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1. Introduction. Let K = Q(ζn) be the nth cyclotomic field with
Galois group G = Gal(K/Q). Stickelberger introduced an ideal S (called
the Stickelberger ideal of K) of R = Z[G] which annihilates the ideal class
group C of K. In [Si], Sinnott showed that the index of the minus part of
S in the minus part of R is equal to the minus class number of K up to
a power of 2. For any integer d ≥ 1, Schmidt ([Sc]) introduced an ideal Sd
(called the d-Stickelberger ideal of K) of R which annihilates the d-ray class
group Cd of K and showed that the index of the minus part of Sd in the
minus part of R is equal to the order of the minus part of Cd up to a power
of 2.

In this paper we consider the analogous problem in function fields. The
analogue of Sinnott’s work has been done in [Y3]. We mention that the ideal
considered in this paper is the same as that in [Y3]. We first introduce some
notation.

Let k be a global function field over the finite field Fq with q elements
of characteristic p. Fix a place ∞ of k of degree 1 and fix a sign function
sgn : k∞ → Fq with sgn(0) = 0, where k∞ is the completion of k at ∞. We
call x ∈ k positive if sgn(x) = 1, and write x � 0. Let A be the Dedekind
subring of k consisting of the functions regular away from ∞. Let e be the
unit ideal of A and Ke the Hilbert class field of (k,∞), and Ge = Gal(Ke/k).
We denote by T0 the set of all non-zero integral ideals of A and T ∗0 = T0\{e}.
For any n ∈ T ∗0 , we set:

• Kn := the cyclotomic function field of the triple (k,∞, sgn) of conduc-
tor n.
• Gn := Gal(Kn/k).
• J := the inertia group at ∞ in Gn, which we call the sign group. Note

that J is naturally isomorphic to F∗q .
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• K+
n := the fixed field of J , which we call the maximal real subfield

of Kn.
• |A| := the cardinality of a set A.
• φ(n) := |(A/n)∗| = the number of units in A/n.
• s(A) :=

∑
σ∈A σ ∈ Z[Gn] for a subset A of Gn.

• ε− := 1− s(J)/(q − 1) ∈ Q[Gn].

Let OKn be the integral closure of A in Kn. For a non-zero integral ideal
N of OKn , let IN be the group of non-zero fractional ideals of OKn prime
to N and let PN,1 be the subgroup of IN consisting of principal ideals (x)
satisfying x ≡ 1 mod N. Then CN = IN/PN,1 is called the N-ray class group
of Kn. For any d ∈ T0, we write Cd := CdOKn

for simplicity. In this paper
we define an ideal Sd of R = Z[Gn] by using the Stickelberger elements and
show that it annihilates the d-ray class group Cd of Kn. Our proof relies on
the Hayes’ proof of Brumer–Stark conjecture for function fields ([Ha]). For
any R-module M , set M− := {m ∈ M : s(J) · m = 0} which we call the
minus part of M . We also show that the `-part of the index (R− : S−d ) is
equal to the `-part of |C−d | for any prime number ` with ` - (q−1), assuming
that n is square free if ` = p.

We fix the following notation:

• h := |Ge| = the class number of k.
• N(a) := qdeg(a) for any a ∈ T0.
• (a, b) := the greatest common divisor of a and b for any a, b ∈ T0.
• N(u) := N(a)/N(b) for any non-zero fractional ideal u of A, where

u = ab−1 with a, b ∈ T0 and (a, b) = e.
• ā :=

∏
p|a p, where p runs over all prime ideals of A dividing a.

• For each prime number `, | · |` denotes the normalized `-adic absolute
value, i.e., |`|` = 1/`.

From now on we fix n ∈ T ∗0 and write K := Kn, K+ := K+
n and G := Gn for

simplicity.

2. Annihilators of ray classes. Let a, b ∈ T0. We say that b is congru-
ent to a modulo n, and write a ∼n b, if there exists x ∈ a−1n with 1 +x� 0
such that b = (1 + x)a. Then ∼n is an equivalence relation on T0. For more
details on this relation, we refer to [Y2].

For x ∈ k∗, write ‖x‖ := N(xA). For a ∈ T0, let a1 = a(n, a)−1 and
n1 = n(n, a)−1. We define, for Re(s) > 1,

Zn(s, a) := N(a)−s
∑

x∈a−1n
1+x�0

‖1 + x‖−s = N(n, a)−sζn1(s, a1),

where ζn1(s, a1) is the partial zeta function of the class containing a1 in the
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narrow ray class group of A modulo n1. It has a meromorphic continuation
to the whole complex plane and is holomorphic except for a simple pole at
s = 1. For a, b ∈ T0, if a ∼n b, then Zn(s, a) = Zn(s, b). It is well known that
(q − 1)Zn(0, a) is an integer.

Define
θn :=

∑
a mod ∗n

Zn(0, a)σ−1
a ∈ Q[G],

where a mod ∗n means that the sum is over the representatives of the narrow
ray classes of A modulo n, and σa is the Artin automorphism associated to
the ideal a. For f | n, define

θ′f :=
∑

a mod ∗n

Zf(0, a)σ−1
a ∈ Q[G], θf :=

∑
a mod ∗f

Zf(0, a)σ−1
a ∈ Q[Gf].

Then θ′f = CorK/Kf
(θf) and ResK/Kf

(θ′f) = [K : Kf]θf.

Lemma 2.1. Let p be a prime ideal of A dividing n and let f = np−1.

(i) ResK/Kf
(θn) =

{
θf if p | f,
(1− σ−1

p )θf otherwise.
(ii) Let H = Gal(K/Kf). Then

θ′f =
{
s(H)θn if p | f,
s(H)θn + CorK/Kf

(σ−1
p θf) otherwise.

Here σp is the Artin automorphism associated to p in Gf.

Proof. For (i), see Corollary 1.7 and Proposition 1.8 of [T]. (ii) follows
immediately from (i).

For any c ∈ T0, define

θn(c) := (θ′n/(n,c))
σc/(n,c) .

Then θn = θn(e) and θ′f = θn(nf−1) for f | n. For d ∈ T0, we define

δn,d(c) :=
∑
a|d

µ(a)
N(d)
N(a)

θn(ac),

where µ(a) is 0 if a is not square free, and (−1)t if a is the product of t
distinct prime ideals of A. For a prime ideal p of A, we have

δn,p(c) = N(p)θn(c)− θn(pc) and δn,pn(c) = N(pn−1)δn,p(c) for n ≥ 1.

It is easy to see that if a ∼n b, then θn(a) = θn(b) and δn,d(a) = δn,d(b).
We define an R-ideal

Sd :=
( ∑

c mod ∼n

R · δn,d(c)
)
∩R,
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where c mod ∼n means that the sum is over the representatives of the classes
of T0 modulo ∼n, and call it the d-Stickelberger ideal of K. Since δn,e(c) =
(θ′n/(n,c))

σc/(n,c) ,

Se =
( ∑

c mod ∼n

R · θ′n/(n,c)
)
∩R =

(∑
f|n

R · θ′f
)
∩R

is the Stickelberger ideal of K defined by Yin in [Y3].

Proposition 2.2. If d 6= e, then δn,d(c) ∈ R for all c mod ∼n.

Proof. Since (q − 1)θn(c) ∈ R, it suffices to show that∑
a|d

µ(a)θn(ac) ∈ R.

Let S′ =
∑

f|nR·θ′f and let γ be a fixed generator of F∗q . The map ψ : S′ → F∗q
defined by ψ(θ) = γ(q−1)a1 , where a1 is the coefficient of 1 in θ, is a well
defined surjective homomorphism with kernel S′∩R (see the proof of Lemma
4.2 in [ABJ]). Moreover, ψ(σθ) = ψ(θ) for any θ ∈ S′ and σ ∈ G. Since
θ′f −N(nf−1)θn ∈ R for f | n, we have

ψ(θ′f) = ψ(θn)N(nf−1) = ψ(θn).

Thus
ψ
(∑

a|d

µ(a)θn(ac)
)

= ψ(θn)
P

a|d µ(a) = 1,

because
∑

a|d µ(a) = 0 if d 6= e. Hence
∑

a|d µ(a)θn(ac) ∈ R.

For an ideal d of A, we write δn,d := δn,d(e) for simplicity.

Lemma 2.3. For any prime ideal L of OK with L - pn, we have

Lδn,p = (x) with x ≡ 1 mod p.

Proof. Following the idea of Hayes at the end of [Ha, §2], we may assume
that L splits completely in K. Take the place l under L as the infinite place
∞′ of k. Now let φ be a sgn-normalized rank one Drinfeld module on A∞′ ,
which is the ring of functions in k regular away from ∞′. Let n′, p′ and f′ be
the ideals of A∞′ associated to n, p and f, respectively. Let H be the maximal
real subfield of the cyclotomic function field of (k,∞′, sgn) of conductor n′.
Then K is contained in H, and we proceed inside H, as in [Ha, §6]. It is
shown by Hayes [Ha] that Lθn = (λn′) for some properly chosen primitive
n′-torsion point λn′ of φ. If p - n, then δn,p = (N(p)− σp)θn. Thus

Lδn,p = (λN(p)−σp

n′ ) with λ
N(p)−σp

n′ ≡ 1 mod p,

since p is unramified in K.
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Now we assume that p | n, and let f = np−1 and H = Gal(K/Kf). In this
case, by Lemma 2.1(ii), we have

δn,p = N(p)θn − θ′f =
{
N(p)θn − s(H)θn if p | f,
N(p)θn − s(H)θn − CorK/Kf

(σ−1
p θf) if p - f.

If p | f, then λ
s(H)
n′ = φp′(λn′) ≡ λ

N(p)
n′ mod p′. Thus

Lδn,p = (λN(p)−s(H)
n′ ) with λ

N(p)−s(H)
n′ ≡ 1 mod p′.

If p - f, then, for any σ ∈ H, σ acts on λn′ as φa for some a ∈ (A∞′/n′)∗
with a ≡ 1 mod f′. Also there is a unique b ∈ A∞′/n′ with b ≡ 1 mod f′ but

b ≡ 0 mod p′. Write (b) = p′r′. Then φb(λn′) = φr′(λf′) = λ
σ−1

p′
f′ . It is easy to

see that ∏
a∈A∞′/n′
a≡1 mod f′

φa(λn′) = φp′(λn′).

Thus

λ
s(H)
n′ = φp′(λn′)/λ

σ−1
p′

f′ .

As before
φp′(λn′) ≡ λ

N(p)
n′ mod p′.

Since LCorK/Kf
(σ−1

p θf) = (λ
σ−1

p′
f′ ), we have

Lδn,p = (λN(p)
n′ /φp′(λn′)) with λ

N(p)
n′ /φp′(λn′) ≡ 1 mod p′.

Lemma 2.4. δn,p(c) = (CorK/Kn/(n,c)
(δn/(n,c),p))σc/(n,c).

Proof. Note first that

(2.1) δn,p(c) = N(p)(θ′n/(n,c))
σc/(n,c) − (θ′n/(n,pc))

σpc/(n,pc) .

Case 1: p - n. In this case (n, pc) = (n, c), and so (2.1) becomes

(N(p)θ′n/(n,c) − θ
′σp

n/(n,c))
σc/(n,c) = (CorK/Kn/(n,c)

(δn/(n,c),p))σc/(n,c) .

Case 2: p | n. In this case (2.1) becomes

(2.2) N(p)(θ′n/(n,c))
σc/(n,c) − (θ′f/(f,c))

σc/(f,c) .

Write n = pif′ and c = pjc′ with (p, f′c′) = e. Then

(n, c) = pmin{i,j}(f′, c′), (f, c) = pmin{i−1,j}(f′, c′),
n

(n, c)
= pi−min{i,j} f′

(f′, c′)
,

c

(n, c)
= pj−min{i,j} c′

(f′, c′)
,

f

(f, c)
= pi−1−min{i−1,j} f′

(f′, c′)
,

c

(f, c)
= pj−min{i−1,j} c′

(f′, c′)
.
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If j ≥ i, then f/(f, c) = n/(n, c) and c/(f, c) = pc/(n, c). Thus (2.2) becomes

(N(p)θ′n/(n,c) − (θ′n/(n,c))
σp)σc/(n,c) = (CorK/Kn/(n,c)

(δn/(n,c),p))σc/(n,c) .

If j < i, then f/(f, c) = (n, c)/p and c/(f, c) = c/(n, c). Thus (2.2) becomes

(N(p)θ′n/(n,c) − θ
′
n/(n,c)p)σc/(n,c) = (CorK/Kn/(n,c)

(δn/(n,c),p))σc/(n,c) .

Theorem 2.5. For any d ∈ T0, we have Sd ⊆ AnnR(Cd).

Proof. The case d = e is proved by Tate–Deligne ([T]) and Hayes ([Ha]).
Assume that d 6= e. It suffices to show that, for any prime ideal L of OK
with L - dn, there exists an element x ∈ K such that Lδn,d(c) = (x) with
x ≡ 1 mod d.

Consider first the case d = pn, a power of prime ideal p. For f | n, we have
LCorK/Kf

(θ) = NK/Kf
(L)θ for any θ ∈ Z[Gf]. Thus, by Lemmas 2.3 and 2.4,

there exists y ∈ K such that

(2.3) Lδn,p(c) = (y) with y ≡ 1 mod p.

Raising (2.3) to the N(pn−1)-power, we find an element x ∈ K such that

Lδn,pn (c) = (x) with x ≡ 1 mod pn.

Next we assume that d has at least two distinct prime divisors. Since
µ(a) = 0 for any a | d with a - d̄, we have δn,d(c) = N(d)

N(d̄)
δn,d̄(c). For any prime

ideal p | d, we have

Lδn,d̄(c) =
∏
a|d̄/p

(Lθn(ac))µ(a)
N(d̄)
N(a) ×

∏
a|d̄/p

(Lθn(pac))µ(pa)
N(d̄)
N(pa)

=
∏
a|d̄/p

(Lθn(ac)N(p)−θn(pac))µ(a)
N(d̄)
N(pa) =

∏
a|d̄/p

(Lδn,p(ac))µ(a)
N(d̄)
N(pa)

=
∏
a|d̄/p

(xa)µ(a)
N(d̄)
N(pa) , where Lδn,p(ac) = (xa) with xa ≡ 1 mod p

= (x0), where x0 =
∏
a|d̄/p

(xa)µ(a)
N(d̄)
N(pa) ≡ 1 mod p.

Thus

Lδn,d(c) = (x) with x = (x0)
N(d)

N(d̄) ≡ 1 mod pordp(d)

for any prime ideal p | d.

3. The minus part of the ray class groups. Let Cd(K+) denote the
d-ray class group of K+ and jd : Cd(K+) → Cd be the map induced by the
inclusion map on ideals from K+ to K. Let N (d)

K/K+ : Cd → Cd(K+) be the
norm map.
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Lemma 3.1.

(i) If d 6= e, then jd is injective.
(ii) The cokernel of N (d)

K/K+ has exponent q − 1, i.e.,

Cd(K+)q−1 ⊆ N (d)
K/K+(Cd) ⊆ Cd(K+).

Proof. (i) Let A be an ideal of K+ and assume A = (z) with z ∈ K
and z ≡ 1 mod d. Then (zj) = (z), where j is a generator of J . Thus
z1−j ∈ O∗K. For any infinite prime P∞ of K, |z1−j |P∞ = 1. Thus z1−j ∈ F∗q
with z1−j ≡ 1 mod d. Since d 6= e, z1−j = 1 and so z ∈ K+. Thus A = (z)
in K+. Hence jd is injective.

(ii) For any C ∈ Cd(K+), we have

Cq−1 = C1+j+···+jq−2
= N

(d)
K/K+(C).

Thus we get the result.

Let O∗K,d = {x ∈ O∗K : x ≡ 1 mod d} and O∗K+,d = O∗K+ ∩ O∗K,d.

Lemma 3.2. If d 6= e, then O∗K,d = O∗K+,d.

Proof. For any x ∈ O∗K,d, as in the proof of Proposition 1.1 in [Hr], we
have x1−j ∈ F∗q . But x1−j ≡ 1 mod d, so x1−j = 1. Thus x ∈ O∗K+ . Hence
O∗K,d = O∗K+,d.

Let Ĝ be the group of characters of G with values in C∗. A character χ is
called real if χ(J) = 1, and non-real otherwise. Let Ĝ− denote the set of all
non-real characters of G. The conductor fχ of a character χ is the smallest
integral ideal m such that χ factors through Gm. We denote by χ1 the trivial
character. Let p be a prime ideal of A. We define χ(p) as follows. If p - fχ, let
σp be the Artin automorphism associated to p in Gfχ and let χ(p) = χ(σp).
If p | fχ, we put χ(p) = 0.

Recall that C−d = {c ∈ Cd : s(J) · c = 0}, which is also the kernel of
N

(d)
K/K+ . Set h−d := |C−d |, called the minus d-ray class number of K.

Theorem 3.3. If d 6= e, then

h−d = h−e (N(d)
q−2
q−1

hφ(n)
%K,d/Q0)

∏
p|d

∏
χ∈ bG−

(1− χ(p)N(p)−1),

where Q0 = (O∗K : O∗K+), %K,d = |Coker(N (d)
K/K+)| and p runs over all prime

ideals of A dividing d.

Proof. Following the arguments in [L, Chap. VI, §1] and making use of
Lemma 3.2, we have

|Cd|
|Cd(K+)|

= h−e
|(OK/dOK)∗|
|(OK+/dOK+)∗|

1
Q0

.
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Thus it follows from the exact sequence

1→ C−d → Cd
N

(d)

K/K+

−−−−→ Cd(K+)→ Coker(N (d)
K/K+)→ 1

that

h−d = h−e
|(OK/dOK)∗|
|(OK+/dOK+)∗|

%K,d
Q0

.

Now, the result follows from the equalities

|(OK/dOK)∗|
|(OK+/dOK+)∗|

= N(d)
q−2
q−1

hφ(n)

∏
P(1−N(P)−1)∏

P+(1−N(P+)−1)

and ∏
P(1−N(P)−1)∏

P+(1−N(P+)−1)
=
∏
p|d

∏
χ∈ bG−

(1− χ(p)N(p)−1),

where P (resp. P+) runs over all prime ideals of OK (resp. OK+) dividing d,
and p runs over all prime ideals of A dividing d.

4. `-part of the index (R− : S−d ). For a prime ideal p of A, let Tp be
the inertia group of p in G and let Fp ∈ G be any Frobenius automorphism
for p, which is well defined modulo Tp. In Q[G], we define

σp := F−1
p · s(Tp)

|Tp|
and Up := R · s(Tp) +R · (1− σp). We also define Us :=

∏
p|s Up at any s | n̄.

Lemma 4.1. For any s | n̄, the index (ε−R : ε−Us) is a power of q − 1.

Proof. It suffices to show that (ε−Us : ε−Usp) is a power of q − 1 for
sp | n̄, where p is a prime ideal of A. Since multiplication by 1− j on Q[G]−

is injective, by Lemma 6.1 in [Si], we have

(ε−Us : ε−Usp) = ((1− j)Us : (1− j)Usp),

which is a power of q − 1 ([Y1, §6]).

Let eχ be the idempotent element associated to χ ∈ Ĝ. Set

ω :=
∑

χ1 6=χ∈ bG
L(0, χ)eχ,

where L(s, χ) is the Artin L-function attached to χ. For f | n, let If =
Gal(K/Kf). We also let

αf := s(If)
∏
p|f

(1− σp) if f 6= e

and αe := s(Ie). Then we have
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Lemma 4.2. For any f | n, ε−θn(f) = ε−ωαnf−1.

Proof. See the proof of Lemma 6 in [Y3].

In the following we assume that d 6= e and d̄ | n.

Lemma 4.3. Sd is generated as an R-module by {δn,d(c) : c | n}.

Proof. Since d 6= e, Sd is generated as an R-module by δn,d(c) for all c
mod ∼n by Proposition 2.2. Since θn(c) = θn((n, c))σc/(n,c) , we have

δn,d(c) = δn,d((n, c))σc/(n,c) .

For s ∈ T0, we write
ns :=

∏
p|s

pordp(n).

Let d1 =
∏

p|d p−µ(np). For p | d̄/d1 let Bp be the R-module generated by the
elements

ηp := N(p)s(Ipn/np
)(1− σp)− s(Tp) and γp,pi := N(p)s(In/pi)− s(In/pi+1)

for 0 ≤ i ≤ ordp(n)− 2, and for p | d1 we set Bp := R · ηp.
Using Lemmas 4.2 and 4.3, we follow exactly the same process as in the

classical case ([Sc, §4.2]) to get the following proposition. We remark that
Sd (resp. dd(x)) in [Sc, Lemma 4.2.2] should be replaced by ε−Sd (resp.
ε−dd(x)).

Proposition 4.4. ε−Sd = Un̄/d̄ ·
∏

p|d̄ Bp · ε−ωN(d)

N(d̄)
.

Let ` be a prime number. Let R` = Z`[G], Sd,` = Sd ⊗ Z` and Un̄/d̄,` =
Un̄/d̄ ⊗ Z`. Note that if ` 6= p, then Sd,` = Sd̄,`. For any prime ideal p | d, set

κp := s(Ipn/np
)(1−N(p)(1− σp)) + s(Tp)−N(np/p).

Then
κp = (s(Ipn/np

)−N(p)ordp(n)−1)− ηp.

In particular, if p | d1, then κp = −ηp, and so Bp = R · κp. For p | d̄/d1, it
follows from the definition of γp,pi that

s(Ipn/np
) = N(p)ordp(n)−1 −

ordp(n)−2∑
j=0

N(p)ordp(p)−2−jγp,pj .

Thus κp ∈ Bp, and so R · κp ⊆ Bp. Set

κ :=
∏
p|d̄

κp,

and Bp,` := Bp ⊗ Z` for any prime ideal p | d.
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Proposition 4.5. Let ` be a prime number with ` 6= p. Then Bp,` =
R` · κp for any prime ideal p | d, hence

ε−Sd,` = Un̄/d̄,` · ε−κω.
Proof. We only need to consider the case v = ordp(n) ≥ 2. Set

εi := N(p)−is(In/pi) ∈ Z`[G]

for 0 ≤ i < v. It is easy to see that εv−1 · κp = −ηp, so ηp ∈ R` · κp. We also
have

N(p)i+1−v(1− εi)κp = s(In/pi)−N(p)i.

Thus

γp,pi = −(s(In/pi+1)−N(p)i+1) +N(p)(s(In/pi)−N(p)i)

= N(p)i+2−v(εi − εi+1)κp ∈ R` · κp.

Lemma 4.6. For any prime ideal p | n and a character χ ∈ Ĝ, we have

|χ(κp)|` = |1− χ(p)N(p)−1|` if ` 6= p

and

|χ(κp)|p =
{
N(np)−1|1− χ(p)N(p)−1|p if χ is trivial on Ipn/np

,
N(np/p)−1|1− χ(p)N(p)−1|p otherwise.

Proof. If p | fχ, then χ(p) = 0 and χ is non-trivial on Tp. Thus χ(s(Tp))
= 0, and so

χ(κp) = χ(s(Ipn/np
))(1−N(p))−N(np/p),

which is equal to −N(np) or −N(np/p) according as χ is trivial or not on
Ipn/np

.
If p - fχ, then χ is trivial on Tp (in particular on Ipn/np

), and so

χ(κp) = N(np/p)(N(p)χ(p)− 1) = N(np)χ(p)−1(1− χ(p)N(p)−1).

Theorem 4.7. Let ` be a prime number with ` - p(q−1). For any d ∈ T ∗0
with d̄ | n, the `-part of (R− : S−d ) is equal to the `-part of |C−d |.

Proof. Note that the `-part of (R− : S−d ) is equal to (R−` : S−d,`). Thus
it suffices to show that (R−` : S−d,`) is equal to the `-part of |C−d |. By the
equation (a) in [Y3], Lemma 4.1 and the fact that (q − 1)ε−Sd,` ⊆ S−d,`, we
have

(R−` : ε−R`) = (ε−R` : ε−Un̄/d̄,`) = (ε−Sd,` : S−d,`) = 1.

Thus (R−` : S−d,`) = (ε−Un̄/d̄,` : ε−Sd,`). Now following the same argument as
in [Sc, Theorem 3] using Theorem 3.3, Proposition 4.5 and Lemma 4.6, we
get the result.

To consider the p-part of the index (R− : S−d ), we have to compute the
index (ε−Un̄/d̄,p : ε−Un̄/d̄,p

∏
p|d̄ Bp,p). This seems difficult because more than
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one Bp,p may appear. Furthermore, the structure of Bp,p is more complicated,
since Ipn/np

is not cyclic. But if n is square free so that d = d1, then Bp,p =
Rp · κp for any p | d, and so

ε−Sd,p = Un̄/d̄,p · ε−κω.
By Lemma 4.6, we have

|χ(κp)|p = N(p)−1|1− χ(p)N(p)−1|p,
and so the same process as in the proof of Theorem 4.7 gives

Theorem 4.8. Assume that n is square free. Then the p-part of the index
(R− : S−d ) is equal to the p-part of |C−d |.

Finally, we follow the same argument as in the proof of Corollary 4.5.2
in [Sc] using Theorems 3.3, 4.7 and 4.8 to get

Corollary 4.9. Let ` be a prime number with ` - (q− 1). Assume that
n is square free if ` = p. For any d ∈ T ∗0 (not necessarily d̄ | n), the `-part of
(R− : S−d ) is equal to the `-part of |C−d |.
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