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Sums of units in function fields II:
The extension problem
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Christopher Frei (Graz)

1. Introduction. In their paper [7], Jarden and Narkiewicz proved that,
for every finitely generated integral domain R of characteristic 0 and every
positive integer N , there exists an element of R that cannot be written as a
sum of at most N units. This also follows from a result obtained by Hajdu [6]
and applies in particular to the case where R is the ring of integers of an
algebraic number field. The author recently showed an analogous result for
the case where R is a ring of S-integers of an algebraic function field of one
variable over a perfect field [4].

A related question is whether or not a ring R is generated by its units.
If we take R to be the ring of integers of an algebraic number or function
field, both possibilities occur. Complete classifications have been found in
many special cases, including rings of integers of quadratic number fields
[1, 2] and certain types of cubic and quartic number fields [3, 11, 13], and
rings of S-integers of quadratic function fields [4]. All of these results have
in common that the unit group of the ring in question is of rank 1. The
author is not aware of any general results for rings of integers whose unit
groups have higher rank.

Among other problems, Jarden and Narkiewicz asked the following ques-
tion, which was later called the extension problem.

Problem 1 ([7, Problem B]). Is it true that each number field has a
finite extension L such that the ring of integers of L is generated by its
units?

This is of course true for finite abelian extensions of Q, since those are
contained in cyclotomic number fields by the Kronecker–Weber theorem,
and the ring of integers of a cyclotomic number field is generated by a root
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of unity. The scope of this paper is an affirmative answer to the function
field version of Problem 1. Let us fix some basic notation before we state
the theorem.

Regarding function fields, we use the notation from [9] and [10]. In par-
ticular, an algebraic function field over a field K is a finitely generated
extension F |K of transcendence degree 1. The algebraic closure of K in
F is called the (full) constant field of F |K. An element t ∈ F is called a
separating element for F |K if the extension F |K(t) is finite and separable.
Following [10], we regard the places P of F |K as the maximal ideals of
discrete valuation rings OP of F containing K. In particular, the places cor-
respond to (surjective) discrete valuations vP : F → Z ∪ {∞} of F over K.
Let n be a positive integer. We say that a place P of F |K is a zero of an
element f ∈ F of order n if vP (f) = n > 0, and P is a pole of f of order n
if vP (f) = −n < 0. If S is a finite set of places of F |K then the ring OS

of S-integers of F is the set of all elements of F that have no poles outside
of S. Moreover, we write K× := K r {0}.

Theorem 2. Let K be a perfect field, F |K an algebraic function field
over K, and S 6= ∅ a finite set of places of F |K. Let OS be the ring of
S-integers of F . Then there exists a finite extension F ′|F such that the
integral closure of OS in F ′ is generated by its units (as a ring).

The basic idea to prove Theorem 2 is the following: First, choose a finite
set {t, t1, . . . , tn} of generators of OS over K. Then, for each 1 ≤ i ≤ n,
iteratively construct a finite extension Fi|F such that

(I) t, t1, . . . , ti are sums of units in the integral closure of OS in Fi, and
(II) the integral closure of OS in Fi is generated by units as a ring

extension of OS .

Then the integral closure of OS in Fn is generated by units and sums of units
as an extension of K, thus it is generated by its units. Section 2 provides
the tools to construct the extension fields Fi. In Section 3, everything is put
together.

2. Auxiliary results. The following lemma illustrates the idea ex-
plained at the end of the introduction.

Lemma 3. Let K be a perfect field not of characteristic 2 and a ∈ K×.
Consider the extension of rational function fields K(x)|K(t), where t =
x + a2/x. Then the integral closure of K[t] in K(x) is K[x, x−1], which is
generated (as a ring) by its units. The only places of K(t) that are ram-
ified in K(x) are the zeros of t − 2a and t + 2a, both with ramification
index 2.
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Proof. The minimal polynomial of x over K(t) is X2− tX + a2, whence
K(x) = K(t, y), with y2 = t2 − 4a2. (Here we used the assumption that K
is not of characteristic 2.) One can verify the assertions about ramification
directly or use Proposition III.7.3 from [10].

Obviously, x and x−1 are integral over K[t], and K[t] ⊆ K[x, x−1].
Since K[x, x−1], as a ring of fractions of the principal ideal domain K[x],
is integrally closed, it is the integral closure of K[t] in K(x). Obviously,
x, x−1 and all elements of K× are units in K[x, x−1], and the lemma is
proved.

The main step in the construction of the extension fields Fi is carried
out in the following proposition, which is the most important component of
our proof of Theorem 2.

Proposition 4. Let K be a perfect field not of characteristic 2, F |K an
algebraic function field with full constant field K, t a separating element of
F |K, and O the integral closure of K[t] in F . Assume that there is some a ∈
K× such that the zeros of t+2a and t−2a in K(t) are unramified in F |K(t).
Let F ′ := F (x), where x is a root of the polynomial f := X2− tX + a2, and
let O′ be the integral closure of K[t] in F ′. Then K is the full constant field
of F ′|K, x is a unit in O′, t = x+ a2/x, and O′ = O[x].

Proof. The roots of f ∈ O[X] in F ′ are x and a2/x, whence x is a
unit in O′. Obviously, we have t = x + a2/x. If f is reducible over F then
x, a2/x ∈ O, and the proposition holds trivially. Assume now that f is irre-
ducible over F .

The field F ′ is the compositum of F and K(x). Since the characteristic
of K is not 2, the extension F ′|F , and thus also F ′|K(t), is separable. By
Lemma 3, the only places of K(t) that are ramified in K(x) are the zeros of
t− 2a and t+ 2a, both with ramification index 2.

Let P be a zero of t+ 2a or t− 2a in F ′|K. By Abhyankar’s lemma (see,
for example, Proposition III.8.9 from [10]), the ramification index of P over
K(t) is 2. Here, we used the assumption that the zeros of t− 2a and t+ 2a
in K(t) are unramified in the extension F |K(t). Therefore, the ramification
index of P over F is 2.

Again by Abhyankar’s lemma, every place Q of F ′|K that is not a zero
of t+ 2a or t− 2a is unramified over F .

Since there are ramified places in the extension F ′|F , it is not a constant
field extension, so K is the full constant field of F ′|K.

We are left with the task of proving that O′ = O[x]. Denote the different
of O′|O by D, and let δ(x) be the different of x, that is, δ(x) = f ′(x) = 2x−t.
It is well known that O′ = O[x] if and only if D is the principal ideal of O′
generated by δ(x) (see, for example, Theorem V.11.29 from [12]).
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Already knowing all ramification indices in the extension F ′|F , we see
that the different D of O′|O is the product of all prime ideals of O′ dividing
(t + 2a) or (t − 2a) (use, for example, Theorem III.2.6 from [8] and the
assumption that K is not of characteristic 2).

Since
δ(x)2 = (2x− t)2 = t2 − 4a2 = (t+ 2a)(t− 2a),

the ideal of O′ generated by δ(x) satisfies

(δ(x))2 =
∏

P|(t±2a)

P2 =
( ∏

P|(t±2a)

P
)2

= D2.

Here, P ranges over all prime ideals of O′ dividing (t + 2a) or (t− 2a). As
we have already seen, the ramification index of each such P over the prime
ideal (t + 2a) [or (t − 2a)] of K[t] is 2. By unique ideal factorization, the
ideal of O′ generated by δ(x) is D.

For function fields of characteristic 2, we use a slightly modified form of
Proposition 4.

Proposition 5. Let K be a perfect field of characteristic 2, F |K an
algebraic function field with full constant field K, t a separating element of
F |K, and O the integral closure of K[t] in F . Assume that there is some
a ∈ K such that the zero of t + a in K(t) is unramified in F |K(t). Let
F ′ := F (x), where x is a root of the polynomial f := X2 + (t+a)X+ 1, and
let O′ be the integral closure of K[t] in F ′. Then K is the full constant field
of F ′|K, x is a unit in O′, t = x+ 1/x+ a, and O′ = O[x].

Proof. Again, x is a unit in O′, since x and 1/x are the roots of the monic
polynomial f ∈ O[X]. Clearly, t = x+ 1/x+ a. The proposition holds again
trivially if f is reducible over F . Assume from now on that f is irreducible
over F .

Putting y := x/(t+a), we get F ′ = F (x) = F (y) and y2 +y = 1/(t+a)2.
We use Proposition III.7.8 from [10] to prove that the only places of F |K
that are ramified in F ′ are the zeros of t+ a. Indeed, for each such zero P ,
we have

vP (1/(t+ a)2 − (1/(t+ a)2 − 1/(t+ a))) = vP (1/(t+ a)) = −1,

since P is unramified over K(t). For each place Q of F |K that is not a zero
of t+ a, we have

vQ(1/(t+ a)2) ≥ 0.

Therefore, Proposition III.7.8 from [10] implies that the places of F |K that
are ramified in F ′ are exactly the zeros of t + a, and that the respective
ramification indices and different exponents are 2. We conclude that K is
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the full constant field of F |K and that the different D of O′|O is of the form

D =
∏

P|(t+a)

P2.

Here, P ranges over all prime ideals of O′ dividing (t + a). On the other
hand, the different of x is δ(x) = f ′(x) = t+a, and the ideal of O′ generated
by t+ a is given by

(t+ a) =
∏

P|(t+a)

P2 = D.

Note that the ramification index of every prime ideal P of O′ over the prime
ideal (t+a) of K[t] is 2, since (t+a) is unramified in F and the ramification
index of P over F is 2.

Therefore, D = (δ(x)), which suffices to prove that O′ = O[x].

The following lemma shows how to enlarge O, maintaining the property
that O′ = O[x] from the previous propositions. The results are probably not
new, but the author is not aware of an adequate reference. Recall that, for
any place P of an algebraic function field, OP denotes the discrete valuation
ring with maximal ideal P .

Lemma 6. Let F |K be an algebraic function field with perfect constant
field K, F ′|F a finite separable extension, and x ∈ F ′ with F ′ = F (x). Let
S ⊆ T be sets of places of F |K, and assume that x is integral over OS. Then:

(a) If OP [x] is integrally closed for all P /∈ S then OS [x] is integrally
closed as well.

(b) If OS [x] is integrally closed then OT [x] is integrally closed as well.
(c) If x is algebraic over K then OT [x] is integrally closed.

Proof. Denote the integral closure of OS in F ′ by O′. Clearly, OS [x]⊆O′.
To prove (a), we need to show that OS [x] = O′. Let S′ be the set of places
of F ′|K lying over places in S. We have

O′ =
⋂

P ′ /∈S′

OP ′ =
⋂

P /∈S

⋂
P ′|P

OP ′ =
⋂

P /∈S

(OP [x]).

Here, P ′ denotes places of F ′|K and P denotes places of F |K. The third
equality follows from the assumption that OP [x] is integrally closed and the
fact that x is integral over OP , for all P /∈ S. Therefore, it is sufficient to
show that ⋂

P /∈S

(OP [x]) =
( ⋂

P /∈S

OP

)
[x].

Clearly, the right-hand side of the above equality is included in the left-hand
side. Now let f be an arbitrary element of

⋂
P /∈S(OP [x]). Denote the degree

[F ′ : F ] by n. Then, for each P /∈ S, there is some polynomial gP ∈ OP [X]
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of degree smaller than n with f = gP (x). Since {1, x, . . . , xn−1} is a basis of
F ′|F , all gP are equal and thus elements of (

⋂
P /∈S OP )[X]. This shows the

other inclusion.
To prove (b), notice that, for all P /∈ S, OP is the localization of OS at

the unique prime ideal P of OS corresponding to the place P . Therefore,
OP [x] can be seen as the ring of fractions of OS [x] with denominators in the
multiplicative set OS r P. Assume that OS [x] is integrally closed. By the
above argument, OP [x] is integrally closed for all P /∈ S, in particular for
all P /∈ T , so (b) follows from (a).

The special case of (b) with S = ∅ is exactly (c).

As an immediate consequence of Lemma 6(c) and the primitive ele-
ment theorem, finite constant field extensions have property (II) from the
overview presented at the end of Section 1 (see also the third paragraph of
Remark 6.1.7 in [5] for a more general formulation):

Corollary 7. Let F |K be an algebraic function field with perfect con-
stant field K, S a set of places of F |K, and K ′|K a finite extension. Then
the integral closure of OS in K ′F is K ′OS.

To use Propositions 4 and 5, we need to ensure that we can always find
an a as required. This is accomplished by the following lemma.

Lemma 8. Let F |K be an algebraic function field with perfect constant
field K, and t ∈ FrK. Then there is a finite extension K0|K and an element
a ∈ K×0 such that the zeros of t − a and t + a in K0(t) are unramified in
the extension K0F |K0(t). If F is separable over K(t) then K0F is separable
over K0(t).

Proof. The first part of the lemma clearly holds if K is infinite, since
there are only finitely many ramified places in F |K(t), so we can put
K0 := K.

In the general case, consider the algebraic closure K of K in some alge-
braically closed field Φ ⊇ F and the constant field extension KF |K of F |K.
Since K is infinite, we find some a ∈ K such that the zeros of t−a and t+a
in K(t) are unramified in KF . Put K0 := K(a). Then the zeros of t−a and
t + a in K0(t) are unramified in K0F , as desired. Indeed, let P ′ be a place
of KF |K lying over the zero P of, say, t+ a in K0(t). Put P ′ := P

′ ∩K0F

and P := P
′ ∩K(t). We know that P ′|P is unramified. From P

′|P |P and
the fact that constant field extensions are unramified, it follows that P ′|P
is unramified. Now P

′|P ′|P implies that P ′|P is unramified.
The assertion regarding separability holds because if F is separable over

K(t) then K0F is generated over K0(t) by separable elements.
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3. Proof of Theorem 2. For convenience, let us state the theorem
again.

Theorem 2. Let K be a perfect field, F |K an algebraic function field
over K, and S 6= ∅ a finite set of places of F |K. Let OS be the ring of
S-integers of F . Then there exists a finite extension F ′|F such that the
integral closure of OS in F ′ is generated by its units (as a ring).

It is enough to prove Theorem 2 under the assumption that K is the full
constant field of F |K, since then the general case follows as well.

Denote the characteristic of K by p ≥ 0, and assume first that p 6= 2. We
find a separating element t of F |K such that OS is the integral closure of
K[t] in F . To this end, choose places Q ∈ S and R,R′ /∈ S of F |K. By the
strong approximation theorem, we can find an element t ∈ F that satisfies

vR(t) = 1,

vR′(t) =
∑

P∈Sr{Q}

degP,

vP (t) = −1 for all P ∈ S r {Q},
vP (t) ≥ 0 for all places P /∈ S ∪ {R,R′}.

Since the principal divisor of t has degree 0, it follows that vQ(t) < 0.
Therefore, the poles of t are exactly the elements of S. Moreover, t is not a
pth power, since p does not divide vR(t) = 1. It follows that F is separable
over K(t) (see, for example, Proposition III.9.2(d) from [10]) and the integral
closure of K[t] in F is exactly OS .

Choose some non-constant elements t1, . . . , tn of OS such that OS =
K[t, t1, . . . , tn] (for example, let {t1, . . . , tn} be an integral basis of OS over
K[t] and omit a possible constant).

Lemma 8 permits us to find a finite extension K0|K and some a ∈ K×0
such that the zeros of t− 2a and t+ 2a in K0(t) are unramified in K0F . By
Corollary 7, the integral closure of OS in K0F is K0OS = K0[t, t1, . . . , tn].

Proposition 4 yields a finite extension F0|K0 of K0F |K0 such that t is a
sum of units in the integral closure O0 of OS in F0, and O0 = K0OS [x0] =
K0[t, t1, . . . , tn, x0] for some unit x0 of O0. Moreover, K0 is the full constant
field of F0|K0.

We inductively construct finite extensions F1|K1, . . . , Fn|Kn of F0|K0

with the following properties. If Oi denotes the integral closure of OS in Fi

then we have, for i ∈ {0, . . . , n}:
• Oi = Ki[t, s1, . . . , si, ti+1, . . . , tn, x0, x1, . . . , xi], where x0, . . . , xi are

units of Oi, and for all 1 ≤ j ≤ i there is some m with spm

j = tj .
• t, s1, . . . , si are sums of units of Oi.
• Ki is the full constant field of Fi|Ki.
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For i = 0, the function field F0|K0 has all the desired properties. Let
i ∈ {1, . . . , n} and assume that we have constructed Fi−1|Ki−1. Figure 1
shows the relations between the rings and fields constructed in the following
paragraphs.

Fi

Proposition 4

Fi

O[xi]

OOOOO
⊆ Oi

nnnnnnn

KiFi−1

Lemma 8

KiFi−1

O

OOOOOO
⊆ KiOi−1

nnnnn

Ki(si) Fi−1

Ki[si]

NNNN

Oi−1

nnnnnn

Fig. 1. The rings and fields occurring in the induction step

Take the maximal non-negative integer m such that ti is a pmth power
in Fi−1 (the maximum exists since ti is not constant), and let si be the pmth
root of ti. (If p = 0, simply put si := ti.) Then si ∈ Oi−1, since si has the
same poles as ti. Thus, Oi−1 = Ki−1[t, s1, . . . , si, ti+1, . . . , tn, x0, . . . , xi−1].

Since si is not a pth power in Fi−1, it is a separating element of Fi−1|Ki−1

(again, we used Proposition III.9.2(d) from [10]). By Lemma 8, there is some
finite extension Ki|Ki−1 and some a ∈ K×i such that the zeros of si − 2a
and si +2a in Ki(si) are unramified in KiFi−1, and KiFi−1 is separable over
Ki(si).

Denote the integral closure of Ki[si] in KiFi−1 by O. By Proposition 4,
there is a finite extension Fi|Ki of KiFi−1|Ki such that the integral closure
of O in Fi is O[xi] for some unit xi, and si is a sum of units in O[xi].
Moreover, Ki is the full constant field of Fi|Ki.

By our convention, Oi is the integral closure of OS in Fi, and thus as
well the integral closure of Oi−1 in Fi. By Corollary 7, the integral closure of
Oi−1 in KiFi−1 is KiOi−1. Since si ∈ Oi−1, we have O ⊆ KiOi−1. Let U be
the set of poles of si in KiFi−1, and V ⊇ U the set of poles of t in KiFi−1.
Then O = OU and KiOi−1 = OV . Since OU [xi] = O[xi] is integrally closed,
Lemma 6(b) implies that OV [xi] = KiOi−1[xi] is integrally closed as well.
Therefore, KiOi−1[xi] is Oi, the integral closure of Oi−1 in Fi. We conclude
that

Oi = Ki[t, s1, . . . , si, ti+1, . . . , tn, x0, . . . , xi],

as desired. The elements x0, . . . , xi−1 are units in Oi, because they are units
in Oi−1 ⊆ Oi. Moreover, xi is a unit in Oi, since it is a unit in O[xi] ⊆ Oi.
Therefore, t, s1, . . . , si are sums of units of Oi, and the induction is complete.
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Now put F ′|K ′ := Fn|Kn, and Theorem 2 is proved whenever the char-
acteristic of K is not 2. In characteristic 2, the proof is exactly the same,
except that we always write a instead of 2a and use Proposition 5 instead
of Proposition 4.
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