natural numbers m ≥ 2, x and
y satisfying Px = Py and having canonical factorizations x = q1 · . . . · qm,
y = r1 · . . . · rm; assume also that (2.14) holds true for numbers having less
than m prime divisors. Define x′ = q1 · . . . · qm−1 and y′ = r1 · . . . · rm−1.
By (2.7), we have

(2.15) β(x)− β(y)

= β(qm)− β(rm) + β(x′)− β(y′) + ψ(x′, qm)− ψ(y′, rm)
= ψ1(qm, rm) + ψ1(x′, y′) + ψ(x′, qm)− ψ(y′, rm) ∈ Z.

Observe also that

Z 3 ψ1(x, y) = α(x)− α(y)− ϕ1(x, y)
= (α(x)− α(x′)− α(qm))− (α(y)− α(y′)− α(rm))

+ (α(x′)− α(y′)) + (α(qm)− α(rm))− ϕ1(x, y)
= ψ(x′, qm) + ϕ(x′, qm)− ψ(y′, rm)− ϕ(y′, rm)

+ ψ1(x′, y′) + ϕ1(x′, y′) + ψ1(qm, rm) + ϕ1(qm, rm)− ϕ1(x, y)
∈ ψ1(qm, rm) + ψ1(x′, y′) + ψ(x′, qm)− ψ(y′, rm)

+ [−2ε− 3η, 2ε+ 3η],

which, jointly with (2.15), yields formula (2.14).



96 T. Kochanek

Define γ : N→ R by γ = α− β. Then, in view of (2.6) and (2.9),

β(xy)− β(x)− β(y) ∈ Z for (x, y) ∈ P

and
γ(xy)− γ(x)− γ(y) = ϕ(x, y) ∈ [−ε, ε] for (x, y) ∈ P.

Moreover, by (2.10) and (2.14), we have

β(x)− β(y) ∈ Z for (x, y) ∈ Q

and
γ(x)− γ(y) = ϕ1(x, y) ∈ [−η, η] for (x, y) ∈ Q.

By Theorem 1.9, there exists a strongly additive function δ : N → R such
that |γ(x) − δ(x)| ≤ K∗ε for x ∈ N. It remains to define α̃ : N → R by
α̃ = β + δ.

Proof of Theorem 2.1. For every x ∈ N, f(x) = |f(x)| exp(i arg(f(x))),
where −π < arg(f(x)) ≤ π. Inequality (2.1) implies for all relatively prime
x, y ∈ N that∣∣log |f(xy)| − log |f(x)| − log |f(y)|

∣∣ =
∣∣∣∣log

∣∣∣∣ f(xy)
f(x)f(y)

∣∣∣∣∣∣∣∣ ≤ − log(1− ε).

Similarly, for x, y ∈ N satisfying Px = Py inequality (2.2) yields∣∣log |f(x)| − log |f(y)|
∣∣ =

∣∣∣∣log
∣∣∣∣f(x)
f(y)

∣∣∣∣∣∣∣∣ ≤ − log(1− ρ).

It follows from ρ ≤ 2ε− ε2 that

− log(1− ρ) ≤ −2 log(1− ε),

which means that the function N 3 x 7→ log |f(x)| satisfies the assumptions
of Theorem 1.9 with − log(1− ε) instead of ε. Hence, there exists a strongly
additive function g : N→ R such that

(2.16)
∣∣log |f(x)| − g(x)

∣∣ ≤ −K∗ log(1− ε) for x ∈ N.

Define α : N → R by the formula α(x) = arg(f(x)) (where −π <
arg(f(x)) ≤ π) and observe that, in view of (2.1), for all relatively prime
x, y ∈ N we have

α(xy)− α(x)− α(y) ∈ arg
(

f(xy)
f(x)f(y)

)
+ 2πZ

⊂ [−arcsin ε, arcsin ε] + 2πZ.

Similarly, for x, y ∈ N satisfying Px = Py inequality (2.2) yields

α(x)− α(y) ∈ arg
(
f(x)
f(y)

)
+ 2πZ ⊂ [−arcsin ρ, arcsin ρ] + 2πZ.
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To apply Lemma 2.3 to the function (2π)−1α notice that: (2π)−1 arcsin ε
< 1/4 and (2π)−1 arcsin ρ < 1/3, which is obvious; further,

arcsin ρ ≤ 2 arcsin ε,

which is equivalent to the assumed inequality ρ ≤ 2ε
√

1− ε2; finally,

2 arcsin ε+ 3 arcsin ρ < 2π,

which follows from the assumption ρ ≤
√

3/2.
By Lemma 2.3, there exists a function α̃ : N→ R satisfying the following

conditions:

x, y ∈ N, (x, y) = 1 ⇒ α̃(xy)− α̃(x)− α̃(y) ∈ 2πZ,
x, y ∈ N, Px = Py ⇒ α̃(x)− α̃(y) ∈ 2πZ,

and

(2.17) |α(x)− α̃(x)| ≤ K∗ arcsin ε for x ∈ N.

Define f̃ : N→ C \ {0} by f̃(x) = exp(g(x) + iα̃(x)). Then f̃ is strongly
multiplicative and for every x ∈ N inequalities (2.16) and (2.17) imply that∣∣∣∣f(x)

f̃(x)

∣∣∣∣ = exp(log |f(x)| − g(x)) ∈ [(1− ε)K∗
, (1− ε)−K∗

]

and ∣∣∣∣arg
(
f(x)

f̃(x)

)∣∣∣∣ ≤ |α(x)− α̃(x)| ≤ K∗ arcsin ε.

The same estimates are of course valid for the quotient f̃(x)/f(x). In other
words, for each x ∈ N both f(x)/f̃(x) and f̃(x)/f(x) belong to the set

Z = {z ∈ C : (1− ε)K∗ ≤ |z| ≤ (1− ε)−K∗
and |arg(z)| ≤ K∗ arcsin ε}.

Let c = supz∈Z |z − 1|. It is easily seen that independently of the value
of ε we have c ≤ 1 + (1− ε)−K∗

. In the case where ε < sin(π/K∗) we have
K∗ arcsin ε < π and hence

c = |(1− ε)−K∗
exp(iK∗ arcsin ε)− 1| = δ(ε),

which completes the proof.

Remark 2.3 from [5] should now be rewritten in the following form.

Theorem 2.4. If a function f : N → C \ {0} satisfies (2.1) with some
ε ∈ [0, 1) and (2.2) with some ρ ∈ [0,

√
3/2] satisfying (2.3), then there

exists a strongly multiplicative function f̃ : N → C \ {0} such that for each
η ∈ (0, π − arcsin ε) the set{

x ∈ N :
∣∣∣∣f(x)

f̃(x)
− 1
∣∣∣∣ ≤ δ(ε, η) and

∣∣∣∣ f̃(x)
f(x)

− 1
∣∣∣∣ ≤ δ(ε, η)

}
,
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where

δ(ε, η) =

√
1− 2eη cos(η + arcsin ε)

1− ε
+

e2η

(1− ε)2
,

contains a subset of the form N \ (P · N) with some finite set P ⊂ P. In
particular, it has a positive natural density.
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