Steinitz classes of tamely ramified nonabelian extensions of odd prime power order

by
Alessandro Cobbe (Pisa)

1. Introduction. Let K / k be an extension of number fields and let \mathcal{O}_{K} and \mathcal{O}_{k} be their rings of integers. By Theorem 1.13 in Na we know that

$$
\mathcal{O}_{K} \cong \mathcal{O}_{k}^{[K: k]-1} \oplus I
$$

where I is an ideal of \mathcal{O}_{k}. By Theorem 1.14 in [Na the \mathcal{O}_{k}-module structure of \mathcal{O}_{K} is determined by $[K: k]$ and the ideal class of I. This class is called the Steinitz class of K / k and we will indicate it by $\operatorname{st}(K / k)$. Let k be a number field and G a finite group; then we define

$$
\mathrm{R}_{t}(k, G)=\{x \in \mathrm{Cl}(k): \exists K / k \text { tame, } \operatorname{Gal}(K / k) \cong G, \operatorname{st}(K / k)=x\}
$$

It is conjectured that this subset of $\mathrm{Cl}(k)$ is always a subgroup. The problem has been studied by a lot of authors since the 1960 s and $\mathrm{R}_{t}(k, G)$ has been proved to be a group for some particular choices of G. In particular the conjecture for finite abelian groups is a consequence of a paper by Leon McCulloh of 1987 ([MC2]). Other results from literature cover some particular nonabelian groups: see for example [B], BS, BGS, Ca1, Ca2, CaS, E], GS1], GS2], [Lo1], Lo2], MS], MC1], S1], [S2] and [Sov.

The study of realizable Steinitz classes is closely connected to a similar question involving Galois module structure. In that context $\mathrm{R}_{t}\left(\mathcal{O}_{k}[G]\right)$ denotes a subset of the locally free class group $\operatorname{Cl}\left(\mathcal{O}_{k}[G]\right)$ and is defined in a similar way to $\mathrm{R}_{t}(k, G)$. Again $\mathrm{R}_{t}\left(\mathcal{O}_{k}[G]\right)$ is conjectured to be a group, which is in some sense a generalization of the conjecture about Steinitz classes.

In this paper we will study $\mathrm{R}_{t}(k, G)$ when G is a semidirect product of the form $C\left(l^{n}\right) \rtimes C(l)$, where l is an odd prime number and $C(m)$ denotes a cyclic group of order m. We will use the notation and some techniques from [C2] to prove the conjecture for such groups and to give an explicit

[^0]description of $\mathrm{R}_{t}(k, G)$. In particular the case $n=2$ is interesting because, together with [B], it completes the study of realizable Steinitz classes for groups of order l^{3}. We will also give an alternative proof of the results of B, based on class field theory.

Some of the results in this paper are parts of the author's PhD thesis [C1].
2. Preliminary results. We start by recalling the following two fundamental results.

Theorem 2.1. If K / k is a finite tame Galois extension then

$$
\mathrm{d}(K / k)=\prod_{\mathfrak{p}} \mathfrak{p}^{\left(e_{\mathfrak{p}}-1\right)[K: k] / e_{\mathfrak{p}}},
$$

where $e_{\mathfrak{p}}$ is the ramification index of \mathfrak{p}.
Proof. This follows by Propositions 8 and 14 of Chapter III of LL. -
Theorem 2.2. Assume K is a finite Galois extension of a number field k.
(a) If the Galois group of K / k either has odd order or has a noncyclic 2-Sylow subgroup then $\mathrm{d}(K / k)$ is the square of an ideal and this ideal represents the Steinitz class of the extension.
(b) If the Galois group is of even order with a cyclic 2-Sylow subgroup and α is any element of k whose square root generates the quadratic subextension of K / k then $\mathrm{d}(K / k) / \alpha$ is the square of a fractional ideal and this ideal represents the Steinitz class of the extension.
Proof. This is a corollary of Theorem I.1.1 in [E]. In particular it is shown in [E] that in case (b), K / k has exactly one quadratic subextension.

Further, considering Steinitz classes in towers of extensions, we will need the following proposition.

Proposition 2.3. Suppose K / k_{1} and k_{1} / k are extensions of number fields. Then

$$
\operatorname{st}(K / k)=\operatorname{st}\left(k_{1} / k\right){ }^{\left[K: k_{1}\right]} \mathrm{N}_{k_{1} / k}\left(\operatorname{st}\left(K / k_{1}\right)\right) .
$$

Proof. This is Proposition I.1.2 in [E.
We will also use some other preliminary results.
Lemma 2.4. Let m, n, x, y be integers. If $x \equiv y(\bmod m)$ and any prime q dividing n also divides m then

$$
x^{n} \equiv y^{n}(\bmod m n) .
$$

Proof. Let $n=q_{1} \ldots q_{r}$ be the prime decomposition of $n\left(q_{i}\right.$ and q_{j} with $i \neq j$ are allowed to be equal). We prove by induction on r that $x^{n} \equiv y^{n}$ $(\bmod m n)$. If $r=1$, then $m n=m q_{1}$ must divide $m^{q_{1}}$ and there exists $b \in \mathbb{N}$
such that

$$
x^{n}=(y+b m)^{q_{1}}=y^{q_{1}}+\sum_{i=1}^{q_{1}-1}\binom{q_{1}}{i}(b m)^{i} y^{q_{1}-i}+(b m)^{q_{1}} \equiv y^{n}(\bmod m n) .
$$

Let us assume that the lemma is true for $r-1$ and prove it for r. Since $q_{r} \mid m$, as above, for some $c \in \mathbb{N}$ we have

$$
\begin{aligned}
x^{n} & =\left(y^{q_{1} \ldots q_{r-1}}+c m q_{1} \ldots q_{r-1}\right)^{q_{r}} \\
& =y^{n}+\sum_{i=1}^{q_{r}}\binom{q_{r}}{i}\left(c m q_{1} \ldots q_{r-1}\right)^{i} y^{q_{1} \ldots q_{r-1}\left(q_{r}-i\right)} \equiv y^{n}(\bmod m n)
\end{aligned}
$$

Definition 2.5. Let K / k be a finite abelian extension of number fields, let J_{k} be the group of ideals of k, let P_{k} be the group of principal ideals, let \mathfrak{m} be a cycle of declaration of K / k and let $H_{K / k}^{\mathfrak{m}}$ be the kernel of the Artin symbol $\left(\frac{K / k}{\cdot}\right): J_{k}^{\mathfrak{m}} \rightarrow \operatorname{Gal}(K / k)$, where $J_{k}^{\mathfrak{m}}$ is the group of all ideals of k prime to \mathfrak{m}. Then we define the subgroup $W(k, K)$ of the ideal class group of k in the following equivalent ways (the equivalence is shown in C2, Proposition 2.10]):

$$
\begin{aligned}
W(k, K)= & H_{K / k}^{\mathfrak{m}} \cdot P_{k} / P_{k} \\
W(k, K)= & \left\{x \in J_{k} / P_{k}: x\right. \text { contains infinitely many primes of absolute } \\
& \text { degree } 1 \text { splitting completely in } K\}, \\
W(k, K)= & \left\{x \in J_{k} / P_{k}: x \text { contains a prime splitting completely in } K\right\}, \\
W(k, K)= & \mathrm{N}_{K / k}\left(J_{K}\right) \cdot P_{k} / P_{k} .
\end{aligned}
$$

In the case of cyclotomic extensions we will also use the shorter notation $W(k, m)=W\left(k, k\left(\zeta_{m}\right)\right)$.

LEMMA 2.6. Let m, n be integers. If any prime q dividing n also divides m then $W(k, m)^{n} \subseteq W(k, m n)$.

Proof. Let $x \in W(k, m)$. By definition and by Lemma 2.11 from [C2, x contains a prime ideal \mathfrak{p} prime to $m n$ and such that $\mathrm{N}_{k / \mathbb{Q}}(\mathfrak{p}) \in P_{\mathbb{Q}}^{\mathfrak{m}}$, where $\mathfrak{m}=m \cdot p_{\infty}$ and $P_{\mathbb{Q}}^{\mathfrak{m}}$ is the group of all principal ideals in \mathbb{Z} generated by a natural number $a \equiv 1(\bmod m)$. Then, by Lemma $2.4, \mathrm{~N}_{k / \mathbb{Q}}\left(\mathfrak{p}^{n}\right) \in P_{\mathbb{Q}}^{\mathfrak{n}}$ with $\mathfrak{n}=m n \cdot p_{\infty}$, and it follows from Lemma 2.12 of C 2] that $x^{n} \in W(k, m n)$.

We conclude this section by recalling a technical definition from [C2].
Definition 2.7. We will call a finite group G of order m good if the following properties are satisfied:

1. For any number field $k, \mathrm{R}_{t}(k, G)$ is a group.
2. For any tame G-extension K / k of number fields there exists an element $\alpha_{K / k} \in k$ such that:
(a) If G is of even order with a cyclic 2-Sylow subgroup, then a square root of $\alpha_{K / k}$ generates the quadratic subextension of K / k; if G either has odd order or has a noncyclic 2-Sylow subgroup, then $\alpha_{K / k}=1$.
(b) For any prime \mathfrak{p}, with ramification index $e_{\mathfrak{p}}$ in K / k, the ideal class $\left(^{1}\right.$ of

$$
\left(\mathfrak{p}^{\left(e_{\mathfrak{p}}-1\right) m / e_{\mathfrak{p}}-v_{\mathfrak{p}}\left(\alpha_{K / k}\right)}\right)^{1 / 2}
$$

is in $\mathrm{R}_{t}(k, G)$.
3. For any tame G-extension K / k of number fields, for any prime ideal \mathfrak{p} of k and any rational prime l dividing its ramification index $e_{\mathfrak{p}}$, the class of the ideal

$$
\mathfrak{p}^{(l-1) \frac{m}{e_{\mathfrak{p}}(l)}}
$$

is in $\mathrm{R}_{t}(k, G)$, where $e_{\mathfrak{p}}(l)$ is the exact power of l dividing $e_{\mathfrak{p}}$, and, if 2 divides $(l-1) \frac{m}{e_{\mathfrak{p}}(l)}$, the class of

$$
\mathfrak{p}^{\frac{l-1}{2} \frac{m}{e_{\mathfrak{p}}(l)}}
$$

is in $\mathrm{R}_{t}(k, G)$.
4. G is such that for any number field k, for any class $x \in \mathrm{R}_{t}(k, G)$ and any integer a, there exists a tame G-extension K with Steinitz class x and such that every nontrivial subextension of K / k is ramified at some primes which are unramified in $k\left(\zeta_{a}\right) / k$.

The importance of this definition lies in the fact that for good groups G we can apply Theorems 3.19 and 3.22 of C 2 to obtain a description of $\mathrm{R}_{t}(k, \tilde{G})$ for certain group extensions \tilde{G} of G.
3. Some l-groups. In $[\mathrm{B}$, Clément Bruche proved that if G is a nonabelian group of order $l^{3}=u v$ and exponent v, where l is an odd prime, then $\mathrm{R}_{t}(k, G)=W(k, l)^{u(l-1) / 2}$ under the hypothesis that the extension $k\left(\zeta_{v}\right) / k\left(\zeta_{l}\right)$ is unramified, thereby giving an unconditional result when G has exponent l.

In this section we prove that $\mathrm{R}_{t}\left(k, C\left(l^{2}\right) \rtimes_{\mu} C(l)\right)=W(k, l)^{l(l-1) / 2}$, without any additional hypothesis on the number field k. Indeed we will consider a more general situation, studying groups of the form $G=C\left(l^{n}\right) \rtimes_{\mu} C(l)$, with $n \geq 2$, where μ sends a generator of $C(l)$ to the elevation to the $\left(l^{n-1}+1\right)$ th power. Together with Bruche's result this will conclude the study of realizable Steinitz classes for tame Galois extensions of degree l^{3}.

[^1]Lemma 3.1. Let l be an odd prime. The group $G=C\left(l^{n}\right) \rtimes_{\mu} C(l)$ with $n \geq 2$ is identified by the exact sequence

$$
1 \rightarrow C\left(l^{n}\right) \rightarrow G \rightarrow C(l) \rightarrow 1
$$

if the action of $C(l)$ on $C\left(l^{n}\right)$ is given by μ. Further G is isomorphic to

$$
\left\langle\sigma, \tau: \sigma^{l}=\tau^{l^{n}}=1, \sigma \tau \sigma^{-1}=\tau^{l^{n-1}+1}\right\rangle
$$

Proof. Let G be the group in the above exact sequence, let H be a subgroup of G isomorphic to $C\left(l^{n}\right)$ and generated by τ; let $x \in G$ be such that its class modulo H generates G / H, which is cyclic of order l, and such that $x \tau x^{-1}=\tau^{l^{n-1}+1}$, i.e. $x \tau=\tau^{l^{n-1}+1} x$. Then $x^{l}=\tau^{a}$ for some $a \in \mathbb{N}$. Since G is of order l^{n+1} and it is not cyclic, the order of x must divide l^{n} and so

$$
\tau^{a l^{n-1}}=x^{l^{n}}=1
$$

i.e. l divides a and there exists $b \in \mathbb{N}$ such that $a=b l$. By induction we prove that, for $m \geq 1$,

$$
\left(\tau^{-b} x\right)^{m}=\tau^{-b m-b l^{n-1}(m-1) m / 2} x^{m}
$$

This is obvious for $m=1$; we have to prove the inductive step:

$$
\begin{aligned}
\left(\tau^{-b} x\right)^{m} & =\tau^{-b(m-1)-b l^{n-1}(m-2)(m-1) / 2} x^{m-1} \tau^{-b} x \\
& =\tau^{-b(m-1)-b l^{n-1}(m-2)(m-1) / 2} x^{m-1} \tau^{-b} x^{-(m-1)} x^{m} \\
& =\tau^{-b(m-1)-b l^{n-1}(m-2)(m-1) / 2} \tau^{-b\left(1+l^{n-1}\right)^{m-1}} x^{m} \\
& =\tau^{-b(m-1)-b l^{n-1}(m-2)(m-1) / 2-b-b(m-1) l^{n-1}} x^{m} \\
& =\tau^{-b m-b l^{n-1}(m-1) m / 2} x^{m}
\end{aligned}
$$

Then writing $\sigma=\tau^{-b} x$, we obtain

$$
\sigma^{l}=\left(\tau^{-b} x\right)^{l}=\tau^{-b l} x^{l}=\tau^{-a+a}=1
$$

Further

$$
\sigma \tau \sigma^{-1}=\tau^{-b} x \tau x^{-1} \tau^{b}=\tau^{-b} \tau^{l^{n-1}+1} \tau^{b}=\tau^{l^{n-1}+1}
$$

and σ, τ are generators of G. Thus G must be a quotient of the group

$$
\left\langle\sigma, \tau: \sigma^{l}=\tau^{l^{n}}=1, \sigma \tau \sigma^{-1}=\tau^{l^{n-1}+1}\right\rangle .
$$

But this group has the same order as G and thus they must be isomorphic.
It follows that to study $\mathrm{R}_{t}\left(k, C\left(l^{n}\right) \rtimes_{\mu} C(l)\right)$, for any number field k, we can use Proposition 3.13 of C 2 .

For any $\gamma \in C\left(l^{n}\right)$ of order $o(\gamma)$ we define $E_{k, \mu, \gamma}$ as the fixed field in $k\left(\zeta_{o(\gamma)}\right)$ of

$$
G_{k, \mu, \gamma}=\left\{g \in \operatorname{Gal}\left(k\left(\zeta_{o(\gamma)}\right) / k\right): \exists g_{1} \in C(l), \mu\left(g_{1}\right)(\gamma)=\gamma^{\nu_{k, \gamma}(g)}\right\}
$$

where $g\left(\zeta_{o(\gamma)}\right)=\zeta_{o(\gamma)}^{\nu_{k, \gamma}(g)}$ for any $g \in \operatorname{Gal}\left(k\left(\zeta_{o(\gamma)}\right) / k\right)$.

Lemma 3.2. Let τ be a generator of $C\left(l^{n}\right)$. Then $E_{k, \mu, \tau}=k\left(\zeta_{l^{n-1}}\right)$.
Proof. By definition $E_{k, \mu, \tau}$ is the fixed field in $k\left(\zeta_{l^{n}}\right)$ of

$$
\begin{aligned}
G_{k, \mu, \tau} & =\left\{g \in \operatorname{Gal}\left(k\left(\zeta_{l^{n}}\right) / k\right): \exists g_{1} \in C(l), \mu\left(g_{1}\right)(\tau)=\tau^{\nu_{k, \tau}(g)}\right\} \\
& =\left\{g \in \operatorname{Gal}\left(k\left(\zeta_{l^{n}}\right) / k\right): \exists a \in \mathbb{N}, \tau^{a l^{n-1}+1}=\tau^{\nu_{k, \tau}(g)}\right\} \\
& =\left\{g \in \operatorname{Gal}\left(k\left(\zeta_{l^{n}}\right) / k\right): \nu_{k, \tau}(g) \equiv 1\left(\bmod l^{n-1}\right)\right\} \\
& =\left\{g \in \operatorname{Gal}\left(k\left(\zeta_{l^{n}}\right) / k\right): g\left(\zeta_{l^{n-1}}\right)=\zeta_{l^{n-1}}\right\}=\operatorname{Gal}\left(k\left(\zeta_{l^{n}}\right) / k\left(\zeta_{l^{n-1}}\right)\right) .
\end{aligned}
$$

Hence $E_{k, \mu, \tau}=k\left(\zeta_{l^{n-1}}\right)$.
Lemma 3.3. We have

$$
\mathrm{R}_{t}\left(k, C\left(l^{n}\right) \rtimes_{\mu} C(l)\right) \supseteq W\left(k, l^{n-1}\right)^{(l-1) l / 2} .
$$

Further, for any $x \in W\left(k, l^{n-1}\right)$ and any positive integer a, there exists a tame G-extension K of k with Steinitz class $x^{(l-1) l / 2}$ and such that any nontrivial subextension of K / k is ramified at some primes which are unramified in $k\left(\zeta_{a}\right) / k$.

Proof. By Theorem 3.23 of [C2], $C(l)$ is a good group and so, recalling also Lemma 3.1, the hypotheses of Proposition 3.13 of [C2 are satisfied and we obtain

$$
\mathrm{R}_{t}\left(k, C\left(l^{n}\right) \rtimes_{\mu} C(l)\right) \supseteq \mathrm{R}_{t}(k, C(l))^{l^{n}} \cdot W\left(k, E_{k, \mu, \tau}\right)^{(l-1) l / 2},
$$

where τ is a generator of $C\left(l^{n}\right)$. We easily conclude the proof since $1 \in$ $\mathrm{R}_{t}(k, C(l))$ and, by Lemma 3.2, $E_{k, \mu, \tau}=k\left(\zeta_{l^{n-1}}\right)$, i.e.

$$
W\left(k, E_{k, \mu, \tau}\right)=W\left(k, l^{n-1}\right) .
$$

Further the extensions constructed in Lemmas 3.10 and 3.11 of [C2] can be chosen so that all their proper subextensions are ramified at some primes which are unramified in $k\left(\zeta_{a}\right) / k$. Hence, actually, the same is true for the extensions obtained using Proposition 3.13 of [C2].

To prove the opposite inclusion we need some lemmas.
Lemma 3.4. Let τ be a generator of $C\left(l^{n}\right)$ and $0<c<n$ be an integer. Then

$$
\tilde{G}_{k, \mu, \tau^{c}}^{l^{c}} \subseteq G_{k, \mu, \tau},
$$

where $\tilde{G}_{k, \mu, \tau^{c}}$ is the subgroup of $\operatorname{Gal}\left(k\left(\zeta_{l^{n}}\right) / k\right)$ consisting of all the elements whose restrictions to $\operatorname{Gal}\left(k\left(\zeta_{l n-c}\right) / k\right)$ are in $G_{k, \mu, \tau^{c}}$.

Proof. For any positive integer a we define

$$
\hat{\mu}_{\tau^{a}}: C(l) \rightarrow\left(\mathbb{Z} / o\left(\tau^{a}\right) \mathbb{Z}\right)^{*}
$$

by $\tau^{a \hat{\mu}_{\tau^{a}}\left(g_{1}\right)}=\mu\left(g_{1}\right)\left(\tau^{a}\right)$ for all $g_{1} \in C(l)$. To simplify notation, for $g \in$ $\tilde{G}_{k, \mu, \tau^{c}}$ we will write $\nu_{k, \tau^{c}}(g)$ instead of $\nu_{k, \tau^{c}}\left(\left.g\right|_{k\left(\zeta_{l n-c}\right)}\right)$. By definition, if
$g \in \tilde{G}_{k, \mu, \tau^{c}}$, then there exists $g_{1} \in C(l)$ such that

$$
\tau^{l^{c} \nu_{k, \tau^{c}}(g)}=\mu\left(g_{1}\right)\left(\tau^{l^{c}}\right)=\tau^{l^{c} \hat{\mu}_{\tau^{c}}\left(g_{1}\right)}
$$

We also observe that

$$
\zeta_{l^{n-c}}^{\nu_{k, \tau}(g)}=\zeta_{l^{n}}^{l^{c} \nu_{k, \tau}(g)}=g\left(\zeta_{l^{n}}\right)^{l^{c}}=g\left(\zeta_{l^{n-c}}\right)=\zeta_{l^{n-c}}^{\nu_{k, \tau^{c}}(g)}
$$

and

$$
\tau^{l^{c} \hat{\mu}_{\tau^{c}}\left(g_{1}\right)}=\mu\left(g_{1}\right)\left(\tau^{l^{c}}\right)=\mu\left(g_{1}\right)(\tau)^{l^{c}}=\tau^{l^{c} \hat{\mu}_{\tau}\left(g_{1}\right)} .
$$

From the above equalities we deduce

$$
\nu_{k, \tau}(g) \equiv \nu_{k, \tau^{c}}(g) \equiv \hat{\mu}_{\tau^{c}}\left(g_{1}\right) \equiv \hat{\mu}_{\tau}\left(g_{1}\right)\left(\bmod l^{n-c}\right)
$$

and therefore by Lemma 2.4 we obtain

$$
\nu_{k, \tau}\left(g^{l^{c}}\right) \equiv \hat{\mu}_{\tau}\left(g_{1}^{l^{c}}\right)\left(\bmod l^{n}\right)
$$

We conclude that

$$
\tau^{\nu_{k, \tau}\left(g^{l^{c}}\right)}=\tau^{\hat{\mu}_{\tau}\left(g_{1}^{l^{c}}\right)}=\mu\left(g_{1}^{l^{c}}\right)(\tau)
$$

and hence $g^{l^{c}} \in G_{k, \mu, \tau}$.
Lemma 3.5. Let τ be a generator of $C\left(l^{n}\right)$ and $0<c<n$ be an integer. Then

$$
W\left(k, E_{k, \mu, \tau^{c}}\right)^{l^{c}} \subseteq W\left(k, l^{n-1}\right)
$$

Proof. Let x be a class in $W\left(k, E_{k, \mu, \tau^{c}}\right)$. By definition there exists a prime \mathfrak{p} in the class of x splitting completely in $E_{k, \mu, \tau^{c}} / k$. By Theorem IV.8.4 in Ne ,

$$
\mathfrak{p} \in H_{E_{k, \mu, \tau^{c}} / k}^{\mathfrak{m}}
$$

where \mathfrak{m} is a cycle of declaration of $E_{k, \mu, \tau^{c}} / k$ and $H_{E_{k, \mu, \tau^{c}} / k}^{\mathfrak{m}}$ is the kernel of the Artin symbol

$$
\left(\frac{E_{k, \mu, \tau^{c}} / k}{\cdot}\right): J_{k}^{\mathfrak{m}} \rightarrow \operatorname{Gal}\left(E_{k, \mu, \tau^{l^{c}}} / k\right)
$$

Then, by Proposition II.3.3 in [Ne,

$$
\left.\left(\frac{k\left(\zeta_{l^{n}}\right) / k}{\mathfrak{p}}\right)\right|_{E_{k, \mu, \tau^{l^{c}}}}=\left(\frac{E_{k, \mu, \tau^{c}} / k}{\mathfrak{p}}\right)=1
$$

Thus

$$
\left(\frac{k\left(\zeta_{l^{n}}\right) / k}{\mathfrak{p}}\right) \in \operatorname{Gal}\left(k\left(\zeta_{l^{n}}\right) / E_{k, \mu, \tau^{c}}\right)=\tilde{G}_{k, \mu, \tau^{c}}
$$

and it follows by Lemma 3.4 that

$$
\left(\frac{k\left(\zeta_{l^{n}}\right) / k}{\mathfrak{p}^{l^{c}}}\right)=\left(\frac{k\left(\zeta_{l^{n}}\right) / k}{\mathfrak{p}}\right)^{l^{c}} \in \tilde{G}_{k, \mu, \tau^{l^{c}}}^{l^{c}} \subseteq G_{k, \mu, \tau}=\operatorname{Gal}\left(k\left(\zeta_{l^{n}}\right) / E_{k, \mu, \tau}\right)
$$

Then

$$
\left(\frac{E_{k, \mu, \tau} / k}{\mathfrak{p}^{l^{c}}}\right)=\left.\left(\frac{k\left(\zeta_{\left.l^{n}\right)}\right) / k}{\mathfrak{p}^{l^{c}}}\right)\right|_{E_{k, \mu, \tau}}=1
$$

and so the class $x^{l^{c}}$ of $\mathfrak{p}^{l^{c}}$ is in $W\left(k, E_{k, \mu, \tau}\right)$, which is equal to $W\left(k, l^{n-1}\right)$ by Lemma 3.2,

Lemma 3.6. Let K / k be a tamely ramified abelian extension of number fields and let \mathfrak{p} be a prime ideal in k whose ramification index in K / k is $e_{\mathfrak{p}}$. Then $\mathrm{N}_{k / \mathbb{Q}}(\mathfrak{p}) \in P_{\mathbb{Q}}^{\mathfrak{m}}$, where $\mathfrak{m}=e_{\mathfrak{p}} \cdot p_{\infty}$, i.e. $\mathrm{N}_{k / \mathbb{Q}}(\mathfrak{p})$ is an ideal of \mathbb{Z} generated by a natural number $a \equiv 1\left(\bmod e_{\mathfrak{p}}\right)$. In particular, by Lemma 2.12 of [C2], $\mathfrak{p} \in H_{k\left(\zeta_{\mathfrak{p}}\right) / k}^{\mathfrak{m}}$ and so its class is in $W\left(k, e_{\mathfrak{p}}\right)$.

Proof. This is Lemma I.2.1 of [E].
Lemma 3.7. Let K / k be a tame $C\left(l^{n}\right) \rtimes_{\mu} C(l)$-extension of number fields and let \mathfrak{p} be a ramifying prime, with ramification index $e_{\mathfrak{p}}$. Then the classes of

$$
\mathfrak{p}^{\frac{e_{\mathfrak{p}}-1}{2} \frac{l^{n+1}}{e_{\mathfrak{p}}}} \quad \text { and } \quad \mathfrak{p}^{\frac{l-1}{2} \frac{l^{n+1}}{e_{\mathfrak{p}}}}
$$

are both in $W\left(k, l^{n-1}\right)^{(l-1) l / 2}$.
Proof. The Galois group of K / k is $C\left(l^{n}\right) \rtimes_{\mu} C(l)$, which is isomorphic to

$$
G=\left\langle\sigma, \tau: \sigma^{l}=\tau^{l^{n}}=1, \sigma \tau \sigma^{-1}=\tau^{l^{n-1}+1}\right\rangle
$$

by Lemma 3.1.
Since the ramification is tame, the inertia group at \mathfrak{p} is cyclic, generated by an element $\tau^{a} \sigma^{b}$; by induction we obtain

$$
\left(\tau^{a} \sigma^{b}\right)^{m}=\tau^{a m+a b l^{n-1}(m-1) m / 2} \sigma^{b m}
$$

The order $e_{\mathfrak{p}}$ of $\tau^{a} \sigma^{b}$ must be a multiple of l, since the element $\tau^{a} \sigma^{b}$ is nontrivial and G is an l-group. Hence, recalling that $\tau^{l^{n}}=1$, we find that $e_{\mathfrak{p}}$ is the smallest positive integer such that

$$
\tau^{a e_{\mathfrak{p}}} \sigma^{b e_{\mathfrak{p}}}=1
$$

First of all we assume that l^{2} divides $e_{\mathfrak{p}}$. If l^{β} is the exact power of l dividing a, we obtain $e_{\mathfrak{p}}=l^{n-\beta}$ and in particular $\beta \leq n-2$. So we have

$$
\sigma\left(\tau^{a} \sigma^{b}\right) \sigma^{-1}=\tau^{a\left(l^{n-1}+1\right)} \sigma^{b}=\left(\tau^{a} \sigma^{b}\right)^{l^{n-1}+1}
$$

and

$$
\tau\left(\tau^{a} \sigma^{b}\right) \tau^{-1}=\tau^{a-b l^{n-1}} \sigma^{b}=\left(\tau^{a} \sigma^{b}\right)^{-\tilde{a} b l^{n-1-\beta}+1}
$$

where $a \tilde{a} \equiv l^{\beta}\left(\bmod l^{n}\right)$. Hence, in particular, the inertia group is a normal subgroup of G. Thus we can decompose our extension in K / k_{1} and k_{1} / k, which are both Galois and such that \mathfrak{p} is totally ramified in K / k_{1} and unramified in k_{1} / k. By Lemma 3.14 of [2] the class of \mathfrak{p} is in $W\left(k, E_{k, \rho, \tau^{a} \sigma^{b}}\right)$,
where the action ρ is induced by the conjugation in G and, in particular, it sends the class of τ in $\operatorname{Gal}\left(k_{1} / k\right)=G /\left\langle\tau^{a} \sigma^{b}\right\rangle$ to elevation to the $\left(-\tilde{a} b l^{n-1-\beta}+1\right)$ th power, as seen above, and the class of σ to elevation to the $\left(l^{n-1}+1\right)$ th power. The group $G_{k, \rho, \tau^{a}} \sigma^{b}$ consists of those elements g of $\operatorname{Gal}\left(k\left(\zeta_{l^{n-\beta}}\right) / k\right)$ such that $\nu_{k, \tau^{a} \sigma^{b}}(g)$ is congruent to a product of powers of $l^{n-1}+1$ and $-\tilde{a} b l^{n-1-\beta}+1$ modulo $l^{n-\beta}$. But all these are congruent to 1 modulo $l^{n-1-\beta}$ and thus $\left.G_{k, \rho, \tau^{a} \sigma^{b}}\right|_{k\left(\zeta_{l n-1-\beta}\right)}=\{1\}$. Hence

$$
E_{k, \rho, \tau^{a} \sigma^{b}} \supseteq k\left(\zeta_{l^{n-1-\beta}}\right)=k\left(\zeta_{e_{\mathfrak{p}} / l}\right)
$$

i.e.

$$
W\left(k, E_{k, \rho, \tau^{a} \sigma^{b}}\right) \subseteq W\left(k, e_{\mathfrak{p}} / l\right)
$$

Therefore, by the assumption that $l^{2} \mid e_{\mathfrak{p}}$ and by Lemma 2.6, the class of $\mathfrak{p}^{\frac{l-1}{2} \frac{l^{n+1}}{e_{\mathfrak{p}}}}$ is in

$$
W\left(k, e_{\mathfrak{p}} / l\right)^{\frac{l-1}{2} \frac{l^{n+1}}{e_{\mathfrak{p}}}} \subseteq W\left(k, l^{n-1}\right)^{(l-1) l / 2}
$$

and the same is true for $\mathfrak{p}^{\frac{e_{\mathfrak{p}}-1}{2} \frac{l^{n+1}}{e_{\mathfrak{p}}}}$.
It remains to consider the case $e_{\mathfrak{p}}=l$. We now define k_{1} as the fixed field of τ and we first assume that \mathfrak{p} ramifies in K / k_{1}. Then its inertia group in $\operatorname{Gal}\left(K / k_{1}\right)=C\left(l^{n}\right)$ is of order l and thus must be generated by $\tau^{l^{n-1}}$. Hence by Lemma 3.14 of [C2] the class of \mathfrak{p} is in $W\left(k, E_{k, \mu, \tau^{n-1}}\right)$ and $\mathfrak{p}^{(l-1) l^{n+1} / e_{\mathfrak{p}}}$ is the square of an ideal of a class in $W\left(k, E_{k, \mu, \tau^{l^{n-1}}}\right)^{(l-1) l^{n} / 2}$, which is contained in $W\left(k, l^{n-1}\right)^{(l-1) l / 2}$ by Lemma 3.5.

Finally let us consider the case of \mathfrak{p} ramified in k_{1} / k. By Lemma 3.6 the class of \mathfrak{p} is in $W(k, l)$. Hence the class of

$$
\mathfrak{p}^{\frac{l-1}{2} \frac{l^{n+1}}{e_{\mathfrak{p}}}}=\mathfrak{p}^{\frac{e_{\mathfrak{p}}-1}{2} \frac{l^{n+1}}{e_{\mathfrak{p}}}}
$$

is in $W(k, l)^{(l-1) l^{n} / 2}$. By Lemma 2.6,

$$
W(k, l)^{(l-1) l^{n} / 2} \subseteq W\left(k, l^{n-1}\right)^{(l-1) l^{2} / 2} \subseteq W\left(k, l^{n-1}\right)^{(l-1) l / 2}
$$

Theorem 3.8. We have

$$
\mathrm{R}_{t}\left(k, C\left(l^{n}\right) \rtimes_{\mu} C(l)\right)=W\left(k, l^{n-1}\right)^{(l-1) l / 2}
$$

Further the group $C\left(l^{n}\right) \rtimes_{\mu} C(l)$ is good.
Proof. From Theorems 2.1 and 2.2, by Lemmas 3.3 and 3.7 , it is immediate that

$$
\mathrm{R}_{t}\left(k, C\left(l^{n}\right) \rtimes_{\mu} C(l)\right)=W\left(k, l^{n-1}\right)^{(l-1) l / 2}
$$

Now we prove that $C\left(l^{n}\right) \rtimes_{\mu} C(l)$ satisfies all the defining conditions of good groups:

1. This follows immediately, since $W\left(k, l^{n-1}\right)^{(l-1) l / 2}$ is a group.
2. This is part of Lemma 3.7.
3. This is also proved in Lemma 3.7.
4. This follows by Lemma 3.3.
5. Nonabelian extensions of order l^{3}. As a particular case of Theorem 3.8 we state the following proposition.

Proposition 4.1. The group $C\left(l^{2}\right) \rtimes_{\mu} C(l)$ is good and

$$
\mathrm{R}_{t}\left(k, C\left(l^{2}\right) \rtimes_{\mu} C(l)\right)=W(k, l)^{(l-1) l / 2}
$$

Up to isomorphism, the only other nonabelian group of order l^{3} is

$$
G=\left\langle x, y, \sigma: x^{l}=y^{l}=\sigma^{l}=1, \sigma x=x \sigma, \sigma y=y \sigma, y x=x y \sigma\right\rangle
$$

which is a semidirect product of the normal subgroup $\langle x, \sigma\rangle \cong C(l) \times C(l)$ and the cyclic subgroup $\langle y\rangle$ of order l, where the action μ_{1} is given by conjugation. Clément Bruche proved in [B] that

$$
\mathrm{R}_{t}(k, G)=W(k, l)^{(l-1) l^{2} / 2}
$$

We can give a different proof of Bruche's result, using class field theory. We will also prove that the nonabelian group of order l^{3} and exponent l studied by Bruche is a good group.

Lemma 4.2. Let k be a number field. Then

$$
\mathrm{R}_{t}(k, G) \supseteq W(k, l)^{(l-1) l^{2} / 2}
$$

Further, for any $x \in W(k, l)$ and any positive integer a, there exists a tame G-extension of k with Steinitz class $x^{(l-1) l^{2} / 2}$ and such that any nontrivial subextension of K / k is ramified at some primes which are unramified in $k\left(\zeta_{a}\right) / k$.

Proof. Let $x \in W(k, l)$. By Theorem 3.19 in [C2] there exists a $C(l)$ extension k_{1} with Steinitz class $x^{(l-1) / 2}$ and which is totally ramified at some prime ideals which are unramified in $k\left(\zeta_{a}\right) / k$. Let \mathfrak{p} be one of them.

Now we would like to use Lemma 3.10 of C 2 to obtain a $C(l) \times C(l)$ extension of K / k_{1} which is Galois over k, with $\operatorname{Gal}(K / k) \cong G$. Unfortunately this is not possible since the exact sequence

$$
1 \rightarrow C(l) \times C(l) \rightarrow \mathcal{H} \rightarrow C(l) \rightarrow 1
$$

does not identify the group \mathcal{H} uniquely as the group G. Nevertheless, the argument of that lemma at least produces a $C(l) \times C(l)$-extension of k_{1} which is Galois over k and with $\operatorname{st}\left(K / k_{1}\right)=1$. Further we can assume that $\operatorname{Gal}(K / k)$ is nonabelian of order l^{3} (since the action of $C(l)$ on $C(l) \times C(l)$ is the given one and in particular it is not trivial), that K / k_{1} is unramified at \mathfrak{p} and that any nontrivial subextension of K / k is ramified at some primes which are unramified in $k\left(\zeta_{a}\right) / k$.

We want to prove that $\operatorname{Gal}(K / k) \cong G$. To this aim, we assume that this is not the case, i.e. that $\operatorname{Gal}(K / k) \cong C\left(l^{2}\right) \rtimes_{\mu} C(l)$, and we derive a contradiction. First of all, by construction, $\operatorname{Gal}\left(K / k_{1}\right) \cong C(l) \times C(l)$ and this must be a subgroup of $\operatorname{Gal}(K / k) \cong C\left(l^{2}\right) \rtimes_{\mu} C(l)$: the only possibility is that it is the subgroup H consisting of all elements of $C\left(l^{2}\right) \rtimes_{\mu} C(l)$ having order 1 or l. Since the prime ideal \mathfrak{p} ramifies in k_{1} / k and not in K / k_{1}, its ramification index is l, and therefore its inertia group is contained in H. Hence by Galois theory we conclude that the inertia field of \mathfrak{p} in K / k contains k_{1}, i.e. \mathfrak{p} ramifies in K / k_{1} and not in k_{1} / k. This is a contradiction, since \mathfrak{p} is ramified in k_{1} / k.

Hence we have proved that in the above construction the extension K / k has Galois group G. By Proposition 2.3,

$$
\operatorname{st}(K / k)=\operatorname{st}\left(k_{1} / k\right)^{\left[K: k_{1}\right]} \mathrm{N}_{k_{1} / k}\left(\operatorname{st}\left(K / k_{1}\right)\right)=x^{(l-1) l^{2} / 2}
$$

To prove the opposite inclusion we need the following lemma.
Lemma 4.3. Let K / k be a tame G-extension of number fields. The ramification index of a prime ramifying in K / k is l and its class is contained in $W(k, l)$.

Proof. The ramification index of a ramifying prime is equal to l, since the corresponding inertia group must be cyclic and any nontrivial element in G is of order l.

Let k_{1} be the subfield of K fixed by the normal abelian subgroup $\langle x, \sigma\rangle$ of the Galois group G of K / k.

If a prime \mathfrak{p} ramifies in k_{1} / k, then its class is in $W(k, l)$ by Lemma 3.6.
If a prime \mathfrak{p} ramifies in K / k_{1}, then it is unramified in k_{1} / k (the ramification index is prime) and so its inertia group is generated by an element of the form $x^{a} \sigma^{c}$, where $a, c \in\{0,1, \ldots, l-1\}$ are not both 0 . By Lemma 3.14 of [C2] the class of \mathfrak{p} is in $W\left(k, E_{k, \mu_{1}, x^{a} \sigma^{c}}\right)$. For any $b \in\{0,1, \ldots, l-1\}$ we have

$$
\mu_{1}\left(y^{b}\right)\left(x^{a} \sigma^{c}\right)=y^{b} x^{a} \sigma^{c} y^{-b}=x^{a} \sigma^{c+a b}
$$

and this expression cannot be a nontrivial power of $x^{a} \sigma^{c}$. Hence, by definition, the group $G_{k, \mu_{1}, x^{a} \sigma^{c}}$ must be trivial and we conclude that $E_{k, \mu_{1}, x^{a} \sigma^{c}}=$ $k\left(\zeta_{l}\right)$. Therefore, in particular, the class of the prime ideal \mathfrak{p} is contained in $W(k, l)$.

Proposition 4.4. The group G is good and

$$
\mathrm{R}_{t}(k, G)=W(k, l)^{(l-1) l^{2} / 2}
$$

Proof. The proof is straightforward using the preceding lemmas.
Acknowledgements. I am very grateful to Professor Cornelius Greither and to Professor Roberto Dvornicich for their advice and for the patience they showed, assisting me in the writing of my PhD thesis with a lot
of suggestions. I also wish to thank the Scuola Normale Superiore of Pisa, for its role in my mathematical education and for its support during the time I was working on my PhD thesis.

References

[B] C. Bruche, Classes de Steinitz d'extensions non abéliennes de degré p^{3}, Acta Arith. 137 (2009), 177-191.
[BS] C. Bruche and B. Sodaïgui, On realizable Galois module classes and Steinitz classes of nonabelian extensions, J. Number Theory 128 (2008), 954-978.
[BGS] N. P. Byott, C. Greither et B. Sodaïgui, Classes réalisables d'extensions non abéliennes, J. Reine Angew. Math. 601 (2006), 1-27
[Ca1] J. E. Carter, Steinitz classes of a nonabelian extension of degree p ${ }^{3}$, Colloq. Math. 71 (1996), 297-303.
[Ca2] -, Steinitz classes of nonabelian extensions of degree p^{3}, Acta Arith. 78 (1997), 297-303.
[CaS] J. E. Carter et B. Sodaïgui, Classes de Steinitz d'extensions quaternioniennes généralisées de degré $4 p^{r}$, J. London Math. Soc. (2) 76 (2007), 331-344.
[C1] A. Cobbe, Steinitz classes of tamely ramified Galois extensions of algebraic number fields, PhD thesis, Scuola Normale Superiore, Pisa, 2010.
[C2] -, Steinitz classes of tamely ramified Galois extensions of algebraic number fields, J. Number Theory 130 (2010), 1129-1154.
[E] L. P. Endo, Steinitz classes of tamely ramified Galois extensions of algebraic number fields, PhD thesis, Univ. of Illinois at Urbana-Champaign, 1975.
[GS1] M. Godin et B. Sodaïgui, Classes de Steinitz d'extensions à groupe de Galois A_{4}, J. Théor. Nombres Bordeaux 14 (2002), 241-248.
[GS2] —, 一, Module structure of rings of integers in octahedral extensions, Acta Arith. 109 (2003), 321-327.
[L] S. Lang, Algebraic Number Theory, 2nd ed., Grad. Texts in Math. 110, Springer, New York, 1994.
[Lo1] R. Long, Steinitz classes of cyclic extensions of degree l^{r}, Proc. Amer. Math. Soc. 49 (1975), 297-304.
[Lo2] -, Steinitz classes of cyclic extensions of prime degree, J. Reine Angew. Math. 250 (1971), 87-98.
[MS] R. Massy et B. Sodaïgui, Classes de Steinitz et extensions quaternioniennes, Proyecciones 16 (1997), 1-13.
[MC1] L. R. McCulloh, Cyclic extensions without relative integral bases, Proc. Amer. Math. Soc. 17 (1966), 1191-1194.
[MC2] —, Galois module structure of abelian extensions, J. Reine Angew. Math. 375/376 (1987), 259-306.
[Na] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer Monogr. Math., Springer, Berlin, 2004.
[Ne] J. Neukirch, Class Field Theory, Grundlehren Math. Wiss. 280, Springer, Berlin, 1986.
[S1] B. Sodaïgui, Classes de Steinitz d'extensions galoisiennes relatives de degré une puissance de 2 et problème de plongement, Illinois J. Math. 43 (1999), 47-60.
[S2] -, Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8, J. Algebra 223 (2000), 367-378.
[Sov] E. Soverchia, Steinitz classes of metacyclic extensions, J. London Math. Soc. (2) 66 (2002), 61-72.

Alessandro Cobbe
Scuola Normale Superiore
Piazza dei Cavalieri, 7
I-56126 Pisa, Italy
E-mail: a.cobbe@sns.it

Received on 19.1.2010
and in revised form on 24.1.2011

[^0]: 2010 Mathematics Subject Classification: Primary 11R32; Secondary 11R37.
 Key words and phrases: Steinitz classes, realizable classes, tame extensions of number fields, class field theory.

[^1]: $\left(^{1}\right)$ Actually $\mathfrak{p}^{\left(e_{\mathfrak{p}}-1\right) m / e_{\mathfrak{p}}-v_{\mathfrak{p}}\left(\alpha_{K / k}\right)}$ is the square of an ideal by Theorems 2.1 and 2.2

