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1. Introduction. Let K/k be an extension of number fields and let OK
and Ok be their rings of integers. By Theorem 1.13 in [Na] we know that

OK ∼= O[K:k]−1
k ⊕ I,

where I is an ideal of Ok. By Theorem 1.14 in [Na] the Ok-module structure
of OK is determined by [K : k] and the ideal class of I. This class is called
the Steinitz class of K/k and we will indicate it by st(K/k). Let k be a
number field and G a finite group; then we define

Rt(k,G) = {x ∈ Cl(k) : ∃K/k tame, Gal(K/k) ∼= G, st(K/k) = x}.
It is conjectured that this subset of Cl(k) is always a subgroup. The problem
has been studied by a lot of authors since the 1960s and Rt(k,G) has been
proved to be a group for some particular choices of G. In particular the
conjecture for finite abelian groups is a consequence of a paper by Leon Mc-
Culloh of 1987 ([MC2]). Other results from literature cover some particular
nonabelian groups: see for example [B], [BS], [BGS], [Ca1], [Ca2], [CaS], [E],
[GS1], [GS2], [Lo1], [Lo2], [MS], [MC1], [S1], [S2] and [Sov].

The study of realizable Steinitz classes is closely connected to a similar
question involving Galois module structure. In that context Rt(Ok[G]) de-
notes a subset of the locally free class group Cl(Ok[G]) and is defined in a
similar way to Rt(k,G). Again Rt(Ok[G]) is conjectured to be a group, which
is in some sense a generalization of the conjecture about Steinitz classes.

In this paper we will study Rt(k,G) when G is a semidirect product of
the form C(ln) o C(l), where l is an odd prime number and C(m) denotes
a cyclic group of order m. We will use the notation and some techniques
from [C2] to prove the conjecture for such groups and to give an explicit
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description of Rt(k,G). In particular the case n = 2 is interesting because,
together with [B], it completes the study of realizable Steinitz classes for
groups of order l3. We will also give an alternative proof of the results
of [B], based on class field theory.

Some of the results in this paper are parts of the author’s PhD thesis [C1].

2. Preliminary results. We start by recalling the following two fun-
damental results.

Theorem 2.1. If K/k is a finite tame Galois extension then

d(K/k) =
∏
p

p(ep−1)[K:k]/ep ,

where ep is the ramification index of p.

Proof. This follows by Propositions 8 and 14 of Chapter III of [L].

Theorem 2.2. Assume K is a finite Galois extension of a number field k.

(a) If the Galois group of K/k either has odd order or has a noncyclic
2-Sylow subgroup then d(K/k) is the square of an ideal and this ideal
represents the Steinitz class of the extension.

(b) If the Galois group is of even order with a cyclic 2-Sylow subgroup
and α is any element of k whose square root generates the quadratic
subextension of K/k then d(K/k)/α is the square of a fractional
ideal and this ideal represents the Steinitz class of the extension.

Proof. This is a corollary of Theorem I.1.1 in [E]. In particular it is shown
in [E] that in case (b), K/k has exactly one quadratic subextension.

Further, considering Steinitz classes in towers of extensions, we will need
the following proposition.

Proposition 2.3. Suppose K/k1 and k1/k are extensions of number
fields. Then

st(K/k) = st(k1/k)[K:k1]Nk1/k(st(K/k1)).

Proof. This is Proposition I.1.2 in [E].

We will also use some other preliminary results.

Lemma 2.4. Let m,n, x, y be integers. If x ≡ y (mod m) and any prime
q dividing n also divides m then

xn ≡ yn (mod mn).

Proof. Let n = q1 . . . qr be the prime decomposition of n (qi and qj with
i 6= j are allowed to be equal). We prove by induction on r that xn ≡ yn

(mod mn). If r = 1, then mn = mq1 must divide mq1 and there exists b ∈ N



Steinitz classes of extensions 349

such that

xn = (y + bm)q1 = yq1 +
q1−1∑
i=1

(
q1
i

)
(bm)iyq1−i + (bm)q1 ≡ yn (mod mn).

Let us assume that the lemma is true for r − 1 and prove it for r. Since
qr |m, as above, for some c ∈ N we have

xn = (yq1...qr−1 + cmq1 . . . qr−1)qr

= yn +
qr∑
i=1

(
qr
i

)
(cmq1 . . . qr−1)iyq1...qr−1(qr−i) ≡ yn (mod mn).

Definition 2.5. Let K/k be a finite abelian extension of number fields,
let Jk be the group of ideals of k, let Pk be the group of principal ideals,
let m be a cycle of declaration of K/k and let Hm

K/k be the kernel of the

Artin symbol
(K/k
·
)

: Jm
k → Gal(K/k), where Jm

k is the group of all ideals
of k prime to m. Then we define the subgroup W (k,K) of the ideal class
group of k in the following equivalent ways (the equivalence is shown in [C2,
Proposition 2.10]):

W (k,K) = Hm
K/k · Pk/Pk,

W (k,K) = {x ∈ Jk/Pk : x contains infinitely many primes of absolute
degree 1 splitting completely in K},

W (k,K) = {x ∈ Jk/Pk : x contains a prime splitting completely in K},
W (k,K) = NK/k(JK) · Pk/Pk.

In the case of cyclotomic extensions we will also use the shorter notation
W (k,m) = W (k, k(ζm)).

Lemma 2.6. Let m,n be integers. If any prime q dividing n also divides
m then W (k,m)n ⊆W (k,mn).

Proof. Let x ∈ W (k,m). By definition and by Lemma 2.11 from [C2],
x contains a prime ideal p prime to mn and such that Nk/Q(p) ∈ Pm

Q , where
m = m · p∞ and Pm

Q is the group of all principal ideals in Z generated by a
natural number a ≡ 1 (mod m). Then, by Lemma 2.4, Nk/Q(pn) ∈ P n

Q with
n = mn ·p∞, and it follows from Lemma 2.12 of [C2] that xn ∈W (k,mn).

We conclude this section by recalling a technical definition from [C2].

Definition 2.7. We will call a finite group G of order m good if the
following properties are satisfied:

1. For any number field k, Rt(k,G) is a group.
2. For any tame G-extension K/k of number fields there exists an ele-

ment αK/k ∈ k such that:
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(a) If G is of even order with a cyclic 2-Sylow subgroup, then a square
root of αK/k generates the quadratic subextension of K/k; if G
either has odd order or has a noncyclic 2-Sylow subgroup, then
αK/k = 1.

(b) For any prime p, with ramification index ep in K/k, the ideal
class (1) of

(p(ep−1)m/ep−vp(αK/k))1/2

is in Rt(k,G).

3. For any tame G-extension K/k of number fields, for any prime ideal
p of k and any rational prime l dividing its ramification index ep, the
class of the ideal

p
(l−1) m

ep(l) ,

is in Rt(k,G), where ep(l) is the exact power of l dividing ep, and, if
2 divides (l − 1) m

ep(l) , the class of

p
l−1
2

m
ep(l)

is in Rt(k,G).
4. G is such that for any number field k, for any class x ∈ Rt(k,G)

and any integer a, there exists a tame G-extension K with Steinitz
class x and such that every nontrivial subextension of K/k is ramified
at some primes which are unramified in k(ζa)/k.

The importance of this definition lies in the fact that for good groups
G we can apply Theorems 3.19 and 3.22 of [C2] to obtain a description of
Rt(k, G̃) for certain group extensions G̃ of G.

3. Some l-groups. In [B], Clément Bruche proved that if G is a non-
abelian group of order l3 = uv and exponent v, where l is an odd prime,
then Rt(k,G) = W (k, l)u(l−1)/2 under the hypothesis that the extension
k(ζv)/k(ζl) is unramified, thereby giving an unconditional result when G
has exponent l.

In this section we prove that Rt(k,C(l2)oµC(l)) = W (k, l)l(l−1)/2, with-
out any additional hypothesis on the number field k. Indeed we will consider
a more general situation, studying groups of the form G = C(ln) oµ C(l),
with n ≥ 2, where µ sends a generator of C(l) to the elevation to the
(ln−1 + 1)th power. Together with Bruche’s result this will conclude the
study of realizable Steinitz classes for tame Galois extensions of degree l3.

(1) Actually p(ep−1)m/ep−vp(αK/k) is the square of an ideal by Theorems 2.1 and 2.2.
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Lemma 3.1. Let l be an odd prime. The group G = C(ln) oµ C(l) with
n ≥ 2 is identified by the exact sequence

1→ C(ln)→ G→ C(l)→ 1

if the action of C(l) on C(ln) is given by µ. Further G is isomorphic to

〈σ, τ : σl = τ l
n

= 1, στσ−1 = τ l
n−1+1〉.

Proof. Let G be the group in the above exact sequence, let H be a sub-
group of G isomorphic to C(ln) and generated by τ ; let x ∈ G be such that
its class modulo H generates G/H, which is cyclic of order l, and such that
xτx−1 = τ l

n−1+1, i.e. xτ = τ l
n−1+1x. Then xl = τa for some a ∈ N. Since G

is of order ln+1 and it is not cyclic, the order of x must divide ln and so

τal
n−1

= xl
n

= 1,

i.e. l divides a and there exists b ∈ N such that a = bl. By induction we
prove that, for m ≥ 1,

(τ−bx)m = τ−bm−bl
n−1(m−1)m/2xm.

This is obvious for m = 1; we have to prove the inductive step:

(τ−bx)m = τ−b(m−1)−bln−1(m−2)(m−1)/2xm−1τ−bx

= τ−b(m−1)−bln−1(m−2)(m−1)/2xm−1τ−bx−(m−1)xm

= τ−b(m−1)−bln−1(m−2)(m−1)/2τ−b(1+ln−1)m−1
xm

= τ−b(m−1)−bln−1(m−2)(m−1)/2−b−b(m−1)ln−1
xm

= τ−bm−bl
n−1(m−1)m/2xm.

Then writing σ = τ−bx, we obtain

σl = (τ−bx)l = τ−blxl = τ−a+a = 1.

Further
στσ−1 = τ−bxτx−1τ b = τ−bτ l

n−1+1τ b = τ l
n−1+1

and σ, τ are generators of G. Thus G must be a quotient of the group

〈σ, τ : σl = τ l
n

= 1, στσ−1 = τ l
n−1+1〉.

But this group has the same order as G and thus they must be isomorphic.

It follows that to study Rt(k,C(ln) oµ C(l)), for any number field k, we
can use Proposition 3.13 of [C2].

For any γ ∈ C(ln) of order o(γ) we define Ek,µ,γ as the fixed field in
k(ζo(γ)) of

Gk,µ,γ = {g ∈ Gal(k(ζo(γ))/k) : ∃g1 ∈ C(l), µ(g1)(γ) = γνk,γ(g)},

where g(ζo(γ)) = ζ
νk,γ(g)

o(γ) for any g ∈ Gal(k(ζo(γ))/k).
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Lemma 3.2. Let τ be a generator of C(ln). Then Ek,µ,τ = k(ζln−1).

Proof. By definition Ek,µ,τ is the fixed field in k(ζln) of

Gk,µ,τ = {g ∈ Gal(k(ζln)/k) : ∃g1 ∈ C(l), µ(g1)(τ) = τνk,τ (g)}

= {g ∈ Gal(k(ζln)/k) : ∃a ∈ N, τal
n−1+1 = τνk,τ (g)}

= {g ∈ Gal(k(ζln)/k) : νk,τ (g) ≡ 1 (mod ln−1)}
= {g ∈ Gal(k(ζln)/k) : g(ζln−1) = ζln−1} = Gal(k(ζln)/k(ζln−1)).

Hence Ek,µ,τ = k(ζln−1).

Lemma 3.3. We have

Rt(k,C(ln) oµ C(l)) ⊇W (k, ln−1)(l−1)l/2.

Further, for any x ∈ W (k, ln−1) and any positive integer a, there exists a
tame G-extension K of k with Steinitz class x(l−1)l/2 and such that any non-
trivial subextension of K/k is ramified at some primes which are unramified
in k(ζa)/k.

Proof. By Theorem 3.23 of [C2], C(l) is a good group and so, recalling
also Lemma 3.1, the hypotheses of Proposition 3.13 of [C2] are satisfied and
we obtain

Rt(k,C(ln) oµ C(l)) ⊇ Rt(k,C(l))l
n ·W (k,Ek,µ,τ )(l−1)l/2,

where τ is a generator of C(ln). We easily conclude the proof since 1 ∈
Rt(k,C(l)) and, by Lemma 3.2, Ek,µ,τ = k(ζln−1), i.e.

W (k,Ek,µ,τ ) = W (k, ln−1).

Further the extensions constructed in Lemmas 3.10 and 3.11 of [C2] can be
chosen so that all their proper subextensions are ramified at some primes
which are unramified in k(ζa)/k. Hence, actually, the same is true for the
extensions obtained using Proposition 3.13 of [C2].

To prove the opposite inclusion we need some lemmas.

Lemma 3.4. Let τ be a generator of C(ln) and 0 < c < n be an integer.
Then

G̃l
c

k,µ,τ lc ⊆ Gk,µ,τ ,

where G̃k,µ,τ lc is the subgroup of Gal(k(ζln)/k) consisting of all the elements
whose restrictions to Gal(k(ζln−c)/k) are in Gk,µ,τ lc .

Proof. For any positive integer a we define

µ̂τa : C(l)→ (Z/o(τa)Z)∗

by τaµ̂τa (g1) = µ(g1)(τa) for all g1 ∈ C(l). To simplify notation, for g ∈
G̃k,µ,τ lc we will write νk,τ lc (g) instead of νk,τ lc (g|k(ζln−c )). By definition, if
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g ∈ G̃k,µ,τ lc , then there exists g1 ∈ C(l) such that

τ
lcν

k,τl
c (g) = µ(g1)(τ l

c
) = τ l

cµ̂
τl
c (g1).

We also observe that

ζ
νk,τ (g)

ln−c = ζ
lcνk,τ (g)
ln = g(ζln)l

c
= g(ζln−c) = ζ

ν
k,τl

c (g)

ln−c

and
τ l
cµ̂
τl
c (g1) = µ(g1)(τ l

c
) = µ(g1)(τ)l

c
= τ l

cµ̂τ (g1).

From the above equalities we deduce

νk,τ (g) ≡ νk,τ lc (g) ≡ µ̂τ lc (g1) ≡ µ̂τ (g1) (mod ln−c)

and therefore by Lemma 2.4 we obtain

νk,τ (gl
c
) ≡ µ̂τ (gl

c

1 ) (mod ln).

We conclude that
τνk,τ (g

lc ) = τ µ̂τ (g
lc

1 ) = µ(gl
c

1 )(τ)

and hence gl
c ∈ Gk,µ,τ .

Lemma 3.5. Let τ be a generator of C(ln) and 0 < c < n be an integer.
Then

W (k,Ek,µ,τ lc )
lc ⊆W (k, ln−1).

Proof. Let x be a class in W (k,Ek,µ,τ lc ). By definition there exists a
prime p in the class of x splitting completely in Ek,µ,τ lc/k. By Theorem
IV.8.4 in [Ne],

p ∈ Hm
E
k,µ,τl

c /k,

where m is a cycle of declaration of Ek,µ,τ lc/k and Hm
E
k,µ,τl

c /k is the kernel
of the Artin symbol(

Ek,µ,τ lc/k

·

)
: Jm

k → Gal(Ek,µ,τ lc/k).

Then, by Proposition II.3.3 in [Ne],(
k(ζln)/k

p

) ∣∣∣∣Ek,µ,τlc =
(
Ek,µ,τ lc/k

p

)
= 1.

Thus (
k(ζln)/k

p

)
∈ Gal(k(ζln)/Ek,µ,τ lc ) = G̃k,µ,τ lc

and it follows by Lemma 3.4 that(
k(ζln)/k

pl
c

)
=
(
k(ζln)/k

p

)lc
∈ G̃lck,µ,τ lc ⊆ Gk,µ,τ = Gal(k(ζln)/Ek,µ,τ ).
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Then (
Ek,µ,τ/k

pl
c

)
=
(
k(ζln)/k

pl
c

) ∣∣∣∣
Ek,µ,τ

= 1

and so the class xl
c

of pl
c

is in W (k,Ek,µ,τ ), which is equal to W (k, ln−1) by
Lemma 3.2.

Lemma 3.6. Let K/k be a tamely ramified abelian extension of number
fields and let p be a prime ideal in k whose ramification index in K/k is ep.
Then Nk/Q(p) ∈ Pm

Q , where m = ep · p∞, i.e. Nk/Q(p) is an ideal of Z
generated by a natural number a ≡ 1 (mod ep). In particular, by Lemma 2.12
of [C2], p ∈ Hm

k(ζep )/k and so its class is in W (k, ep).

Proof. This is Lemma I.2.1 of [E].

Lemma 3.7. Let K/k be a tame C(ln) oµ C(l)-extension of number
fields and let p be a ramifying prime, with ramification index ep. Then the
classes of

p
ep−1

2
ln+1

ep and p
l−1
2

ln+1

ep

are both in W (k, ln−1)(l−1)l/2.

Proof. The Galois group of K/k is C(ln) oµ C(l), which is isomorphic
to

G = 〈σ, τ : σl = τ l
n

= 1, στσ−1 = τ l
n−1+1〉,

by Lemma 3.1.
Since the ramification is tame, the inertia group at p is cyclic, generated

by an element τaσb; by induction we obtain

(τaσb)m = τam+abln−1(m−1)m/2σbm.

The order ep of τaσb must be a multiple of l, since the element τaσb is
nontrivial and G is an l-group. Hence, recalling that τ l

n
= 1, we find that

ep is the smallest positive integer such that

τaepσbep = 1.

First of all we assume that l2 divides ep. If lβ is the exact power of l divid-
ing a, we obtain ep = ln−β and in particular β ≤ n− 2. So we have

σ(τaσb)σ−1 = τa(l
n−1+1)σb = (τaσb)l

n−1+1

and
τ(τaσb)τ−1 = τa−bl

n−1
σb = (τaσb)−ãbl

n−1−β+1,

where aã ≡ lβ (mod ln). Hence, in particular, the inertia group is a normal
subgroup of G. Thus we can decompose our extension in K/k1 and k1/k,
which are both Galois and such that p is totally ramified in K/k1 and un-
ramified in k1/k. By Lemma 3.14 of [C2] the class of p is in W (k,Ek,ρ,τaσb),
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where the action ρ is induced by the conjugation in G and, in particu-
lar, it sends the class of τ in Gal(k1/k) = G/〈τaσb〉 to elevation to the
(−ãbln−1−β + 1)th power, as seen above, and the class of σ to elevation to
the (ln−1 + 1)th power. The group Gk,ρ,τaσb consists of those elements g of
Gal(k(ζln−β )/k) such that νk,τaσb(g) is congruent to a product of powers of
ln−1 + 1 and −ãbln−1−β + 1 modulo ln−β. But all these are congruent to 1
modulo ln−1−β and thus Gk,ρ,τaσb |k(ζln−1−β ) = {1}. Hence

Ek,ρ,τaσb ⊇ k(ζln−1−β ) = k(ζep/l),

i.e.
W (k,Ek,ρ,τaσb) ⊆W (k, ep/l).

Therefore, by the assumption that l2 | ep and by Lemma 2.6, the class of

p
l−1
2

ln+1

ep is in

W (k, ep/l)
l−1
2

ln+1

ep ⊆W (k, ln−1)(l−1)l/2

and the same is true for p
ep−1

2
ln+1

ep .
It remains to consider the case ep = l. We now define k1 as the fixed

field of τ and we first assume that p ramifies in K/k1. Then its inertia
group in Gal(K/k1) = C(ln) is of order l and thus must be generated by
τ l
n−1

. Hence by Lemma 3.14 of [C2] the class of p is in W (k,E
k,µ,τ ln−1 ) and

p(l−1)ln+1/ep is the square of an ideal of a class in W (k,E
k,µ,τ ln−1 )(l−1)ln/2,

which is contained in W (k, ln−1)(l−1)l/2 by Lemma 3.5.
Finally let us consider the case of p ramified in k1/k. By Lemma 3.6 the

class of p is in W (k, l). Hence the class of

p
l−1
2

ln+1

ep = p
ep−1

2
ln+1

ep

is in W (k, l)(l−1)ln/2. By Lemma 2.6,

W (k, l)(l−1)ln/2 ⊆W (k, ln−1)(l−1)l2/2 ⊆W (k, ln−1)(l−1)l/2.

Theorem 3.8. We have

Rt(k,C(ln) oµ C(l)) = W (k, ln−1)(l−1)l/2.

Further the group C(ln) oµ C(l) is good.

Proof. From Theorems 2.1 and 2.2, by Lemmas 3.3 and 3.7, it is imme-
diate that

Rt(k,C(ln) oµ C(l)) = W (k, ln−1)(l−1)l/2.

Now we prove that C(ln)oµC(l) satisfies all the defining conditions of good
groups:

1. This follows immediately, since W (k, ln−1)(l−1)l/2 is a group.
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2. This is part of Lemma 3.7.
3. This is also proved in Lemma 3.7.
4. This follows by Lemma 3.3.

4. Nonabelian extensions of order l3. As a particular case of The-
orem 3.8 we state the following proposition.

Proposition 4.1. The group C(l2) oµ C(l) is good and

Rt(k,C(l2) oµ C(l)) = W (k, l)(l−1)l/2.

Up to isomorphism, the only other nonabelian group of order l3 is

G = 〈x, y, σ : xl = yl = σl = 1, σx = xσ, σy = yσ, yx = xyσ〉,
which is a semidirect product of the normal subgroup 〈x, σ〉 ∼= C(l) × C(l)
and the cyclic subgroup 〈y〉 of order l, where the action µ1 is given by
conjugation. Clément Bruche proved in [B] that

Rt(k,G) = W (k, l)(l−1)l2/2.

We can give a different proof of Bruche’s result, using class field theory.
We will also prove that the nonabelian group of order l3 and exponent l
studied by Bruche is a good group.

Lemma 4.2. Let k be a number field. Then

Rt(k,G) ⊇W (k, l)(l−1)l2/2.

Further, for any x ∈W (k, l) and any positive integer a, there exists a tame
G-extension of k with Steinitz class x(l−1)l2/2 and such that any nontrivial
subextension of K/k is ramified at some primes which are unramified in
k(ζa)/k.

Proof. Let x ∈ W (k, l). By Theorem 3.19 in [C2] there exists a C(l)-
extension k1 with Steinitz class x(l−1)/2 and which is totally ramified at
some prime ideals which are unramified in k(ζa)/k. Let p be one of them.

Now we would like to use Lemma 3.10 of [C2] to obtain a C(l) × C(l)-
extension ofK/k1 which is Galois over k, with Gal(K/k) ∼= G. Unfortunately
this is not possible since the exact sequence

1→ C(l)× C(l)→ H→ C(l)→ 1

does not identify the group H uniquely as the group G. Nevertheless, the
argument of that lemma at least produces a C(l) × C(l)-extension of k1

which is Galois over k and with st(K/k1) = 1. Further we can assume that
Gal(K/k) is nonabelian of order l3 (since the action of C(l) on C(l)× C(l)
is the given one and in particular it is not trivial), that K/k1 is unramified
at p and that any nontrivial subextension of K/k is ramified at some primes
which are unramified in k(ζa)/k.
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We want to prove that Gal(K/k) ∼= G. To this aim, we assume that
this is not the case, i.e. that Gal(K/k) ∼= C(l2) oµ C(l), and we derive a
contradiction. First of all, by construction, Gal(K/k1) ∼= C(l) × C(l) and
this must be a subgroup of Gal(K/k) ∼= C(l2) oµ C(l): the only possibility
is that it is the subgroup H consisting of all elements of C(l2) oµ C(l)
having order 1 or l. Since the prime ideal p ramifies in k1/k and not in
K/k1, its ramification index is l, and therefore its inertia group is contained
in H. Hence by Galois theory we conclude that the inertia field of p in K/k
contains k1, i.e. p ramifies in K/k1 and not in k1/k. This is a contradiction,
since p is ramified in k1/k.

Hence we have proved that in the above construction the extension K/k
has Galois group G. By Proposition 2.3,

st(K/k) = st(k1/k)[K:k1]Nk1/k(st(K/k1)) = x(l−1)l2/2.

To prove the opposite inclusion we need the following lemma.

Lemma 4.3. Let K/k be a tame G-extension of number fields. The ram-
ification index of a prime ramifying in K/k is l and its class is contained
in W (k, l).

Proof. The ramification index of a ramifying prime is equal to l, since
the corresponding inertia group must be cyclic and any nontrivial element
in G is of order l.

Let k1 be the subfield of K fixed by the normal abelian subgroup 〈x, σ〉
of the Galois group G of K/k.

If a prime p ramifies in k1/k, then its class is in W (k, l) by Lemma 3.6.
If a prime p ramifies in K/k1, then it is unramified in k1/k (the ramifi-

cation index is prime) and so its inertia group is generated by an element of
the form xaσc, where a, c ∈ {0, 1, . . . , l− 1} are not both 0. By Lemma 3.14
of [C2] the class of p is in W (k,Ek,µ1,xaσc). For any b ∈ {0, 1, . . . , l − 1} we
have

µ1(yb)(xaσc) = ybxaσcy−b = xaσc+ab,

and this expression cannot be a nontrivial power of xaσc. Hence, by defini-
tion, the group Gk,µ1,xaσc must be trivial and we conclude that Ek,µ1,xaσc =
k(ζl). Therefore, in particular, the class of the prime ideal p is contained
in W (k, l).

Proposition 4.4. The group G is good and

Rt(k,G) = W (k, l)(l−1)l2/2.

Proof. The proof is straightforward using the preceding lemmas.
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