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1. Introduction. Let k ≥ 2 be a fixed integer and let A = {a1 ≤
a2 ≤ · · · } be an infinite sequence of nonnegative integers. We write F (z) =∑

a∈A z
a, A(n) =

∑
a∈A, a≤n 1 (counting repetitions). For n = 0, 1, 2, . . . let

rk(A,n) denote the number of solutions of

ai1 + · · ·+ aik ≤ n.
In 1956, Erdős and Fuchs [1] proved the following result:

Theorem A. If A is an infinite sequence of nonnegative integers, then

r2(A,n) = cn+ o(n1/4(log n)−1/2)

cannot hold for any constant c > 0.

Jurkat (unpublished), and later Montgomery and Vaughan [5] improved
the Erdős–Fuchs theorem by eliminating the log power on the right-hand
side:

Theorem B. If A is an infinite sequence of nonnegative integers, then

r2(A,n) = cn+ o(n1/4)

cannot hold for any constant c > 0.

Up to now, the Erdős–Fuchs theorem has been extended in various di-
rections. For other related problems, see [2], [3], [4] and [6]. Continuing this
work, Tang [7] recently proved the following result.

Theorem C. If A is an infinite sequence of nonnegative integers and
k > 2, then

rk(A,n) = cn+ o(n1/4)

cannot hold for any constant c > 0.

In this paper, we obtain a stronger version of the above results:
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Theorem 1.1. If A is an infinite sequence of nonnegative integers and
k ≥ 2, then for any constant c > 0 and any ε > 0,

|rk(A,n)− cn| ≥ (h(k)− ε)(cn)1/4

holds for infinitely many positive integers n, where

h(k) =
4
9

(25π)−1/4([k/2]!)3/2 for 2 | k

and

h(k) = 4(25π)−1/43(1−4k)/(2k−2)k − 1
k + 2

(
1 +

1
k + 1

)3k/(2k−2)

([k/2]!)3k/(2k−2)

for 2 - k. In particular, if 2 - k and k ≥ 9, then

h(k) >
4
9

(25π)−1/4([k/2]!)3/2.

By a simple calculation we have

4
9

(25π)−1/4 = 0.149 . . . ,

h(3) > 0.0432, h(5) > 0.276, h(7) > 2.13.

Thus we have the following corollary.

Corollary 1.2. If A is an infinite sequence of nonnegative integers and
k ≥ 2, then for any constant c > 0,

|rk(A,n)− cn| ≥ 0.04([k/2]!)3/2(cn)1/4

holds for infinitely many positive integers n.

Throughout this paper, let z = re(α), where e(α) = e2πiα, r = 1− 1/N ,
N is a large positive integer and α is a real number.

2. Lemmas

Lemma 2.1. Let m and N be two positive integers. Then

1�

0

|1− z|−2

∣∣∣∣1− zm1− z

∣∣∣∣2 dα ≤ 1
2
m2N(1 + oN (1)).
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Proof. We have
1�

0

|1− z|−2

∣∣∣∣1− zm1− z

∣∣∣∣2 dα =
1�

0

|1− z|−2
∣∣∣m−1∑
j=0

zj
∣∣∣2 dα ≤ m2

1�

0

∣∣∣∣ 1
1− z

∣∣∣∣2 dα
= m2

1�

0

∞∑
u=0

rue(uα) ·
∞∑
v=0

rve(−vα) dα

= m2
∞∑
n=0

r2n =
1
2
m2N(1 + oN (1)).

Lemma 2.2. Let 0 < v < 1 and β > 0. Then∣∣∣ ∞∑
n=0

nβvn − Γ (β + 1)(−log v)−β−1
∣∣∣ ≤ e−βββ(−log v)−β.

Proof. Define f(x) = xβvx (x ≥ 0). Then

f ′(x) = βxβ−1vx + xβvx log v = 0 ⇔ x = −β(log v)−1.

It is clear that f(x) is increasing for 0 ≤ x ≤ −β(log v)−1 and f(x) is
decreasing for x ≥ −β(log v)−1. Let k be the integer with k ≤ −β(log v)−1 <
k + 1 and b = −β(log v)−1. Thus

f(n) ≤
n+1�

n

f(x) dx, 0 ≤ n < k,

f(k) ≤
b�

k

f(x) dx+ (k + 1− b)f(b),

f(k + 1) ≤
k+1�

b

f(x) dx+ (b− k)f(b),

f(n) ≤
n�

n−1

f(x) dx, n > k + 1,

f(n) ≥
n�

n−1

f(x) dx, 0 < n ≤ k,

f(n) ≥
n+1�

n

f(x) dx, n ≥ k + 1.

Hence
∞∑
n=0

nβvn =
∞∑
n=0

f(n) ≤
∞�

0

f(x) dx+ f(b),
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∞∑
n=0

nβvn =
∞∑
n=0

f(n) ≥
∞�

0

f(x) dx−
k+1�

k

f(x) dx ≥
∞�

0

f(x) dx− f(b).

So ∣∣∣ ∞∑
n=0

nβvn −
∞�

0

xβvx dx
∣∣∣ ≤ f(b).

Since
∞�

0

xβvx dx =
∞�

0

xβex log v dx =
∞�

0

(t(−log v)−1)βe−t(−log v)−1 dt

= (−log v)−β−1
∞�

0

tβe−t dt = Γ (β + 1)(−log v)−β−1

and
f(b) = bβvb = ββ(−log v)−βe−β = e−βββ(−log v)−β,

the proof is complete.

Lemma 2.3. Let β > 0 and r = 1 − 1/N , where N is a large positive
integer. Then

∞∑
n=0

nβr2n = Γ (β + 1)2−β−1Nβ+1(1 + oN (1)).

Proof. In Lemma 2.2, let v = r2. Then

(−log v)−β−1 = 2−β−1Nβ+1(1 + oN (1)), (−log v)−β = 2−βNβ(1 + oN (1)),

and Lemma 2.2 yield the assertion.

3. Proof of Theorem 1.1. Suppose that there exists an infinite se-
quence A = {a1 ≤ a2 ≤ · · · } of nonnegative integers, k ≥ 2, c > 0, ε0 > 0
and n0 ∈ N such that |rk(A,n)− cn| < (h(k)− ε0)(cn)1/4 for all n ≥ n0. By
the assumption and

Ak(M) ≥
∑

ai1
+···+aik

≤M
1 = rk(A,M),

we have

(3.1) A(M) ≥ k
√
cM(1 + oM (1)).

Let ϑ(n) = rk(A,n)− cn. Then, for |z| < 1, we have

1
1− z

F k(z) =
∞∑
n=0

rk(A,n)zn =
cz

(1− z)2
+
∞∑
n=0

ϑ(n)zn.
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That is,

(3.2) F k(z) =
cz

1− z
+ (1− z)

∞∑
n=0

ϑ(n)zn.

Using the idea of Jurkat, by differentiation of (3.2), we obtain

(3.3) kF k−1(z)F ′(z) =
c

(1− z)2
−
∞∑
n=0

ϑ(n)zn + (1− z)
∞∑
n=1

nϑ(n)zn−1.

By (3.2), the assumption and Lemma 2.3 we have

F k(r2) =
cr2

1− r2
+ (1− r2)

∞∑
n=0

ϑ(n)r2n

=
c

2
N(1 + oN (1)) +O

(
1
N

∞∑
n=0

n1/4r2n
)

=
c

2
N(1 + oN (1)) +O

(
1
N
N5/4

)
=
c

2
N(1 + oN (1)).

So

(3.4) F (r2) =
(
c

2
N

)1/k

(1 + oN (1)).

By (3.3), the assumption and Lemma 2.3 we have

(3.5) kF k−1(r2)F ′(r2)

=
c

(1− r2)2
−
∞∑
n=0

ϑ(n)r2n + (1− r2)
∞∑
n=1

nϑ(n)r2n−2

=
c

4
N2(1 + oN (1)) +O

( ∞∑
n=0

n1/4r2n
)

+O

(
1
N

∞∑
n=0

n5/4r2n
)

=
c

4
N2(1 + oN (1)) +O(N5/4) +O

(
1
N
N9/4

)
=
c

4
N2(1 + oN (1)).

By (3.4) and (3.5) we have

(3.6) F ′(r2) =
1
k

2−1−1/kc1/kN1+1/k(1 + oN (1)).

Let δ be a positive constant which will be determined later, m=[δc−1/2N1/2]
and let
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J =
1�

0

|kF k−1(z)F ′(z)| ·
∣∣∣∣1− zm1− z

∣∣∣∣2 dα,
J1 = c

1�

0

1
|1− z|2

·
∣∣∣∣1− zm1− z

∣∣∣∣2 dα,
J2 =

1�

0

∣∣∣ ∞∑
n=0

ϑ(n)zn
∣∣∣ · ∣∣∣∣1− zm1− z

∣∣∣∣2 dα,
J3 =

1�

0

∣∣∣(1− z) ∞∑
n=1

nϑ(n)zn−1
∣∣∣ · ∣∣∣∣1− zm1− z

∣∣∣∣2 dα.
By (3.3), we have
(3.7) J ≤ J1 + J2 + J3.

To obtain a good lower bound of J , we need the following estimates. For
l ≥ 1, from (3.4), (3.6), 0 < F (r4) < F (r2) and 0 < F ′(r4) < F ′(r2), we
have
(3.8)

∑
i1,...,il pairwise distinct

ai1r
2ai1

+···+2ail

≥
∑
i1,...,il

ai1r
2ai1

+···+2ail −
∑

1≤u<v≤l

∑
i1,...,il
iu=iv

ai1r
2ai1

+···+2ail

= r2F ′(r2)(F (r2))l−1 − (l − 1)r4F ′(r4)(F (r2))l−2

− 1
2

(l − 1)(l − 2)r2F ′(r2)F (r4)(F (r2))l−3

=
1
k

2−1−l/kcl/kN1+l/k(1 + oN (1)) +O(N1+(l−1)/k)

=
1
k

2−1−l/kcl/kN1+l/k(1 + oN (1)).

We also have

(3.9)
m−1∑
t=0

r2t−1 ≥ mr2m = m(1 + oN (1))

and by (3.1),

(3.10)
∑

−a+t−s=0, a∈A
0≤s,t≤m−1

ra+t+s−1 =
∑

−a+t−s=0, a∈A
0≤s,t≤m−1

r2t−1

=
m−1∑
t=0

r2t−1A(t) ≥
∑

√
m≤t<m

r2m(ct)1/k(1 + oN (1))

≥ r2mc1/k(1 + oN (1))
m−1�
√
m−1

t1/k dt =
k

k + 1
c1/km1+1/k(1 + oN (1)).
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Now we can give a lower bound of J .
If 2 | k, let k = 2l; then by (3.8) and (3.9) we have

J =
k

r

1�

0

∣∣∣zF ′(z)(F (z))l−1(F (z))l
(m−1∑
t=0

zt
)(m−1∑

s=0

zs
)∣∣∣ dα(3.11)

≥ k

r

∣∣∣ 1�
0

zF ′(z)(F (z))l−1(F (z))l
(m−1∑
t=0

zt
)(m−1∑

s=0

zs
)
dα
∣∣∣

= k
∑

ai1
+···+ail

−ail+1
−···−ai2l

+t−s=0

0≤s,t≤m−1

ai1r
ai1

+···+ai2l
+t+s−1

≥ k · l!
∑

i1,...,il pairwise distinct

ai1r
2ai1

+···+2ail

m−1∑
t=0

r2t−1

≥ k · l! 1
k

2−1−l/kcl/kN1+l/km(1 + oN (1))

= [k/2]!2−3/2c1/2mN3/2(1 + oN (1))

= [k/2]!2−3/2δN2(1 + oN (1)).

If 2 - k, let k = 2l + 1; then by (3.8) and (3.10) we have

J =
k

r

1�

0

∣∣∣zF ′(z)(F (z))l−1(F (z))l+1
(m−1∑
t=0

zt
)(m−1∑

s=0

zs
)∣∣∣ dα(3.12)

≥ k

r

∣∣∣ 1�
0

zF ′(z)(F (z))l−1(F (z))l+1
(m−1∑
t=0

zt
)(m−1∑

s=0

zs
)
dα
∣∣∣

= k
∑

ai1
+···+ail

−ail+1
−···−ai2l+1

+t−s=0

0≤s,t≤m−1

ai1r
ai1

+···+ai2l+1
+t+s−1

≥ k · l!
∑

i1,...,il pairwise distinct

ai1r
2ai1

+···+2ail

∑
−a+t−s=0

a∈A
0≤s,t≤m−1

ra+t+s−1

≥ k · l! 1
k

2−1−l/kcl/kN1+l/k k

k + 1
c1/km1+1/k(1 + oN (1))

= [k/2]!2−3/2+1/(2k) k

k + 1
δ1+1/kN2(1 + oN (1)).

Now we give upper bounds of J1, J2, J3.
By Lemma 2.1,

(3.13) J1 <
1
2
cm2N(1 + oN (1)) =

1
2
δ2N2(1 + oN (1)).

By Cauchy’s inequality, Parseval’s formula, the assumption and Lemma 2.3
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we have

J2 ≤ m2
1�

0

∣∣∣ ∞∑
n=0

ϑ(n)zn
∣∣∣ dα ≤ m2

( 1�

0

∣∣∣ ∞∑
n=0

ϑ(n)zn
∣∣∣2 dα)1/2

(3.14)

= m2
( ∞∑
n=0

|ϑ(n)|2r2n
)1/2

= O
(
m2
( ∞∑
n=0

n1/2r2n
)1/2)

= O(m2N3/4) = O(N7/4).

Similarly,

J3 =
1�

0

∣∣∣ ∞∑
n=1

nϑ(n)zn−1
∣∣∣ · ∣∣∣∣1− zm1− z

(1− zm)
∣∣∣∣ dα

≤
( 1�

0

∣∣∣ ∞∑
n=1

nϑ(n)zn−1
∣∣∣2 dα)1/2

·
( 1�

0

∣∣∣∣1− zm1− z
(1− zm)

∣∣∣∣2 dα)1/2

=
( ∞∑
n=1

n2ϑ2(n)r2n−2
)1/2

·
(

(1 + r2m)
m−1∑
j=0

r2j
)1/2

≤ (2m)1/2
( ∞∑
n=1

n2ϑ2(n)r2n−2
)1/2

.

Furthermore, by the assumption and Lemma 2.3, we have

∞∑
n=1

n2ϑ2(n)r2n−2 =
n0−1∑
n=1

n2ϑ2(n)r2n−2 +
∞∑

n=n0

n2ϑ2(n)r2n−2

≤
n0−1∑
n=1

n2ϑ2(n)r2n−2 + (h(k)− ε0)2c1/2
∞∑

n=n0

n5/2r2n−2

≤
n0−1∑
n=1

n2ϑ2(n)r2n−2 + (h(k)− ε0)2c1/2r−2
∞∑
n=0

n5/2r2n

≤ Γ (7/2)2−7/2(h(k)− ε0)2c1/2N7/2(1 + oN (1))

≤ 15
√
π

64 ·
√

2
(h(k)− ε0)2c1/2N7/2(1 + oN (1)).

Thus

J3 ≤
1
8

√
15(2π)1/4(h(k)− ε0)c1/4m1/2N7/4(1 + oN (1))(3.15)

=
1
8

√
15(2π)1/4(h(k)− ε0)δ1/2N2(1 + oN (1)).
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Case 1: 2 | k. By (3.7), (3.11) and (3.13)–(3.15) we have

[k/2]!2−3/2δN2

≤ 1
2
δ2N2 +O(N7/4) +

1
8

√
15(2π)1/4(h(k)− ε0)δ1/2N2 + o(N2).

Dividing by N2 and letting N →∞, we have

[k/2]!2−3/2δ ≤ 1
2
δ2 +

1
8

√
15(2π)1/4(h(k)− ε0)δ1/2.

So

h(k)− ε0 ≥ 8(15)−1/2(2π)−1/4

(
[k/2]!2−3/2δ1/2 − 1

2
δ3/2

)
.

Taking

δ =
1

3
√

2
[k/2]!,

we have
h(k)− ε0 ≥

4
9

(25π)−1/4([k/2]!)3/2 = h(k),

a contradiction.

Case 2: 2 - k. By (3.7), (3.12) and (3.13)–(3.15) we have

[k/2]!2−3/2+1/(2k) k

k + 1
δ1+1/kN2

≤ 1
2
δ2N2 +O(N7/4) +

1
8

√
15(2π)1/4(h(k)− ε0)δ1/2N2 + o(N2).

Dividing by N2 and letting N →∞, we have

[k/2]!2−3/2+1/(2k) k

k + 1
δ1+1/k ≤ 1

2
δ2 +

1
8

√
15(2π)1/4(h(k)− ε0)δ1/2.

So
(3.16)

h(k)− ε0 ≥ 8(15)−1/2(2π)−1/4

(
[k/2]!2−3/2+1/(2k) k

k + 1
δ1/2+1/k − 1

2
δ3/2

)
.

Taking

δ = 3−k/(k−1) 1√
2

(
1 +

1
k + 1

)k/(k−1)

([k/2]!)k/(k−1),

we have

h(k)− ε0 ≥ 8(15)−1/2(2π)−1/4

(
[k/2]!2−3/2+1/(2k) k

k + 1
δ1/2+1/k − 1

2
δ3/2

)
= 4(25π)−1/43(1−4k)/(2k−2)k − 1

k + 2

(
1 +

1
k + 1

)3k/(2k−2)

([k/2]!)3k/(2k−2)

= h(k),
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a contradiction. As a function of δ, the right side of (3.16) has the largest
value h(k). Set

δ1 =
1

3
√

2
[k/2]!.

If k ≥ 9, then
√

2 δ1 ≥ 8 and

h(k) ≥ 8(15)−1/2(2π)−1/4

(
[k/2]!2−3/2+1/(2k) k

k + 1
δ
1/2+1/k
1 − 1

2
δ
3/2
1

)
> 8(15)−1/2(2π)−1/4

(
[k/2]!2−3/2δ

1/2
1 − 1

2
δ
3/2
1

)
=

4
9

(25π)−1/4([k/2]!)3/2.

This completes the proof of Theorem 1.1.
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