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Primitive roots and quadratic non-residues
by

A. ScHINZEL (Warszawa)

C. Hooley [I] deduced Artin’s conjecture on primitive roots from the
Riemann hypothesis for the Dedekind zeta function of a certain class of
fields. His investigations have been taken further by K. R. Matthews [4],
who has deduced from a similar hypothesis a formula for the natural density
of the primes for which finitely many given numbers are primitive roots. We
shall prove

THEOREM. Let A, B be two finite disjoint sets of primes of cardinalities
n > 0 and m, respectively, with 2 ¢ AU B. Under the Riemann hypothesis
for the Dedekind zeta functions of Kummer extensions the natural density
of the primes p such that

(1) (2|p)=1=(b|p) forallbeB

and all a € A are pm’mz’tive roots modulo p equals

d(A, 2m+2 —1|a)dna) [T(1 = (=116)dn )

aeA beB
A,
T omr2 H (1+ dn.a) H(l —dny),
acA beB
where

Cn(p) 1 ( < 1>n>
dn =3 N Cn = 1-(1—— , An: 1_Cn )
P71~ calp) () =2—3 » [T (—catw)

p prime

COROLLARY 1. Let p; be the ith prime. Under the extended Riemann
hypothesis for Kummer extensions, the natural density of the primes p such
that pi (k > 1) is for p the least quadratic non-residue and p; is the least
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prime primitive root equals

D(pr,p) =y (DN AN Apr,...,pp—1}) — d(N {p1.. ., pi}))-
N A{pk,--p}
pEN
COROLLARY 2. In the notation of Corollary|l],
Ak k—1
D(pk, pr) = S (1 + (=1pr)dip,) [T = (—11p)day,)
=2

A _
+ 1+d1pk Hl_dlpl
=2

Corollaries[lJand2answer questions proposed orally by Dr. A. Paszkiewicz.
From a numerical calculation he has obtained heuristic values of D(py,p;)
for small k,I and communicated them to the author. This is gratefully
acknowledged.

Notation. We put

n

A={a1,...,an}, A:ﬁai, A= ] @
i=1

=1
a;=1(mod 4)

m m

B={b,....bm}, B=]]b;, Bi= ] b,
j=1 j=1
bj=1(mod 4)

bo =2, (l1,...,1l,) is the Lem. of Iy,...,1l,, w(k) is the number of distinct
prime factors of k, and 7(z) the number of primes < x.

LEMMA 1. Let K be a number field, and w(x, K) the number of prime
ideals of K with norm < x. Then

(2) (2, K) = liz + O(ze FE)Vios®)
and under the extended Riemann hypothesis
(3) m(z, K) = liz + O(N(K)z"/? log(A(K) /N EF)))

where N(K) and A(K) are the degree and the discriminant of K, respec-
tively.

Proof. See Landau [3|, Satz 191] and Hooley [T}, §5].

LEMMA 2. Suppose (ly,...,l,) divides k and let P(x,ly,... Iy, k; A, B)
be the number of primes p < x, p=1 (mod k), p € AU B, such that each
of the congruences

2 =a; (mod p) (1<i<mn), 2?2=b; (modp) (0<j<m)
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is soluble. Then

(4)  N(K)P(x,1,k; A, B) = w(x, Kp) + O(N (Kp)w(k)) + O(N (Kp)z'/?)

where Ky = QU/T, Ya. ... “an, /B, ....B), N(KD) = [Kq : Q).
Proof. See [4, formula (5.7)], where we may suppose that k is even.

LEMMA 3. For every positive integer k the set S(k; A, B) of primesp =1
(mod k) such that holds and for every prime q|k at least one of the
numbers a; is a qth power residue modulo p has natuml density

().
) WY Y M)

Lk Ik

Proof. Let P(x,k; A, B) be the number of primes p € S(k; A, B), p < .
We have (see [4, Lemma 4.1])

P(x,k; A, B) = (k)Y .Y () - () Pz, 1, k5 A, B).

Lk Ilnlk
<l17---7ln>:k

Using the formulae and we obtain
ply) ... pu(ly) x
P(z,k; A,B) = lg l}% %% Kl +0<10g2m>,
(I1,eln)=Fk

which gives the existence of ¢o(k) and formula .

LEMMA 4. The discriminant A(K)}) of Kp satisfies

AR < (k2™ . lpar ... anby ... by NED < peN )

where ¢ depends only on A and B.

Proof. See Lemma 7.3 of [4].

LEMMA 5. We have

Z co(k) < 7 (logz)?" L.

k>x

Proof. Clearly we have
co(k) < c(k),
where ¢(k) is the natural density of the primes p = 1 (mod k) such that

for each prime ¢ |k at least one of the numbers a; is a gth power residue
modulo p. Now, Lemma [5| follows from [4, formula (8.9) and Lemma 8.4].

LEMMA 6. Let R(q,p) denote the statement: (1) holds, ptA, q|p — 1
and at least one of the numbers a; is a qth power residue modulo p. Let
M(x,m,n92; A, B) be the number of primes p < x such that R(q,p) is true
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for at least one prime q, 11 < q < ny. Then under the extended Riemann
hypothesis

M(a;, %logw,aﬁ — 1;A,B> = O(
Proof. We have

loglog x )
logZz /)’

1 1
M(m,Gloga:,x—l;A,B> < M(x,ﬁlogw,x—l;fl,(b)

1
< M<x, G log x, z1/? log ™2 x; A, @) + M(x, 22 log 2z, 2 —1; A, 0)

and it suffices to apply [4, formulae (3.3) and (8.15)].

LEMMA 7. Let N(z;.A, B) be the number of primes p < x such that all
a € A are primitive roots modulo p and holds. Then under the assump-
tion of the extended Riemann hypothesis,

N(xz; A, B) = ° Zu(k)co(k)+0<l w (loglogac)Qn_l)

2
log x pt og-x

Proof. N(xz;A,B) is the number of primes p < z, p { A such that
holds and R(q,p) is false for all primes g. Let N(z,n;.A, B) be the number
of primes p < z, p{ A such that holds and R(q,p) is false for all primes
q <n. We let P(x,k; A, B) be the number of primes p < x, p{ A such that
R(q,p) is true for all ¢| k.

By the exclusion principle

(6) M(:c, é log 7; A, B) =" u(k)P(e.k: A.B)

where ), is over the squarefree numbers k composed entirely of primes
q < %log x. The relevant k satisfy

(7) k< H q< e%logr — /3
q<glogz
Now, using formulae and we obtain
Pz, k; A, B) = co(k) liz + O(d(k) '/ log(A(K;) YN ED 1)),
which, by the formula

S d(k)" = O(a(log z)> )

k<z
(see [2, Theorem 5.3]), by Lemma [4] and by formulae (6) and (7)) gives

(8) N<a:, % logz; A, B> = (liz) Zo pu(k)eo(k) + O(2%/%(log 2)?").
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Now, by Lemma

>, uk)eolk) = > ukyeo(k) + O - eolk))
k=

1 k>%logw
> log log )2" 1
=S n(kheali) + 0 ETED ),
P ogx

and by Lemma [6] and (8),

N(z; A, B) :N<x,élogac;/l,8> +O<M(m,élogw,x—l;¢4,8>>

T z(loglog z)?" 1 xloglog x
= k)co(k) + O o ————
gz 2ok + 0 T ) o1

log= x

X > i n
= k)eo(k —— (log1 =)
log x ;M( Jeo )+O<log2x(0g o8 ) )

LEMMA 8. We have

N(K;) = 2" o HZ/Z 1,

where the sum ), is taken over all vectors [yl, ey Uny 00 - - - Om) Such that
1<1;<; (1<i<n),1<p;<2(0<j5<m) and
© [T [T = 5%, 5 Q).

i=1 3=0

Proof. This follows from [4, Lemma 9.1] on replacing, for k& odd, k by
(k,2).

LEMMA 9. For a € Z\ {0} and k even squarefree we have a = j¥,
B € Q1) if and only if a = b/, b € Z, Vb € QR/1). Moreover, for b
squarefree, Vb € Q(¥/1) if and only if b=1 (mod 4), b| k.

Proof. See [4, Lemma 10.1].

LEMMA 10. For k squarefree we have

co(k):'ljJ(Q(:ﬁ))ch(p) Y.y MTZZ:::gfm")D(ml,...,mn,k,B),
plk mi|2  mp|2 n

P>2 (g, mp)=(k,2)

mi M,

(10) D(my,...,mn,k,B)= Y ... ) 221

pn1=1 pn=1
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and Y, is over all divisors of 2B such that
[Ta/™a=p% BeQi).
i=1

Proof. By formula and Lemma (8| we have

(1)
Co(k 2m+1 Z ZM 1 Z L.

z k lolk
<llv 7l >_k

Now, let I; = m;l;, where m; |2 and I is odd, (my,...,m,) = (k,2). Since
a;, b; are distinct primes, @ is equivalent by virtue of Lemma |§| to the
conditions vi = Upi, 1< p; <my,

[Lam [I5 =8 seaD
1= Jj=

The last condition is satisfied by oy, ..., 0, if and only if it is satisfied by
2—00,...,2—0m, but when [gg, ..., 0] runs through {1,2}m+1, H;n 0 bj &
runs through all positive divisors of 2B. Thus

k
(1) co<k>=2m’i§¢)(k) )ITED DD DD
Ulk/(k2)  Ulk/(k2) ma|2  mal2
<l,17 7n> k/(k 2) <m1’ 5 > (k 2)

p(Etm) ()G,
e e e DORD DD IR

pn1=1 pn=1

Now, however,

sk= Y . z“ i)

Uk/(k2)  1]k/(K,2)
(5elp)=k/(k,2)

is independent of my, ..., m,. Moreover, by Lemma 10.4 of [4] the function
S1(k) is multiplicative. If p is a prime we have

Z Zlu l/ l/ (ZM ) -
hlp e
(I ynsliy)=p

_ <1 _ 1>" 1= —(p—ealp),

b
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thus by ,
co<k>=“(2§fﬁ”ch<p> S ““’;i:::ﬁmn) D(ma,...,mn, k, B).

n

plk m1|2 mn|2
p>2 (m1,mn)=(k,2)

LEMMA 11. Let F be a field and d a non-zero integer. For 1 < i1 <
o <id; <nlet

2 2
T(i1,...,05;d) = Z E 1.
vip =1 vi. =1
J

v v .
a; 1 ..a; ) d=p2, BEF
1 15

Also let
oid)y=" > 7lir,...,i5d), Ug(d):{

1<i1<--<i;<n

1 ifd:ﬁzyﬁer

0 otherwise.

Then if T*(i1,...,15;d) and J}‘(d) are defined similarly, but with all v; equal
to 1, we have

S (=172 o(d) = 3 (1) (d).
j=0 j=0
Proof. For d = (3%, 3 € F the lemma is contained in [4, Lemma 10.7],
where one takes p = 2. If d # 32, € F, then a similar argument applies,
only 1 disappears in the formula for 7(i1,...,4;) and (?) disappears in the

formula for o;. Since, however, o = 0 we obtain, in analogy with (10.14)
of M,

oitd) = (") oita) +g (2o = (5 st + g (27 )orta)
£

and the final argument is the same as in [4].

LEMMA 12. For every squarefree k we have

Sk)=>" ... M(W;;z:::/;fmn)D(ml,...,mn,k,B) =2y

n

,1(0)

my|2 mn|2

where the sum Y 4 is taken over all pairs 6,d such that 6| A, d| B, éd =1
(mod 4) and dd | k.
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Proof. By Lemma [I1] we have, in the notation of that lemma,

n

Sa(k) =D (~1)7277 3 oy(d) =270 3 (<1 (@) =2 S (@) Y 1.

§=0 d|2B j=0d[2B 5|A

where the sum ), is taken over all d| 2B such that dé = 3%, 8 € Q(/1). By
Lemma [9] the last condition is equivalent to dd = 1 (mod 4), d | k. Hence

Sa(k) =27" % pl9).

Proof of the Theorem. By Lemmas [10] and [12| we have, for every square-
free odd k,

(12)  co(k) — co(2K)
= L) . 50 KR b

n

plk my|2 mn|2
p>2
__o—m—n—1
2 ey, 16,
plk
p>2
Now, we have
(13) Sz =Y pu(k)eo(k) = Su + Ss,
k=1

where
S; = Ziu(k)(c()(k) —co(2k))  (i=4,5)

and ) _,,> - are taken over all squarefree odd k such that (k, B)|B; and
(k, B) 1 By, respectively. Now, by ,

Sp=2""""1y k) [T enp) D, o)

plk
p>2
=27 N k) [T ea@2 @2 3 ()
plk 8|(Ak)
p>2 6=1(mod 4)
and
1 if (A, k) =1,
> () = 2B (A k) £ 1 (A ) = 1,
5](Ak) 0 otherwise.

Hence
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54 _ 2—m—n—1 26 M(k‘)?w((k’B)) H Cn(p)

plk
p>2
4 9—m-n— QZ 2w ((k,B))+w((k,A)) ch(p)
plk
p>2

where ) and ) . are taken over all squarefree odd k with (k, B) | By such
that (A,k) =1 and (A,k) # 1, (A1, k) = 1, respectively. Since the functions
under the summation sign are multiplicative we obtain

(14)  Sp=2"""" [0 =2ea()) [] (1= calp)

p|B1 MAQB
+ 272 TT A — 2¢(p) T] (1~ 2ea(p)) [T (1 — )
p|B1 plA1 p;@QB
— 272 TT (1 - 2¢,(p) [ (1 - enl(p))
p|B1 pg’;‘f
_gm2p Hl‘ —1{p) np)H(Hdn,p)
p|B plA
+ 2—m72An H(l _ (_1 ’p)dn,p) H(l + (_1 ’p)dnyp)'
p|B plA

Similarly, by ,

S5 =271 (k) [T enlp) D, (o)

plk
p>2

1 if(kA)=1
_2—m—n—1z5u<k)2w((k,B))—lch(p).{ if (k, )

0 otherwise,

plk
p>2
hence
(15) S5 =272 T](1 = 2e(p)) J] (0 — )
p|B PtAB
_9—m-n=2 H (1 —2¢(p)) H (1 —c(p))
p|B1 PAB
_g-m-2p H(l — dny) H(l + dnp)
p|B plA
—27m72A, H (1—=(-1]p) np)H(l"*_d”vp)'
p|B plA

The Theorem follows on combining f and Lemma
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Proof of Corollary |1, Let Py be the set of primes for which py is the
least quadratic non-residue, and let for a given ¢, and p € P,

Yo(p) = { 1 if g is a primitive root modulo p,
g 0 otherwise.

We have
Pi—1
D(p,pr) = Jlim 7(@)™ Y xp (@) [T (1 xo(p))
pEP; 9=Pk
S Y COY Y T )
Nc{pg,--pi} pEP, geN
neN
= Y Mm@ Y [T )
N {pk,-..p1} pEP;, geN
meN
= Z (_1)|N|_1(d(Na {pla"wpkfl})_d(Na {ph’pk}))
NApk,--1}
meN
Proof of Corollary [3 For k = | we have only one term in the sum

occurring in Corollary (I} corresponding to N = {py}. Since pj cannot be
simultaneously modulo p > 2 a primitive root and a quadratic residue we
have

d(N) {pla ce. 7p]€}) =0
and Corollary [1] gives

D(pr,pr) = d({pr},{p1;- -, pr—1})-
Now Corollary [2] follows from the Theorem.
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