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A spectral sequence for de Rham cohomology
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Bingyong Xie (Shanghai)

1. Introduction. Let R be a complete discrete valuation ring with
mixed characteristic, π a uniformizer of R, S the π-adic formal scheme
Spf(R), k the residue field of R, and K the field of fractions of R. Let X
be an algebraic scheme proper and strictly semi-stable over Spec(R) so that
the generic fiber XK of X is smooth. Let Xs be the special fiber of X, X the
π-adic formal scheme associated to X, and XK the Raynaud generic fiber
of X , which is a rigid space.

It is well known that the algebraic de Rham cohomology of XK is natu-
rally isomorphic to the analytic de Rham cohomology of XK . The purpose
of this paper is to compare the (analytic) de Rham cohomology of XK and
the rigid cohomology of Xs.

Let Yi (1 ≤ i ≤ n) be all irreducible components ofXs. For any nonempty
subset I of {1, . . . , n}, put YI =

⋂
i∈I Yi and UI = YI\

⋃
I′!I YI′ . For an

integer i ≥ 0, put Y (i) =
⋃
|I|=i YI . Let H∗rig and H∗c,rig denote the rigid co-

homology and the rigid cohomology with proper support respectively. Then

H∗c,rig(Y (i)\Y (i+1)) =
⊕
|I|=i

H∗c,rig(UI)

and we have the long exact sequence

· · · → Hm
c,rig(Y (i)\Y (i+1))→ Hm

rig(Y (i))→ Hm
rig(Y (i+1))→ · · · .

Let γI (resp. γi) denote the inclusion map

]YI\UI [X ↪→ ]YI [X (resp. ]Y (i+1)[X ↪→ ]Y (i)[X ),

where ] · [X ’s denote the tubes in XK . Let Ω·
c,I;X and Ω·

c,i;X be the total
complexes of the bicomplexes

Ω·
]YI [X /K

→ γI∗Ω
·
]YI\UI [X /K

and Ω·
]Y (i)[X /K

→ γi∗Ω
·
]Y (i+1)[X /K
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respectively. Then we have

H∗(]Y (i)[X , Ω
·
c,i;X ) =

⊕
|I|=i

H∗(]YI [X , Ω
·
c,I;X ).

(See Lemma 1.) The triangle

Ω·
c,i;X → Ω·

]Y (i)[X
→ γi∗Ω

·
]Y (i+1)[X

+1−−→

in D+(]Y (i)[X ) induces the long exact sequence

(1.1) · · ·→Hm(]Y (i)[X , Ω
·
c,i;X )→Hm

dR(]Y (i)[X )→Hm
dR(]Y (i+1)[X )→· · · .

The main result of this paper is the following theorem.

Theorem 1. If I is a subset of {1, . . . , n} such that |I| ≥ 2, then there
is a spectral sequence converging to H∗(]YI [X , Ω

·
c,I;X ) with

Epq2 = Hp
c,rig(UI/K)⊗K

∧q(V ′I ),

where V ′I is a K-vector space of dimension |I| − 1 defined in §3.

If |I| = 1, then it is well known that

(1.2) H∗c,rig(UI/K) = H∗(]YI [X , Ω
·
c,I;X ).

Put
χdR(XK) :=

∑
m≥0

(−1)m dimK H
m
dR(XK/K),

χrig(Xs) :=
∑
m≥0

(−1)m dimK H
m
rig(Xs/K).

As an application of Theorem 1, we obtain a description of χrig(Xs) −
χdR(XK) by the geometry of X.

Proposition 1. We have

χrig(Xs)− χdR(XK) =
∑
|I|≥2

χc(UI)(1.3)

=
∑
|I|≥2

(−1)|I|(|I| − 1)(4YI .4YI),

where χc(UI) is the rigid Euler–Poincaré characteristic with proper support
of UI and (4YI .4YI) is the self-intersection number of YI .

This paper is organized as follows. In §2 we recall the theory of rigid
cohomology and provide some basic facts on de Rham cohomology. In §3
we present a result on relative de Rham complexes. Then in §4 we prove
Theorem 1 by using the result of §3 and a generalization of Grothendieck’s
spectral sequence given in §4.1. Finally we prove Proposition 1.
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Notation. Throughout this paper, a triangle of the form

C
+1

��~~
~~

~~
~

A // B

``@@@@@@@

is always denoted by

A→ B → C
+1−−→ .

2. Rigid cohomology and de Rham cohomology

2.1. Rigid cohomology. We recall some basic facts about rigid coho-
mology developed by Berthelot.

Let X be a proper k-variety, U an open subset of X, and Z = X\U .
Assume that X admits a closed immersion into a smooth π-adic formal
scheme P over R. As in [4, 5], we define tubes ]X[P , ]U [P and ]Z[P in
PK , which are also denoted by ]X[, ]U [ and ]Z[ respectively if there is no
confusion. We call an admissible open subset V ⊂ ]X[ a strict neighborhood
of ]U [ in ]X[ if the covering of ]X[ by V and ]Z[ is admissible. For any sheaf
E on ]X[, put

j†]U [E = lim−−→
V

jV ∗j
−1
V E

where V runs through all strict neighborhoods of ]U [ in ]X[ and jV is the
immersion V ↪→ ]X[. Then H∗rig(U/K) is defined by

H∗rig(U/K) := H∗(]X[, j†]U [Ω
·
]X[/K).

E. Grosse-Klönne [6] showed that H∗rig(U/K) is a finite-dimensional K-
vector space.

There also exists rigid cohomology with proper support defined in [3] as
follows. Let α denote the inclusion map ]Z[ ↪→ ]X[ and let Ω·

c,]U [/K denote
the total complex of the bicomplex

Ω·
]X[/K → α∗Ω

·
]Z[/K .

The rigid cohomology H∗c,rig(U/K) with proper support is defined by

H∗c,rig(U/K) := H∗(]X[, Ω·
c,]U [/K) = H∗(X,Rsp∗Ω

·
c,]U [/K),

where sp denotes the specialization map ]X[→ X. If U is proper, then the
canonical map

H∗c,rig(U/K)→ H∗rig(U/K)

is an isomorphism. One has a long exact sequence

(2.1) · · · → H i
c,rig(U/K)→ H i

rig(X/K)→ H i
rig(Z/K)→ · · · .
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In general, X cannot always be embedded into a smooth formal scheme.
In this case one can define the above cohomologies via the technique of
“diagrams of topos”. We recall the definition of the rigid cohomology with
proper support.

We can always find an open covering {Tν} of X and for each ν a closed
imbedding Tν ↪→ Pν in a smooth π-adic formal scheme. For a set of indices
ν0, . . . , νn, there is a closed imbedding

Tν0···νn := Tν0 ∩ · · · ∩ Tνn ↪→ Pν0···νn := Pν0 ×S · · · ×S Pνn .
From now on, we will always denote ×S by × for simplicity.

The Tν0···νn ’s form a diagram of topos T· endowed with Zariski topology.
There is a natural map ε : T· → XZar. Let sp denote specialization maps,
and i denote the closed immersions

Z ∩ Tν0···νn ↪→ Tν0···νn .

The bicomplexes of sheaves

sp∗Ω
·
]Tν0···νn [Pν0···νn

/K → i∗ sp∗Ω
·
]Z ∩ Tν0···νn [Pν0···νn

/K

form a bicomplex of sheaves on T·. The total complex of this bicomplex is
denoted by Rsp∗Ω·

c,]U [P/K
. The rigid cohomology with proper support of U

is defined by

H∗c,rig(U/K) := H∗(X,Rε∗Rsp∗Ω
·
c,]U [P/K

).

2.2. De Rham cohomology. We keep using the notation of §1.

Lemma 1. We have

(2.2) H∗(]Y (i)[X , Ω
·
c,i;X ) =

⊕
|I|=i

H∗(]YI [X , Ω
·
c,I;X ).

Proof. Note that all of ]YI [X with |I| = i form an admissible covering
of ]Y (i)[X . Since the restriction of the complex Ω·

c,i;X to ]Y (i+1)[X is quasi-
isomorphic to zero, for any distinct I1, . . . , Ij , j ≥ 2, with |I1|= · · ·= |Ij |= i,
and any k ≥ 0, we have

Hk(]YI1 [X ∩ · · · ∩ ]YIj [X , Ω
·
c,i;X ) = 0.

From this and the theory of Čech cohomology we obtain

H∗(]Y (i)[X , Ω
·
c,i;X ) =

⊕
|I|=i

H∗(]YI [X , Ω
·
c,i;X ) =

⊕
|I|=i

H∗(]YI [X , Ω
·
c,I;X ),

as desired.

Assume that YI can be embedded into a smooth π-adic formal scheme P.
PutQ = X×P. The composition of4YI : YI ↪→ YI×YI and YI×YI ↪→ X×P
is a closed immersion YI ↪→ Q.
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Theorem 2 ([5, Theorem 1.4]). Let Y be a k-scheme of finite type,
i : Y → X and i′ : Y → Q two closed immersions into π-adic formal
schemes, and u : Q → X a morphism smooth in a neighborhood of Y such
that i = i′ ◦ u. If the Raynaud generic fibers of X and Q are smooth, then
the canonical homomorphism

(2.3) Ω·
]Y [X /K

→ RuK∗Ω·
]Y [Q/K

is an isomorphism.

Note that the assumption of this theorem is a little different from that
of [5], but their proofs are the same.

Theorem 2 tells us that

H∗dR(]YI [X /K) = H∗dR(]YI [Q/K).

Let αI denote the inclusion map

]YI\UI [Q ↪→ ]YI [Q,

and Ω·
c,I;Q the total complex of the bicomplex

Ω·
]YI [Q/K

→ αI∗Ω
·
]YI\UI [Q/K

.

Proposition 2. We have

(2.4) H∗(]YI [X , Ω
·
c,I;X ) = H∗(]YI [Q, Ω

·
c,I;Q).

Proof. Let Z = YI\UI . By Theorem 2,

Ω·
]YI [X /K

→ RuK∗Ω·
]YI [Q/K

and Ω·
]Z[X /K

→ RuK∗Ω·
]Z[Q/K

are isomorphisms. As γI and αI are quasi-Stein, we have

RuK∗αI∗Ω·
]Z[Q/K

= R(uK∗◦ αI∗)Ω·
]Z[Q/K

= R(γI∗ ◦ uK∗)Ω·
]Z[Q/K

= RγI∗RuK∗Ω·
]Z[Q/K

= RγI∗Ω·
]Z[X /K

= γI∗Ω
·
]Z[X /K

.

Hence we get an isomorphism Ω·
c,I;X → RuK∗Ω·

c,I;Q, as desired.

We generalize the above proposition to the case that YI need not have
an embedding in a smooth π-adic formal scheme.

Let {Tν} be an open covering of YI such that for each ν there exists a
closed imbedding Tν ↪→ Pν in a smooth π-adic formal scheme. For a set of
indices ν0, . . . , νn, put

Tν0···νn := Tν0 ∩ · · · ∩ Tνn .
The Tν0···νn ’s form a diagram of Zariski topos T· and there is a natural map
ε : T· → YI . Put

Pν0···νn := Pν0 × · · · × Pνn , Qν0···νn := X × Pν0···νn .
Embed Tν0···νn into Pν0···νn and Qν0···νn naturally.
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Let α denote the inclusion maps

](YI\UI) ∩ Tν0···νn [Qν0···νn ↪→ ]Tν0···νn [Qν0···νn .

The bicomplexes of sheaves

Ω·
]Tν0···νn [Qν0···νn

/K → α∗ Ω
·
](YI\UI)∩Tν0···νn [Qν0···νn

/K

form a bicomplex of sheaves on the diagram of rigid spaces ]Tν0···νn [Qν0···νn .
The total complex of this bicomplex is denoted by Ω·

c,I;Q.

Lemma 2. The natural map

Rsp∗Ω
·
c,I;X → Rε∗Rsp∗Ω

·
c,I;Q

is an isomorphism.

Proof. From the proof of Proposition 2 we see that Rsp∗Ω·
c,I;Q is iso-

morphic to ε∗Rsp∗Ω·
c,I;X . On the other hand, cohomological descent holds

for ε ([2]), so

Rε∗Rsp∗Ω
·
c,I;Q = Rε∗ε∗Rsp∗Ω

·
c,I;X = Rsp∗Ω

·
c,I;X ,

as expected.

Corollary 1. We have

H∗(]YI [X , Ω
·
c,I;X ) = H∗(YI ,Rε∗Rsp∗Ω

·
c,I;Q).

3. Relative differentials. Let X, Xs, X , Yj and YI be as in §1. Here,
we do not assume that X is proper but assume that Xs can be embedded
into a smooth π-adic formal scheme P. Put Q = X × P. Let p1 and p2 be
the projections from QK to XK and PK respectively.

For every irreducible component Yj of Xs, we associate with Yj a section
sYj of H 1(Ω·

QK/PK ) in §3.1. For any nonempty subset I of {1, . . . , n}, let
VI be the K-vector space of dimension |I| generated by {sYj : j ∈ I}, and
V ′I the quotient space of VI modulo the subspace K

∑
j∈I sYj .

Let αI and βI be the inclusion maps

αI : ]YI\UI [Q ↪→ ]YI [Q and βI : ]YI\UI [P ↪→ ]YI [P .

Proposition 3. If |I| ≥ 2, then for any integer i ≥ 0 we have

(3.1) (O]YI [P
⊗K

∧i(V ′I )→ βI∗β
−1
I O]YI [P

⊗K
∧i(V ′I ))

= (Rip2∗Ω
·
]YI [Q/]YI [P

→ Rip2∗(αI∗α−1
I Ω·

]YI [Q/]YI [P
))

in the derived category D+(]YI [P).

The proof will be given in §3.3.
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3.1. Definition of sYj . Let Y = Yj be an irreducible component of Xs.
If f is a local equation defining Y in X , then f divides π. Thus f is invertible
in the structure sheaf of XK and df

f is a local section of Ω1
XK/K . We use d1

to denote the differential of QK relative to PK . Then

p∗1
df

f
=
d1(p∗1f)
p∗1f

,

which is denoted as d1f
f for simplicity. In general, d1ff depends on the choice

of f .

Proposition 4. Let X1 and X2 be open subsets of X . Let f ∈ Γ (X1,OX )
and g ∈ Γ (X2,OX ) be regular elements defining Y ∩ X1 and Y ∩ X2 respec-
tively. Then on the tube of X1s ∩ X2s in QK , we have

(3.2)
d1f

f
≡ d1g

g
modulo d1OQK .

This proposition says that the image of d1f
f in H 1(Ω·

QK/PK ) does not
depend on the choice of f , which is denoted by sY,P .

Let i1 : Xs ↪→ P1 and i2 : Xs ↪→ P2 be closed immersions into smooth
π-adic formal schemes, and u a morphism P2 → P1 such that i1 = u ◦ i2.
Then u∗sY,P1 = sY,P2 . In other words, {sY,P}P ’s form a compatible system.
We will use sY to denote sY,P .

Let Q′ be the completion of Q = X × P along Xs. In general, Q′ is
not a π-adic formal scheme, but it can also be associated with a rigid space
Q′K as its generic fiber. Locally we can write Q′ = Spf(A) with the ideal of
definition generated by f1, . . . , fr ∈ A. Put

(3.3) Bm = A〈T1, . . . , Tr〉/(fm1 − πT1, . . . , f
m
r − πTr).

If m′ ≥ m, then there is an inclusion map

Spm(Bm ⊗R K) ↪→ Spm(Bm′ ⊗R K)

defined by the canonical homomorphism Bm′ → Bm. Berthelot [4] defined
Q′K to be the union of Spm(Bm ⊗R K)’s and showed that Q′K is just the
tube of Xs in XK × PK .

Proof of Proposition 4. We may assume that X1 = X2 = X . Since the
question is local, it suffices to consider the case of X and P being affine, say
X = Spf(A1) and P = Spf(A2).

Let ϕ : A2→A1k be the homomorphism defining the embeddingXs ↪→P.
Let I be the kernel of the homomorphism

A1 ⊗R A2 → A1k.

Let f1, . . . , fr be generators of I. If A is the I-adic completion of A1 ⊗R A2

and Bm’s are the R-algebras defined by (3.3), then Q′ = Spf(A) and Q′K is
the union of Spm(Bm ⊗R K)’s.



252 B. Y. Xie

It remains to find some hm ∈ Bm ⊗R K for every m such that
d1f

f
− d1g

g
= d1hm.

As ϕ is surjective, there is some u ∈ A2 such that ϕ(u) is equal to the
reduction of f−1g. Let v := g−1fu ∈ A. Then

d1f

f
=
d1f

f
+
d1u

u
=
d1g

g
+
d1v

v
.

As v ∈ 1 + I, the series

hm := log(v) =
+∞∑
i=1

(−1)i−1 (v − 1)i

i

belongs to Bm ⊗R K. Thus d1v
v = d1hm, as expected.

3.2. A lemma. Let m ≤ r be positive integers. Let D(0, 1)r be the
affinoid rigid space Spm(K〈T1, . . . , Tr〉), D(0, 1−)r the subdomain of D(0, 1)r

defined by
|T1| < 1, . . . , |Tr| < 1,

and D the subdomain defined by

|T1| < 1, . . . , |Tr| < 1, π < |T1 · · ·Tm|.

For a rigid space Z, let Ω·
D×Z/Z denote the relative de Rham complex

of D × Z over Z, and V the subspace of Γ (D × Z,Ω1
D×Z/Z) defined as

V := K
dT1

T1
⊕ · · · ⊕KdTm

Tm
.

Lemma 3. In the above notation, let p2 denote the projection D×Z→Z.
Then

(3.4) Rip2∗Ω
·
D×Z/Z = OZ ⊗K

∧i(V ).

Proof. It suffices to show that for any affinoid open subset W = Spm(B)
of Z,

H i(D ×W,Ω·
D×W/W ) = B ⊗K

∧i(V ).

As D×W is quasi-Stein, H i(D×W,Ω·
D×W/W ) is the ith cohomology of the

complex Γ (D ×W,Ω·
D×W/W ). For any 0 ≤ i ≤ r put

Γ i = Γ (D ×W,Ωi
D×W/W ).

Then Γ i = Γ 0 ⊗K
∧i(Ṽ ), where

Ṽ = KdT1 ⊕ · · · ⊕KdTr.
Let Zi ⊂ Γ i be the space of closed i-forms.
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A formal series ∑
t1,...,tm

tm+1≥0,...,tr≥0

bt1,...,trT
t1
1 · · ·T

tr
r

with coefficients in B belongs to Γ 0 if and only if for any given ε > 0 and
0 < ρ < 1 almost all of the following relations hold:

(3.5)
|bt1,...,tr |B · ρt1+···+tr < ε if min(t1, . . . , tr) ≥ 0,

|bt1,...,tr |B · ρt1+···+tr−(m+1)N |π|N < ε if min(t1, . . . , tr) = N < 0,

where | · |B is a norm on B.
Every element ω in Γ i can be written as a formal sum of monomials

bγ,IT
γdTI = bγ,IT

t1
1 · · ·T

tr
r dTl1 ∧ · · · ∧ dTli ,

where bγ,I ∈ B, γ = (t1, . . . , tr) and I = {l1, . . . , li} ⊆ {1, . . . , r} with
l1 < · · · < li. We associate with any monomial bγ,IT γdTI a number

nδ(bγ,IT γdTI) := #({l ∈ I : tl 6= −1} ∪ {l /∈ I : 1 ≤ l ≤ r, tl 6= 0}),

which satisfies
0 ≤ nδ(bγ,IT γdTI) ≤ r.

We call this number the δ-number of bγ,IT γdTI . Let Γ ij be the subspace of Γ i

consisting of i-forms which are formal sums of monomials with δ-number j.
Then Γ i =

⊕r
j=0 Γ

i
j . Put Zij = Zi ∩ Γ ij . Note that Γ i0 = Zi0 = B ⊗K

∧i(V ).
If ω ∈ Γ ij , then dω ∈ Γ i+1

j . Thus Zi =
⊕r

j=0 Z
i
j .

Put

δ(T γdTI) :=
∑

1≤µ≤i
tlµ 6=−1

(−1)µ−1 1
tlµ + 1

Tlµ · T γ

× dTl1 ∧ · · · ∧ dTlµ−1 ∧ dTlµ+1 ∧ · · · ∧ dTli .

By (3.5) we can extend δ to a continuous B-linear map δ : Γ i → Γ i−1. It is
easy to check that, if ω ∈ Γ ij , then

(dδ + δd)ω = jω.

In other words, we have
⊕r

j=1 Z
i
j ⊂ dΓ i−1. Since Zi0 ∩ dΓ i−1 = 0, we have

Zi/dΓ i−1 ∼= Zi0 = B ⊗K
∧i(V ).

3.3. Proof of Proposition 3. Let I be a nonempty subset of {1, . . . , n},
and I1 a subset of I such that |I1| = |I|−1. As Rip2∗Ω

·
]YI [Q/]YI [P

is the sheaf
associated to the presheaf

W 7→ H i(p−1
2 (W ), Ω·

]YI [Q/]YI [P
),
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where W ’s are admissible open subsets of ]YI [P , there is a canonical map

(3.6) O]YI [P
⊗K

∧i(VI1)→ Rip2∗Ω
·
]YI [Q/]YI [P

.

Proposition 5. Under the above map, we have

(3.7) O]UI [P
⊗K

∧i(VI1) = Rip2∗Ω
·
]UI [Q/]UI [P

.

Proposition 6. If |I| ≥ 2, then the homomorphism of complexes

(3.8) (O]YI [P
⊗K

∧i(VI1)→ βI∗β
−1
I O]YI [P

⊗K
∧i(VI1))

→ (Rip2∗Ω
·
]YI [Q/]YI [P

→ Rip2∗(αI∗α−1
I Ω·

]YI [Q/]YI [P
))

is a quasi-isomorphism.

Proposition 3 follows immediately from Proposition 6.
For the proofs of Propositions 5 and 6, we assume that I = {1, . . . ,m},

where 1 ≤ m ≤ n. The questions are local, so we may assume that

• X and P are affine, say X = Spf(A1) and P = Spf(A2),
• there is an étale morphism θ : X → X0 = Spf(A0) of π-adic formal

schemes over R, where A0 = R〈T1, . . . , Td〉/(T1 · · ·Tq − π) with m ≤
q ≤ min(d, n),
• Yi (1 ≤ i ≤ q) is defined by ϕ(Ti), where ϕ : A0 → A1 is the R-algebra

homomorphism defining θ.

Here a morphism θ of π-adic formal schemes is called étale if θ⊗RR/πiR
(i ≥ 1) are all étale (cf. [1]).

Proof of Proposition 5. The composition of YI ↪→ X × P and θ × idP
is an inclusion map YI ↪→ X0 × P. As θ × idP is étale, the tube of YI in
QK = XK × PK is isomorphic to the tube of YI in X0K × PK , i.e.,

]YI [Q ∼= ]YI [X0×P .

Let X0s be the special fiber of X0 and put Z = X0s × YI . Consider the
diagram

Z //

��

X0 × P

��
YI

id //

>>}}}}}}}}
YI // P

where the square is cartesian. Let ti (m + 1 ≤ i ≤ d) be elements of A2

such that φ(ti) is equal to ϕ(Ti) modπ, where φ : A2 → A1k is the algebra
homomorphism associated to the embedding Xs ↪→ P. Then the morphism
YI ↪→ Z in the above diagram is a closed immersion defined by the images
of T1, . . . , Tm, Tm+1 − tm+1, . . . , Td − td in Γ (Z,O). Thus ]YI [X0×P is the
intersection of ]Z[X0×P = X0K × ]YI [P and the subdomain of X0K × PK
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defined by

|T1| < 1, . . . , |Tm| < 1, |Tm+1 − tm+1| < 1, . . . , |Td − td| < 1.

Consider the homomorphism

R〈T ′1, . . . , T ′d〉 → Γ (X0 × P,O),
T ′1, . . . , T

′
d 7→ T1, . . . , Tm, Tm+1 − tm+1, . . . , Td − td,

which defines a morphism X0 × P → Ad, where Ad is the π-adic formal
scheme Spf(R〈T ′1, . . . , T ′d〉). Combining this morphism with the projection
X0 × P → P we obtain a closed immersion

(3.9) X0 × P ↪→ Ad × P,
which is defined by

T ′1 · · ·T ′m(T ′m+1 + tm+1) · · · (T ′q + tq)− π.

Let D be the subdomain of D(0, 1)m−1 = Spm(K〈T ′1, . . . , T ′m−1〉) defined by

|T ′1| < 1, . . . , |T ′m−1| < 1 and |π| < |T ′1 · · ·T ′m−1|.
Then (3.9) induces an inclusion map

ι : ]YI [X0×P ↪→ D ×D(0, 1−)d−m × ]YI [P
and an isomorphism

(3.10) ]UI [X0×P
∼−→ D ×D(0, 1−)d−m × ]UI [P .

Now the validity of Proposition 5 is ensured by Lemma 3.

The proof of Proposition 6 needs the following lemma.

Lemma 4. The map (3.6) is an injection.

Proof. Let W be an affinoid open subset of ]YI [P . By Proposition 5 we
see that, if I ⊆ I ′ ⊆ {1, . . . , n}, then the map

Γ (W ∩ ]UI′ [P ,O]YI [P
⊗K

∧i(VI1))→ Γ (W ∩ ]UI′ [P , R
ip2∗Ω

·
]YI [Q/]YI [P

)

is injective. On the other hand, the map

Γ (W,O]YI [P
)→

∏
I′⊇I

Γ (W ∩ ]UI′ [P ,O]YI [P
)

is also injective. Hence (3.6) is an injection.

Proof of Proposition 6. We keep the notation of the proof of Proposi-
tion 5.

We identify ]YI [X0×P with a subset of D×D(0, 1−)d−m× ]YI [P via ι. Let
q2 be the projection

q2 : D ×D(0, 1−)d−m × ]YI [P → ]YI [P ,



256 B. Y. Xie

and α′I the inclusion map

α′I : q−1
2 (]YI\UI [P)→ q−1

2 (]YI [P).

Let Ω·
c,]YI [Q/]YI [P

and Ω·
c,q−1

2 (]YI [P )/]YI [P
denote the total complexes of the

bicomplexes
Ω·

]YI [Q/]YI [P
→ αI∗α

−1
I Ω·

]YI [Q/]YI [P

and
Ω·
q−1
2 (]YI [P )/]YI [P

→ α′I∗α
′−1
I Ω·

q−1
2 (]YI [P )/]YI [P

respectively.

Lemma 5. ]YI [X0×P and q−1
2 (]YI\UI [P) form an admissible covering of

D ×D(0, 1−)d−m × ]YI [P .

The following proof is due to the referee.

Proof. The isomorphism (3.10) ensures that ]YI [X0×P and q−1
2 (]YI\UI [P)

indeed form a covering of D×D(0, 1)d−m× ]YI [P . To prove that the covering
is admissible, we may assume that X0 and P are affine, since the question
is local.

Write ZI = YI\UI and M = D×D(0, 1−)d−m × ]YI [P . By the definition
of an admissible covering, it suffices to prove that, for any affinoid rigid
analytic space W and any morphism of rigid spaces u : W → M , the
covering {u−1(]YI [X0×P), u−1(q−1

2 (]ZI [P))} can be refined by a finite covering
by affinoid open subspaces. Denote by the same letters the pullbacks by u
of functions on M . Note that, as a closed subscheme of YI , ZI is defined by
the restriction of tm+1 · · · tq to YI . Hence ]ZI [P is the open subspace of ]YI [P
defined by the condition |tm+1 · · · tq| < 1. For any λ < 1, let Vλ ⊂M be the
open subset defined by |tm+1 · · · tq| ≤ λ. For any η < 1, let [YI ]X0×P,η be the
closed tube of radius η for YI in X0 × P, viewed via ι as a subspace of M ;
[YI ]X0×P,η is the open subset of D × D(0, 1−)d−m×[YI ]P,η described by the
inequalities:

|T ′i | ≤ η for i ≤ m− 1 and m+ 1 < i ≤ d,(3.11)
|T ′1 · · ·T ′m−1(T ′m+1 + tm+1) · · · (T ′q + tq)| ≥ |π|/η.(3.12)

If some integral powers of λ and η belong to the multiplicative group of
absolute values of K×, then u−1([YI ]X0×P,η) and u−1(Vλ) are affinoid open
subsets of W . So it suffices to check that their union is equal to W for λ, η
close enough to 1.

Since W is affinoid, the maximum modulus principle implies that there
exists ρ < 1 such that the inequalities

|T ′i | ≤ ρ for i ≤ m− 1 and m+ 1 < i ≤ d
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and
|T ′1 · · ·T ′m−1| ≥ |π|/ρ

are satisfied on W . Let λ be such that ρ < λ < 1. Let x ∈ W be a point
which is not in u−1(Vλ). Then |(tm+1 · · · tq)(x)| > λ. As |ti(x)| ≤ 1 for all i,
it follows that |ti(x)| > λ for m + 1 ≤ i ≤ q. Therefore |(T ′i + ti)(x)| =
|ti(x)| > λ for m+ 1 ≤ i ≤ q. We obtain

|(T ′1 · · ·T ′m−1(T ′m+1 + tm+1) · · · (T ′q + tq))(x)| > |π|
ρ
λq−m.

We can choose λ close enough to 1 such that ρ < λq−m and take η =
ρ/λq−m ≥ ρ. Then inequalities (3.11) and (3.12) are satisfied at x, and it
follows that W = u−1([YI ]X0×P,η) ∪ u

−1(Vλ).

Lemma 6. We have

Rip2∗Ω
·
c,]YI [Q/]YI [P

= Riq2∗Ω
·
c,q−1

2 (]YI [P )/]YI [P
.

Proof. Let W be an admissible open subset of ]YI [P . By Lemma 5,
p−1
2 (W ) = q−1

2 (W ) ∩ ]YI [X0×P and q−1
2 (W ∩ ]YI\UI [P) form an admissible

covering of q−1
2 (W ). Since the restriction of Ω·

c,q−1
2 (]YI [P )/]YI [P

to q−1
2 (W ∩

]YI\UI [P) is quasi-isomorphic to zero, we have

H i(q−1
2 (W ), Ω·

c,q−1
2 (]YI [P )/]YI [P

) = H i(p−1
2 (W ), Ω·

c,q−1
2 (]YI [P )/]YI [P

)

= H i(p−1
2 (W ), Ω·

c,]YI [Q/]YI [P
),

as expected.

Since α′I and βI are quasi-Stein, we have

Riq2∗(α′I∗α
′−1
I Ω·

q−1
2 (]YI [P )/]YI [P

) = Ri(q2∗ ◦ α′I∗)Ω·
q−1
2 (]YI\UI [P )/]YI\UI [P

= Ri(βI∗ ◦ q2∗)Ω·
q−1
2 (]YI\UI [P )/]YI\UI [P

= βI∗O]YI\UI [P ⊗K
∧i(VI1) (by Lemma 3)

= βI∗β
−1
I O]YI [P

⊗K
∧i(VI1).

Here, the projection q−1
2 (]YI\UI [P)→ ]YI\UI [P is also denoted by q2. Again

by Lemma 3 we have

Riq2∗Ω
·
q−1
2 (]YI [P )/]YI [P

= O]YI [P
⊗K

∧i(VI1).

Thus from the distinguished triangles

Ω·
c,]YI [Q/]YI [P

→ Ω·
]YI [Q/]YI [P

→ αI∗α
−1
I Ω·

]YI [Q/]YI [P

+1−−→

and

Ω·
c,q−1

2 (]YI [P )/]YI [P
→ Ω·

q−1
2 (]YI [P )/]YI [P

→ α′I∗α
′−1
I Ω·

q−1
2 (]YI [P )/]YI [P

+1−−→
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we get a commutative diagram of exact sequences

Riq2∗Ω
·
c,q−1

2 (]YI [P )/]YI [P
// O]YI [P ⊗K

Vi(VI1) //

u

��

βI∗β
−1
I O]YI [P ⊗K

Vi(VI1)

��
Rip2∗Ω

·
c,]YI [Q/]YI [P

// Rip2∗Ω
·
]YI [Q/]YI [P

// Rip2∗(αI∗α
−1
I Ω·

]YI [Q/]YI [P
)

The map (3.8) is just given by the right square of this diagram.
Let keri and coki be the kernel and cokernel of

O]YI [P
⊗K

∧i(VI1)→ βI∗β
−1
I O]YI [P

⊗K
∧i(VI1),

and ker′i and cok′i the kernel and cokernel of

Rip2∗Ω
·
]YI [Q/]YI [P

→ Rip2∗(αI∗α−1
I Ω·

]YI [Q/]YI [P
).

The map (3.8) induces two maps keri → ker′i and coki → cok′i. From the
above commutative diagram we see that keri → ker′i is surjective. By Lem-
ma 4, u is injective, and so is keri → ker′i. Thus keri → ker′i is an isomor-
phism. From the commutative diagram

0 // coki //

��

Ri+1q2∗Ω
·
c,q−1

2 (]YI [P )/]YI [P
// keri+1

//

∼=
��

0

0 // cok′i // Ri+1p2∗Ω
·
c,]YI [Q/]YI [P

// ker′i+1
// 0

we see that coki → cok′i is also an isomorphism. Hence (3.8) is a quasi-
isomorphism.

4. The proof of Theorem 1

4.1. A generalization of Grothendieck’s spectral sequence. For
the proof of Theorem 1, we need the following lemma.

Lemma 7. Let C1, C2 and C3 be abelian categories with enough injective
objects, F : C1 → C2 and G : C2 → C3 additive functors, M ·· a first
quadrant bicomplex in C1, and K· the total complex of M ··. Suppose that F
sends injective objects of C1 to G-acyclic objects. Then we have two spectral
sequences

(4.1) ′Epq2 = RpG(RqIIF (M ··)) ⇒ Rp+q(G ◦ F )K·

and

(4.2) ′′Epq2 = RpG(RqIF (M ··)) ⇒ Rp+q(G ◦ F )K·.

If M ij = 0 unless j = 0, then (4.2) is just Grothendieck’s spectral se-
quence.

Proof. We shall only show (4.1). The proof of (4.2) is similar.
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Let N ··· be a Cartan–Eilenberg resolution of first type of M ··. (We mean
that N ··· is a triple complex of injective objects in C1 such that if i < 0,
j < 0 or l < 0 then N ijl = 0, and for every i the bicomplexes N i ··, Bi

I(N
···),

ZiI(N
···) and H i

I(N
···) are injective resolutions of M i ·, Bi

I(M
··), ZiI(M

··)
and H i

I(M
··) respectively. Cartan–Eilenberg resolutions of second type are

defined similarly.) Put
M ij

1 =
⊕
r+s=j

FN irs,

and let K·
1 be the total complex of M ··

1 . It is clear that

RqIIF (M ··) = Hq
II(M

··
1 ).

Let N ···
1 be a Cartan–Eilenberg resolution of second type of M ··

1 , and M ··
2

the bicomplex defined by

M ij
2 =

⊕
r+s=i

N rjs
1 .

Then Hq
II(M

··
2 ) is a complex of injective objects, quasi-isomorphic to

Hq
II(M

··
1 ). Thus

RpG(RqIIF (M ··)) = RpG(Hq
IIF (M ··

1 )) = Hp(GHq
II(M

··
2 )).

As Mp ·
2 is a complex such that Zq(Mp ·

2 ), Bq(Mp ·
2 ) and Hq(Mp ·

2 ) are all
injective, we see that

GHq
II(M

··
2 ) = Hq

II(GM
··
2 ).

Hence
RpG(RqIIF (M ··)) = Hp(Hq

II(GM
··
2 )).

As F sends injective objects of C1 to G-acyclic objects, we have

Rp+q(G ◦ F )K· = Hp+qG(K·
1) = Hp+qG(K·

2),

where K·
2 is the total complex of M ··

2 . (Notice that K·
1 and K·

2 are complexes
of injective objects, quasi-isomorphic to each other.) As a consequence, the
spectral sequence (4.1) comes from the first spectral sequence for the bicom-
plex G(M ··

2 ).

4.2. Proofs of Theorem 1 and Proposition 1. Choose an open
covering {Uν} of Xs such that Uν admits a closed immersion into a smooth
π-adic formal scheme Pν . Put Tν = YI ∩ Uν . In the following, the notation
{ν} means a finite set of indices ν0, . . . , νn. Put

T{ν} = Tν0 ∩ · · · ∩ Tνn .
As before, we use T· to denote the diagram of Zariski topos formed by
Tν0···νn ’s.

Put P{ν} = Pν0 × · · · × Pνn and Q{ν} = X × P{ν}. Then there are
closed immersions T{ν} ↪→ P{ν} and T{ν} ↪→ Q{ν}. We use ]T{ν}[P (resp.
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]T{ν}[Q) to denote the tube ]T{ν}[P{ν} (resp. ]T{ν}[Q{ν}). Then ]T{ν}[X ’s (resp.
]T{ν}[P ’s, ]T{ν}[Q’s) form a diagram of rigid spaces, which is denoted as ]T·[X
(resp. ]T·[P , ]T·[Q). Let p1 and p2 denote the projections ]T·[Q → ]T·[X and
]T·[Q → ]Tν [P respectively.

Put

Ωij
{ν} := O]T{ν}[Q

⊗(p−1
1 O]T{ν}[X

⊗p−1
2 O]T{ν}[P

) (p−1
1 Ωi

]T{ν}[X /K
⊗K p−1

2 Ωj
]T{ν}[P/K

)

= p−1
1 Ωi

]T{ν}[X /K
⊗p−1

1 O]T{ν}[X
Ωj

]T{ν}[Q/]T{ν}[X

= Ωi
]T{ν}[Q/]T{ν}[P

⊗p−1
2 O]T{ν}[P

p−1
2 Ωj

]T{ν}[P/K
.

Then Ω··
{ν} is a bicomplex with the horizontal differentials given by the

differentials of Ω·
]T{ν}[Q/]T{ν}[P

and the vertical differentials given by the dif-

ferentials of Ω·
]T{ν}[Q/]T{ν}[X

up to sign. For any fixed j the complex Ω·j is
just

Ω·
]T{ν}[Q/]T{ν}[P

⊗p−1
2 O]T{ν}[P

p−1
2 Ωj

]T{ν}[P/K
.

Let (Ωij l
c,I;{ν})ijl be the tricomplex

Ωij
{ν} → αI∗α

−1
I Ωij

{ν},

where αI is the inclusion map ]T{ν} ∩ (YI\UI)[Q ↪→ ]T{ν}[Q. Note that
Ωij l
c,I;{ν} = 0 unless l = 0, 1. Let M ··

{ν} be the bicomplex defined by

M ij
{ν} =

⊕
r+s=j

Ωirs
c,I;{ν}.

Thus we get a bicomplex M ·· on ]T·[Q. The total complex of M ·· is just
Ω·
c,I;Q.

From Lemma 7, Theorem 1 can be deduced as follows.

Proof of Theorem 1. Let C1, C2 and C3 be respectively the category of
abelian sheaves on ]T·[Q, the category of abelian sheaves on ]T·[P and the
category of abelian groups. Put F = p2∗ and G = Γ ◦ ε∗ ◦ spP∗, where spP
is the specialization map ]T·[P → T·, ε is the natural map T· → YI and
Γ = Γ (YI , · ). Then G ◦ F = Γ ◦ ε∗ ◦ spQ∗, where spQ is the specialization
map ]T·[Q → T·. Let M ·· be as above. By Proposition 3 we have

RqIF (M ··) = RqIp2∗(M ··) = Ω·
c,I;P ⊗K

∧q(V ′I ).

Hence
RpGRqIF (M ··) = Hp(YI ,Rε∗RspP∗Ω

·
c,I;P)⊗K

∧q(V ′I )

= Hp
c,rig(UI/K)⊗K

∧q(V ′I ).
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On the other hand, Corollary 1 implies that

Rp+q(G ◦ F )Ω·
c,I;Q = Hp+q(YI ,Rε∗RspQ∗Ω

·
c,I;Q) = Hp+q(]YI [X , Ω

·
c,I;X ).

Now Theorem 1 follows immediately from Lemma 7.

Proof of Proposition 1. By Theorem 1, if |I| ≥ 2, then∑
i≥0

(−1)i dimK H
i(]YI [X , Ω

·
c,I;X )

=
∑

p≥0, q≥0

(−1)p+q dimK(Hp
c,rig(UI/K)⊗K

∧q(V ′I ))

=
∑

p≥0, q≥0

(−1)p+q dimK H
p
c,rig(UI/K) dimK

∧q(V ′I )

=
∑
p≥0

(−1)p dimK H
p
c,rig(UI/K)

∑
q≥0

(−1)q dimK
∧q(V ′I ).

When |I| ≥ 2, ∑
q≥0

(−1)q dimK
∧q(V ′I ) = 0,

so ∑
i≥0

(−1)i dimK H
i(]YI [X , Ω

·
c,I;X ) = 0.

Combining this equality, (1.2) and the equality

χdR(XK) =
∑
i≥0

(−1)i dimK H
i
dR(XK/K)

=
∑
|I|≥1

∑
i≥0

(−1)i dimK H
i(]YI [X , Ω

·
c,I;X ) (by (1.1) and Lemma 1),

we get

χdR(XK) =
∑
|I|=1

∑
i≥0

(−1)i dimK H
i(]YI [X , Ω

·
c,I;X )

=
∑
|I|=1

∑
i≥0

(−1)i dimK H
i
c,rig(UI/K) =

∑
|I|=1

χc(UI).

On the other hand, we have

χrig(Xs) =
∑

∅6=I⊆{1,...,n}

χc(UI).

Thus

(4.3) χrig(Xs)− χdR(XK) =
∑
|I|≥2

χc(UI).
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From the equality
χrig(YI) =

∑
J⊇I

χc(UJ)

we get
χc(UI) =

∑
J⊇I

(−1)|I|+|J |χrig(YJ).

By this equality and (4.3) we see that

χrig(Xs)− χdR(XK) =
∑
|I|≥2

∑
J⊇I

(−1)|I|+|J |χrig(YJ)

=
∑
|J |≥2

(−1)|J |χrig(YJ)
∑

I⊆J, |I|≥2

(−1)|I|

=
∑
|J |≥2

(−1)|J |(|J | − 1)χrig(YJ).

As the rigid cohomology is a Weil cohomology in the sense of Kleiman [7],
we have

χrig(YJ) = (4YJ .4YJ).

So,
χrig(Xs)− χdR(XK) =

∑
|J |≥2

(−1)|J |(|J | − 1)(4YJ .4YJ),

as expected.
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