A spectral sequence for de Rham cohomology

by
Bingyong Xie (Shanghai)

1. Introduction. Let R be a complete discrete valuation ring with mixed characteristic, π a uniformizer of R, \mathcal{S} the π-adic formal scheme $\operatorname{Spf}(R), k$ the residue field of R, and K the field of fractions of R. Let X be an algebraic scheme proper and strictly semi-stable over $\operatorname{Spec}(R)$ so that the generic fiber X_{K} of X is smooth. Let X_{s} be the special fiber of X, \mathcal{X} the π-adic formal scheme associated to X, and \mathcal{X}_{K} the Raynaud generic fiber of \mathcal{X}, which is a rigid space.

It is well known that the algebraic de Rham cohomology of X_{K} is naturally isomorphic to the analytic de Rham cohomology of \mathcal{X}_{K}. The purpose of this paper is to compare the (analytic) de Rham cohomology of \mathcal{X}_{K} and the rigid cohomology of X_{s}.

Let $Y_{i}(1 \leq i \leq n)$ be all irreducible components of X_{s}. For any nonempty subset I of $\{1, \ldots, n\}$, put $Y_{I}=\bigcap_{i \in I} Y_{i}$ and $U_{I}=Y_{I} \backslash \bigcup_{I^{\prime} \supseteq I} Y_{I^{\prime}}$. For an integer $i \geq 0$, put $Y^{(i)}=\bigcup_{|I|=i} Y_{I}$. Let $H_{\text {rig }}^{*}$ and $H_{c, \text { rig }}^{*}$ denote the rigid cohomology and the rigid cohomology with proper support respectively. Then

$$
H_{c, \mathrm{rig}}^{*}\left(Y^{(i)} \backslash Y^{(i+1)}\right)=\bigoplus_{|I|=i} H_{c, \text { rig }}^{*}\left(U_{I}\right)
$$

and we have the long exact sequence

$$
\cdots \rightarrow H_{c, \text { rig }}^{m}\left(Y^{(i)} \backslash Y^{(i+1)}\right) \rightarrow H_{\mathrm{rig}}^{m}\left(Y^{(i)}\right) \rightarrow H_{\mathrm{rig}}^{m}\left(Y^{(i+1)}\right) \rightarrow \cdots
$$

Let γ_{I} (resp. γ_{i}) denote the inclusion map

$$
] Y_{I} \backslash U_{I}[\mathcal{X} \hookrightarrow] Y_{I}\left[_{\mathcal{X}} \quad(\text { resp. }] Y^{(i+1)}[\mathcal{X} \hookrightarrow] Y^{(i)}[\mathcal{X}),\right.
$$

where $] \cdot\left[\mathcal{X}\right.$'s denote the tubes in \mathcal{X}_{K}. Let $\Omega_{c, I ; \mathcal{X}}^{\cdot}$ and $\Omega_{c, i ; \mathcal{X}}$ be the total complexes of the bicomplexes

$$
\Omega_{] Y_{I}[\mathcal{X} / K} \rightarrow \gamma_{I *} \Omega_{] Y_{I} \backslash U_{I}[\mathcal{X} / K} \quad \text { and } \quad \Omega_{] Y^{(i)}[\mathcal{X} / K}^{\cdot} \rightarrow \gamma_{i *} \Omega_{] Y^{(i+1)}[\mathcal{X} / K}^{\cdot}
$$

[^0]respectively. Then we have
$$
H^{*}(] Y^{(i)}\left[\mathcal{X}, \Omega_{c, i ; \mathcal{X}}^{\cdot}\right)=\bigoplus_{|I|=i} H^{*}(] Y_{I}\left[\mathcal{X}, \Omega_{c, I ; \mathcal{X}}\right) .
$$
(See Lemma 1) The triangle
$$
\Omega_{c, i ; \mathcal{X}}^{\cdot} \rightarrow \Omega_{\boldsymbol{Y Y}^{(i)}{ }_{\mathcal{X}}}^{\cdot} \rightarrow \gamma_{i *} \Omega_{Y_{Y}^{(i+1)}{ }_{\mathcal{X}}} \xrightarrow{+1}
$$
in $D^{+}(] Y^{(i)}[\mathcal{X})$ induces the long exact sequence
\[

$$
\begin{equation*}
\cdots \rightarrow H^{m}(] Y^{(i)}\left[\mathcal{X}, \Omega_{c, i ; \mathcal{X}}\right) \rightarrow H_{\mathrm{dR}}^{m}(] Y^{(i)}[\mathcal{X}) \rightarrow H_{\mathrm{dR}}^{m}(] Y^{(i+1)}[\mathcal{X}) \rightarrow \cdots \tag{1.1}
\end{equation*}
$$

\]

The main result of this paper is the following theorem.
Theorem 1. If I is a subset of $\{1, \ldots, n\}$ such that $|I| \geq 2$, then there is a spectral sequence converging to $H^{*}(] Y_{I}\left[\mathcal{X}, \Omega_{c, I ; \mathcal{X}}\right)$ with

$$
E_{2}^{p q}=H_{c, \mathrm{rig}}^{p}\left(U_{I} / K\right) \otimes_{K} \bigwedge^{q}\left(V_{I}^{\prime}\right),
$$

where V_{I}^{\prime} is a K-vector space of dimension $|I|-1$ defined in $\$ 3$.
If $|I|=1$, then it is well known that

$$
\begin{equation*}
H_{c, \text { rig }}^{*}\left(U_{I} / K\right)=H^{*}(] Y_{I}\left[\mathcal{X}, \Omega_{c, I ; \mathcal{X}}^{*}\right) . \tag{1.2}
\end{equation*}
$$

Put

$$
\begin{aligned}
\chi_{\mathrm{dR}}\left(\mathcal{X}_{K}\right) & :=\sum_{m \geq 0}(-1)^{m} \operatorname{dim}_{K} H_{\mathrm{dR}}^{m}\left(\mathcal{X}_{K} / K\right), \\
\chi_{\mathrm{rig}}\left(X_{s}\right) & :=\sum_{m \geq 0}(-1)^{m} \operatorname{dim}_{K} H_{\mathrm{rig}}^{m}\left(X_{s} / K\right)
\end{aligned}
$$

As an application of Theorem 1, we obtain a description of $\chi_{\text {rig }}\left(X_{s}\right)-$ $\chi_{\mathrm{dR}}\left(\mathcal{X}_{K}\right)$ by the geometry of X.

Proposition 1. We have

$$
\begin{align*}
\chi_{\mathrm{rig}}\left(X_{s}\right)-\chi_{\mathrm{dR}}\left(\mathcal{X}_{K}\right) & =\sum_{|I| \geq 2} \chi_{c}\left(U_{I}\right) \tag{1.3}\\
& =\sum_{|I| \geq 2}(-1)^{|I|}(|I|-1)\left(\Delta Y_{I} . \Delta Y_{I}\right),
\end{align*}
$$

where $\chi_{c}\left(U_{I}\right)$ is the rigid Euler-Poincaré characteristic with proper support of U_{I} and $\left(\triangle Y_{I} . \Delta Y_{I}\right)$ is the self-intersection number of Y_{I}.

This paper is organized as follows. In $\$ 2$ we recall the theory of rigid cohomology and provide some basic facts on de Rham cohomology. In $₫ 3$ we present a result on relative de Rham complexes. Then in $\S 4$ we prove Theorem 11 by using the result of $\$ 3$ and a generalization of Grothendieck's spectral sequence given in $\$ 4.1$. Finally we prove Proposition 1 .

Notation. Throughout this paper, a triangle of the form

is always denoted by

$$
A \rightarrow B \rightarrow C \xrightarrow{+1} .
$$

2. Rigid cohomology and de Rham cohomology

2.1. Rigid cohomology. We recall some basic facts about rigid cohomology developed by Berthelot.

Let X be a proper k-variety, U an open subset of X, and $Z=X \backslash U$. Assume that X admits a closed immersion into a smooth π-adic formal scheme \mathcal{P} over R. As in [4, 5], we define tubes $\left.] X{ }_{\mathcal{P}},\right] U\left[{ }_{\mathcal{P}}\right.$ and $] Z\left[{ }_{\mathcal{P}}\right.$ in \mathcal{P}_{K}, which are also denoted by $] X[] U,[$ and $] Z[$ respectively if there is no confusion. We call an admissible open subset $V \subset] X[$ a strict neighborhood of $] U$ [in $] X$ [if the covering of $] X$ [by V and $] Z[$ is admissible. For any sheaf \mathscr{E} on $] X$, put

$$
j_{] U[}^{\dagger} \mathscr{E}=\underset{V}{\lim } j_{V *} j_{V}^{-1} \mathscr{E}
$$

where V runs through all strict neighborhoods of $] U$ [in $] X$ [and j_{V} is the immersion $V \hookrightarrow] X$. Then $H_{\text {rig }}^{*}(U / K)$ is defined by

$$
H_{\mathrm{rig}}^{*}(U / K):=H^{*}(] X\left[, j_{] U[}^{\dagger} \Omega_{] X[/ K}\right)
$$

E. Grosse-Klönne [6] showed that $H_{\text {rig }}^{*}(U / K)$ is a finite-dimensional K vector space.

There also exists rigid cohomology with proper support defined in [3] as follows. Let α denote the inclusion map $] Z[\hookrightarrow] X\left[\right.$ and let $\Omega_{c,] U[/ K}^{\cdot}$ denote the total complex of the bicomplex

$$
\Omega_{] X[/ K} \rightarrow \alpha_{*} \Omega_{] Z[/ K}
$$

The rigid cohomology $H_{c, \text { rig }}^{*}(U / K)$ with proper support is defined by

$$
H_{c, \text { rig }}^{*}(U / K):=H^{*}(] X\left[, \Omega_{c,] U[/ K}^{*}\right)=H^{*}\left(X, \mathbb{R}^{*} \mathrm{sp}_{*} \Omega_{c,] U[/ K}^{\cdot}\right)
$$

where sp denotes the specialization map $] X[\rightarrow X$. If U is proper, then the canonical map

$$
H_{c, \text { rig }}^{*}(U / K) \rightarrow H_{\text {rig }}^{*}(U / K)
$$

is an isomorphism. One has a long exact sequence

$$
\begin{equation*}
\cdots \rightarrow H_{c, \text { rig }}^{i}(U / K) \rightarrow H_{\text {rig }}^{i}(X / K) \rightarrow H_{\text {rig }}^{i}(Z / K) \rightarrow \cdots \tag{2.1}
\end{equation*}
$$

In general, X cannot always be embedded into a smooth formal scheme. In this case one can define the above cohomologies via the technique of "diagrams of topos". We recall the definition of the rigid cohomology with proper support.

We can always find an open covering $\left\{T_{\nu}\right\}$ of X and for each ν a closed imbedding $T_{\nu} \hookrightarrow \mathcal{P}_{\nu}$ in a smooth π-adic formal scheme. For a set of indices ν_{0}, \ldots, ν_{n}, there is a closed imbedding

$$
T_{\nu_{0} \cdots \nu_{n}}:=T_{\nu_{0}} \cap \cdots \cap T_{\nu_{n}} \hookrightarrow \mathcal{P}_{\nu_{0} \cdots \nu_{n}}:=\mathcal{P}_{\nu_{0}} \times \mathcal{S} \cdots \times_{\mathcal{S}} \mathcal{P}_{\nu_{n}}
$$

From now on, we will always denote $\times_{\mathcal{S}}$ by \times for simplicity.
The $T_{\nu_{0} \cdots \nu_{n}}$'s form a diagram of topos T. endowed with Zariski topology. There is a natural map $\epsilon: T . \rightarrow X_{\mathrm{Zar}}$. Let sp denote specialization maps, and i denote the closed immersions

$$
Z \cap T_{\nu_{0} \cdots \nu_{n}} \hookrightarrow T_{\nu_{0} \cdots \nu_{n}}
$$

The bicomplexes of sheaves

$$
\operatorname{sp}_{*} \Omega_{] T_{\nu_{0} \cdots \nu_{n}}\left[\mathcal{P}_{\nu_{0} \cdots \nu_{n}}\right.} / K \rightarrow i_{*} \operatorname{sp}_{*} \Omega_{Z \cap T_{\nu_{0} \cdots \nu_{n}}\left[\mathcal{P}_{\nu_{0} \cdots \nu_{n}} / K\right.}
$$

form a bicomplex of sheaves on T.. The total complex of this bicomplex is denoted by $\mathbb{R s p}_{*} \Omega_{c,] U U_{\mathcal{P}} / K}$. The rigid cohomology with proper support of U is defined by

$$
H_{c, \text { rig }}^{*}(U / K):=H^{*}\left(X, \mathbb{R} \epsilon_{*} \mathbb{R}_{\operatorname{sp}}^{*} \Omega_{c,] U[\mathcal{P}} / K\right)
$$

2.2. De Rham cohomology. We keep using the notation of $\$ 1$.

Lemma 1. We have

$$
\begin{equation*}
\left.H^{*}(] Y^{(i)}{ }_{\mathcal{X}}, \Omega_{c, i ; \mathcal{X}}^{*}\right)=\bigoplus_{|I|=i} H^{*}(] Y_{I}\left[_{\mathcal{X}}, \Omega_{c, I ; \mathcal{X}}^{\cdot}\right) \tag{2.2}
\end{equation*}
$$

Proof. Note that all of $] Y_{I}[\mathcal{X}$ with $|I|=i$ form an admissible covering of $] Y^{(i)}{ }_{\mathcal{X}}$. Since the restriction of the complex $\Omega_{c, i ; \mathcal{X}}$ to $] Y^{(i+1)}{ }_{\mathcal{X}}$ is quasiisomorphic to zero, for any distinct $I_{1}, \ldots, I_{j}, j \geq 2$, with $\left|I_{1}\right|=\cdots=\left|I_{j}\right|=i$, and any $k \geq 0$, we have

$$
H^{k}(] Y_{I_{1}}[\mathcal{X} \cap \cdots \cap] Y_{I_{j}}\left[\mathcal{X}, \Omega_{c, i ; \mathcal{X}}\right)=0
$$

From this and the theory of Čech cohomology we obtain

$$
H^{*}(] Y^{(i)}\left[\mathcal{X}, \Omega_{c, i ; \mathcal{X}}^{*}\right)=\bigoplus_{|I|=i} H^{*}(] Y_{I}\left[\mathcal{X}, \Omega_{c, i ; \mathcal{X}}^{*}\right)=\bigoplus_{|I|=i} H^{*}(] Y_{I}\left[\mathcal{X}, \Omega_{c, I ; \mathcal{X}}^{*}\right)
$$

as desired.
Assume that Y_{I} can be embedded into a smooth π-adic formal scheme \mathcal{P}. Put $\mathcal{Q}=\mathcal{X} \times \mathcal{P}$. The composition of $\triangle_{Y_{I}}: Y_{I} \hookrightarrow Y_{I} \times Y_{I}$ and $Y_{I} \times Y_{I} \hookrightarrow \mathcal{X} \times \mathcal{P}$ is a closed immersion $Y_{I} \hookrightarrow \mathcal{Q}$.

Theorem 2 ([5, Theorem 1.4]). Let Y be a k-scheme of finite type, $i: Y \rightarrow \mathcal{X}$ and $i^{\prime}: Y \rightarrow \mathcal{Q}$ two closed immersions into π-adic formal schemes, and $u: \mathcal{Q} \rightarrow \mathcal{X}$ a morphism smooth in a neighborhood of Y such that $i=i^{\prime} \circ u$. If the Raynaud generic fibers of \mathcal{X} and \mathcal{Q} are smooth, then the canonical homomorphism

$$
\begin{equation*}
\Omega_{\mathfrak{Y Y \mathcal { X }} / K} \rightarrow \mathbb{R} u_{K *} \Omega_{j_{Y[\mathcal{Q}} / K} \tag{2.3}
\end{equation*}
$$

is an isomorphism.
Note that the assumption of this theorem is a little different from that of [5], but their proofs are the same.

Theorem 2 tells us that

$$
H_{\mathrm{dR}}^{*}(] Y_{I}[\mathcal{X} / K)=H_{\mathrm{dR}}^{*}(] Y_{I}\left[{ }_{\mathcal{Q}} / K\right)
$$

Let α_{I} denote the inclusion map

$$
] Y_{I} \backslash U_{I}\left[_{\mathcal{Q}} \hookrightarrow\right] Y_{I}\left[_{\mathcal{Q}}\right.
$$

and $\Omega_{c, I ; \mathcal{Q}}$ the total complex of the bicomplex

$$
\Omega_{\mathrm{j}_{I}\left[_{\mathcal{Q}} / K\right.} \rightarrow \alpha_{I *} \Omega_{\mathrm{j}_{I} \backslash U_{I}\left[{ }_{\mathcal{Q}} / K\right.}
$$

Proposition 2. We have

$$
\begin{equation*}
H^{*}(] Y_{I}\left[\mathcal{X}, \Omega_{c, I ; \mathcal{X}}^{*}\right)=H^{*}(] Y_{I}\left[{ }_{\mathcal{Q}}, \Omega_{c, I ; \mathcal{Q}}^{*}\right) \tag{2.4}
\end{equation*}
$$

Proof. Let $Z=Y_{I} \backslash U_{I}$. By Theorem 2 ,

$$
\Omega_{]_{Y_{I}[\mathcal{X} / K}} \rightarrow \mathbb{R} u_{K *} \Omega_{]_{Y_{I}\left[_{\mathcal{Q}} / K\right.}} \quad \text { and } \quad \Omega_{]_{Z[\mathcal{X}} / K} \rightarrow \mathbb{R} u_{K *} \Omega_{]_{Z[\mathcal{Q}} / K}
$$

are isomorphisms. As γ_{I} and α_{I} are quasi-Stein, we have

$$
\begin{aligned}
\mathbb{R} u_{K *} \alpha_{I *} \Omega_{] Z \mathcal{Q}_{\mathcal{Q}} / K} & =\mathbb{R}\left(u_{K *} \circ \alpha_{I *}\right) \Omega_{] Z l_{\mathcal{Q}} / K}=\mathbb{R}\left(\gamma_{I *} \circ u_{K *}\right) \Omega_{j Z\left[_{\mathcal{Q}} / K\right.} \\
& =\mathbb{R} \gamma_{I *} \mathbb{R} u_{K *} \Omega_{] Z\left[_{\mathcal{Q}} / K\right.}=\mathbb{R} \gamma_{I *} \Omega_{j Z\left[_{\mathcal{X}} / K\right.}=\gamma_{I *} \Omega_{] Z[\mathcal{X}} / K
\end{aligned}
$$

Hence we get an isomorphism $\Omega_{c, I ; \mathcal{X}}^{*} \rightarrow \mathbb{R} u_{K *} \Omega_{c, I ; \mathcal{Q}}^{\cdot}$, as desired.
We generalize the above proposition to the case that Y_{I} need not have an embedding in a smooth π-adic formal scheme.

Let $\left\{T_{\nu}\right\}$ be an open covering of Y_{I} such that for each ν there exists a closed imbedding $T_{\nu} \hookrightarrow \mathcal{P}_{\nu}$ in a smooth π-adic formal scheme. For a set of indices ν_{0}, \ldots, ν_{n}, put

$$
T_{\nu_{0} \cdots \nu_{n}}:=T_{\nu_{0}} \cap \cdots \cap T_{\nu_{n}} .
$$

The $T_{\nu_{0} \cdots \nu_{n}}$'s form a diagram of Zariski topos T. and there is a natural map $\epsilon: T . \rightarrow Y_{I}$. Put

$$
\mathcal{P}_{\nu_{0} \cdots \nu_{n}}:=\mathcal{P}_{\nu_{0}} \times \cdots \times \mathcal{P}_{\nu_{n}}, \quad \mathcal{Q}_{\nu_{0} \cdots \nu_{n}}:=\mathcal{X} \times \mathcal{P}_{\nu_{0} \cdots \nu_{n}} .
$$

Embed $T_{\nu_{0} \cdots \nu_{n}}$ into $\mathcal{P}_{\nu_{0} \cdots \nu_{n}}$ and $\mathcal{Q}_{\nu_{0} \cdots \nu_{n}}$ naturally.

Let α denote the inclusion maps

$$
]\left(Y_{I} \backslash U_{I}\right) \cap T_{\nu_{0} \cdots \nu_{n}}\left[\mathcal{Q}_{\nu_{0} \cdots \nu_{n}} \hookrightarrow\right] T_{\nu_{0} \cdots \nu_{n}}\left[\mathcal{Q}_{\mathcal{Q}_{0} \cdots \nu_{n}}\right.
$$

The bicomplexes of sheaves

$$
\Omega_{j T_{\nu_{0} \cdots \nu_{n}}\left[\mathcal{Q}_{\nu_{0} \cdots \nu_{n}} / K\right.} \rightarrow \alpha_{*} \Omega_{j\left(Y_{I} \backslash U_{I}\right) \cap T_{\nu_{0} \cdots \nu_{n}}\left[\mathcal{Q}_{\nu_{0} \cdots \nu_{n}} / K\right.}
$$

form a bicomplex of sheaves on the diagram of rigid spaces $] T_{\nu_{0} \cdots \nu_{n}}\left[\mathcal{Q}_{\nu_{0} \cdots \nu_{n}}\right.$. The total complex of this bicomplex is denoted by $\Omega_{c, I ; \mathcal{Q}}$.

Lemma 2. The natural map

$$
\mathbb{R} \operatorname{sp}_{*} \Omega_{c, I ; \mathcal{X}} \rightarrow \mathbb{R} \epsilon_{*} \mathbb{R} \operatorname{sp}_{*} \Omega_{c, I ; \mathcal{Q}}
$$

is an isomorphism.
Proof. From the proof of Proposition 2 we see that $\mathbb{R}_{*} \Omega_{c, I ; \mathcal{Q}}$ is isomorphic to $\epsilon^{*} \mathbb{R}_{\operatorname{sp}_{*}} \Omega_{c, I ; \mathcal{X}}$. On the other hand, cohomological descent holds for ϵ ([2]), so

$$
\mathbb{R} \epsilon_{*} \mathbb{R} \operatorname{sp}_{*} \Omega_{c, I ; \mathcal{Q}}^{*}=\mathbb{R} \epsilon_{*} \epsilon^{*} \mathbb{R} \mathrm{sp}_{*} \Omega_{c, I ; \mathcal{X}}^{*}=\mathbb{R}_{\operatorname{sp}_{*}} \Omega_{c, I ; \mathcal{X}}^{*}
$$

as expected.
Corollary 1. We have

$$
H^{*}(] Y_{I}\left[\mathcal{X}, \Omega_{c, I ; \mathcal{X}}\right)=H^{*}\left(Y_{I}, \mathbb{R} \epsilon_{*} \mathbb{R}_{\operatorname{sp}_{*}} \Omega_{c, I ; \mathcal{Q}}^{*}\right)
$$

3. Relative differentials. Let $X, X_{s}, \mathcal{X}, Y_{j}$ and Y_{I} be as in $\S 1$. Here, we do not assume that X is proper but assume that X_{s} can be embedded into a smooth π-adic formal scheme \mathcal{P}. Put $\mathcal{Q}=\mathcal{X} \times \mathcal{P}$. Let p_{1} and p_{2} be the projections from \mathcal{Q}_{K} to \mathcal{X}_{K} and \mathcal{P}_{K} respectively.

For every irreducible component Y_{j} of X_{s}, we associate with Y_{j} a section $s_{Y_{j}}$ of $\mathscr{H}^{1}\left(\Omega_{\mathcal{Q}_{K} / \mathcal{P}_{K}}\right)$ in $\$ 3.1$. For any nonempty subset I of $\{1, \ldots, n\}$, let V_{I} be the K-vector space of dimension $|I|$ generated by $\left\{s_{Y_{j}}: j \in I\right\}$, and V_{I}^{\prime} the quotient space of V_{I} modulo the subspace $K \sum_{j \in I} s_{Y_{j}}$.

Let α_{I} and β_{I} be the inclusion maps

$$
\left.\alpha_{I}:\right] Y_{I} \backslash U_{I}\left[_{\mathcal{Q}} \hookrightarrow\right] Y_{I}\left[_{\mathcal{Q}} \quad \text { and } \quad \beta_{I}:\right] Y_{I} \backslash U_{I}\left[{ }_{\mathcal{P}} \hookrightarrow\right] Y_{I}\left[{ }_{\mathcal{P}}\right.
$$

Proposition 3. If $|I| \geq 2$, then for any integer $i \geq 0$ we have

$$
\begin{align*}
&\left(\mathscr{O}_{] Y_{I}[\mathcal{P}} \otimes_{K} \bigwedge^{i}\left(V_{I}^{\prime}\right) \rightarrow \beta_{I *} \beta_{I}^{-1} \mathscr{O}_{] Y_{I}[\mathcal{P}} \otimes_{K} \bigwedge^{i}\left(V_{I}^{\prime}\right)\right) \tag{3.1}\\
&=\left(R^{i} p_{2 *} \Omega_{] Y_{I}[\mathcal{Q} /] Y_{I}[\mathcal{P}} \rightarrow R^{i} p_{2 *}\left(\alpha_{I *} \alpha_{I}^{-1} \Omega_{] Y_{I}\left[\left[_{\mathcal{Q}} /\right] Y_{I}[\mathcal{P}\right.}\right)\right)
\end{align*}
$$

in the derived category $D^{+}(] Y_{I}\left[{ }_{\mathcal{P}}\right)$.
The proof will be given in $\$ 3.3$.
3.1. Definition of $s_{Y_{j}}$. Let $Y=Y_{j}$ be an irreducible component of X_{s}. If f is a local equation defining Y in \mathcal{X}, then f divides π. Thus f is invertible in the structure sheaf of \mathcal{X}_{K} and $\frac{d f}{f}$ is a local section of $\Omega_{\mathcal{X}_{K} / K}^{1}$. We use d_{1} to denote the differential of \mathcal{Q}_{K} relative to \mathcal{P}_{K}. Then

$$
p_{1}^{*} \frac{d f}{f}=\frac{d_{1}\left(p_{1}^{*} f\right)}{p_{1}^{*} f}
$$

which is denoted as $\frac{d_{1} f}{f}$ for simplicity. In general, $\frac{d_{1} f}{f}$ depends on the choice of f.

Proposition 4. Let \mathcal{X}_{1} and \mathcal{X}_{2} be open subsets of \mathcal{X}. Let $f \in \Gamma\left(\mathcal{X}_{1}, \mathscr{O}_{\mathcal{X}}\right)$ and $g \in \Gamma\left(\mathcal{X}_{2}, O_{\mathcal{X}}\right)$ be regular elements defining $Y \cap \mathcal{X}_{1}$ and $Y \cap \mathcal{X}_{2}$ respectively. Then on the tube of $\mathcal{X}_{1 s} \cap \mathcal{X}_{2 s}$ in \mathcal{Q}_{K}, we have

$$
\begin{equation*}
\frac{d_{1} f}{f} \equiv \frac{d_{1} g}{g} \text { modulo } d_{1} \mathscr{O}_{\mathcal{Q}_{K}} \tag{3.2}
\end{equation*}
$$

This proposition says that the image of $\frac{d_{1} f}{f}$ in $\mathscr{H}^{1}\left(\Omega_{\mathcal{Q}_{K} / \mathcal{P}_{K}}\right)$ does not depend on the choice of f, which is denoted by $s_{Y, \mathcal{P}}$.

Let $i_{1}: X_{s} \hookrightarrow \mathcal{P}_{1}$ and $i_{2}: X_{s} \hookrightarrow \mathcal{P}_{2}$ be closed immersions into smooth π-adic formal schemes, and u a morphism $\mathcal{P}_{2} \rightarrow \mathcal{P}_{1}$ such that $i_{1}=u \circ i_{2}$. Then $u^{*} s_{Y, \mathcal{P}_{1}}=s_{Y, \mathcal{P}_{2}}$. In other words, $\left\{s_{Y, \mathcal{P}}\right\}_{\mathcal{P}}$'s form a compatible system. We will use s_{Y} to denote $s_{Y, \mathcal{P}}$.

Let \mathcal{Q}^{\prime} be the completion of $\mathcal{Q}=\mathcal{X} \times \mathcal{P}$ along X_{s}. In general, \mathcal{Q}^{\prime} is not a π-adic formal scheme, but it can also be associated with a rigid space \mathcal{Q}_{K}^{\prime} as its generic fiber. Locally we can write $\mathcal{Q}^{\prime}=\operatorname{Spf}(A)$ with the ideal of definition generated by $f_{1}, \ldots, f_{r} \in A$. Put

$$
\begin{equation*}
B_{m}=A\left\langle T_{1}, \ldots, T_{r}\right\rangle /\left(f_{1}^{m}-\pi T_{1}, \ldots, f_{r}^{m}-\pi T_{r}\right) \tag{3.3}
\end{equation*}
$$

If $m^{\prime} \geq m$, then there is an inclusion map

$$
\operatorname{Spm}\left(B_{m} \otimes_{R} K\right) \hookrightarrow \operatorname{Spm}\left(B_{m^{\prime}} \otimes_{R} K\right)
$$

defined by the canonical homomorphism $B_{m^{\prime}} \rightarrow B_{m}$. Berthelot 4 defined \mathcal{Q}_{K}^{\prime} to be the union of $\operatorname{Spm}\left(B_{m} \otimes_{R} K\right)$'s and showed that \mathcal{Q}_{K}^{\prime} is just the tube of X_{s} in $\mathcal{X}_{K} \times \mathcal{P}_{K}$.

Proof of Proposition 4. We may assume that $\mathcal{X}_{1}=\mathcal{X}_{2}=\mathcal{X}$. Since the question is local, it suffices to consider the case of \mathcal{X} and \mathcal{P} being affine, say $\mathcal{X}=\operatorname{Spf}\left(A_{1}\right)$ and $\mathcal{P}=\operatorname{Spf}\left(A_{2}\right)$.

Let $\varphi: A_{2} \rightarrow A_{1 k}$ be the homomorphism defining the embedding $X_{s} \hookrightarrow \mathcal{P}$. Let \mathcal{I} be the kernel of the homomorphism

$$
A_{1} \otimes_{R} A_{2} \rightarrow A_{1 k}
$$

Let f_{1}, \ldots, f_{r} be generators of \mathcal{I}. If A is the \mathcal{I}-adic completion of $A_{1} \otimes_{R} A_{2}$ and B_{m} 's are the R-algebras defined by (3.3), then $\mathcal{Q}^{\prime}=\operatorname{Spf}(A)$ and \mathcal{Q}_{K}^{\prime} is the union of $\operatorname{Spm}\left(B_{m} \otimes_{R} K\right)$'s.

It remains to find some $h_{m} \in B_{m} \otimes_{R} K$ for every m such that

$$
\frac{d_{1} f}{f}-\frac{d_{1} g}{g}=d_{1} h_{m}
$$

As φ is surjective, there is some $u \in A_{2}$ such that $\varphi(u)$ is equal to the reduction of $f^{-1} g$. Let $v:=g^{-1} f u \in A$. Then

$$
\frac{d_{1} f}{f}=\frac{d_{1} f}{f}+\frac{d_{1} u}{u}=\frac{d_{1} g}{g}+\frac{d_{1} v}{v}
$$

As $v \in 1+\mathcal{I}$, the series

$$
h_{m}:=\log (v)=\sum_{i=1}^{+\infty}(-1)^{i-1} \frac{(v-1)^{i}}{i}
$$

belongs to $B_{m} \otimes_{R} K$. Thus $\frac{d_{1} v}{v}=d_{1} h_{m}$, as expected.
3.2. A lemma. Let $m \leq r$ be positive integers. Let $\mathrm{D}(0,1)^{r}$ be the affinoid rigid space $\operatorname{Spm}\left(K\left\langle T_{1}, \ldots, T_{r}\right\rangle\right), \mathrm{D}\left(0,1^{-}\right)^{r}$ the subdomain of $\mathrm{D}(0,1)^{r}$ defined by

$$
\left|T_{1}\right|<1, \ldots,\left|T_{r}\right|<1
$$

and D the subdomain defined by

$$
\left|T_{1}\right|<1, \ldots,\left|T_{r}\right|<1, \quad \pi<\left|T_{1} \cdots T_{m}\right|
$$

For a rigid space Z, let $\Omega_{D \times Z / Z}^{\cdot}$ denote the relative de Rham complex of $D \times Z$ over Z, and V the subspace of $\Gamma\left(D \times Z, \Omega_{D \times Z / Z}^{1}\right)$ defined as

$$
V:=K \frac{d T_{1}}{T_{1}} \oplus \cdots \oplus K \frac{d T_{m}}{T_{m}}
$$

Lemma 3. In the above notation, let p_{2} denote the projection $D \times Z \rightarrow Z$. Then

$$
\begin{equation*}
R^{i} p_{2 *} \Omega_{D \times Z / Z}^{\cdot}=\mathscr{O}_{Z} \otimes_{K} \bigwedge^{i}(V) \tag{3.4}
\end{equation*}
$$

Proof. It suffices to show that for any affinoid open subset $W=\operatorname{Spm}(B)$ of Z,

$$
H^{i}\left(D \times W, \Omega_{D \times W / W}^{\cdot}\right)=B \otimes_{K} \bigwedge^{i}(V)
$$

As $D \times W$ is quasi-Stein, $H^{i}\left(D \times W, \Omega_{D \times W / W}\right)$ is the i th cohomology of the complex $\Gamma\left(D \times W, \Omega_{D \times W / W}\right)$. For any $0 \leq i \leq r$ put

$$
\Gamma^{i}=\Gamma\left(D \times W, \Omega_{D \times W / W}^{i}\right)
$$

Then $\Gamma^{i}=\Gamma^{0} \otimes_{K} \bigwedge^{i}(\tilde{V})$, where

$$
\tilde{V}=K d T_{1} \oplus \cdots \oplus K d T_{r}
$$

Let $Z^{i} \subset \Gamma^{i}$ be the space of closed i-forms.

A formal series

$$
\sum_{\substack{t_{1}, \ldots, t_{m} \\ t_{m+1} \geq 0, \ldots, t_{r} \geq 0}} b_{t_{1}, \ldots, t_{r}} T_{1}^{t_{1}} \cdots T_{r}^{t_{r}}
$$

with coefficients in B belongs to Γ^{0} if and only if for any given $\epsilon>0$ and $0<\rho<1$ almost all of the following relations hold:

$$
\begin{align*}
\left|b_{t_{1}, \ldots, t_{r}}\right|_{B} \cdot \rho^{t_{1}+\cdots+t_{r}}<\epsilon & \text { if } \min \left(t_{1}, \ldots, t_{r}\right) \geq 0 \\
\left|b_{t_{1}, \ldots, t_{r}}\right|_{B} \cdot \rho^{t_{1}+\cdots+t_{r}-(m+1) N}|\pi|^{N}<\epsilon & \text { if } \min \left(t_{1}, \ldots, t_{r}\right)=N<0 \tag{3.5}
\end{align*}
$$

where $|\cdot|_{B}$ is a norm on B.
Every element ω in Γ^{i} can be written as a formal sum of monomials

$$
b_{\gamma, I} T^{\gamma} d T_{I}=b_{\gamma, I} T_{1}^{t_{1}} \cdots T_{r}^{t_{r}} d T_{l_{1}} \wedge \cdots \wedge d T_{l_{i}}
$$

where $b_{\gamma, I} \in B, \gamma=\left(t_{1}, \ldots, t_{r}\right)$ and $I=\left\{l_{1}, \ldots, l_{i}\right\} \subseteq\{1, \ldots, r\}$ with $l_{1}<\cdots<l_{i}$. We associate with any monomial $b_{\gamma, I} T^{\gamma} d T_{I}$ a number

$$
n_{\delta}\left(b_{\gamma, I} T^{\gamma} d T_{I}\right):=\#\left(\left\{l \in I: t_{l} \neq-1\right\} \cup\left\{l \notin I: 1 \leq l \leq r, t_{l} \neq 0\right\}\right)
$$

which satisfies

$$
0 \leq n_{\delta}\left(b_{\gamma, I} T^{\gamma} d T_{I}\right) \leq r
$$

We call this number the δ-number of $b_{\gamma, I} T^{\gamma} d T_{I}$. Let Γ_{j}^{i} be the subspace of Γ^{i} consisting of i-forms which are formal sums of monomials with δ-number j. Then $\Gamma^{i}=\bigoplus_{j=0}^{r} \Gamma_{j}^{i}$. Put $Z_{j}^{i}=Z^{i} \cap \Gamma_{j}^{i}$. Note that $\Gamma_{0}^{i}=Z_{0}^{i}=B \otimes_{K} \bigwedge^{i}(V)$. If $\omega \in \Gamma_{j}^{i}$, then $d \omega \in \Gamma_{j}^{i+1}$. Thus $Z^{i}=\bigoplus_{j=0}^{r} Z_{j}^{i}$.

Put

$$
\begin{aligned}
& \delta\left(T^{\gamma} d T_{I}\right):=\sum_{\substack{1 \leq \mu \leq i \\
t_{l_{\mu}} \neq-1}}(-1)^{\mu-1} \frac{1}{t_{l_{\mu}}+1} T_{l_{\mu}} \cdot T^{\gamma} \\
& \quad \times d T_{l_{1}} \wedge \cdots \wedge d T_{l_{\mu-1}} \wedge d T_{l_{\mu+1}} \wedge \cdots \wedge d T_{l_{i}}
\end{aligned}
$$

By 3.5 we can extend δ to a continuous B-linear map $\delta: \Gamma^{i} \rightarrow \Gamma^{i-1}$. It is easy to check that, if $\omega \in \Gamma_{j}^{i}$, then

$$
(d \delta+\delta d) \omega=j \omega
$$

In other words, we have $\bigoplus_{j=1}^{r} Z_{j}^{i} \subset d \Gamma^{i-1}$. Since $Z_{0}^{i} \cap d \Gamma^{i-1}=0$, we have

$$
Z^{i} / d \Gamma^{i-1} \cong Z_{0}^{i}=B \otimes_{K} \bigwedge^{i}(V)
$$

3.3. Proof of Proposition 3 Let I be a nonempty subset of $\{1, \ldots, n\}$, and I_{1} a subset of I such that $\left|I_{1}\right|=|I|-1$. As $R^{i} p_{2 *} \Omega_{] Y_{I}\left[_{\mathcal{Q}} /\right] Y_{I}[\mathcal{P}}$ is the sheaf associated to the presheaf

$$
W \mapsto H^{i}\left(p_{2}^{-1}(W), \Omega_{] Y_{I}[\mathcal{Q} /] Y_{I}\left[\left[_{\mathcal{P}}\right.\right.}\right)
$$

where W^{\prime} 's are admissible open subsets of $] Y_{I}[\mathcal{P}$, there is a canonical map

$$
\begin{equation*}
\mathscr{O}_{]\left.Y_{I}\right|_{\mathcal{P}}} \otimes_{K} \Lambda^{i}\left(V_{I_{1}}\right) \rightarrow R^{i} p_{2 *} \Omega_{\left.\bar{Y}_{I} \mathbb{L}_{\mathcal{Q}} /\right]\left.Y_{I}\right|_{\mathcal{P}}} . \tag{3.6}
\end{equation*}
$$

Proposition 5. Under the above map, we have

$$
\begin{equation*}
\mathscr{O}_{] U_{I} \mathcal{T}_{\mathcal{P}}} \otimes_{K} \bigwedge^{i}\left(V_{I_{1}}\right)=R^{i} p_{2 *} \Omega_{j U_{I}\left[_{\mathcal{Q}} /\right] U_{I} I_{\mathcal{P}}} . \tag{3.7}
\end{equation*}
$$

Proposition 6. If $|I| \geq 2$, then the homomorphism of complexes

$$
\begin{align*}
\left(\mathscr{O}_{\left.Y_{I}\right|_{\mathcal{P}}} \otimes_{K}\right. & \left.\Lambda^{i}\left(V_{I_{1}}\right) \rightarrow \beta_{I *} \beta_{I}^{-1} \mathscr{O}_{]\left.Y_{I}\right|_{\mathcal{P}}} \otimes_{K} \bigwedge^{i}\left(V_{I_{1}}\right)\right) \tag{3.8}\\
& \rightarrow\left(R^{i} p_{2 *} \Omega_{\left.\prod_{Y_{I}[\mathcal{Q}}\right]\left.Y_{I}\right|_{\mathcal{P}}} \rightarrow R^{i} p_{2 *}\left(\alpha_{I *} \alpha_{I}^{-1} \Omega_{\Omega_{Y_{I}[\mathcal{Q}} / Y_{I}[\mathcal{P}}\right)\right)
\end{align*}
$$

is a quasi-isomorphism.
Proposition 3 follows immediately from Proposition 6 .
For the proofs of Propositions 5 and 6, we assume that $I=\{1, \ldots, m\}$, where $1 \leq m \leq n$. The questions are local, so we may assume that

- \mathcal{X} and \mathcal{P} are affine, say $\mathcal{X}=\operatorname{Spf}\left(A_{1}\right)$ and $\mathcal{P}=\operatorname{Spf}\left(A_{2}\right)$,
- there is an étale morphism $\theta: \mathcal{X} \rightarrow \mathcal{X}_{0}=\operatorname{Spf}\left(A_{0}\right)$ of π-adic formal schemes over R, where $A_{0}=R\left\langle T_{1}, \ldots, T_{d}\right\rangle /\left(T_{1} \cdots T_{q}-\pi\right)$ with $m \leq$ $q \leq \min (d, n)$,
- $Y_{i}(1 \leq i \leq q)$ is defined by $\varphi\left(T_{i}\right)$, where $\varphi: A_{0} \rightarrow A_{1}$ is the R-algebra homomorphism defining θ.
Here a morphism θ of π-adic formal schemes is called étale if $\theta \otimes_{R} R / \pi^{i} R$ ($i \geq 1$) are all étale (cf. [1]).

Proof of Proposition 5. The composition of $Y_{I} \hookrightarrow \mathcal{X} \times \mathcal{P}$ and $\theta \times \mathrm{id}_{\mathcal{P}}$ is an inclusion map $Y_{I} \hookrightarrow \mathcal{X}_{0} \times \mathcal{P}$. As $\theta \times \mathrm{id}_{\mathcal{P}}$ is étale, the tube of Y_{I} in $\mathcal{Q}_{K}=\mathcal{X}_{K} \times \mathcal{P}_{K}$ is isomorphic to the tube of Y_{I} in $\mathcal{X}_{0 K} \times \mathcal{P}_{K}$, i.e.,

$$
] Y_{I}[\mathcal{Q} \cong] Y_{I}\left[\mathcal{X}_{0} \times \mathcal{P} .\right.
$$

Let $\mathcal{X}_{0 s}$ be the special fiber of \mathcal{X}_{0} and put $Z=\mathcal{X}_{0 s} \times Y_{I}$. Consider the diagram

where the square is cartesian. Let $t_{i}(m+1 \leq i \leq d)$ be elements of A_{2} such that $\phi\left(t_{i}\right)$ is equal to $\varphi\left(T_{i}\right) \bmod \pi$, where $\phi: A_{2} \rightarrow A_{1 k}$ is the algebra homomorphism associated to the embedding $X_{s} \hookrightarrow \mathcal{P}$. Then the morphism $Y_{I} \hookrightarrow Z$ in the above diagram is a closed immersion defined by the images of $T_{1}, \ldots, T_{m}, T_{m+1}-t_{m+1}, \ldots, T_{d}-t_{d}$ in $\Gamma(Z, \mathscr{O})$. Thus $] Y_{I}\left[\mathcal{X}_{0} \times \mathcal{P}\right.$ is the intersection of $] Z\left[\mathcal{X}_{0} \times \mathcal{P}=\mathcal{X}_{0 K} \times\right] Y_{I}\left[{ }_{\mathcal{P}}\right.$ and the subdomain of $\mathcal{X}_{0 K} \times \mathcal{P}_{K}$
defined by

$$
\left|T_{1}\right|<1, \ldots,\left|T_{m}\right|<1, \quad\left|T_{m+1}-t_{m+1}\right|<1, \ldots,\left|T_{d}-t_{d}\right|<1
$$

Consider the homomorphism

$$
\begin{aligned}
R\left\langle T_{1}^{\prime}, \ldots, T_{d}^{\prime}\right\rangle & \rightarrow \Gamma\left(\mathcal{X}_{0} \times \mathcal{P}, \mathscr{O}\right) \\
T_{1}^{\prime}, \ldots, T_{d}^{\prime} & \mapsto T_{1}, \ldots, T_{m}, T_{m+1}-t_{m+1}, \ldots, T_{d}-t_{d}
\end{aligned}
$$

which defines a morphism $\mathcal{X}_{0} \times \mathcal{P} \rightarrow \mathbb{A}^{d}$, where \mathbb{A}^{d} is the π-adic formal scheme $\operatorname{Spf}\left(R\left\langle T_{1}^{\prime}, \ldots, T_{d}^{\prime}\right\rangle\right)$. Combining this morphism with the projection $\mathcal{X}_{0} \times \mathcal{P} \rightarrow \mathcal{P}$ we obtain a closed immersion

$$
\begin{equation*}
\mathcal{X}_{0} \times \mathcal{P} \hookrightarrow \mathbb{A}^{d} \times \mathcal{P} \tag{3.9}
\end{equation*}
$$

which is defined by

$$
T_{1}^{\prime} \cdots T_{m}^{\prime}\left(T_{m+1}^{\prime}+t_{m+1}\right) \cdots\left(T_{q}^{\prime}+t_{q}\right)-\pi
$$

Let D be the subdomain of $\mathrm{D}(0,1)^{m-1}=\operatorname{Spm}\left(K\left\langle T_{1}^{\prime}, \ldots, T_{m-1}^{\prime}\right\rangle\right)$ defined by

$$
\left|T_{1}^{\prime}\right|<1, \ldots,\left|T_{m-1}^{\prime}\right|<1 \quad \text { and } \quad|\pi|<\left|T_{1}^{\prime} \cdots T_{m-1}^{\prime}\right|
$$

Then (3.9) induces an inclusion map

$$
\iota:] Y_{I}\left[\mathcal{X}_{0 \times \mathcal{P}} \hookrightarrow D \times \mathrm{D}\left(0,1^{-}\right)^{d-m} \times\right] Y_{I}\left[_{\mathcal{P}}\right.
$$

and an isomorphism

$$
\begin{equation*}
] U_{I}\left[\mathcal{X}_{0} \times \mathcal{P} \xrightarrow{\sim} D \times \mathrm{D}\left(0,1^{-}\right)^{d-m} \times\right] U_{I}[\mathcal{P} \tag{3.10}
\end{equation*}
$$

Now the validity of Proposition 5 is ensured by Lemma 3 .
The proof of Proposition 6 needs the following lemma.
Lemma 4. The map (3.6) is an injection.
Proof. Let W be an affinoid open subset of $] Y_{I}\left[{ }_{\mathcal{P}}\right.$. By Proposition 5 we see that, if $I \subseteq I^{\prime} \subseteq\{1, \ldots, n\}$, then the map

$$
\left.\Gamma(W \cap] U_{I^{\prime}}{ }_{\mathcal{P}}, \mathscr{O}_{] Y_{I}[\mathcal{P}} \otimes_{K} \bigwedge^{i}\left(V_{I_{1}}\right)\right) \rightarrow \Gamma(W \cap] U_{I^{\prime}}\left[_{\mathcal{P}}, R^{i} p_{2 *} \Omega_{Y_{I}\left[{ }_{\mathcal{Q}} /\right] Y_{I}\left[\mathcal{P}_{\mathcal{P}}\right.}\right)
$$

is injective. On the other hand, the map

$$
\left.\Gamma\left(W, \mathscr{O}_{] Y_{I}\left[_{\mathcal{P}}\right.}\right) \rightarrow \prod_{I^{\prime} \supseteq I} \Gamma(W \cap] U_{I^{\prime}[\mathcal{P}}, \mathscr{O}_{] Y_{I}[\mathcal{P}}\right)
$$

is also injective. Hence (3.6) is an injection.
Proof of Proposition 6. We keep the notation of the proof of Proposition 5.

We identify $] Y_{I}\left[\mathcal{X}_{0} \times \mathcal{P}\right.$ with a subset of $\left.D \times \mathrm{D}\left(0,1^{-}\right)^{d-m} \times\right] Y_{I}[\mathcal{P}$ via ι. Let q_{2} be the projection

$$
\left.q_{2}: D \times \mathrm{D}\left(0,1^{-}\right)^{d-m} \times\right] Y_{I}\left[_{\mathcal{P}} \rightarrow\right] Y_{I}[\mathcal{P}
$$

and α_{I}^{\prime} the inclusion map

$$
\alpha_{I}^{\prime}: q_{2}^{-1}(] Y_{I} \backslash U_{I}[\mathcal{P}) \rightarrow q_{2}^{-1}(] Y_{I}\left[_{\mathcal{P}}\right)
$$

Let $\Omega_{c,\left|Y_{I}\left[\mathbb{Q}_{\mathcal{Q}} /\right] Y_{I}\right|_{\mathcal{P}}}$ and $\Omega_{\left.c,\left.q_{2}^{-1}(] Y_{I}\right|_{\mathcal{P}}\right) / /\left.Y_{I}\right|_{\mathcal{P}}}^{*}$ denote the total complexes of the bicomplexes

$$
\Omega_{\left.j Y_{I}\right|_{\mathcal{Q}} / Y_{I} \mathcal{T}_{\mathcal{P}}} \rightarrow \alpha_{I *} \alpha_{I}^{-1} \Omega_{j Y_{I}\left[\mathcal{Q} /\left.Y_{I}\right|_{\mathcal{P}}\right.}
$$

and

$$
\Omega_{q_{2}^{-1}\left(\ Y_{I}[\mathcal{P}) /\right] Y_{I}[\mathcal{P}}^{*} \rightarrow \alpha_{I *}^{\prime} \alpha_{I}^{\prime-1} \Omega_{q_{2}^{-1}\left(\left[Y_{I}[\mathcal{P}) /\right] Y_{I}[\mathcal{P}\right.}
$$

respectively.
Lemma 5. $] Y_{I}\left[\mathcal{X}_{0} \times \mathcal{P}\right.$ and $q_{2}^{-1}(] Y_{I} \backslash U_{I}\left[{ }_{\mathcal{P}}\right)$ form an admissible covering of $\left.D \times \mathrm{D}\left(0,1^{-}\right)^{d-m} \times\right] Y_{I}\left[{ }_{\mathcal{P}}\right.$.

The following proof is due to the referee.
Proof. The isomorphism (3.10) ensures that $] Y_{I}\left[\mathcal{X}_{0} \times \mathcal{P}\right.$ and $q_{2}^{-1}(] Y_{I} \backslash U_{I}\left[{ }_{\mathcal{P}}\right)$ indeed form a covering of $\left.D \times \mathrm{D}(0,1)^{d-m} \times\right] Y_{I}[\mathcal{P}$. To prove that the covering is admissible, we may assume that \mathcal{X}_{0} and \mathcal{P} are affine, since the question is local.

Write $Z_{I}=Y_{I} \backslash U_{I}$ and $\left.M=D \times \mathrm{D}\left(0,1^{-}\right)^{d-m} \times\right] Y_{I}{ }_{I}$. By the definition of an admissible covering, it suffices to prove that, for any affinoid rigid analytic space W and any morphism of rigid spaces $u: W \rightarrow M$, the covering $\left\{u^{-1}(] Y_{I}\left[\mathcal{X}_{0} \times \mathcal{P}\right), u^{-1}\left(q_{2}^{-1}(] Z_{I}\left[\left[_{\mathcal{P}}\right)\right)\right\}\right.$ can be refined by a finite covering by affinoid open subspaces. Denote by the same letters the pullbacks by u of functions on M. Note that, as a closed subscheme of Y_{I}, Z_{I} is defined by the restriction of $t_{m+1} \cdots t_{q}$ to Y_{I}. Hence $] Z_{I}\left[_{\mathcal{P}}\right.$ is the open subspace of $] Y_{I}\left[_{\mathcal{P}}\right.$ defined by the condition $\left|t_{m+1} \cdots t_{q}\right|<1$. For any $\lambda<1$, let $V_{\lambda} \subset M$ be the open subset defined by $\left|t_{m+1} \cdots t_{q}\right| \leq \lambda$. For any $\eta<1$, let $\left[Y_{I}\right]_{\mathcal{X}_{0} \times \mathcal{P}, \eta}$ be the closed tube of radius η for Y_{I} in $\mathcal{X}_{0} \times \mathcal{P}$, viewed via ι as a subspace of M; $\left[Y_{I}\right]_{\mathcal{X}_{0} \times \mathcal{P}, \eta}$ is the open subset of $D \times \mathrm{D}\left(0,1^{-}\right)^{d-m} \times\left[Y_{I}\right]_{\mathcal{P}, \eta}$ described by the inequalities:

$$
\begin{align*}
& \left|T_{i}^{\prime}\right| \leq \eta \quad \text { for } i \leq m-1 \text { and } m+1<i \leq d, \tag{3.11}\\
& \left|T_{1}^{\prime} \cdots T_{m-1}^{\prime}\left(T_{m+1}^{\prime}+t_{m+1}\right) \cdots\left(T_{q}^{\prime}+t_{q}\right)\right| \geq|\pi| / \eta . \tag{3.12}
\end{align*}
$$

If some integral powers of λ and η belong to the multiplicative group of absolute values of K^{\times}, then $u^{-1}\left(\left[Y_{I}\right]_{\mathcal{X}_{0} \times \mathcal{P}, \eta}\right)$ and $u^{-1}\left(V_{\lambda}\right)$ are affinoid open subsets of W. So it suffices to check that their union is equal to W for λ, η close enough to 1 .

Since W is affinoid, the maximum modulus principle implies that there exists $\rho<1$ such that the inequalities

$$
\left|T_{i}^{\prime}\right| \leq \rho \quad \text { for } i \leq m-1 \text { and } m+1<i \leq d
$$

and

$$
\left|T_{1}^{\prime} \cdots T_{m-1}^{\prime}\right| \geq|\pi| / \rho
$$

are satisfied on W. Let λ be such that $\rho<\lambda<1$. Let $x \in W$ be a point which is not in $u^{-1}\left(V_{\lambda}\right)$. Then $\left|\left(t_{m+1} \cdots t_{q}\right)(x)\right|>\lambda$. As $\left|t_{i}(x)\right| \leq 1$ for all i, it follows that $\left|t_{i}(x)\right|>\lambda$ for $m+1 \leq i \leq q$. Therefore $\left|\left(T_{i}^{\prime}+t_{i}\right)(x)\right|=$ $\left|t_{i}(x)\right|>\lambda$ for $m+1 \leq i \leq q$. We obtain

$$
\left|\left(T_{1}^{\prime} \cdots T_{m-1}^{\prime}\left(T_{m+1}^{\prime}+t_{m+1}\right) \cdots\left(T_{q}^{\prime}+t_{q}\right)\right)(x)\right|>\frac{|\pi|}{\rho} \lambda^{q-m} .
$$

We can choose λ close enough to 1 such that $\rho<\lambda^{q-m}$ and take $\eta=$ $\rho / \lambda^{q-m} \geq \rho$. Then inequalities (3.11) and (3.12) are satisfied at x, and it follows that $W=u^{-1}\left(\left[Y_{I}\right]_{\mathcal{X}_{0} \times \mathcal{P}, \eta}\right) \cup u^{-1}\left(V_{\lambda}\right)$.

Lemma 6. We have

$$
R^{i} p_{2 *} \Omega_{c, \mid Y_{I}[\mathcal{Q} /] Y_{I}[\mathcal{P}}=R^{i} q_{2 *} \Omega_{c, q_{2}^{-1}\left(\mid Y_{I}[\mathcal{P}) /\right] Y_{I}[\mathcal{P}}^{*} .
$$

Proof. Let W be an admissible open subset of $] Y_{I}\left[{ }_{\mathcal{P}}\right.$. By Lemma 5 , $\left.p_{2}^{-1}(W)=q_{2}^{-1}(W) \cap\right] Y_{I}\left[\mathcal{X}_{0 \times \mathcal{P}}\right.$ and $q_{2}^{-1}(W \cap] Y_{I} \backslash U_{I}[\mathcal{P})$ form an admissible covering of $q_{2}^{-1}(W)$. Since the restriction of $\Omega_{\left.c, q_{2}^{-1}(] Y_{I}[\mathcal{P}) /\right] Y_{I}[\mathcal{P}}$ to $q_{2}^{-1}(W \cap$ $] Y_{I} \backslash U_{I}[\mathcal{P})$ is quasi-isomorphic to zero, we have

$$
\begin{aligned}
H^{i}\left(q_{2}^{-1}(W), \Omega_{\left.c, q_{2}^{-1}(] Y_{I}[\mathcal{P}) /\right] Y_{I}[\mathcal{P}}^{\cdot}\right) & =H^{i}\left(p_{2}^{-1}(W), \Omega_{\left.c, q_{2}^{-1}(] Y_{I}\left[_{\mathcal{P}}\right) /\right] Y_{I}\left[_{\mathcal{P}}\right.}^{\cdot}\right) \\
& =H^{i}\left(p_{2}^{-1}(W), \Omega_{c,] Y_{I}\left[\mathcal{Q}_{\mathcal{Q}} /\right] Y_{I}[\mathcal{P}}\right)
\end{aligned}
$$

as expected.
Since α_{I}^{\prime} and β_{I} are quasi-Stein, we have

$$
\begin{aligned}
R^{i} q_{2 *}\left(\alpha_{I *}^{\prime} \alpha_{I}^{\prime-1} \Omega_{\left.q_{2}^{-1}(] Y_{I}[\mathcal{P}) /\right] Y_{I}[\mathcal{P}}^{*}\right) & =R^{i}\left(q_{2 *} \circ \alpha_{I *}^{\prime}\right) \Omega_{\left.q_{2}^{-1}(] Y_{I} \backslash U_{I}[\mathcal{P}) /\right] Y_{I} \backslash U_{I}[\mathcal{P}}^{*} \\
& \left.\left.=R^{i}\left(\beta_{I *} \circ q_{2 *}\right) \Omega_{q_{2}^{-1}(] Y_{I} \backslash U_{I}[\mathcal{P}}^{*}\right) /\right] Y_{I} \backslash U_{I}[\mathcal{P} \\
& =\beta_{I *} \mathscr{O}_{] Y_{I} \backslash U_{I}[\mathcal{P}} \otimes_{K} \bigwedge^{i}\left(V_{I_{1}}\right) \quad \text { (by Lemma 3) } \\
& =\beta_{I *} \beta_{I}^{-1} \mathscr{O}_{] Y_{I}[\mathcal{P}} \otimes_{K} \bigwedge^{i}\left(V_{I_{1}}\right)
\end{aligned}
$$

Here, the projection $\left.q_{2}^{-1}(] Y_{I} \backslash U_{I}\left[{ }_{\mathcal{P}}\right) \rightarrow\right] Y_{I} \backslash U_{I}\left[{ }_{\mathcal{P}}\right.$ is also denoted by q_{2}. Again by Lemma 3 we have

$$
R^{i} q_{2 *} \Omega_{\left.q_{2}^{-1}(] Y_{I}[\mathcal{P}) /\right] Y_{I}[\mathcal{P}}^{*}=\mathscr{O}_{] Y_{I}[\mathcal{P}} \otimes_{K} \bigwedge^{i}\left(V_{I_{1}}\right)
$$

Thus from the distinguished triangles

$$
\Omega_{c,] Y_{I}[\mathcal{Q} /] Y_{I}[\mathcal{P}}^{*} \rightarrow \Omega_{{\overline{Y_{I}}\left[_{\mathcal{Q}} /\right] Y_{I}[\mathcal{P}}} \rightarrow \alpha_{I *} \alpha_{I}^{-1} \Omega_{]_{Y_{I}[\mathcal{Q}} /\right] Y_{I}\left[{ }_{\mathcal{P}}\right.} \xrightarrow{+1}
$$

and

$$
\Omega_{\left.c, q_{2}^{-1}(] Y_{I}[\mathcal{P}) /\right] Y_{I}[\mathcal{P}}^{*} \rightarrow \Omega_{\left.q_{2}^{-1}(] Y_{I}[\mathcal{P}) /\right] Y_{I}[\mathcal{P}}^{*} \rightarrow \alpha_{I *}^{\prime} \alpha_{I}^{\prime-1} \Omega_{\left.q_{2}^{-1}(] Y_{I}[\mathcal{P}) /\right] Y_{I}[\mathcal{P}}^{*} \xrightarrow{+1}
$$

we get a commutative diagram of exact sequences

The map 3.8 is just given by the right square of this diagram.
Let ker_{i} and cok_{i} be the kernel and cokernel of

$$
\mathscr{O}_{] Y_{I} \mathcal{P}_{\mathcal{P}}}^{\otimes_{K}} \bigwedge^{i}\left(V_{I_{1}}\right) \rightarrow \beta_{I *} \beta_{I}^{-1} \mathscr{O}_{] Y_{I}[\mathcal{P}} \otimes_{K} \bigwedge^{i}\left(V_{I_{1}}\right),
$$

and $\operatorname{ker}_{i}^{\prime}$ and $\operatorname{cok}_{i}^{\prime}$ the kernel and cokernel of

$$
R^{i} p_{2 *} \Omega_{]\left.Y_{I}\right|_{\mathbb{Q}} /\left.Y_{I}\right|_{\mathcal{P}}} \rightarrow R^{i} p_{2 *}\left(\alpha_{I *} \alpha_{I}^{-1} \Omega_{]_{\left.Y_{I} \mathbb{Q}_{\mathcal{Q}} /\right]\left.Y_{I}\right|_{\mathcal{P}}}}\right)
$$

The map (3.8) induces two maps $\operatorname{ker}_{i} \rightarrow \operatorname{ker}_{i}^{\prime}$ and $\operatorname{cok}_{i} \rightarrow \operatorname{cok}_{i}^{\prime}$. From the above commutative diagram we see that $\operatorname{ker}_{i} \rightarrow \operatorname{ker}_{i}^{\prime}$ is surjective. By Lemma 4. u is injective, and so is $\operatorname{ker}_{i} \rightarrow \operatorname{ker}_{i}^{\prime}$. Thus $\operatorname{ker}_{i} \rightarrow \operatorname{ker}_{i}^{\prime}$ is an isomorphism. From the commutative diagram

we see that $\operatorname{cok}_{i} \rightarrow \operatorname{cok}_{i}^{\prime}$ is also an isomorphism. Hence (3.8) is a quasiisomorphism.

4. The proof of Theorem 1

4.1. A generalization of Grothendieck's spectral sequence. For the proof of Theorem 1, we need the following lemma.

Lemma 7. Let C_{1}, C_{2} and C_{3} be abelian categories with enough injective objects, $F: C_{1} \rightarrow C_{2}$ and $G: C_{2} \rightarrow C_{3}$ additive functors, M^{*} a first quadrant bicomplex in C_{1}, and K^{\cdot} the total complex of M^{*}. Suppose that F sends injective objects of C_{1} to G-acyclic objects. Then we have two spectral sequences

$$
\begin{equation*}
E_{2}^{p q}=R^{p} G\left(R_{I I}^{q} F\left(M^{*}\right)\right) \Rightarrow R^{p+q}(G \circ F) K^{\cdot} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }^{\prime \prime} E_{2}^{p q}=R^{p} G\left(R_{I}^{q} F\left(M^{*}\right)\right) \Rightarrow R^{p+q}(G \circ F) K^{*} . \tag{4.2}
\end{equation*}
$$

If $M^{i j}=0$ unless $j=0$, then $\sqrt{4.2}$ is just Grothendieck's spectral sequence.

Proof. We shall only show (4.1). The proof of (4.2) is similar.

Let N^{\cdots} be a Cartan-Eilenberg resolution of first type of M^{*}. (We mean that N^{\cdots} is a triple complex of injective objects in C_{1} such that if $i<0$, $j<0$ or $l<0$ then $N^{i j l}=0$, and for every i the bicomplexes $N^{i \cdot \cdot}, B_{I}^{i}\left(N^{\cdots}\right)$, $Z_{I}^{i}\left(N^{\cdots}\right)$ and $H_{I}^{i}\left(N^{\cdots}\right)$ are injective resolutions of $M^{i}, B_{I}^{i}\left(M^{\bullet}\right), Z_{I}^{i}\left(M^{\bullet \bullet}\right)$ and $H_{I}^{i}\left(M^{* *}\right)$ respectively. Cartan-Eilenberg resolutions of second type are defined similarly.) Put

$$
M_{1}^{i j}=\bigoplus_{r+s=j} F N^{i r s}
$$

and let $K_{\dot{1}}$ be the total complex of $M_{\dot{1}}$. It is clear that

$$
R_{I I}^{q} F\left(M^{\bullet}\right)=H_{I I}^{q}\left(M_{1}^{\bullet \cdot}\right)
$$

Let N_{1}^{\cdots} be a Cartan-Eilenberg resolution of second type of $M_{\ddot{1}}$, and $M_{2} \ddot{ }$ the bicomplex defined by

$$
M_{2}^{i j}=\bigoplus_{r+s=i} N_{1}^{r j s}
$$

Then $H_{I I}^{q}\left(M_{2}^{\bullet}\right)$ is a complex of injective objects, quasi-isomorphic to $H_{I I}^{q}\left(M_{1}^{\bullet}\right)$. Thus

$$
R^{p} G\left(R_{I I}^{q} F\left(M^{\bullet \bullet}\right)\right)=R^{p} G\left(H_{I I}^{q} F\left(M_{1}^{\bullet \bullet}\right)\right)=H^{p}\left(G H_{I I}^{q}\left(M_{2}^{\bullet \bullet}\right)\right)
$$

As $M_{2}^{p \cdot}$ is a complex such that $Z^{q}\left(M_{2}^{p \cdot}\right), B^{q}\left(M_{2}^{p \cdot}\right)$ and $H^{q}\left(M_{2}^{p \cdot}\right)$ are all injective, we see that

$$
G H_{I I}^{q}\left(M_{2}^{\bullet \bullet}\right)=H_{I I}^{q}\left(G M_{2}^{\bullet \bullet}\right)
$$

Hence

$$
R^{p} G\left(R_{I I}^{q} F\left(M^{\bullet \cdot}\right)\right)=H^{p}\left(H_{I I}^{q}\left(G M_{2}^{\bullet \cdot}\right)\right)
$$

As F sends injective objects of C_{1} to G-acyclic objects, we have

$$
R^{p+q}(G \circ F) K^{\cdot}=H^{p+q} G\left(K_{1}^{*}\right)=H^{p+q} G\left(K_{2}^{\dot{*}}\right)
$$

where K_{2} is the total complex of $M_{2}^{\ddot{ }}$. (Notice that $K_{\dot{1}}$ and $K_{2}^{\dot{2}}$ are complexes of injective objects, quasi-isomorphic to each other.) As a consequence, the spectral sequence (4.1) comes from the first spectral sequence for the bicomplex $G\left(M_{2}^{\bullet \bullet}\right)$.
4.2. Proofs of Theorem 1 and Proposition 1. Choose an open covering $\left\{U_{\nu}\right\}$ of X_{s} such that U_{ν} admits a closed immersion into a smooth π-adic formal scheme \mathcal{P}_{ν}. Put $T_{\nu}=Y_{I} \cap U_{\nu}$. In the following, the notation $\{\nu\}$ means a finite set of indices ν_{0}, \ldots, ν_{n}. Put

$$
T_{\{\nu\}}=T_{\nu_{0}} \cap \cdots \cap T_{\nu_{n}}
$$

As before, we use T. to denote the diagram of Zariski topos formed by $T_{\nu_{0} \cdots \nu_{n}}$'s.

Put $\mathcal{P}_{\{\nu\}}=\mathcal{P}_{\nu_{0}} \times \cdots \times \mathcal{P}_{\nu_{n}}$ and $\mathcal{Q}_{\{\nu\}}=\mathcal{X} \times \mathcal{P}_{\{\nu\}}$. Then there are closed immersions $T_{\{\nu\}} \hookrightarrow \mathcal{P}_{\{\nu\}}$ and $T_{\{\nu\}} \hookrightarrow \mathcal{Q}_{\{\nu\}}$. We use $] T_{\{\nu\}}[\mathcal{P}$ (resp.
$] T_{\{\nu\}}[\mathcal{Q})$ to denote the tube $] T_{\{\nu\}}\left[\mathcal{P}_{\{\nu\}}(\right.$ resp. $] T_{\{\nu\}}\left[\mathcal{Q}_{\{\nu\}}\right)$. Then $] T_{\{\nu\}}[\mathcal{X}$'s (resp. $] T_{\{\nu\}}[\mathcal{P}$'s, $] T_{\{\nu\}}\left[{ }_{\mathcal{Q}}\right.$'s) form a diagram of rigid spaces, which is denoted as $] T$. $[\mathcal{X}$ (resp. $] T .\left[_{\mathcal{P}},\right] T .\left[{ }_{\mathcal{Q}}\right)$. Let p_{1} and p_{2} denote the projections $\left.] T \cdot{ }_{\mathcal{Q}} \rightarrow\right] T .[\mathcal{X}$ and $\left.] T \cdot{ }_{\mathcal{Q}_{\mathcal{Q}}} \rightarrow\right] T_{\nu}\left[_{\mathcal{P}}\right.$ respectively.

Put

$$
\begin{aligned}
\Omega_{\{\nu\}}^{i j} & =\mathscr{O}_{] T_{\{\nu\}}[\mathcal{Q}} \otimes_{\left(p_{1}^{-1} \mathscr{O}_{] T_{\{\nu\}}[\mathcal{X}} \otimes p_{2}^{-1} \mathscr{O}_{] T_{\{\nu\}}[\mathcal{P}}\right)}\left(p_{1}^{-1} \Omega_{] T_{\{\nu\}}[\mathcal{X} / K}^{i} \otimes_{K} p_{2}^{-1} \Omega_{] T_{\{\nu\}}[\mathcal{P} / K}^{j}\right) \\
& =p_{1}^{-1} \Omega_{] T_{\{\nu\}[\mathcal{X}} / K}^{i} \otimes_{p_{1}^{-1} \mathscr{O}_{] T_{\{\nu\}}[\mathcal{X}}} \Omega_{] T_{\{\nu\}}[\mathcal{Q} /] T_{\{\nu\}}[\mathcal{X}}^{j} \\
& =\Omega_{] T_{\{\nu\}}[\mathcal{Q} /] T_{\{\nu\}}[\mathcal{P}} \otimes_{p_{2}^{-1} \mathscr{O}_{] T_{\{\nu\}}[\mathcal{P}}} p_{2}^{-1} \Omega_{] T_{\{\nu\}}[\mathcal{P} / K}^{j} .
\end{aligned}
$$

Then $\Omega_{\{\nu\}}$ is a bicomplex with the horizontal differentials given by the differentials of $\Omega_{]_{\{\nu\}}[\mathcal{Q} /] T_{\{\nu\}}\left[_{\mathcal{P}}\right.}$ and the vertical differentials given by the differentials of $\Omega_{j T_{\{\nu\}}\left[_{\mathcal{Q}} /\right] T_{\{\nu\}}\left[_{\mathcal{X}}\right.}$ up to sign. For any fixed j the complex $\Omega^{\cdot j}$ is just

$$
\Omega_{]_{\{\nu\}}\left[_{\mathcal{Q}} /\right] T_{\{\nu\}}[\mathcal{P}} \otimes_{p_{2}^{-1} \mathscr{O}_{] T_{\{\nu\}}[\mathcal{P}}} p_{2}^{-1} \Omega_{] T_{\{\nu\}}[\mathcal{P} / K}^{j}
$$

Let $\left(\Omega_{c, I ;\{\nu\}}^{i j l}\right)_{i j l}$ be the tricomplex

$$
\Omega_{\{\nu\}}^{i j} \rightarrow \alpha_{I *} \alpha_{I}^{-1} \Omega_{\{\nu\}}^{i j}
$$

where α_{I} is the inclusion map $\left.] T_{\{\nu\}} \cap\left(Y_{I} \backslash U_{I}\right) \mathcal{Q}_{\mathcal{Q}} \hookrightarrow\right] T_{\{\nu\}}\left[{ }_{\mathcal{Q}}\right.$. Note that $\Omega_{c, I ;\{\nu\}}^{i j l}=0$ unless $l=0,1$. Let $M_{\{\nu\}}^{\ddot{ }}$ be the bicomplex defined by

$$
M_{\{\nu\}}^{i j}=\bigoplus_{r+s=j} \Omega_{c, I ;\{\nu\}}^{i r s}
$$

Thus we get a bicomplex $M^{\cdot{ }^{\cdot}}$ on $] T \cdot\left[{ }_{\mathcal{Q}}\right.$. The total complex of M^{\cdot} is just $\Omega_{c, I ; \mathcal{Q}}$.

From Lemma 7, Theorem 11 can be deduced as follows.
Proof of Theorem 1. Let C_{1}, C_{2} and C_{3} be respectively the category of abelian sheaves on $] T$. ${ }_{\mathcal{Q}}$, the category of abelian sheaves on $] T .\left[_{\mathcal{P}}\right.$ and the category of abelian groups. Put $F=p_{2 *}$ and $G=\Gamma \circ \epsilon_{*} \circ \mathrm{sp}_{\mathcal{P}_{*}}$, where $\mathrm{sp}_{\mathcal{P}}$ is the specialization map $] T .\left[_{\mathcal{P}} \rightarrow T\right.$., ϵ is the natural map $T . \rightarrow Y_{I}$ and $\Gamma=\Gamma\left(Y_{I}, \cdot\right)$. Then $G \circ F=\Gamma \circ \epsilon_{*} \circ \mathrm{sp}_{\mathcal{Q}_{*}}$, where $\mathrm{sp}_{\mathcal{Q}}$ is the specialization $\operatorname{map}] T$. ${ }_{\mathcal{Q}} \rightarrow T$.. Let M^{\cdot} be as above. By Proposition 3 we have

$$
R_{I}^{q} F\left(M^{* *}\right)=R_{I}^{q} p_{2 *}\left(M^{* *}\right)=\Omega_{c, I ; \mathcal{P}}^{\cdot} \otimes_{K} \bigwedge^{q}\left(V_{I}^{\prime}\right) .
$$

Hence

$$
\begin{aligned}
R^{p} G R_{I}^{q} F\left(M^{\cdot \bullet}\right) & =H^{p}\left(Y_{I}, \mathbb{R} \epsilon_{*} \mathbb{R}_{\mathrm{sp}_{\mathcal{P} *}} \Omega_{c, I ; \mathcal{P}}^{\cdot}\right) \otimes_{K} \bigwedge^{q}\left(V_{I}^{\prime}\right) \\
& =H_{c, \mathrm{rig}}^{p}\left(U_{I} / K\right) \otimes_{K} \bigwedge^{q}\left(V_{I}^{\prime}\right)
\end{aligned}
$$

On the other hand, Corollary 1 implies that

$$
R^{p+q}(G \circ F) \Omega_{c, I ; \mathcal{Q}}=H^{p+q}\left(Y_{I}, \mathbb{R}_{*} \mathbb{R s p}_{\mathcal{Q}_{\mathcal{Q}} *} \Omega_{c, I ; \mathcal{Q}}\right)=H^{p+q}(] Y_{I}\left[\mathcal{X}, \Omega_{c, I ; \mathcal{X}}\right) .
$$

Now Theorem 1 follows immediately from Lemma 7 .
Proof of Proposition 1. By Theorem 1, if $|I| \geq 2$, then

$$
\begin{aligned}
\sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{K} & H^{i}(] Y_{I}\left[\mathcal{X}, \Omega_{c, I ; \mathcal{X}}^{\cdot}\right) \\
& =\sum_{p \geq 0, q \geq 0}(-1)^{p+q} \operatorname{dim}_{K}\left(H_{c, \mathrm{rig}}^{p}\left(U_{I} / K\right) \otimes_{K} \bigwedge^{q}\left(V_{I}^{\prime}\right)\right) \\
& =\sum_{p \geq 0, q \geq 0}(-1)^{p+q} \operatorname{dim}_{K} H_{c, \mathrm{rig}}^{p}\left(U_{I} / K\right) \operatorname{dim}_{K} \bigwedge^{q}\left(V_{I}^{\prime}\right) \\
& =\sum_{p \geq 0}(-1)^{p} \operatorname{dim}_{K} H_{c, \mathrm{rig}}^{p}\left(U_{I} / K\right) \sum_{q \geq 0}(-1)^{q} \operatorname{dim}_{K} \bigwedge^{q}\left(V_{I}^{\prime}\right) .
\end{aligned}
$$

When $|I| \geq 2$,

$$
\sum_{q \geq 0}(-1)^{q} \operatorname{dim}_{K} \bigwedge^{q}\left(V_{I}^{\prime}\right)=0
$$

so

$$
\sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{K} H^{i}(] Y_{I}\left[\mathcal{X}, \Omega_{c, I ; \mathcal{X}}\right)=0 .
$$

Combining this equality, (1.2) and the equality

$$
\begin{aligned}
\chi_{\mathrm{dR}}\left(\mathcal{X}_{K}\right) & =\sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{K} H_{\mathrm{dR}}^{i}\left(\mathcal{X}_{K} / K\right) \\
& =\sum_{|I| \geq 1} \sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{K} H^{i}(] Y_{I}\left[\mathcal{X}, \Omega_{c, I ; \mathcal{X}}\right) \quad \text { (by (1.1) and Lemma 1], }
\end{aligned}
$$

we get

$$
\begin{aligned}
\chi_{\mathrm{dR}}\left(\mathcal{X}_{K}\right) & =\sum_{|I|=1} \sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{K} H^{i}(] Y_{I}\left[\mathcal{X}, \Omega_{c, I ; \mathcal{X}}\right) \\
& =\sum_{|I|=1} \sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{K} H_{c, \mathrm{rig}}^{i}\left(U_{I} / K\right)=\sum_{|I|=1} \chi_{c}\left(U_{I}\right) .
\end{aligned}
$$

On the other hand, we have

$$
\chi_{\mathrm{rig}}\left(X_{s}\right)=\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}} \chi_{c}\left(U_{I}\right) .
$$

Thus

$$
\begin{equation*}
\chi_{\mathrm{rig}}\left(X_{s}\right)-\chi_{\mathrm{dR}}\left(\mathcal{X}_{K}\right)=\sum_{|I| \geq 2} \chi_{c}\left(U_{I}\right) . \tag{4.3}
\end{equation*}
$$

From the equality

$$
\chi_{\mathrm{rig}}\left(Y_{I}\right)=\sum_{J \supseteq I} \chi_{c}\left(U_{J}\right)
$$

we get

$$
\chi_{c}\left(U_{I}\right)=\sum_{J \supseteq I}(-1)^{|I|+|J|} \chi_{\mathrm{rig}}\left(Y_{J}\right)
$$

By this equality and 4.3 we see that

$$
\begin{aligned}
\chi_{\mathrm{rig}}\left(X_{s}\right)-\chi_{\mathrm{dR}}\left(\mathcal{X}_{K}\right) & =\sum_{|I| \geq 2} \sum_{J \supseteq I}(-1)^{|I|+|J|} \chi_{\mathrm{rig}}\left(Y_{J}\right) \\
& =\sum_{|J| \geq 2}(-1)^{|J|} \chi_{\mathrm{rig}}\left(Y_{J}\right) \sum_{I \subseteq J,|I| \geq 2}(-1)^{|I|} \\
& =\sum_{|J| \geq 2}(-1)^{|J|}(|J|-1) \chi_{\mathrm{rig}}\left(Y_{J}\right)
\end{aligned}
$$

As the rigid cohomology is a Weil cohomology in the sense of Kleiman [7], we have

$$
\chi_{\mathrm{rig}}\left(Y_{J}\right)=\left(\triangle Y_{J} . \triangle Y_{J}\right)
$$

So,

$$
\chi_{\mathrm{rig}}\left(X_{s}\right)-\chi_{\mathrm{dR}}\left(\mathcal{X}_{K}\right)=\sum_{|J| \geq 2}(-1)^{|J|}(|J|-1)\left(\triangle Y_{J} . \triangle Y_{J}\right)
$$

as expected.
Acknowledgements. The author is supported by Fundamental Research Funds for the Central Universities. The author thanks the referee very much for his/her kind help.

References

[1] V. G. Berkovich, Vanishing cycles for formal schemes, Invent. Math. 115 (1994), 539-571.
[2] P. Berthelot, Cohomologie cristalline des schémas de caractéristique $p>0$, Lecture Notes in Math. 407, Springer, Berlin, 1974.
[3] -, Géométrie rigide et cohomologie des variétés algébriques de caractéristique p, in: Introduction aux cohomologies p-adiques (Luminy, 1984), Mém. Soc. Math. France 23 (1986), 7-32.
[4] -, Cohomologie rigide et cohomologie rigide à supports propres, I, Publ. IRMAR 96-03, Univ. de Rennes, 1996.
[5] -, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math. 128 (1997), 329-377.
[6] E. Grosse-Klönne, Finiteness of de Rham cohomology in rigid analysis, Duke Math. J. 113 (2002), 57-91.
[7] S. Kleiman, Algebraic cycles and the Weil conjectures, in: Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, and Masson, Paris, 1968, 359-386.

Bingyong Xie
Department of Mathematics
East China Normal University
Shanghai, 200241, P.R. China
E-mail: byxie@math.ecnu.edu.cn

Received on 2.6.2009
and in revised form on 31.10.2010

[^0]: 2010 Mathematics Subject Classification: Primary 14F40; Secondary 14A15.
 Key words and phrases: strictly semi-stable proper scheme, spectral sequence, de Rham cohomology, rigid cohomology.

