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On the topology of sums in powers
of an algebraic number
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1. Introduction and auxiliary results. Let q ∈ (1, 2) and put

Λn(q) =
{ n∑
k=0

akq
k
∣∣∣ ak ∈ {−1, 0, 1}

}
,

and Λ(q) =
⋃
n≥1 Λn(q). (It is obvious that the sets Λn(q) are nested.) The

question we want to address is the topological structure of Λ(q). Is it dense?
discrete? mixed?

The first important result has been obtained by A. Garsia [12]: if q is
a Pisot number (an algebraic integer greater than 1 whose conjugates are
less than 1 in modulus), then Λ(q) is uniformly discrete. On the other hand,
if q does not satisfy an algebraic equation with coefficients 0,±1, then it
is a simple consequence of the pigeonhole principle that 0 is a limit point
of Λ(q), and thus it is dense—see below.

Surprisingly little is known about the case when q is a root of a polyno-
mial with coefficients 0,±1. The most notable result is [11, Theorem I] in
which the authors prove in particular that if q < (1 +

√
5)/2 and q is not

Pisot, then Λ(q) has a finite accumulation point.
In this paper we study this case and give two sufficient conditions for

Λ(q) to be dense. These conditions are rather general and cover a substantial
subset of such q’s—see Theorems 2.1 and 2.4.

Put

Yn(q) =
{ n∑
k=0

akq
k
∣∣∣ ak ∈ {0, 1}}

and Y (q) =
⋃
n≥1 Yn(q). The set Y (q) is discrete and we can write its ele-

ments in ascending order:

Y (q) = {0 = y0(q) < y1(q) < y2(q) < · · · }.
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Following [11], we define

l(q) = lim
n→∞

(yn+1(q)− yn(q)).

Theorem 1.1 ([8]). If 0 is a limit point of Λ(q), then Λ(q) is dense
in R.

It is obvious that 0 is a limit point of Λ(q) if and only if l(q) = 0. This
yields

Corollary 1.2. The set Λ(q) is dense in R if and only if l(q) = 0.

The purpose of this paper is to find some wide classes of algebraic q for
which l(q) = 0.

Put for any β ∈ C,

Yn(β) =
{ n∑
k=0

akβ
k
∣∣∣ ak ∈ {0, 1}, 0 ≤ k ≤ n

}
and zn(β) := #Yn(β). It is obvious that zn(β) ≤ 2n+1.

In order to estimate zn(β) for |β| > 1, it is useful to consider the set

Aλ :=
{ ∞∑
k=0

akλ
k
∣∣∣ ak ∈ {0, 1}, k ≥ 0

}
, where λ = β−1.

We have |λ| < 1, so the series converges for any choice of the coefficients
ak ∈ {0, 1}. It is easy to see that the set Aλ is compact, being the image of
the infinite product space {0, 1}∞ under a continuous mapping. It satisfies
the set equation

Aλ = λAλ ∪ (1 + λAλ),

and can be characterized as the unique compact set with this property [14].
It is thus the attractor of the iterated function system {z 7→ λz, z 7→ λz+1}
in the complex plane; see [14] for details.

The sets Aλ with |λ| < 1 have been extensively studied in the “fractal”
literature; see e.g. [2, 4, 15, 21] and the book [3, Chapter 8.2]. Note that
some of these sources are concerned with the sets

Ãλ :=
{ ∞∑
k=0

akλ
k
∣∣∣ ak ∈ {−1, 1}, k ≥ 0

}
,

however, it is clear that Aλ = T (Ãλ), where T (z) = 1
2(z + (1− λ)−1), so all

the results immediately transfer.

Lemma 1.3.

(i) If λ ∈ C with |λ| ∈ (1/2, 1), then zn(λ) = #Yn(λ) ≥ |λ|−n−1 for
all n.
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(ii) If λ ∈ C with 2−1/2 ≤ |λ| < 1, and |Reλ| ≤ |λ|2 − 1/2, then
zn(λ) ≥ |λ|−2(n+1) for all n.

Proof. By the definition of the set Aλ, we have, for all n ≥ 0,

(1.1) Aλ =
⋃

z∈Yn(λ)

(z + λn+1Aλ).

(i) Suppose that the set Aλ is connected, and let u, v ∈ Aλ be such that
|u − v| = diam(Aλ). Then there exists a “chain” of distinct subsets Aj :=
zj + λnAλ ⊂ Aλ, j = 1, . . . ,m, with zj ∈ Yn(λ), such that u ∈ A1, v ∈ Am
and Aj ∩Aj+1 6= ∅ for all j ≤ m− 1. Therefore,

diam(Aλ) ≤
m∑
j=1

diam(Aj) = mdiam(λn+1Aλ)

≤ #Yn(λ)|λ|n+1 diam(Aλ),

and the claim follows. If, on the other hand, Aλ is disconnected, then
λAλ ∩ (λAλ + 1) = ∅. This is a general principle for attractors of iterated
function systems with two contracting maps (see [13, 4] or [3, Chapter 8.2]).
Therefore, in this case λ is not a zero of a power series with coefficients
{−1, 0, 1}, much less of a polynomial, hence zn(λ) = 2n+1 > |λ|−n−1 for
all n.

(ii) By [21, Prop. 2.6(i)], in view of the above remark concerning Ãλ, we
know that Aλ has nonempty interior for all λ in the open unit disc such that
0 ≤ |Reλ| ≤ |λ|2 − 0.5. Then from (1.1), for the Lebesgue measure L2, we
have

L2(Aλ) ≤ #Yn(λ)L2(λn+1Aλ) = zn(λ)|λ|2(n+1)L2(Aλ),

as desired.

Note that the proof of Lemma 1.3 does not use the fact that λ is nonreal.
Hence we obtain the following result as a direct corollary:

Lemma 1.4. If q ∈ (1, 2), then zn(±q) ≥ Cqn for some C > 0.

Remarks 1.5.

(i) Lemma 1.4 for +q was proved in [11], using the fact that yn+1(q)−
yn(q) ≤ 1 for all n and any q ∈ (1, 2).

(ii) With a bit more work one can show that in the setting of Lem-
ma 1.3(i) we have zn(λ) ≥ Cn|λ|−n for some Cn ↑ ∞, assuming that
λ is nonreal. However, this is not needed in this paper.

(iii) It follows from the results of [7, 17] that for any ϕ 6= 0, π, the set
Aλ has nonempty interior for λ = reiϕ with r sufficiently close to 1,
but it seems difficult to apply them in the absence of quantitative
estimates.
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Lemma 1.6. If β ∈ C \ {0}, then zn(β) = zn(1/β).

Proof. Define φ : Yn(β)→ Yn(1/β) as follows:

φ
( n∑
k=0

akβ
k
)

=
n∑
k=0

an−k(1/β)k.

A relation
∑n

k=0 akβ
k =

∑n
k=0 bkβ

k is equivalent to
∑n

k=0 akβ
k−n =∑n

k=0 bkβ
k−n, which in turn is equivalent to φ(

∑n
k=0 akβ

k) = φ(
∑n

k=0 bkβ
k).

Thus, φ is a bijection.

Lemma 1.7. Let q ∈ (1, 2). If zn(q)� qn (i.e., limn→∞ q
−nzn(q) = +∞),

then l(q) = 0.

Proof. Since
∑n

k=0 akq
k < qn+1/(q − 1), the result follows immediately

from the pigeonhole principle.

Consequently, if q is not a root of a polynomial with coefficients 0,±1,
then zn(q) = 2n+1, and l(q) = 0 (which is well known, of course—see,
e.g., [8]). If q is such a root, it is obvious that zn(q)� 2n, and the problem
becomes nontrivial. It is generally believed that l(q) = 0 unless q is Pisot,
but this is probably a very tough conjecture.

2. Main results. We need some preliminaries. Put

L(q) = lim
n→∞

(yn+1(q)− yn(q)).

Note that L(q) = 0 is equivalent to yn+1(q) − yn(q) → 0 as n → ∞. This
condition was studied in the seminal paper [11]; in particular, it was shown
that if q < 21/4 ≈ 1.18921 and q is not equal to the square root of the second
Pisot number ≈ 1.17485, then L(q) = 0 (1). It was also shown in the same
paper that L(

√
2) = 0.

It is worth noting that the two conditions l(q) = 0 and L(q) = 0 are,
generally speaking, very different in nature; for instance, l(q) = 0 for all
transcendental q, whereas L(q) = 1 for all q ≥ (1 +

√
5)/2 (see, e.g., [10])

and no q ∈ (
√

2, (1 +
√

5)/2) with L(q) = 0 is known.
Throughout this section we assume that q ∈ (1, 2) is a root of a polyno-

mial with coefficients 0,±1. It is easy to show that in this case any conjugate
of q is less than 2 in modulus.

Finally, recall that an algebraic integer q > 1 is called a Perron number
if each of its conjugates is less than q in modulus.

Theorem 2.1. If q ∈ (1, 2) is not a Perron number, then l(q) = 0. If,
in addition, q <

√
2 and −q is not a conjugate of q, then L(q) = 0.

(1) V. Komornik has recently shown [16] that the second condition can be removed,
so L(q) = 0 if q < 21/4.
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Proof. We first prove l(q) = 0. We have three cases.

Case 1: q has a real conjugate p and q < |p|. Since p is an algebraic
conjugate of q, it follows from Galois theory that the map ψ : Yn(q) →
Yn(p) given by ψ(

∑n
i=0 aiq

i) =
∑n

i=0 aip
i is a bijection. Hence zn(q) = zn(p)

≥ C|p|n by Lemma 1.4 and zn(q) � qn. Now the claim follows from Lem-
ma 1.7.

Case 2: q has a complex nonreal conjugate p and q < |p|. This case is
similar to Case 1: zn(q) = zn(p) ≥ C|p|n by Lemma 1.3(i) and zn(q)� qn.

Case 3: q has a conjugate p and q = |p|. Let f denote the minimal
polynomial for q. Then f(x) = g(xm) for some m ≥ 2 by [6]. Put β = qm.
We have

Ymk(q) = {a0 + a1β
1/m + a2β

2/m + · · ·+ amkβ
n | ai ∈ {0, 1}}

= {A1 + β1/mA2 + β2/mA3 + · · ·+ β(m−1)/mAm :

A1 ∈ Yk(β), Ai ∈ Yk−1(β), 2 ≤ i ≤ m}.
Observe that any relation of the form

A1 + β1/mA2 + · · ·+ β(m−1)/mAm = A′1 + β1/mA′2 + · · ·+ β(m−1)/mA′m

implies A1 = A′1, . . . , Am = A′m. Indeed, if q satisfies an equation B1 +
qB2 + · · · + qm−1Bm = 0 with Bi ∈ Z[qm], then qe2πij/m satisfies the same
equation for j = 1, . . . ,m − 1, hence Bi = 0 for all i. Thus, zmk

(
β1/m

)
=

zk(β)(zk−1(β))m−1.
Now, if q ≥ 21/m, then β ≥ 2, so zk(β) = 2k+1, and we see from the

above argument that for n = mk we have zn(q) ≥ C2n � qn. Otherwise
zn(q) ≥ zn(β) ≥ Cβn � qn. Hence by Lemma 1.7, l(q) = 0.

Let us now prove the second part of the theorem. Suppose q <
√

2 is
not Perron and −q is not its conjugate; then q has a conjugate α 6= −q
with |α| ≥ q. Thus, q2 has a conjugate α2, and |α|2 ≥ q2 with α2 6= q2.
If |α| >

√
2, then α2 (and hence q2) is not a root of a −1, 0, 1 polynomial.

Otherwise, we can apply the first part of this theorem to q2. In either case,
l(q2) = 0, whence by [10, Theorem 5], L(q) = 0.

Remark 2.2. Stankov [22] has proved a similar result for the set

(2.1) A(q) =
{ n∑
k=0

akq
k
∣∣∣ ak ∈ {−1, 1}, n ≥ 1

}
.

More precisely, he has shown that if A(q) is discrete, then all real conjugates
of q are of modulus strictly less than q.

Corollary 2.3. If q ∈ (1, 2) is the square root of a Pisot number and
not itself Pisot, then l(q) = 0.
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Proof. If q =
√
β and β is Pisot, then either −q is a conjugate of q, or q

is Pisot.

Theorem 2.4.

(i) Suppose q ∈ (1, 2) has a conjugate α such that |α|q < 1. Then
l(q) = 0, and consequently Λ(q) is dense in R.

(ii) Suppose q ∈ (1, 2) has a nonreal conjugate α such that |α|q = 1.
Then l(q) = 0.

If, in addition, q <
√

2 in either case, then L(q) = 0.

Proof. (i) As above, we have zn(q) = zn(α). On the other hand, by
Lemma 1.6, zn(α) = zn(1/α), and by Lemmas 1.4 and 1.3, zn(1/α) ≥
C(|1/α|)n. Hence zn(q) ≥ C(|1/α|)n � qn, in view of |αq| < 1. Hence
by Lemma 1.7, l(q) = 0.

If q <
√

2, then q2 has a conjugate α2, and q2|α|2 < 1. Hence l(q2) = 0,
whence L(q) = 0.

(ii) Denote α1 = q, α2 = α, and α3 = α. Since |α|q = 1 and α is nonreal,
we have three conjugates satisfying α2

1α2α3 = 1. Smyth [20, Lemma 1]
characterizes such situations, but it is easier for us to proceed directly.
The Galois group of the minimal polynomial for q is transitive, so there
is an automorphism of the Galois group mapping α1 to α2. We deduce that
α2

2αiαj = 1 for some distinct conjugates αi and αj of α1. But this implies
max{|αi|, |αj |} ≥ α1 = q, hence q is not a Perron number, and l(q) = 0 by
Theorem 2.1.

If q <
√

2, then q2|α2| = 1, and (ii) applies to q2, unless α2 ∈ R. In the
latter case α = ±i/q, whence the minimal polynomial for q contains only
powers divisible by 4. Hence the minimal polynomial for q2 contains only
even powers, which implies that −q2 is conjugate to q2, whence q2 is not
Perron, and l(q2) = 0.

Remark 2.5. If |α|q = 1 and α is real, we do not know if l(q) = 0.
In fact, this includes the interesting (and probably, difficult) case of Salem
numbers (2).

Definition 2.6. We say that an algebraic integer q > 1 is anti-Pisot if
it has only one conjugate less than 1 in modulus and at least one conjugate
greater than 1 in modulus other than q itself.

Corollary 2.7. If q ∈ (1, 2) is anti-Pisot and also a root of a polyno-
mial with coefficients in {−1, 0, 1}, then l(q) = 0.

(2) Recall that an algebraic number q > 1 is called a Salem number if all its conjugates
have absolute value no greater than 1, and at least one has absolute value exactly 1.
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Proof. Let α = α1, α2, . . . , αk−1, q be all the conjugates of q. We have
|
∏k−1
j=1 αj |q = 1, because q satisfies an algebraic equation with coefficients

0,±1, whence its minimal polynomial must have a constant term ±1.
Suppose |α| < 1; then it is clear that α ∈ R (since it is unique). If |α2| > 1

and |αj | ≥ 1 for j = 3, . . . , k − 1, then it is obvious that |α|q ≤ |α2|−1 < 1,
i.e., the condition of Theorem 2.4(i) is satisfied.

3. Examples

Example 3.1. Let q ≈ 1.22074 be the positive root of x4 = x + 1.
Then q has a single conjugate α ≈ −0.72449 inside the open unit disc and
no conjugates of modulus 1, whence q is anti-Pisot, and by Corollary 2.7,
l(q) = 0. Furthermore, q <

√
2, whence L(q) = 0 as well.

Note that q > 21/4, so we cannot derive the latter claim immediately
from [11, Theorem IV].

Example 3.2. An example of q with a real conjugate α which is not anti-
Pisot but still satisfies the condition of Theorem 2.4(i), is the appropriate
root of x5 = x4 + x2 + x− 1. Here q ≈ 1.52626 and α ≈ 0.59509.

Example 3.3. For the equation x5 = x4−x2+x+1 we have q ≈ 1.26278
and |α| ≈ 0.74090 so |α|q ≈ 0.93559 (and α /∈ R). By Theorem 2.4(i),
L(q) = 0.

Example 3.4. For the equation x8 = x7 +x6 +x5−x4−x3−x2 +x− 1
we have q ≈ 1.52501. Among its conjugates is α ≈ 0.3741 + 0.52404i with
|α| ≈ 0.64387 < 1/q = 0.65574, so again l(q) = 0 by Theorem 2.4(i). Note
that q >

√
2 so we cannot claim L(q) = 0.

Example 3.5. The following example illustrates Theorem 2.4(ii). Let
q ≈ 1.19863 be the largest root of x12 = x9 + x6 + x3 − 1; then α = ζq−1 is
a root of this equation as well, where ζ is any complex nonreal cubic root
of unity. Hence q|α| = 1, and Theorem 2.4(ii) applies, i.e., L(q) = 0. Note
that q = 3

√
β, where β is a quartic Salem number.

Example 3.6. For the equation x11 = x10 +x9−x6 +x4−x2−1 we have
q ≈ 1.5006. Among its conjugates is λ ≈ 0.02625 + 0.7414i. Theorem 2.4
does not apply, but we can use Lemma 1.3(ii) to obtain

zn(q) = zn(λ) ≥ |λ|−2(n+1) ≈ 1.81696n+1 � qn,

which implies that l(q) = 0. Note that Lemma 1.3(ii) indeed applies, because
0.02625 ≈ Reλ < |λ|2 − 1/2 ≈ 0.05037.

Example 3.7. Consider the equation x18 = −x16+x14+x11+x10+· · ·+
x+ 1 (no powers missing between x10 and 1). It has a root q ≈ 1.22289, and
the conjugates largest in modulus are u, u approximately equal to −.03958±
1.3109i. Then Theorem 2.1 implies L(q) = 0.
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It is worth mentioning that there is another way to obtain this result.
Consider q2 and its conjugates u2, u2. We claim that although |u2| < 2,
u2, and hence q2, is not a zero of a −1, 0, 1 polynomial (whence l(q2) = 0,
which implies L(q) = 0).

Indeed, if it were, then q−2, u−2, (u)−2 would also be zeros of such a
polynomial. However, the product of these three numbers is ≈ 0.226024, so
this is impossible, in view of the following

Claim. Suppose z1, z2, z3 are three different roots of a −1, 0, 1 polyno-
mial. Then |z1z2z3| ≥ 1/2 · (4/3)−3/2 = 0.32476 . . . .

This claim is a slight generalization of [5, Theorem 2]; see [19, Theo-
rem 2.4].

Example 3.8. Finally, an example of q for which none of our criteria
works is the real root of x5 = x4 + x3 − x + 1. Here q ≈ 1.54991, and the
other four conjugates are nonreal, with the moduli ≈ 1.04492 and ≈ 0.76871
respectively.

Another example is any Salem number q ∈ (1, 2), for instance q ≈
1.72208 which is a root of x4 = x3 + x2 + x − 1 (which is of course none
other than β from Example 3.5).

4. Final remarks and open problems

4.1. Our first remark concerns the case q ∈ (m,m+1) with m ≥ 2. Here
the natural definition for Λ(q) is

Λ(q) =
{ n∑
k=0

akq
k
∣∣∣ ak ∈ {−m,−m+ 1, . . . ,m− 1,m}, n ≥ 1

}
.

Theorem 2.4 holds for this case, provided α ∈ R (and so does Case 1 of
Theorem 2.1)—the proof is essentially the same. The case of nonreal α is
less straightforward, since there is no ready-to-apply complex machinery for
m ≥ 2. (Basically, we need that if α is a zero of a polynomial with coeffi-
cients in {−m, . . . ,m}, then the attractor of the iterated function system
{αz + j}mj=0 in the complex plane is connected. This can be verified for
m = 2, 3 but we do not know if this is true in general.) Note also that an
analogue of Theorem 1.1 for m ≥ 2 has been proved in [9].

4.2. We do not know whether the extra condition that −q is not a
conjugate of q is really necessary in the second claim of Theorem 2.1. In
particular, is it true that L(

√
ϕ) = 0 if ϕ is the golden ratio?

4.3. In [18, Proposition 1.2] it is shown that if q <
√

2 and q2 is not a
root of a polynomial with coefficients 0,±1, then the set A(q) given by (2.1)
is dense in R. In fact, what the authors use in their proof is the condition
l(q2) = 0. Consequently, Theorems 2.1 and 2.4 provide sufficient conditions
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for A(q) to be dense in the case when q2 satisfies an algebraic equation with
coefficients 0,±1.

4.4. Is l(q) = 0 for q in Example 3.8 and suchlike?

4.5. All our criteria suggest that l(q) = 0 implies L(q) = 0 for q <
√

2.
Is this really the case?
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Added in proof (June 2011). In the recent paper by Sh. Akiyama and V. Komornik
[1] several results mentioned in the introductory part of the present paper have been
significantly improved, namely:

• If q ∈ (1,
√

2] is non-Pisot, then l(q) = 0 and A(q) is dense in R.
• If q ∈ (

√
2, 2) is non-Pisot, then Λ(q) has a finite accumulation point.

• For q ∈ (1, 21/3] we have L(q) = 0.
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