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1. Introduction. Let p be a prime number, K a finite extension of Qp,
O its ring of integers, and $ a uniformizer in O. Set F = O/$.

We study the homology of an arithmetic group Γ with coefficients in a
p-adically analytic family of K-Banach modules that modulo $ is a con-
stant family. These modules are parametrized by points k in a p-adic rigid
analytic affinoid space Ω. We write Dk for the module with parameter
k and D0

k for the closed unit ball in Dk. The families we have in mind
are the modules of distributions constructed in [3], but we use a more
general concept of analytic families of Banach modules, partly for clar-
ity and partly so that variants of those in [3] may be used if necessary.
We use homology in this paper because it is better suited to computer ex-
periments, but it is straightforward to state and prove parallel results for
cohomology.

Our main results, contained in Theorem 27 and Corollary 28, may be
summarized as follows: Let k0 ∈ Ω(K) and ζ0 ∈ Hj(Γ,D0

k0
) be an ordinary

Hecke eigenclass. We obtain a finite number of rigid analytic functions on Ω
whose zero-locus is a Zariski-closed subspace V ⊂ Ω such that for each k ∈ V
there exists a nonzero homology class ζk ∈ Hj(Γ,D0

k) such that ζk0 = ζ0,
and for every k ∈ V , the reduction of ζk modulo $ is a Hecke eigenclass
whose Hecke eigenvalues are congruent to those of ζ0 modulo $. Under the
hypothesis of Theorem 30, the classes ζk will be non-$-power-torsion.

A priori V might consist only of the single point k0. We obtain a lower
bound for the dimension of V computed as follows. Let α denote the sys-
tem of Hecke eigenvalues on ζ0 reduced modulo $. Let d be the dimension
over O/$ of the generalized α-eigenspace of Hj−1(Γ,D0

k0
/$D0

k0
). Then the

codimension of V in Ω is at most d.
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Theorem 27 is actually more general. We input a chain z0 which mod-
ulo $ becomes a cycle in Cj(Γ,D0

k0
/$D0

k0
) but z0 itself need not be a cycle.

When z0 is not itself a cycle, the subspace V may be empty. We hope in
future work to find conditions which would imply that V is nonempty. This
would provide a “bridge” from mod p homology to non-p-power-torsion ho-
mology in characteristic 0.

To prove the main results, we work directly with chains and use a vari-
ant of the Bockstein construction. We must assume that there is a Hecke
operator u that acts completely continuously on the chain level and whose
eigenvalue on ζ0 is a p-adic unit. We use u to construct Hida-type idempo-
tents on the chain level that project into a Hecke eigenspace.

We define and construct certain special kinds of orthonormal bases for
the chains C∗(Dk) and use them to derive the main results of this paper
in Section 7. In Section 8, we give an example for GL(3)/Q in which the
deformation space V is at least 2-dimensional. In principle we could compute
the local equation of V near k0 to any desired degree of accuracy.

In this example, the weight space Ω is 3-dimensional and we know from
[2] that there cannot be a 3-dimensional space of deformations and that,
modulo twisting, V contains at most finitely many classical points. The fact
that there is a 2-dimensional space of deformations in this example can also
be obtained (nonconstructively) by modifying an argument of Hida’s in [10],
as noted in the introduction to [2]. Similar results of Calegari and Mazur
giving lower bounds on the dimension of the deformation space in the case
of GL(2)/F , F an imaginary quadratic field, may be found in [7].

The subspace V of Ω in Theorem 27, which parametrizes the deforma-
tions we construct, can be thought of as part of the projection to weight
space of an “eigenvariety” E parametrizing the set of all p-adic deforma-
tions of Hecke eigenclasses of finite slope. A point in E is a pair (k, θ) where
θ parametrizes a Hecke eigenclass in H∗(Γ,Dk). When Γ is an arithemtic
group, the projection E → V is expected to be locally finite, so that E and
V have locally the same dimension. There is presently no single agreed-upon
definition of E. For two approaches, see [6] and [9].

Eric Urban [11] has made some conjectures on the dimension of E. We
assume that the arithmetic group Γ is of an appropriate type, having p
in its level. Let ` be the rank of the co-weight torus T . We denote by Dk

an appropriate space of locally analytic distributions of weight k. Let θ
be a system of Hecke eigenvalues occurring in the cohomology H∗(Γ,Dk)
with k ∈ Homcont(T (Zp),C×p ). A simple form of Urban’s conjecture is the
following:

Conjecture 1 (Urban). Let x = (k, θ) be a point of the eigenvari-
ety and assume that k is a classical weight. The irreducible components of
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the eigenvariety passing through x are all of dimension ` − δ if and only
if there exist two nonnegative integers a, b and a positive integer m such
that

(a) the θ-generalized eigenspace of Hr(Γ,Dk) is nonzero if and only if
a ≤ r ≤ b and its dimension is m

(
b−a
r−a
)
,

(b) δ = b− a.

There are cases where one expects several irreducible components of the
eigenvariety of different dimensions. In those cases, Urban has an analogous
conjecture.

Theorem 27 may be viewed as giving some evidence for Urban’s conjec-
ture in the case where m = 1, assuming that the generalized eigenspace of
the cohomology mod $ with Hecke eigenvalues equal to those of θ (mod $)
has minimal possible dimension. For in this case, the integer d in our main
result will coincide with the integer δ in Conjecture 1. (Cf. Theorem 5.1, p.
101 of [4].)

2. Arithmetic groups and chains. Let G be a reductive Q-group,
split at p. We fix Γ an arithmetic subgroup of G(Q), S a subsemigroup
of G(Q), and H = H(Γ, S) the Hecke algebra. We assume that H is com-
mutative. Then H acts on the right of the homology of Γ with coefficients
in any right Zp[S]-module M . Denote the homology of Γ with coefficients
in M by H∗(M).

By a theorem of Borel and Serre, any arithmetic group Γ is of type VFL
(see, for example, [5, p. 218]). Therefore, by [5, Proposition 5.1, p. 197], Γ
is of type FP∞. Then by [5, Proposition 4.5, p. 195], the trivial Γ -module
Zp admits a resolution by free, finitely generated Zp[Γ ]-modules.

Fix such a resolution. Denote the chains with coefficients in any right
Zp[Γ ]-module M with respect to this resolution by C∗(M) = F∗ ⊗Zp[Γ ] M .
Denote the boundary maps by ∂. If an element g of a ring or a group acts
on an element m of a module on the right, we write the action as m|g. We
have the following formula:

Lemma 2. For i ≥ 0, let {fij} ⊂ Fi be a free basis of Fi over Zp[Γ ] and
dj ∈M . Write ∂fij =

∑
b λbfi−1,b|γb with λb ∈ Zp and γb ∈ Γ . Then

∂
(∑

j

fij ⊗Γ dj
)

=
∑
j,b

λbfi−1,b ⊗Γ dj |γ−1
b

in Ci−1(M).

Fix a free basis {fij} of Fi over Zp[Γ ]. Let ri denote the rank of Fi over
Zp[Γ ]. For later use, define the following (noncanonical) isomorphisms of
Zp-modules:
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Definition 3. For any Γ -module M and any i ≥ 0, let ξi : Ci(M) →
M ri be defined by

ξi :
∑
j

fij ⊗Γ mj 7→ (mj).

We lift the action of a single double coset in H from homology to chains
as follows. Let s ∈ S. Set ∆ = s−1Γs, ∆∗ = sΓs−1. Write Γ/Γ ∩ ∆∗ =∐
t γt(Γ ∩∆∗). Define a new resolution of Zp by Zp[∆]-modules and denote

it by F •∗ . The underlying Zp-modules are the same as in F∗, but the action of
δ ∈ ∆ is given by f • δ = f |sδs−1. Fix a homotopy equivalence τ : F •∗ → F∗
of Γ ∩∆-modules, so that τ(f |sδs−1) = τ(f)|δ for any δ ∈ Γ ∩∆.

Define s̃ on C∗(M) by the formula

(1) (f ⊗Γ m)|s̃ =
∑
t

τ(f |γt)⊗Γ m|γts,

extended by linearity. We have:

Lemma 4. s̃ is a well-defined Zp-linear chain map (i.e. commutes with ∂)
and induces the action of the Hecke operator ΓsΓ on H∗(M).

Remark 5. If M is an A[S]-module for some Zp-algebra A, we see that
C∗(M) is an A-module where A acts on the tensor product F∗ ⊗Zp[Γ ] M
through the second factor. Then ∂ and s̃ are A-module maps. Moreover, sup-
pose that Mi is an Ai[S]-module for some Zp-algebra Ai, i = 1, 2, and that
we have compatible homomorphisms of algebras f : A1 → A2 and modules
φ : M1 →M2. Then we obtain an induced chain map φ∗ : C∗(M1)→ C∗(M2)
which is linear with respect to f and s̃-equivariant, by the formula∑

j

fij ⊗Γ mi 7→
∑
j

fij ⊗Γ φ(mi).

3. $-adic families of Banach modules. Let Ka denote a fixed alge-
braic closure of K. Use ‖·‖ to denote the norm on any complete K-algebra B.
Let B0 denote the closed unit ball in B and set B = B0/$B0. We use the
definitions and conventions of [8] for Banach K-algebras and Banach mod-
ules over such algebras.

Definition 6. IfD is a leftA-Banach module over a BanachK-algebraA
and also a right S-module, for a semigroup S that acts via A-module Banach
morphisms of operator norm ≤ 1, such that the A- and S-actions commute,
then we will say that D is an A-S-module.

Note that D0 is then an A0-S-module and D is an A-S-module.
We say that D is ON-able if it has an ON (orthonormal) basis (see [8]).

If {dr} is an ON basis for D over K, and B is any K-Banach module, then
{1 ⊗ dr} is an ON basis for B ⊗̂K D over B. Since any K-Banach space is
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ON-able over K, so is B ⊗̂K D over B, and (B ⊗̂K D)0 = B0 ⊗̂O D0. The
next lemma follows immediately from Lemma 1.1 of [8].

Lemma 7. Let A be a Banach K-algebra and D a Banach A-module
such that ‖K‖ = ‖A‖ = ‖D‖. Then a subset T of D is an ON basis for D
over A if and only if T ⊂ D0 and the image of T in D is a free basis of D
over A.

Let Ω be a fixed K-affinoid rigid analytic space such that Ω(K) 6= ∅.
We denote its affinoid algebra by AΩ. By k ∈ Ω we mean k ∈ Ω(Ka). Let
K(k) denote the field OΩ,k/mΩ,k (which is a finite extension of K), Ok its
ring of integers, $k a uniformizer of it and F(k) = Ok/($k).

Definition 8. Let D be a K-Banach space and S a semigroup. Set
DΩ = AΩ ⊗̂K D with the obvious AΩ-Banach module structure, with AΩ
acting on the left. A $-adic family of S-modules over Ω of type D is an
AΩ-S-module structure on the AΩ-Banach module DΩ.

Let DΩ be a $-adic family of S-modules over Ω of type D. Given k ∈ Ω,
let evk : AΩ → K(k) denote evaluation at k. We obtain the K(k)-S-module
Dk := K(k) ⊗̂AΩ ,evk DΩ. We denote the resulting S-action on Dk by d|ks.

For each k ∈ Ω, transitivity of tensor product gives a natural identifica-
tion Dk = K(k)⊗K D as K(k)-Banach spaces. For s ∈ S, D0

k|ks ⊂ D0
k.

If y ∈ DΩ = AΩ ⊗̂ D, let y(k) denote the specialization of y at k ∈ Ω.
We extend specialization to chains as follows: Apply Remark 5 to the case
A1 = AΩ, A2 = K(k), M1 = DΩ and M2 = Dk, with f being evaluation at k
and φ specialization at k. Denote φ∗ by σk : Ci(DΩ)→ Ci(Dk). If s ∈ S, this
is an s̃-equivariant chain map. We can describe σk alternatively in terms of
the ξi’s of Definition 3 as the map ξ−1

i,k ◦ φ
ri ◦ ξi,Ω.

Suppose DΩ is a $-adic family of S-modules over Ω of type D. The chains
Cj(DΩ) are given the structure of AΩ-Banach module via the isomorphism
ξj : Cj(DΩ)→ Dri

Ω = AΩ ⊗̂ Drj (Definition 3). Then Cj(D0
Ω) = Cj(DΩ)0.

Denote the boundary maps by ∂Ω in C∗(DΩ) and ∂k in C∗(Dk) for any
k ∈ Ω. From Lemmas 2 and 4 we obtain:

Lemma 9. Let DΩ be a $-adic family of S-modules over Ω of type D
and j ≥ 0. Then s̃ (given by formula (1)) acting on the right of Cj(DΩ)
is a morphism of AΩ-Banach modules of operator norm ≤ 1. Similarly,
∂Ω : Cj(DΩ)→ Cj−1(DΩ) is a morphism of AΩ-Banach modules of operator
norm ≤ 1, and it commutes with s̃. These statements remain true if Ω is
replaced with k and AΩ with K(k), for any k ∈ Ω.

4. Families that are constant modulo $

Definition 10. The $-adic family DΩ of S-modules over Ω of type D
is constant modulo $ if there exists an S-module structure on D such that
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DΩ is isomorphic as an AΩ-S module to AΩ⊗F D, where S acts on the latter
via the right factor and AΩ via the left factor.

Example 11. The following construction may be found in detail in [3].
Recall that G is a reductive Q-group split at p. Let K = Qp.

Let T denote a maximal K-split torus of Gp. Let X denote the K-
rigid analytic space that parametrizes Cp-valued characters of T (Zp). If k ∈
X (Ka), we use the notation tk to denote the evaluation of k on t. We fix an
open K-affinoid neighborhood Ω of k0 with the properties

(1) AΩ = OX (Ω) is a Tate algebra;
(2) for any t ∈ T (Zp), the function on Ω sending t to tk is in AΩ;
(3) tk ≡ tk0 (mod p) for all k ∈ Ω and t ∈ T (Zp).

Let I be an Iwahori subgroup of G(Zp) containing T (Zp). Let X denote
the corresponding “big cell”. It is a p-adic manifold. There is a cone T+

in T (Qp) such that the semigroup T+I acts naturally on X on the right.
We construct D := Dk0 as a family of distributions on X, making T act
through the character k0. Then DΩ is a family of T+I-modules over Ω of
type D which is constant modulo $. For each k, T+I acts on Dk through
the character k. Let Γ ′ ⊂ G(Z) be a congruence subgroup and S′ ⊂ G(Q) a
subsemigroup containing Γ ′. Set Γ = Γ ′ ∩ I and S = S′ ∩ T+I. We assume
that (Γ, S) is a Hecke pair with commutative Hecke algebra.

We choose an element π ∈ T+ such that all the negative roots evalu-
ated on π have positive p-adic ord. Then Hypothesis 17 below will hold if
Hypothesis 16 holds for this π. In this case, Theorem 6.4.1 of [3] implies
that any ordinary package of Hecke eigenvalues occurring on H∗(Dk) also
occurs in H∗(Vk) if k is integral dominant and Vk is the finite-dimensional
irreducible module with weight k.

We return to the general situation. If DΩ is constant modulo $, then
d|k1s ≡ d|k2s (mod $) for any k1, k2 ∈ Ω, d ∈ D0 and s ∈ S. Thus, the
action of S on x ∈ Dk is independent of k and will be denoted simply
by x|s. Also the homology groups H∗(Dk) as H-modules are independent
of k.

Fix k0 ∈ Ω(K). The following lemma follows directly from the defini-
tions:

Lemma 12. Let DΩ be a $-adic family of S-modules over Ω of type D
that is constant modulo $. Let i ≥ 0 and s ∈ S.

(1) Define ηk : Ci(Dk)→ Ok/$ ⊗F Ci(Dk0) by

ηk

(∑
β

fβ ⊗Γ dβ
)

=
∑
β

fβ ⊗Γ dβ



A constructive approach to p-adic deformations 311

for any fβ ∈ Fi and dβ ∈ D. Then ηk is an isomorphism of Ok/$-
Banach modules which is equivariant for the action of s̃.

(2) Define ηΩ : Ci(DΩ)→ AΩ ⊗F Ci(Dk0) by

ηΩ

(∑
β

fβ ⊗Γ (aβ ⊗F dβ)
)

=
∑
β

aβ ⊗F (fβ ⊗Γ dβ)

for any fβ ∈ Fi, dβ ∈ D, and aβ ∈ AΩ. Then ηΩ is an isomorphism
of AΩ-Banach modules which is equivariant for the action of s̃.

(3) ηk ◦ σk = σk ◦ ηΩ, where as above σk denotes specialization at k.

Definition 13. Let x̂ ∈ Ci(D0
k0

). A proper lift of x̂ is an element x◦ ∈
Ci(D0

Ω) such that

(1) σk0(x◦) = x̂;
(2) ηk(ρ(σk(x◦))) = ρ(x̂) for all k ∈ Ω, where ρ denotes reduction mod-

ulo $.

Lemma 14. Let DΩ be a $-adic family of S-modules over Ω of type D
that is constant modulo $. Then proper lifts always exist.

Proof. Let x̂ ∈ Ci(D0
k0

). Let ξΩ : Ci(DΩ) → Dri
Ω = AΩ ⊗̂ Dri

k0
and ξk0 :

Ci(Dk0) → Dri
k0

be the maps defined in Definition 3. Let 1Ω denote the
constant function 1 on Ω. Then ξ−1

i,Ω(1Ω ⊗ ξk0(x̂)) is a proper lift of x̂.

The following lemma gives us a general way to find ON bases for chain
spaces.

Lemma 15. Let DΩ be a $-adic family of S-modules over Ω of type D
that is constant modulo $. Let {ẑm} be a set of elements in Ci(D0

k0
). Let zm

be the reduction modulo $ of ẑm in Ci(Dk0). For each m, choose a proper
lift z◦m of ẑm. Assume that {zm} is an F-basis of Ci(Dk0). Then {z◦m} is an
ON basis of Ci(DΩ).

Proof. By Lemma 7 it is enough to show that {ρ(z◦m)} is a free AΩ-
basis of Ci(DΩ). By Lemma 12 it suffices to see this after applying ηΩ. But
ηΩ(ρ(z◦m)) = 1Ω ⊗ zm ∈ AΩ ⊗F Ci(Dk0), as may be seen by specializing at
each k, using Lemma 12(3), and the definition of proper lift.

5. Hypotheses on the “Up” operator. For the rest of this paper
we assume that DΩ is a $-adic family of S-modules over Ω of type D and
constant modulo $. Let F be the residue field of Ka, which is an algebraic
closure of F.

Fix α : H → F a ring homomorphism. For any H⊗F-module W , denote
by Wα the generalized α-eigenspace of W .

Fix π ∈ S and a p-adic unit λ ∈ O and set u = λ−1ΓπΓ ∈ H. We shall
assume the following Hypotheses 16 and 17.
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Hypothesis 16. α(u) = 1.

Since α(u) = 1, we have Hj(D̃k)α ⊂ Hj(D̃k)|u.
Set υ = λ−1π̃, where π̃ on C∗(DΩ) is given by formula (1) in Section 2

(for s = π). Thus, for any j and any k ∈ Ω, we obtain |υ acting on Cj(DΩ),
stabilizing Cj(D0

Ω), and |kυ acting on Cj(Dk), stabilizing Cj(D0
k).

Hypothesis 17. For each j ≥ 0, υ acts completely continuously on
Cj(DΩ).

If π acts completely continuously on DΩ, then Hypothesis 17 holds au-
tomatically.

Set D̃k = D0
k/$kD0

k. The next lemma follows immediately from complete
continuity and the fact that α(u) = 1.

Lemma 18. Let j ≥ 0 and k ∈ Ω. The following modules are finitely
generated: (1) Cj(DΩ)|υ over AΩ; (2) Ci(D̃k)|υ over F(k); (3) Hj(D̃k)|u
over F(k); (4) Hj(D̃k)α over F(k).

Definition 19. Set di(k) = dimF(k)Hi−1(D̃k)α.

Lemma 20. Let j ≥ 0, {ta | a = 1, . . . , n} ⊂ H, {ca | a = 1, . . . , n} ⊂
OKa. Let τ = (t̃1− c1) · · · (t̃n− cn) where each t̃a is the lift of ta to the chain
level given by formula (1). Let

e(υτ) = lim
m→∞

(υτ)m!.

Then the limit exists and e(υτ) acts on Cj(DΩ) as an AΩ-linear idempotent
(hence of norm 1, unless e(υτ) = 0).

Proof. This follows from Lemma 31 in Section 9 applied to ξ−1
i ◦(υτ)◦ξi

(where ξi is the isometry defined in Definition 3).

We are going to create this idempotent when τ is chosen to project onto
the α-eigenspace, as follows:

Lemma 21. Let J be a finite set of nonnegative integers and k ∈ Ω.
There exists a finite extension K ′/K and T ∈ H ⊗ K ′ such that for all
j ∈ J ,

(1) T induces an idempotent in EndF(k)(Hj(D̃k)|u), and
(2) T projects Hj(D̃k)|u onto Hj(D̃k)α.

Proof. The finite-dimensional F(k)-vector space
⊕

J Hj(D̃k)|u can be de-
composed over the algebraic closure F into generalized H-eigenspaces. For
each homomorphism β : H → F such that β 6= α and with the property that
[
⊕

J Hj(D̃k)|u]β 6= 0, choose Tβ ∈ H such that α(Tβ) 6= β(Tβ). Let eβ be
the cardinality of F(k)[β(Tβ)]×. Fix a lifting of β to β̂ : H → OKa . Then we
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may take
T =

∏
β 6=α

(Tβ − β̂(Tβ))eβδ

where δ is a sufficiently large power of p.

Fix k ∈ Ω and choose Tβ’s as in the proof of Lemma 21. We lift each Tβ
to a chain map T̃β as in equation (1) of Section 2. Set

τ =
∏
β 6=α

(T̃β − β̂(Tβ))eβδ

where the product is taken in any (fixed) order. We also enlarge K if neces-
sary, so that we may assume that k ∈ Ω(K) and all β̂(Tβ) ∈ K.

Definition 22. With the choices above, set e = e(υτ).

Lemma 23. e is an AΩ-linear idempotent on
⊕

J Hj(DΩ) and for each
k ∈ Ω,

⊕
J Hj(D̃k)|e =

⊕
J Hj(D̃k)α.

Proof. This follows from the definition of e, the fact that u acts invertibly
on
⊕

J Hj(D̃k)α, and Lemma 21.

6. ON bases of type (k, e, j). Recall that we have denoted the reduc-
tion map modulo $ by ρ. We now define a special kind of ON basis for
Cj(DΩ).

Denote groups of boundaries by B∗ and groups of cycles by Z∗. By
Hypothesis 17, Bj(Dk)|e is a finite-dimensional F-vector space. The following
lemma is obvious because ρ, e and ∂ all commute with each other.

Lemma 24. {ρ(∂kv̂) | v̂ ∈ Cj+1(D0
k)|e} = Bj(Dk)|e ⊂ Zj(Dk)|e.

Definition 25. Let j ∈ J and assume that j+1 ∈ J . We fix k ∈ Ω(K),
chain maps υ and τ as above, and denote by e the idempotent e(υτ).

An ON basis of type (k, e, j) is a triple (B, X, Y ) where X and Y are
finite sets, X ∈ Cj(D0

k)|e, Y ∈ Cj+1(D0
k)|e and B is an ON basis of Cj(DΩ)

such that
B = {bp, wq, cr} ⊂ Cj(D0

Ω),

where

(1) for each q, there exists x̂q ∈ X such that wq is a proper lift of x̂q in
Cj(D0

Ω)|e;
(2) for each p, there exists ŷp ∈ Y such that bp = ∂Ω(y◦p) for some proper

lift y◦p of ŷp in Cj+1(D0
Ω)|e;

(3) the set {ρ(∂kŷ) | ŷ ∈ Y } is an F-basis of Bj(Dk)|e, and {ρ(x̂), ρ(∂kŷ) |
x̂ ∈ X, ŷ ∈ Y } is an F-basis of Zj(Dk)|e.
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Lemma 26. An ON basis {bp, wq, cr} of type (k, e, j) exists for Cj(DΩ).
The index q takes on d = dj+1(k) values (Definition 19).

Proof. We know that Cj(Dk)|e is finite and that

Zj(Dk)|e/Bj(Dk)|e = Hj(Dk)|e = Hj(Dk)α

has F-dimension d (see Lemma 23). Therefore, in view of Lemma 24, we can
choose a finite set Y = {ŷp} ⊂ Cj+1(D0

k)|e such that

{ρ(∂kŷ) | ŷ ∈ Y }

is an F-basis of Bj(Dk)|e, and a finite set X = {x̂q} ⊂ Cj(D0
k)|e of cardinal-

ity d such that
{ρ(x̂), ρ(∂kŷ) | x̂ ∈ X, ŷ ∈ Y }

is an F-basis of Zj(Dk)|e. Let wq be a proper lift of x̂q in Cj(D0
Ω)|e and

let bp = ∂Ω(y◦p) where y◦p is a proper lift of ŷp in Cj+1(D0
Ω)|e. Next choose

ĉr ∈ Cj(D0
k) such that {ρ(ŷp), ρ(x̂q), ρ(ĉr)} is an F-basis of Cj(Dk). Let cr be

a proper lift of ĉr. Using Lemma 15 we see that {bp, wq, cr} is an ON basis
of type (k, e, j) of Cj(D0

Ω).

7. Main theorem

Theorem 27. Fix i and set J = {i − 1, i, i + 1}. Let υ, τ , and e be as
in Definition 22 for k = k0. Let (B, X, Y ) = {bp, wq, cr} be an ON basis
of Ci−1(DΩ) of type (k0, e, i − 1). For each ŷp ∈ Y , set βp = y◦p, so that
bp = ∂Ω(βp).

Consider a chain z ∈ Ci(D0
k0

). Let z ∈ Ci(Dk0) be the reduction modulo
$ of z. Assume that z is a cycle and let ζ denote its homology class. Assume
further that ζ ∈ Hi(Dk0)α − {0}. Choose a proper lift z◦ of z.

Write

(2) ∂Ω(z◦)|e =
∑
p

fpbp +
di(k0)∑
q=1

gqwq +
∑
r

hrcr

for some functions fp, gq, hr ∈ AΩ.
Let

Z = (z◦)|e−
∑
p

fpβp

and V be the zero locus of the ideal generated by the gq in AΩ. Then

(1) If k ∈ V , then Z(k) is a cycle in Zi(D0
k) and the homology class of

the reduction modulo $ of Z(k) is congruent to ζ modulo $ and in
particular is nonzero.

(2) If k ∈ V , then for any r, hr(k) = 0.
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Proof. Recall that for any k ∈ Ω, $k is a uniformizer in Ok. Write
a ∈ Ok/$ for the reduction of a modulo $ (not modulo $k) for a ∈ Ok.

(1) First note that in fact fp, gq, hr ∈ A0
Ω, because the left hand side

of equation (2) is integral and B is an ON basis. Since the family DΩ is
constant modulo $ and z is a cycle, we obtain, upon reducing formula (2)
modulo $ and specializing at any k ∈ Ω,

0 =
∑
p

fp(k)bp(k) +
∑
q

gq(k)wq(k) +
∑
r

hr(k)cr(k).

By the freeness of {bp(k), wq(k), cr(k)} over Ok/$, we conclude that 0 ≡
fp(k) ≡ gq(k) ≡ hr(k) (mod $) for all k, p, q, r. In particular, for all k,
Z(k) ≡ z|ke (mod $). Therefore, if we reduce Z(k) modulo $, the resulting
cycle is homologous to ζ|e = ζ.

Set d = di(k0). By equation (2),

∂ΩZ =
d∑
q=1

gqwq +
∑
r

hrcr.

Therefore for any k ∈ Ω,

∂k(Z(k)) =
d∑
q=1

gq(k)wq(k) +
∑
r

hr(k)cr(k).

Fix a k such that gq(k) = 0 for all q. Then

∂k(Z(k)) =
∑
r

hr(k)cr(k).

Now suppose that
∑

r hr(k)cr(k) 6= 0. Let m be the largest integer such
that hr(k) is divisible by $m

k for all r. Since ∂k and |ke both commute with
multiplication by constants in K(k), and because Z|e = Z, we see that

∂k

(
Z(k)
$m
k

)
=
∑
r

hr(k)
$m
k

cr(k)

is fixed under |ke. Also, for some r, $m+1
k does not divide hr(k).

Although Z(k)/$m
k is not necessarily integral, the right hand side of the

preceding formula shows that ∂k(Z(k)/$m
k ) is integral, i.e. it is in Ci−1(D0

k),
because of how we chose m. Now reduce both sides modulo $k. Because ∂2

k
= 0, the left hand side modulo $k reduces to a cycle in Zi−1(D0

k/$kD0
k)|e ≈

Ok/$k ⊗O Zi−1(Dk0)|e. Denoting reduction modulo $k by a tilde, we see
that the left hand side modulo $k is in the Ok/$k-span of {b̃p(k), w̃q(k)}.

But the right hand side reduces modulo $k to something nonzero in the
Ok/$k-span of {c̃r(k)}. This contradicts the freeness of {b̃p(k), w̃q(k), c̃r(k)}
over Ok/$k. Hence ∂k(Z(k)) =

∑
r hr(k)cr(k) = 0.
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(2) What we have just seen implies that if k ∈ V then hr(k) = 0 for
all r, since the cr are part of an ON basis.

We do not know how V depends on the various choices made. In general,
V may be empty. We can get a lower bound on the dimension of V as follows.

Corollary 28. Assume that AΩ is a Tate algebra and let d = di(k0).
Assume k0 ∈ Ω(K) and ηk0 ∈ Hi(D0

k0
) are given such that the reduction

modulo $ of ηk0 is an α-eigenclass. Then there exists a Zariski-closed sub-
space V of Ω of dimension at least dimΩ − d such that for each k ∈ V ,
there exists ηk ∈ Hi(D0

k) such that η̃k ∈ Hi(D0
k/$kD0

k)α − {0}. The family
{ηk} is analytic in the sense that there exists Z ∈ AV ⊗ Ci(Dk0) such that
for each k ∈ V , Z(k) is a cycle and ηk is its homology class. Moreover, if
ηk0 |k0e = ηk0, then the homology class of Z(k0) is ηk0.

Proof. Let z in Theorem 27 be a cycle that represents ηk0 . Then ∂k0z = 0.
From equation (2) specialized at k0, we obtain

0 = ∂k0z|k0e =
∑
p

fp(k0)bp(k0) +
d∑
q=1

gq(k0)wq(k0) +
∑
r

hr(k0)cr(k0).

Since {bp(k0), wq(k0), cr(k0)} form an orthonormal basis, the coefficients in
the sums must all vanish. In particular, gq(k0) = 0 for all q, so that k0 ∈ V .

The Tate algebra AΩ is a catenary ring. Since k0 ∈ V , V is not empty.
Hence the dimension of V is at least dimΩ − d by the Hauptidealsatz and
Lemma 26. The analytic nature of Z(k) as a function of k is clear from its
definition in Theorem 27. The last assertion of the corollary is clear.

Remark 29. Assume that ηk0 |e = ηk0 and that ηk0 is a Hecke eigen-
class. The homology class of the cycle Z(k) may not be a Hecke eigenclass.
However, by Lemma 32 below, we can find a dense open affinoid subset U of
a finite integral cover of V and an analytic family Z ′(k′) over U consisting
of cycles whose homology classes are Hecke eigenclasses whose eigenvalues
modulo $k′ are given by α. If in addition a certain multiplicity 1 result
holds for the homology over V , as specified in (3) of Lemma 32, we can find
U such that there is a point k∗ in U over k0 and the Hecke eigenvalues of
the homology class of Z ′(k∗) are the same as those of ηk0 .

Some or all of the homology classes ηk of Corollary 28 may be annihilated
by a power of $k. The following theorem gives us a way to rule out this
possibility under a certain condition.

Theorem 30. Suppose Hi+1(D0
k0
/$D0

k0
)α = 0. Then for each k ∈ V ,

the homology class of Z(k) in Corollary 28 is non-$k-power-torsion.

Proof. This follows from a standard Bockstein argument.
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8. Remarks on computations. In this section, we use the families
DΩ outlined in Example 11 in Section 4. The deformation space V in The-
orem 27 is effectively computable up to any desired degree of accuracy. We
can construct an ON basis of type (k0, e, i− 1) in such a way that there is a
partition of the r-indices into R1 and R2, with R1 finite with the following
properties:

(1) bp, wq and the cr, r ∈ R1, form a finite ON basis for Ci−1(D0
Ω)|e;

(2) the cr, r ∈ R2, form an ON basis for Ci−1(D0
Ω)|(1− e).

For any n, the computation modulo $n of fp, gq and the hr, r ∈ R1,
in equation (2) up to any desired degree of accuracy in the k-variable is a
finite computation. We do not need to compute the hr, r ∈ R2. In partic-
ular we can compute the gq modulo $n and thus their common zero set V
modulo $n up to any degree of accuracy.

To get a resolution F∗, we can use an explicit finite cell complex for a
classifying space of a normal torsion-free subgroup of Γ .

Consider the case of GL(3,Q). Fix a positive integerN . Let S0(N) denote
the subgroup of GL(3,Z) consisting of matrices whose first row is congruent
to (∗, 0, 0) modulo N , and with positive determinant. Set Γ0(N) = S0(N)∩
SL(3,Z).

Fix a prime p not dividing N . Let I denote the Iwahori subgroup of
GL(3,Zp) consisting of matrices that become upper triangular modulo p.
Set S = S0(N)∩ I and Γ = Γ0(N)∩ I. We work with the Hecke pair (Γ, S).
If ` is a prime, let D`,i denote the diagonal matrix with 3 − i 1’s and then
i `’s down the diagonal, for 1 ≤ i ≤ 3. Let T`,i denote the Hecke operator
corresponding to the double coset ΓD`,iΓ .

We choose N = 61, p = 5, and k0 = the trivial character. In [1] we
computed the homology of Γ0(61) with trivial coefficients, together with
the Hecke eigenvalues for ` ≤ 29. Choose a square root w of −3 in (Q5)a
and set K = Q5[w]. Up to scalar multiples, there is a unique quasicuspidal
Hecke eigenclass in H3(Γ0(61),K) with T2,1 acting by w. (A “quasicuspidal”
homology class is one that is not in the image of the Borel–Serre boundary
homology.) This class satisfies all of our hypotheses. Using Theorem 30, we
can show that the eigenclasses resulting from the application of Theorem 27
are non-p-power-torsion.

Theorem 6.4.1 in [3] plus unpublished computations of David Pollack
show that d = 1 for this example. By the main results of [2], if we look
at the subset V0 of V consisting of k ∈ V such that k is trivial on all
diag(1, 1, x) ∈ T (Zp), then at most finitely many of the weights in V0 can
be dominant integral. Therefore, in this example, the dimension of V is
exactly 2. I hope to report in the future on computations in collaboration
with David Pollack to determine approximations to the equation of V .
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9. Lemmas. In this section we state two lemmas whose proofs use stan-
dard techniques and will be omitted.

Lemma 31. Let A be a reduced K-affinoid Banach algebra, and D an
ON-able Banach K-module. Let DA = A ⊗̂ D. Let f0 : D → D and f1 :
DA → DA be completely continuous maps of norm ≤ 1, linear over K and
A respectively. Let f = f0 +$f1 : DA → DA. Then limm→∞ f

m! exists and
is an A-linear idempotent. The rate of convergence is uniform over Sp(A).

Lemma 32. Let Z(k), k ∈ V, be the cycles constructed in Corollary 28.
Let V ′ be an irreducible component of V with K-affinoid algebra R′. Assume
that for every k ∈ V ′, the homology class of Z(k) (which we know is nonzero)
is non-$k-power-torsion.

(1) There exists a finite, integral extension R′′ of R′, a special open sub-
set U ⊂ Sp(R′′), and w ∈ OU ⊗̂R′ Hi(R′ ⊗̂AΩ DΩ)|e such that w is a
generalized λ-eigenvector for the action of the Hecke algebra H for
some character λ : H → OU , w does not vanish at any point of U
and w can be represented by a cocycle which is analytic on U .

(2) Let λ0 : H → K be the character giving the action of H on Z(k0).
Let F ′′ be the field of fractions of R′′. Take λ as in (1). Suppose there
exists a point k∗ ∈ Sp(R′′) above k0 such that, for every character
µ : H → R′′ (other than λ) for which the generalized µ-eigenspace
of F ′′ ⊗̂R′ Hi(R′ ⊗̂AΩ DΩ)|e is nonzero, there exist Tµ such that
λ(Tµ)(k∗) 6= µ(Tµ)(k∗). Then we may choose U to contain k∗, and
λ(T )(k∗) = λ0(T ) for all T ∈ H.

(3) Suppose there exists a point k∗ ∈ Sp(R′′) above k0 such that, for
at most one character ν : H → R′′, F ′′ ⊗̂R′ Hi(R′ ⊗̂AΩ DΩ)|e has
nonzero generalized ν-eigenspace and ν(T )(k∗) = λ0(T ) for every
T ∈ H. Then such a ν does exist, and in (1) we may take λ = ν and
U containing k∗.
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