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1. Introduction. The location of the zeros of the Riemann zeta func-
tion is one of the most fascinating subjects in number theory. In this paper
we study the percent of zeros lying on the critical line. With the use of a
new two-piece mollifier, we make a modest improvement on this important
problem.

To set some terminology, let N(T ) denote the number of zeros ρ = β+iγ
with 0 < γ < T , let N0(T ) denote the number of such critical zeros with
β = 1/2, and let N∗0 (T ) denote the number of such critical zeros which are
simple. Define κ and κ∗ by

κ = lim inf
T→∞

N0(T )
N(T )

, κ∗ = lim inf
T→∞

N∗0 (T )
N(T )

.

Selberg [S] was the first to prove that a positive percentage of zeros lie
on the critical line. There has since been a series of improvements, of which
we briefly mention the work of Levinson [Le] obtaining κ ≥ .3474, and the
current record of κ ≥ .4088, κ∗ ≥ .4013 due to Conrey [C1].

In this paper we show

Theorem 1.1. We have

(1.1) κ ≥ .4105, κ∗ ≥ .4058.

Our method is to revisit an old approach of Lou [Lo] by taking a two-piece
mollifier (meaning the sum of two mollifiers, each of a different shape). The
details of Lou’s work never appeared in print and there is some doubt as
to its correctness. We have added innovations to Lou’s approach by taking
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a longer mollifier (requiring delicate analysis of off-diagonal terms) and by
combining it with ideas of Conrey [C1], [C2].

S. Feng [F] has also introduced a new two-piece mollifier in order to show
κ ≥ 41.28. It may be possible to create a three-piece mollifier by combining
our mollifier with Feng’s with the effect of improving κ, but this would be
technically difficult.

One of the difficulties in studying this and other problems involving
mollifiers is that it takes a significant amount of computation to judge how
much progress one makes with a new idea. However, there are some heuristics
that can save a lot of time. In particular, the ratios conjecture [CFZ] can
rather quickly allow one to express mollified moments of L-functions as
certain multiple contour integrals; see [CS] for a variety of examples of such
calculations. Even then, it takes some significant work to simplify these
contour integrals into a form usable for calculation. With some practice
these calculations become routine, and we have made an effort to describe
the reasoning behind our approach.

2. Reduction to mean value theorems

2.1. The setup. The basic technology to prove that many zeros lie on
the critical line is an asymptotic for a mollified second moment of the zeta
function. In this section, we recall how to reduce the problem to such mean
value estimates. This is mostly a summary of [C1].

Let ζ(s) =
∑∞

n=1 n
−s for s = σ + it, σ > 1. The functional equation

states
ξ(s) = ξ(1− s),

where

ξ(s) = H(s)ζ(s), H(s) =
1
2
s(s− 1)π−s/2Γ

(
s

2

)
.

In its asymmetrical form the functional equation reads

ζ(s) = χ(s)ζ(1− s),
where

χ(1− s) = 2(2π)−sΓ (s) cos
(
πs

2

)
.

To get a lower bound on N0(T ) it suffices to consider a certain mollified
second moment of ζ and its derivatives. This is well-known: see Section 3
of [C1], for example, so we shall simply state the conclusion.

Let Q(x) be a real polynomial satisfying Q(0) = 1, Q(x) + Q(1 − x) =
constant, and define

V (s) = Q

(
− 1
L

d

ds

)
ζ(s),
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where for large T ,
L = log T.

Suppose ψ(s) is a “mollifier”. Littlewood’s lemma and the arithmetic-mean
geometric-mean inequality give

(2.1) κ ≥ 1− 1
R

log
(

1
T

T�

1

|V ψ(σ0 + it)|2 dt
)

+ o(1),

where σ0 = 1/2−R/L, and R is a bounded positive real number to be chosen
later. Actually, by choosing Q(x) to be a linear polynomial, one obtains a
lower bound on the percent of simple zeros, κ∗.

We choose a mollifier of the form

ψ(s) = ψ1(s) + ψ2(s),

where ψ1 and ψ2 are mollifiers of quite different shape. Here ψ1 is a mollifier
of a familiar type from [C1]. Let P1(x) =

∑
j ajx

j be a certain polynomial
satisfying P1(0) = 0, P1(1) = 1, let y1 = T θ1 where 0 < θ1 < 4/7, and use
the notation

(2.2) P1[n] = P1

(
log(y1/n)

log y1

)
for 1 ≤ n ≤ y1. By convention, we set P1[x] = 0 for x ≥ y1. With this
notation,

ψ1(s) =
∑
n≤y1

µ(n)P1[n]nσ0−1/2

ns
.

For the second mollifier, we take

(2.3) ψ2(s) = χ(s+ 1/2− σ0)
∑
hk≤y2

µ2(h)hσ0−1/2k1/2−σ0

hsk1−s P2[hk],

where µ2(h) are the coefficients of 1/ζ2(s) and P2(x) =
∑

j bjx
j is a poly-

nomial satisfying P2(0) = P ′2(0) = P ′′2 (0) = 0. Here y2 = T θ2 where θ2 < θ1
(we shall see later what conditions are required on θ2). Note that (formally)

χ(s)
∞∑

h,k=1

µ2(h)
hsk1−s =

χ(s)ζ(1− s)
ζ2(s)

=
1
ζ(s)

,

which explains why ψ2(s) may be a useful choice of a mollifier. Here ψ2(s)
is of a somewhat similar shape to a mollifier chosen by Shi-Tuo Lou in [Lo].
Lou considered a mollifier of the form L−2χ(s) times a Dirichlet series that is
roughly of the shape above, with the choice of smoothing polynomial P2(x)
= x. Unfortunately, the details of the calculations were omitted, and there
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is some doubt on whether the result is correct since our analysis suggests
that P2 must vanish to third order; the presence of L−2 is also suspect.

The method sketched in Section 3 of [C1] carries through with our choice
of ψ = ψ1+ψ2, but there is one extra ingredient worthy of mention. To apply
Littlewood’s lemma, one needs to estimate the integral on the right side of
a rectangle, say at σ = 2. This can be done using the trivial bound for
σ ≥ 1/2, say

(2.4) |ψ2(s)| �
√
t

(
y2

t

)σ
L2.

As long as θ2 < 1 this is small for σ sufficiently large. The point is that
χ(s) is small for large σ; a mollifier of the form χ(1 − s) times a Dirichlet
polynomial runs into problems for σ large.

Theorem 2.1. Suppose θ1 = 4/7− ε and θ2 = 1/2− ε for ε > 0 small.
Then

(2.5)
1
T

T�

1

|V ψ(σ0 + it)|2 dt = c(P,Q,R, θ1, θ2) + o(1),

where c(P,Q,R, θ1, θ2) = c1 + 2c12 + c2 and the ci are given below by (3.2),
(3.4), and (3.6).

2.2. Numerical evaluations. We use Mathematica to numerically
evaluate c(P,Q,R, 4/7, 1/2) with the following particular choices of param-
eters. With R = 1.28,

Q(x) = .492 + .604(1− 2x)− .08(1− 2x)3 − .06(1− 2x)5 + .046(1− 2x)7,

P1(x) = .842706x+ .00845721x2 + .093117x3 + .118788x4 − .0630687x5,

P2(x) = .0245412x3 − .00635566x4 + .00603128x5,

we have κ ≥ .4105. To get κ∗ ≥ .4058, we take R = 1.12, Q(x) = 1− 1.03x,

P1(x) = .829473x+ .0104358x2 + .082009x3 + .177482x4 − .0993997x5,

P2(x) = .0323061x3 − .00553783x4 + .0769594x5.

2.3. A smoothing argument. It simplifies some calculations to smooth
out the integral in (2.1). Suppose w(t) is a smooth function with the follow-
ing properties:

0 ≤ w(t) ≤ 1 for all t ∈ R,(2.6)
w has compact support in [T/4, 2T ],(2.7)

w(j)(t)�j ∆
−j for each j = 0, 1, 2, . . . , where ∆ = T/L.(2.8)
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Theorem 2.2. For any w satisfying (2.6)–(2.8), and σ = 1/2−R/L,

(2.9)
∞�

−∞
w(t)|V ψ(σ + it)|2 dt = c(P,Q,R, θ1, θ2)ŵ(0) +O(TL−1+ε),

uniformly for R � 1, where c(P,Q,R, θ1, θ2) = c1 + 2c12 + c2, and where
these constants are given below by (3.2), (3.4), and (3.6).

We briefly explain how to deduce Theorem 2.1 from Theorem 2.2. By
choosing w to satisfy (2.6)–(2.8) and in addition to be an upper bound
for the characteristic function of the interval [T/2, T ], and with support in
[T/2−∆,T +∆], we get

(2.10)
T�

T/2

|V ψ(σ0 + it)|2 dt ≤ c(P,Q,R, θ1, θ2)ŵ(0) +O(TL−1+ε).

Note ŵ(0) = T/2 +O(T/L). We similarly get a lower bound. Summing over
dyadic segments gives the full integral.

3. The mean value results. Writing ψ = ψ1 + ψ2 and opening the
square, we get�

|V ψ|2 =
�
|V ψ1|2 +

�
|V |2ψ1ψ2 +

�
|V |2ψ1ψ2 +

�
|V ψ2|2

=: I1 + I12 + I12 + I2.

We shall compute the integrals in turn. It turns out that I12 is asymptotically
real.

3.1. The main terms. Recall the conditions on Q,P1, and P2 stated
in Section 2.1.

First we quote Theorem 2 of [C1].

Theorem 3.1 (Conrey). Suppose θ1 < 4/7. Then

(3.1)
T�

1

|V ψ1(σ0 + it)|2 dt ∼ c1(P1, Q,R, θ1)T

as T →∞, where

(3.2) c1(P1, Q,R, θ1)

= 1 +
1
θ1

1�

0

1�

0

e2Rv(Q(v)P ′1(u) + θ1Q
′(v)P1(u) + θ1RQ(v)P1(u))2 du dv.

This is the unsmoothed version, but the smoothed version follows easily
from this.

We handle the other terms as follows:
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Theorem 3.2. Suppose θ2 < θ1 < 4/7. Then

(3.3) I12 =
∞�

−∞
w(t)|V |2ψ1ψ2(σ0 + it) dt = c12ŵ(0) +O(T/L),

where

(3.4)

c12 = 4
θ2
2

θ2
1

eR
d2

dxdy

[ � �

0≤a+b≤1
a,b≥0

1�

0

u2(1−u)eR[θ1(y−x)+uθ2(a−b)]Q(−xθ1 +auθ2)

×Q(1+yθ1−buθ2)P1

(
x+y+1−(1−u)

θ2
θ1

)
P ′′2 ((1−a−b)u) du da db

]
x=y=0

.

Theorem 3.3. Suppose θ2 < 1/2. Then

(3.5) I2 =
∞�

−∞
w(t)|V |2|ψ2|2(σ0 + it) dt = c2ŵ(0) +O(TL−1+ε),

where

(3.6) c2 =
2
3

d4

dx2dy2

[ 1�

0

1�

0

1�

0

1�

0

(
1
θ2

+ (x+ y − v(y + r)− u(x+ r))
)

× (1− r)4e−θ2R(x+y−v(y+r)−u(x+r))e2Rt(1+θ2(x+y−v(y+r)−u(x+r)))

×Q(θ2(−x+ v(y + r)) + t(1 + θ2(x+ y − v(y + r)− u(x+ r))))
×Q(θ2(−y + u(x+ r)) + t(1 + θ2(x+ y − v(y + r)− u(x+ r))))

× (x+ r)(y + r)P ′′2 ((1− u)(x+ r))P ′′2 ((1− v)(y + r)) dt dr du dv
]
x=y=0

.

Remark. Note that c12 is real, so that I12 ∼ I12.

3.2. The shift parameters. Rather than working directly with V (s),
we shall instead consider the following two general integrals:

I12(α, β) =
∞�

−∞
w(t)ζ(1/2 + α+ it)ζ(1/2 + β − it)ψ1ψ2(σ0 + it) dt,(3.7)

I2(α, β) =
∞�

−∞
w(t)ζ(1/2 + α+ it)ζ(1/2 + β − it)|ψ2(σ0 + it)|2 dt.(3.8)

Our main goal in the rest of the paper is to prove the following two lemmas.

Lemma 3.4. We have

(3.9) I12(α, β) = c12(α, β)ŵ(0) +O(T/L),
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uniformly for α, β � L−1, where

(3.10) c12(α, β) = 4
θ2
2

θ2
1

d2

dxdy

[ � �

0≤a+b≤1

1�

0

u2(1− u)(y−x1 yau2 )−α(yy1y
−ub
2 T )−β

× P1

(
x+ y + 1− (1− u)

θ2
θ1

)
P ′′2 ((1− a− b)u) du da db

]
x=y=0

.

Lemma 3.5. We have

(3.11) I2(α, β) = c2(α, β)ŵ(0) +O(TL−1+ε),

uniformly for α, β � L−1, where

(3.12) c2(α, β) =
2
3

d4

dx2dy2

[ 1�

0

1�

0

1�

0

1�

0

(1− r)4yβ(x−v(y+r))+α(y−u(x+r))
2

×
(

1
θ2

+ (x+ y − v(y + r)− u(x+ r))
)

× (Tyx+y−v(y+r)−u(x+r)2 )−t(α+β)(x+ r)(y + r)

× P ′′2 ((1− u)(x+ r))P ′′2 ((1− v)(y + r)) dt dr du dv
]
x=y=0

.

We now prove that Theorems 3.2 and 3.3 follow from Lemmas 3.4 and
3.5, respectively. Let I? denote either I12 or I2. Note

(3.13) I? = Q

(
−1

log T
d

dα

)
Q

(
−1

log T
d

dβ

)
I?(α, β)

∣∣∣∣
α=β=−R/L

.

We first argue that we can obtain either c? by applying the above differen-
tial operator to the corresponding c?(α, β). Since I?(α, β) and c?(α, β) are
holomorphic with respect to α, β small, the derivatives appearing in (3.13)
can be obtained as integrals of radii � L−1 around the points −R/L, using
Cauchy’s integral formula. Since the error terms hold uniformly on these
contours, the same error terms that hold for I?(α, β) also hold for I?.

Next we check that applying the above differential operator to c?(α, β)
does indeed give c?. Notice the formula

(3.14) Q

(
−1

log T
d

dα

)
X−α = Q

(
logX
log T

)
X−α.
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Using (3.14), we have

(3.15) Q

(
−1

log T
d

dα

)
Q

(
−1

log T
d

dβ

)
c12(α, β)

= 4
θ2
2

θ2
1

d2

dxdy

[ � �

0≤a+b≤1

1�

0

u2(1− u)(y−x1 yau2 )−α(yy1y
−ub
2 T )−β

×Q(−xθ1 + auθ2)Q(1 + yθ1 − buθ2)

× P1

(
x+ y + 1− (1− u)

θ2
θ1

)
P ′′2 ((1− a− b)u) du da db

]
x=y=0

.

Setting α = β = −R/L and simplifying gives (3.4). A similar argument
produces (3.6) from (3.12).

We prove Lemma 3.4 in Section 5, and Lemma 3.5 in Section 6.

4. Various lemmas. In this section we gather some miscellaneous re-
sults that are more or less standard. These will be used to calculate the
constants c?(α, β), and we place them here to avoid interrupting the forth-
coming arguments.

4.1. Approximate functional equations. In the calculation of I12

we shall need the following approximate functional equation with one long
sum.

Lemma 4.1. Let σα,−β(l) =
∑

ab=l a
−αbβ. For L2 ≤ |t| ≤ 2T and uni-

formly for α, β � L−1,

(4.1) ζ(1/2 + α+ it)ζ(1/2− β + it) =
∞∑
l=1

σα,−β(l)
l1/2+it

e−l/T
3

+O(T−1+ε).

Remark. The exponential decay effectively means that l is truncated
at T 3. An essentially identical proof could truncate the sum at T 2+ε but it
would not help the later arguments.

Proof of Lemma 4.1. Consider the following sum:

A =
∞∑
l=1

σα,−β(l)
l1/2+it

e−l/V ,

where V is a parameter to be chosen momentarily. Using the formula e−x =
1

2πi

	
(1) Γ (s)x−s ds, we get

A =
1

2πi

�

(1)

V sΓ (s)ζ(1/2 + α+ it+ s)ζ(1/2− β + it+ s) ds.

Next we move the line to σ = −1 + ε, crossing poles at s = 0, 1/2− α− it,
1/2 + β − it. Using the bound ζ(σ + it) � |t|1/2−σ for σ < 0 and the
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exponential decay of the gamma function, we get

A = ζ(1/2 + α+ it)ζ(1/2− β + it) +O(
√
V e−|t| + V −1+ε|t|2).

Thus taking V = T 3 finishes the proof.

A key step in asymptotically evaluating I2 is finding an asymptotic for
the “twisted” second moment of zeta. This is essentially implicit in [BCH-B]
but we cannot quite quote the result we need. Nevertheless, we state the
following without proof:

Proposition 4.2. Suppose w satisfies (2.6)–(2.8), and a and b are pos-
itive integers with ab ≤ T 1−ε. Then, uniformly for α, β � L−1, we have

(4.2)
∞�

−∞

(
a

b

)−it
w(t)ζ(1/2 + α+ it)ζ(1/2 + β − it) dt

=
∑

am=bn

1
m1/2+αn1/2+β

∞�

−∞
Vt(mn)w(t) dt

+
∑

am=bn

1
m1/2−βn1/2−α

∞�

−∞
Vt(mn)

(
t

2π

)−α−β
w(t) dt+O(T−1/2).

Here Vt(x) is given by

Vt(x) =
1

2πi

�

(1)

(
t

2πx

)zG(z)
z

dz,

where G(z) = ez
2
p(z) and p(z) = (α+β)2−(2z)2

(α+β)2
.

Remarks. G(z) can be chosen from a wide class of functions; we made
this choice since it has rapid decay and vanishes at 2z = ±(α + β). This
result is “easy” in the sense that with ab ≤ T 1−ε only the diagonal terms
contribute to the main term (one easily bounds the off-diagonal terms by
repeated integration by parts). Also note (t/2π)−α−β = T−α−β(1+O(L−1))
for t � T , which is implied by the support of w.

4.2. Exercises with Euler–Maclaurin. We need to evaluate various
sums to which we apply the Euler–Maclaurin formula. We collect these for-
mulas here.

Lemma 4.3. Suppose l is a nonnegative integer, x ≥ 1 is real, and s is
a complex number with |s| ≤ (log x)−1. Then

(4.3)
∑
n≤x

1
n1+s

(log(x/n))l = (log x)l+1x−s
1�

0

xsaal da+O((log 3x)l).
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Proof. A simple application of the Euler–Maclaurin formula gives∑
n≤x

1
n1+s

(log(x/n))l =
x�

1

t−1−s(log(x/t))l dt+O((log 3x)l).

We make the change of variables t = x1−a to obtain the desired expression.

Lemma 4.4. Suppose 3 ≤ z ≤ x, |s| ≤ (log x)−1, k is a positive integer,
and that F and H are (fixed) smooth functions. Then

(4.4)
∑
n≤z

dk(n)
n1+s

F

(
log(x/n)

log x

)
H

(
log(z/n)

log z

)

=
(log z)kz−s

(k − 1)!

1�

0

(1− u)k−1F

(
1− (1− u) log z

log x

)
H(u)zus du+O((log z)k−1).

Remark. By repeatedly using Euler–Maclaurin we can express this as
a k-fold integral. It turns out that this multiple integral can be computed
explicitly enough to reduce to a single integral as above.

Proof of Lemma 4.4. We proceed by induction. For k = 1, a minor
variation of the proof of Lemma 4.3 shows that (4.4) is

(log z)z−s
1�

0

F

(
log x− (1− u) log z

log x

)
H(u)zus du+O(1),

as desired. Now suppose k ≥ 2. Write the left hand side of (4.4) as

(4.5)
∑
n≤z

1
n1+s

×
∑

m≤n−1z

dk−1(m)
m1+s

F

(
log(x/n)

log x
log(n−1x/m)

log(n−1x)

)
H

(
log(z/n)

log z
log(n−1z/m)

log(n−1z)

)
.

By applying the induction hypothesis to the inner sum over m we deduce
that (4.5) is

(4.6) O((log z)k−1) +
[ 1�

0

zus−s
(1− u)k−2

(k − 2)!

×
∑
n≤z

(log(z/n))k−1

n1+us
F

(
log(x/n)

log x

(
1− (1− v) log(z/n)

log(x/n)

))
H

(
log(z/n)

log z
v

)
dv

]
.

We again apply a minor variation on Lemma 4.3, this time to the sum over n,
which shows that (4.6) is
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(4.7) O((log 3z)k−1) +
[
z−s(log z)k

1�

0

(1− v)k−2

(k − 2)!

×
1�

0

z−usvuk−1F

(
1− (1− u)

log z
log x

− (1− v)u log z
log x

)
H(uv) du dv

]
.

Now we perform some elaborate changes of variables: first v 7→ 1−v, followed
by v 7→ v/u, and finally u 7→ u+ v to obtain

z−s
(log z)k

(k − 2)!

� �

u+v≤1
u,v≥0

vk−2zusF

(
1− log z

log x
+
u log z
log x

)
H(u) du dv+O((log 3z)k−1).

The integral over v can now be calculated to finish the proof.

In the special case z = x we obtain

Corollary 4.5. Let the assumptions be as in Lemma 4.4. Then

(4.8)
∑
n≤x

dk(n)
n1+s

F

(
log(x/n)

log x

)
H

(
log(x/n)

log x

)

=
(log x)k

(k − 1)!
x−s

1�

0

(1− u)k−1F (u)H(u)xus du+O((log 3x)k−1).

We finally need one other result in this circle of sums. This result is
important for us because it saves one log when |σ| is taken to be a fixed
positive constant.

Lemma 4.6. Suppose −1 ≤ σ ≤ 0. Then

(4.9)
∑
n≤x

dk(n)
n

(
x

n

)σ
�k (log 3x)k−1 min(|σ|−1, log 3x).

Proof. We use an elementary approach with induction. The case σ = 0
is implied by Corollary 4.5, so suppose σ < 0. Note that

(4.10)
∑
m≤y

1
m1+σ

≤ 1 +
y�

1

t−1−σ dt ≤ 1 + |σ|−1y−σ.

This proves (4.9) for k = 1. Suppose k ≥ 2. Then using (4.10) we get∑
n≤x

dk(n)
n

(
x

n

)σ
≤ xσ

∑
n≤x

dk−1(n)
n1+σ

(
1 + |σ|−1

(
x

n

)−σ)
.

Now apply the induction hypothesis to finish the proof.
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4.3. A Mellin pair. Recall P1[n] is given by (2.2). Then for n ≤ y1,

(4.11) P1[n] =
∑
i

ai
(log y1)i

(log(y1/n))i =
∑
i

aii!
(log y1)i

1
2πi

�

(1)

(
y1

n

)s ds
si+1

.

For n > y1, the right hand side vanishes and therefore agrees with P1[n] in
this case also.

5. The cross term. In this section we prove Lemma 3.4.

5.1. Averaging over t. As a first step, we show

Lemma 5.1. Suppose θ1, θ2 satisfy

(5.1)
5
2
θ1 + θ2 < 2,

5
3
θ1 +

2
3
θ2 < 4/3, θ2 < θ1.

For any B ≥ 0 we have, uniformly for α, β � L−1,

(5.2) I12(α, β) =
[ ∑
n≤y1, hk≤y2

hl=nk

µ(n)µ2(h)σα,−β(l)
(hkln)1/2

P1[n]P2[hk]e−l/T
3

×
∞�

−∞

(
t

2π

)−β
w(t) dt

]
+OB(T/LB).

Remark. When θ1 = 4/7 then (5.1) translates to θ2 < 4/7.

Proof of Lemma 5.1. Inserting the definition of ψ1 and ψ2, we have

(5.3) I12(α, β) =
∑
n≤y1

∑
hk≤y2

µ(n)µ2(h)P1[n]P2[hk]
(hkn)1/2

J12,

where

(5.4) J12 =
∞�

−∞
w(t)

(
h

nk

)−it
χ(1/2 + it)ζ(1/2 + α+ it)ζ(1/2 + β − it) dt.

From the functional equation of ζ(1/2 + β − it) and the approximation

(5.5) χ(1/2 + β − it)χ(1/2 + it) =
(
t

2π

)−β
(1 +O(t−1)),

we get
(5.6)

J12 =
∞�

−∞
w(t)

(
t

2π

)−β( h

nk

)−it
ζ(1/2 + α+ it)ζ(1/2− β + it) dt+O(T ε).

Applying Lemma 4.1 to (5.6), we have

(5.7) J12 =
∑
l

σα,−β(l)
l1/2

e−l/T
3
∞�

−∞
w(t)

(
t

2π

)−β( hl
nk

)−it
dt+O(T ε).
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The t-integral takes the form ŵ0

(
1
2π log hl

nk

)
where w0(t) = w(t)

(
t

2π

)−β. This
explains why we took one long sum in the approximate functional equation
above—the sum over l is automatically truncated by the decay of ŵ0. The
diagonal terms hl = nk give the main term visible in (5.2). To complete the
proof, we need to bound the off-diagonal terms (those with hl 6= nk). We
accomplish this with Lemma 5.2 below.

5.2. Bounding the off-diagonal terms. Let C denote the contribu-
tion to I12(α, β) from the off-diagonal terms, so that

(5.8) C =
∑

n≤y1, hk≤y2
hl 6=nk

µ(n)µ2(h)σα,−β(l)
(hkln)1/2

P1[n]P2[hk]e−l/T
3
ŵ0

(
1

2π
log

hl

nk

)
.

Lemma 5.2. Suppose θ1, θ2 satisfy (5.1). Then for any B ≥ 0 we have

(5.9) C �B T/LB.

The proof is fairly lengthy and we shall state and prove various interme-
diate lemmas within the body of the proof.

Proof. First note that an easy integration by parts argument shows

(5.10) ŵ0(x)�B T (1 +∆x)−B

for any B ≥ 0. Similarly, for each j = 1, 2, . . . , we have

(5.11)
dj

dxj
ŵ0(x)�B T j+1(1 +∆x)−B.

Define f by nk = hl − f . Write C = C ′ + C ′′ where C ′ corresponds to
the terms with

(5.12) |f | ≤ ∆−1+εhl.

By (5.10), we have C ′′ � T−2009, by taking B large enough with respect
to ε, and bounding everything trivially. Also note that a trivial bound on
C ′ gives

(5.13) C ′ � T 1+ε
∑

n≤y1, hk≤y2
hl=f+nk

0<|f |�∆−1+εy1y2

1
(hkln)1/2

� T εy1y2,

where the error term comes from letting n, k, and f vary freely and bounding
the number of values of h and l by the number of divisors of f + nk.

Suppose now that (5.12) holds. A simple approximation of the logarithm
gives

ŵ0

(
1

2π
log

hl

nk

)
= ŵ0

(
f

2πhl
+O

(
f2

h2l2

))
.



48 H. M. Bui et al.

By the mean value theorem and (5.11), we then get (recall ∆ = T/L)

(5.14) ŵ0

(
1

2π
log

hl

nk

)
= ŵ0

(
f

2πhl

)
+O(L2).

Using (5.14) and the trivial bound used to prove (5.13), we then have

C ′ =
∑

n≤y1, hk≤y2
hl=f+nk

0<|f |≤∆−1+εhl

µ(n)µ2(h)σα,−β(l)
(hkln)1/2

P1[n]P2[hk]e−l/T
3
ŵ0

(
f

2πhl

)
(5.15)

+O

(
y1y2

T 1−ε

)
.

Since y1y2 = T θ1+θ2 � T 2−ε by (5.1), this error term is O(T 1−ε).
The next step is to eliminate k and express the equation hl = f + nk

as the congruence hl ≡ f (mod n). Set k = (hl − f)/n so that k = hl
n (1 +

O(∆−1+ε)). Note that

(5.16) P2[hk] = P2

[
h2l

n

(
1− f

hl

)]
= P2[h2l/n] +O(∆−1+ε),

which uses the fact that d
dxP2[x] � 1 for x ≥ 1 (recall that P ′2(0) = 0 so

that P2[x] is continuously differentiable at x = y2). There is a small problem
for x < 1 since P2[x] is really only defined for x ≥ 1. However, the terms
with h2l/n� 1 are not included in the sum since the sum over f is empty
unless hl ≥ ∆1−ε, so that h2l/n ≥ h∆1−ε/n ≥ ∆1−ε/y1. The requirements
(5.1) imply that θ1 < 1 so that h2l/n ≥ T ε. Thus we obtain by a trivial
estimation

(5.17)

C =
∑

n≤y1, h2l/n≤y2, f 6=0
hl≡f (modn)

µ(n)µ2(h)σα,−β(l)
hl

P1[n]P2[h2l/n]e−l/T
3
ŵ0

(
f

2πhl

)
+O(T 1−ε).

We relaxed the condition |f | ≤ ∆−1+εhl without introducing a new error
term due to the decay of ŵ0.

Now consider the inner sum over l above, namely

D(h, n, f) :=
∑

l≤ny2/h2, f 6=0
hl≡f (modn)

σα,−β(l)
l

P2[h2l/n]e−l/T
3
ŵ0

(
f

2πhl

)
,

so that

C =
∑

n≤y1, h2/n≤y2, f 6=0

µ(n)µ2(h)P1[n]
h

D(h, n, f) +O(T 1−ε).
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The plan is to apply the Voronŏı summation formula to D(h, n, f). In order
to easily quote results from the literature, we shall treat the case α = β
= 0; versions of the Voronŏı formula exist for general σα,−β(l) (e.g. see [M,
Lemma 3.7]). Since α and β are small, the methods will carry over essentially
unchanged to the more general case.

Lemma 5.3. Let η(q) =
∑

p|q
log p
p−1 , where the sum is over primes, and

let

(5.18) g(l) = l−1P2[h2l/n]e−l/T
3
ŵ0

(
f

2πhl

)
.

Suppose that (h, n) = b, n = bn1, h = bh1, and b | f . Then D(h, n, f) =
DM +DE, where

DM =
φ(n1)
n2

1

g(1)(2γ − 1− 2η(n1))(5.19)

+
φ(n1)
n2

1

x�

1

g(t)(log t+ 2γ − 2η(n1)) dt,

and for any B ≥ 0, we have

(5.20) DE � T ε
(√

n1h

|f |
+
T 1/3h2/3

|f |2/3

)(
1 +
|f |∆h
ny2

)−B
.

If b - f then the sum is void, i.e., D(h, n, f) = 0.

Proof. Note that (5.11) implies

(5.21) g′(t)� t−2T 1+ε

(
1 +
|f |∆
ht

)−B
.

Then with x = ny2/h
2, f = bf1, we have

D(h, n, f) =
∑

l≤x, l≡h1f1 (modn1)

d(l)g(l).

By partial summation, noting g(x) = 0,

D(h, n, f) = −
x�

1

g′(t)
[ ∑
l≤t, l≡h1f1 (modn1)

d(l)
]
dt.

The Voronŏı formula (see [IK, Exercise 7, p. 79], for example) gives

(5.22)
∑

l≤t, l≡h1f1 (modn1)

d(l) = M + E,

where

M =
φ(n1)
n2

1

t(log t+ 2γ − 1− 2η(n1)), E � (n1t)ε(
√
n1 + t1/3).
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Write D(h, n, f) = DM +DE corresponding to (5.22). That is,

DM = −φ(n1)
n2

1

x�

1

g′(t)t(log t+ 2γ − 1− 2η(n1)) dt.

Integration by parts gives (5.19).
As for the error term, a straightforward computation with (5.21) gives

x�

1

|g′(t)| dt� T ε
h

|f |

(
1 +
|f |∆
hx

)−B
,

x�

1

t1/3|g′(t)| dt� T 1/3+εh2/3

|f |2/3

(
1 +
|f |∆
hx

)−B
.

Consequently, (5.20) follows.

Now we return to the proof of Lemma 5.2. We show

Lemma 5.4. Assume (5.1) holds. Then

(5.23) C = C0 +O(T 1−ε),

where

(5.24) C0 =
∑
n≤y1

∑
h≤ny2/∆1−ε

∑
b|f, f 6=0

µ(n)µ2(h)P1[n]
h

φ(n1)
n2

1

×
ny2/h2�

∆1−ε/h

g(t)(log t+ 2γ − 2η(n1)) dt.

Proof. Write C = CM + CE + O(T 1−ε) according to the decomposition
D(h, n, f) = DM + DE , and similarly CM = C1 + C2 according to the two
terms of (5.19). A direct application of (5.20) shows

CE � T ε
y

5/2
1 y2

∆
+ T ε

y
5/3
1 y

2/3
2

∆1/3
,

which is � T 1−ε since (5.1) holds.
Now we bound C1. The point is that essentially f � h/∆, yet h ≤√

ny2 = O(∆1−ε), so that the sum over f practically has no length. Explic-
itly, we have

C1 � T ε
∑

n≤y1, h2/n≤y2, f 6=0

1
n1

1
h

∣∣∣∣ŵ0

(
f

2πh

)∣∣∣∣� T 1+ε
∑
n≤y1

∑
h≤√y1y2

1
n1

1
h

(
h

∆

)B
,

which after writing n = bn1 gives

C1 � T 1+ε

(√
y1y2

T

)B ∑
b≤y1

∑
n1≤y1/b

1
n1
� T 2+ε

(√
y1y2

T

)B
.
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Since (5.1) holds, we have θ1 + θ2 < 2. Taking B = 2
(
1 − θ1+θ2

2

)−1 gives
C1 � T ε.

By definition,

C2 =
∑
n≤y1

∑
h≤√ny2

∑
f 6=0

µ(n)µ2(h)P1[n]
h

φ(n1)
n2

1

ny2/h2�

1

g(t)(log t+2γ−2η(n1)) dt,

so that C0 is given by the same expression except the integral has lower
bound at ∆1−ε/

√
y1y2. Again, the point is that essentially 1 ≤ |f | �

ht/∆1−ε. An argument similar to that used above in bounding C1 shows
that C2 = C0 +O(T ε).

Now the proof of Lemma 5.2 is reduced to showing C0 � T/LB. We
arrange C0 as follows:

(5.25) C0 =
∑

h≤y1y2/∆1−ε

µ2(h)
h

y1y2/h2�

∆1−ε/h

t−1e−t/T
3
S1S2 dt,

where

S1 =
∑

h2t/y2≤n≤y1

µ(n)P1[n]P2[h2t/n]
φ(n1)
n2

1

(log t+ 2γ − 2η(n1)),

S2 =
∑

b|f, f 6=0

ŵ0(f/2πht).

Lemma 5.5. We have

(5.26) S2 � T,

uniformly in h and t.

Lemma 5.6. For any B ≥ 0, we have

(5.27) S1 �B L−B.

An easy application of Lemmas 5.5 and 5.6 finally completes the proof
of Lemma 5.2, since they show C0 � T/LB.

Proof of Lemma 5.5. Recall that b = (h, n), so that S2 takes the form∑
f1 6=0

ŵ0(f1/2πh1t).

Let X ≥ 1 be a parameter. Then by Poisson summation,∑
q 6=0

ŵ0(q/X) = −ŵ0(0) +
∑
k∈Z

∞�

−∞
ŵ0(u/X)e(−uk) du

= −ŵ0(0) +X
∑
k∈Z

w0(kX).
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Since w has support in [T/4, 2T ], we have ŵ0(0) � T (recall w0(x) =
w(x)(x/2π)−β and that β � 1/log T ). The support of w0 also implies that
k � T/X so that the sum over k also gives O(T ). Note that if X > 2T then
the sum over k is identically zero.

Proof of Lemma 5.6. This is essentially a variation on the prime number
theorem.

To begin, write n = bn1 where (n1, h1) = 1. Then

S1 =
∑

bh2
1t/y2≤n1≤y1/b

(n1,h1)=1

µ(bn1)P1[bn1]P2[bh2
1t/n1]

φ(n1)
n2

1

(log t+ 2γ − 2η(n1)).

For simplicity, consider

S′1 :=
∑
n

µ(n)P1[n]P2[R/n]
1
n

for a parameter R ≥ y1T
ε (in our application, R = bh2

1t ≥ ∆1−ε ≥ y1T
ε).

We will show

(5.28) S′1 � L−B.

A straightforward modification of the method gives the same bound for S1.
By convention, P1[n] is zero unless 1 ≤ n ≤ y1, and similarly P2[R/n] = 0

unless R/y2 ≤ n ≤ R. The condition n ≤ R is implied by the condition
n ≤ y1. By taking Mellin transforms of P1 and P2 (that is, using (4.11)), we
get

S′1 =
∑
j

∑
k

ajj!bkk!
(log y1)j(log y2)k

∑
n

(
1

2πi

)2 �

(ε)

�

(3ε)

ys1

(
y2

R

)u µ(n)
n1+s−u

ds

sj+1

du

uk+1
.

The sum over n converges absolutely now, so that

S′1 =
∑
j

∑
k

ajj!bkk!
(log y1)j(log y2)k

(
1

2πi

)2 �

(ε)

�

(3ε)

ys1
(y2/R)u

ζ(1 + s− u)
ds

sj+1

du

uk+1
.

Now change variables s 7→ s+ u, so that with

(5.29) F (s) =
1

2πi

�

(2ε)

xu
du

(u+ s)j+1uk+1
, x =

y1y2

R
,

we have

(5.30) S′1 =
∑
j

∑
k

ajj!bkk!
(log y1)j(log y2)k

1
2πi

�

(ε)

ys1
1

ζ(1 + s)
F (s) ds.

In the integral representation (5.29) for F (s), we initially suppose Re(s)
< 2ε.
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We need to develop the analytic properties of F . It turns out that F (s)
is an entire function of s and has good growth properties. First, if x ≤ 1
then by moving the contour far to the right we get the uniform bound
F (s)� (1+|s|)−j−1. Even when x > 1 we can do this, which shows that F is
entire. Next suppose that x > 1. In this case, we show that if |s| > (log x)−1

we have a formula for F of the form

(5.31) F (s) =
∑
l≤k

cj,k,l
(log x)k−l

sj+l+1
+x−s

∑
l≤j

dj,k,l
(log x)j−l

sk+l+1
+O((1+|s|)−j−1)

for certain constants cj,k,l, dj,k,l (we will give them explicitly below). With
the formula (5.31) it is straightforward to prove (5.28) as in Chapter 18
of [D] for example. It is a key point that ys1

(y1y2
R

)−s =
(
R
y2

)s becomes small
for s with negative real part.

We prove (5.31) now. Since x > 1, we move the contour far to the left,
crossing poles as u = 0, u = −s. The new contour is again bounded by
(1 + |s|)−j−1, accounting for the error term in (5.31). The residues can be
expressed as contour integrals of the form

(5.32)
1

2πi

�
xu

du

(u+ s)j+1uk+1
,

with one a small circle around u = 0, and the other around u = −s (if s = 0
then it is just one contour integral around u = 0). Consider (5.32) on the
circle of very small radius (small compared to |s|) around u = 0. By the
binomial theorem,

1
(u+ s)j+1

=
1

sj+1

∞∑
l=0

(−1)l
(
j + l

j

)(
u

s

)l
.

Inserting this into (5.32) and reversing the order of summation and integra-
tion gives

1
sj+1

∞∑
l=0

(−1)l
(
j + l

j

)
s−l

1
2πi

�
xu

du

uk−l+1
=
∑
l≤k

(−1)l
(
j + l

j

)
(log x)k−l

sj+l+1(k − l)!
.

This accounts for the first term in (5.31) above. The second contour around
u = −s can be reduced to an instance of this previous formula after changing
variables u 7→ u − s. This switches the roles of j and k, and multiplies
by x−s.
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5.3. Reduction to a contour integral. Next we express the main
term in (5.2) as a contour integral. By (4.11) (and similarly for P2), we have

(5.33) I12(α, β) = ŵ0(0)
∑
i,j

aibji!j!
(log y1)i(log y2)j

(
1

2πi

)3 �

(1)

�

(1)

�

(1)

T 3zΓ (z)ys1y
u
2

×
∑
hl=nk

µ(n)µ2(h)σα,−β(l)
(hk)1/2+un1/2+sl1/2+z

dz ds du

si+1uj+1
+O(T 1−ε).

A calculation gives

(5.34)
∑
hl=nk

µ(n)µ2(h)σα,−β(l)
(hk)1/2+un1/2+sl1/2+z

=
ζ2(1 + u+ s)ζ(1 + α+ u+ z)ζ(1− β + u+ z)
ζ2(1 + 2u)ζ(1 + α+ s+ z)ζ(1− β + s+ z)

A(s, u, z),

where A(s, u, z) is a certain arithmetical factor that is given by an Euler
product that is absolutely and uniformly convergent in some product of
fixed half-planes containing the origin. We first move the s and u contours
to Re = δ, and then move the z-contour to −2δ/3, where δ > 0 is some fixed
constant such that the arithmetical factor converges absolutely. By doing so
we only cross a pole at z = 0. On the new line we simply bound the integral
by absolute values, giving the following contribution to I12:

� |ŵ0(0)|
(
y1y2

T 2

)δ
� T 1−ε,

since θ1 + θ2 < 2. Thus

(5.35) I12(α, β) = ŵ0(0)
∑
i,j

aibji!j!
(log y1)i(log y2)j

K12 +O(T 1−ε),

where

(5.36) K12 =
(

1
2πi

)2 �

(ε)

�

(ε)

ys1y
u
2

ζ2(1 + u+ s)ζ(1 + α+ u)ζ(1− β + u)
ζ2(1 + 2u)ζ(1 + α+ s)ζ(1− β + s)

×A(s, u, 0)
ds du

si+1uj+1
.

5.4. Evaluation of K12. We now evaluate K12 asymptotically; this
is somewhat subtle. Considering the pole of ζ2(1 + u + s) at u = −s, we
are wary about moving contours into the critical strip. To get around this
delicate issue, we shall separate the variables s and u.

First notice that by moving the contours of integration to ε � 1/L,
and bounding the integral with absolute values, we see that K12 � Li+j

(which translates to showing that I12(α, β) is asymptotically constant as
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T → ∞, consistent with successful mollification). Let K ′12 be the same
integral as K12 but with A(s, u, 0) replaced by A(0, 0, 0). We check in Section
5.6 below that A(0, 0, 0) = 1, a result we now use freely. Then we see that
K12 = K ′12 +O(Li+j−1).

Next we replace ζ2(1+s+u) by its Dirichlet series and reverse the order
of summation and integration. This cleanly separates the variables s and u.
Thus we get

(5.37) K ′12 =
∑
n≤y2

d(n)
n

K1K2,

where

K1 =
1

2πi

�

(ε)

(
y1

n

)s 1
ζ(1 + α+ s)ζ(1− β + s)

ds

si+1
,(5.38)

K2 =
1

2πi

�

(ε)

(
y2

n

)u ζ(1 + α+ u)ζ(1− β + u)
ζ2(1 + 2u)

du

uj+1
.(5.39)

Here we were able to truncate n at y2 < y1 by moving the u-integral far to
the right.

We compute the s and u integrals separately with the following

Lemma 5.7. Suppose i ≥ 1 and j ≥ 3. Then

K1 =
1
i!

d2

dxdy
[eαx−βy(x+ y + log(y1/n))i]x=y=0 +O(Li−3),(5.40)

K2 =
4(log(y2/n))j

(j − 2)!

� �

a+b≤1
a,b≥0

(1− a− b)j−2

(
y2

n

)−aα+bβ

da db+O(Lj−1).(5.41)

Proof. We first work on K1. An argument on the level of the prime
number theorem shows that K1 is captured by the residue at s = 0, with
an error of size (log(y1/n))−A for arbitrarily large A. Since n ≤ y2, we have
log(y1/n) ≥ log(y1/y2) = (θ1 − θ2)L so that this error is satisfactory (if
we had y1 = y2 the error term would be more delicate; see Lemma 6.1).
A similar approximation argument shows that

K1 =
1

2πi

�(y1

n

)s
(α+ s)(−β + s)

ds

si+1
+O(Li−3),

where the contour is a small circle enclosing 0. We calculate this integral
exactly as

K1 = (−αβ)
(log(y1/n))i

i!
+(α−β)

(log(y1/n))i−1

(i− 1)!
+

(log(y1/n))i−2

(i− 2)!
+O(Li−3).

When i = 1 we interpret 1/(i− 2)! = 0. This can be expressed in a compact
form as (5.40).
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Now we compute K2. As in the computation of K1, the prime number
theorem shows that we can replace the contour by a small circle around the
origin with radius � L−1, with error O(1). Then on this contour

(5.42) K2 = 4
1

2πi

�
qu

1
(α+ u)(−β + u)

du

uj−1
+O(Lj−1),

where q = y2/n. Observe the following identity:

(5.43)
1

α+ u
=

1�

1/q

rα+u−1 dr +
q−α−u

α+ u
,

valid for all complex numbers α + u and positive q. We apply this identity
to K2, expressing the main term as the sum of these two terms. The latter
term can be seen to give no contribution to K2: it is

4q−α
1

2πi

� 1
(α+ u)(−β + u)

du

uj−1
,

which vanishes as can be seen by taking the contour to be arbitrarily large.
By reversing the order of integrations we have

K2 = 4
1�

1/q

rα−1 1
2πi

�
(qr)u

1
−β + u

du

uj−1
dr +O(Lj−1).

We use (5.43) again but with the lower boundary of integration at 1/qr.
Again we get K2 as the sum of two terms, with the latter term vanishing
(using j ≥ 2). The former term is

4
1�

1/q

1�

1/qr

rα−1t−β−1 1
2πi

�
(qrt)u

du

uj−1
dt dr,

which can be calculated as

4
(j − 2)!

1�

1/q

1�

1/qr

rα−1t−β−1

(
log rt

y2

n

)j−2

dt dr.

Changing variables r = q−a, t = q−b and simplifying gives (5.41).

5.5. Final simplifications. We are finally ready to finish the proof of
Lemma 3.4.

Proof of Lemma 3.4. We pick up our calculation with (5.35) and (5.37),
getting

I12(α, β) = ŵ0(0)
∑
n≤y2

d(n)
n

(∑
i

aii!
(log y1)i

K1

)(∑
j

bjj!
(log y2)j

K2

)
+O(T/L).
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Using Lemma 5.7 we now compute these sums over i and j. We have∑
i

=
d2

dxdy

[
eαx−βyP1

(
x+ y

log y1
+

log(y1/n)
log y1

)]
x=y=0

+O(L−3),

which we write in a slightly more convenient form as∑
i

=
1

(log y1)2
d2

dxdy

[
yαx−βy1 P1

(
x+ y +

log(y1/n)
log y1

)]
x=y=0

+O(L−3).

The sum over j is

4
(log(y2/n))2

(log y2)2
� �

0≤a+b≤1

(
y2

n

)−aα+bβ

P ′′2

(
(1−a−b) log(y2/n)

log y2

)
da db+O(L−1).

With this, and recalling

ŵ0(0) = T−βŵ(0)(1 +O(L−1)),

we have

(5.44) I12(α, β) =
4T−βŵ(0)
(log y1)2

d2

dxdy

[
yαx−βy1

� �

0≤a+b≤1

∑
n≤y2

d(n)
n

(log(y2/n))2

(log y2)2

×
(
y2

n

)−aα+bβ

P1

(
x+y+

log(y1/n)
log y1

)
P ′′2

(
(1−a−b) log(y2/n)

log y2

)
da db

]
x=y=0

+O(T/L).

Finally we apply Lemma 4.4 to the sum over n (with k = 2, x = y1, z = y2,
s = −aα+ bβ, F (u) = P1(x+ y + u), H(u) = u2P ′′2 ((1− a− b)u)) to finish
the proof of Lemma 3.4.

5.6. The arithmetical factor. Here we verify that A(0, 0, 0) = 1. To
do so, we compute A(s, s, s) and verify it is 1 at s = 0. In view of (5.34), we
have

A(s, s, s) =
∑
hl=nk

µ(n)µ2(h)σα,−β(l)
(hknl)1/2+s

=
∑
hl=nk

µ(n)µ2(h)σα,−β(l)
(hl)1+2s

.

For hl fixed, the sum over nk is
∑

n|hl µ(n), which picks out h = l = 1. Thus
A(s, s, s) = 1 for all s!

6. The second diagonal term. Our goal in this section is to prove
Theorem 3.3. The overall strategy is roughly the same as that in Section 5.
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6.1. Reduction to a contour integral. Recall that I2(α, β) is defined
by (3.8). Writing out the definition of ψ2, we have

I2(α, β) =
∑
h1,h2
k1,k2

µ2(h1)µ2(h2)P2[h1k1]P2[h2k2]√
h1h2k1k2

(6.1)

×
∞�

−∞

(
h1k2

h2k1

)−it
w(t)ζ(1/2 + α+ it)ζ(1/2 + β − it) dt.

We apply Proposition 4.2, writing I2(α, β) = I ′2(α, β) + I ′′2 (α, β), where
I ′′2 can be obtained from I ′2 by switching α and −β and multiplying by(
t

2π

)−α−β = T−α−β +O(L−1). Thus

(6.2)

I ′2(α, β) =
∞�

−∞
w(t)

∑
i,j

bibji!j!
(log y2)i+j

∑
h1k2m=h2k1n

µ2(h1)µ2(h2)
(h1h2k1k2)1/2m1/2+αn1/2+β

×
(

1
2πi

)3 �

(1)

�

(1)

�

(1)

(
y2

h1k1

)s( y2

h2k2

)u( t

2πmn

)zG(z)
z

dz
ds

si+1

du

uj+1
dt.

Next we compute the arithmetical sum as

(6.3)
∑

h1k2m=h2k1n

µ2(h1)µ2(h2)
(h1k1)1/2+s(h2k2)1/2+um1/2+α+zn1/2+β+z

=

B(s, u, z)
[
ζ(1 + s+ u)5ζ(1 + α+ s+ z)ζ(1 + β + u+ z)ζ(1 + α+ β + 2z)

ζ2(1 + 2s)ζ2(1 + 2u)ζ2(1 + β + s+ z)ζ2(1 + α+ u+ z)

]
,

where B(s, u, z) is an arithmetical factor converging absolutely in a product
of half-planes containing the origin. Hence

I ′2(α, β) =
∞�

−∞
w(t)

∑
i,j

bibji!j!
(log y2)i+j

(
1

2πi

)3

×
�

(1)

�

(1)

�

(1)

ζ(1 + s+ u)5ζ(1 + α+ s+ z)ζ(1 + β + u+ z)ζ(1 + α+ β + 2z)
ζ2(1 + 2s)ζ2(1 + 2u)ζ2(1 + β + s+ z)ζ2(1 + α+ u+ z)

×B(s, u, z)ys+u2

(
t

2π

)zG(z)
z

dz
ds

si+1

du

uj+1
dt.

Now we take the s, u, z contours of integration to δ > 0 small, and then
move z to −δ + ε, crossing a simple pole at z = 0 only (since G(z) vanishes
at the pole of ζ(1 + α+ β + 2z)). The new line of integration contributes

(6.4) � T 1+ε

(
y2
2

T

)δ
= O(T 1−ε),
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since θ2 < 1/2. Write I ′2(α, β) = I ′20(α + β) + O(T 1−ε), where I ′20(α, β)
corresponds to the residue at z = 0. Then

(6.5) I ′20(α, β) = ŵ(0)ζ(1 + α+ β)
∑
i,j

bibji!j!
(log y2)i+j

J2,

where

J2 =
(

1
2πi

)2 �

(δ)

�

(δ)

ζ(1 + s+ u)5ζ(1 + α+ s)ζ(1 + β + u)
ζ2(1 + 2s)ζ2(1 + 2u)ζ2(1 + β + s)ζ2(1 + α+ u)

× ys+u2 B(s, u, 0)
ds

si+1

du

uj+1
.

Using the Dirichlet series for ζ5(1 + s + u) and reversing the order of the
sum and integral, we get

J2 =
∑
m≤y2

d5(m)
m

(
1

2πi

)2 �

(δ)

�

(δ)

B(s, u, 0)
(
y2

m

)s+u
× ζ(1 + α+ s)ζ(1 + β + u)
ζ2(1 + 2s)ζ2(1 + 2u)ζ2(1 + β + s)ζ2(1 + α+ u)

ds

si+1

du

uj+1
.

Taking δ � L−1 and bounding the integrals trivially shows J2 � Li+j−1.
In particular, we can use a Taylor series so that B(s, u, 0) = B(0, 0, 0) +
O(|s|+|u|) to write J2 = J ′2+O(Li+j−2), say. Now the variables are separated
so that

(6.6) J ′2 =
∑
m≤y2

d5(m)
m

L1L2,

where

(6.7) L1 =
1

2πi

�

(δ)

(
y2

m

)s ζ(1 + α+ s)
ζ2(1 + 2s)ζ2(1 + β + s)

ds

si+1
,

and L2 is the same as L1 but with i replaced by j and α and β switched.
Next we need to use the zero-free region for ζ to move the contour to the left
of 0. Unfortunately, an error of size O(1) is not sufficient for our application
so we need a more subtle argument. We have

Lemma 6.1. With L1 defined by (6.7) and for some ν � (log log y2)−1

we have

(6.8) L1 = 4
1

2πi

�(y2

m

)s (β + s)2

α+ s

ds

si−1
+O(Li−4) +O

((
y2

m

)−ν
Lε
)
,

where the contour is a circle of radius one enclosing the origin.

Proof. Let Y = o(T ) be a large parameter to be chosen later. By Cauchy’s
theorem, L1 is equal to the sum of residues at s = 0 and s = −α, plus
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integrals over the line segments γ1 = {s = it : t ∈ R, |t| ≥ Y }, γ2 = {s =
σ ± iY : −c/log Y ≤ σ ≤ 0}, and γ3 = {s = −c/log Y + it : |t| ≤ Y }, where
c is some fixed positive constant such that ζ(1+2s)ζ(1+β+s) has no zeros
in the region on the right hand side of the contour determined by the γi.
Furthermore, we require for such c that 1/ζ(σ + it) � log(2 + |t|) in this
region (see [T, Theorem 3.11]). Then the integral over γ1 is � (log Y )3/Y i

� Y −2 since i ≥ 3. The integral over γ2 is� (log Y )2/Y i+1 � Y −2. Finally,
the contribution from γ3 is � (log Y )i(y2/m)−c/ log Y . Choosing Y � log y2

gives an error so far of size O((y2/m)−νLε) +O(L−2).
Next we work with the sum of residues which can be expressed as

1
2πi

�(y2

m

)s ζ(1 + α+ s)
ζ2(1 + 2s)ζ2(1 + β + s)

ds

si+1
,

where the contour is a circle of radius � 1/L. This integral is trivially
bounded by O(Li−3) so that taking the first term in the Taylor series of
the ζ’s finishes the proof.

Next we calculate the integral in (6.8) with the following

Lemma 6.2. For i ≥ 3 we have

1
2πi

�(y2

m

)s (β + s)2

α+ s

ds

si−1

=
d2

dx2

(
x+ log y2

m

)i−1

(i− 2)!

1�

0

(1− u)i−2ex(β−αu)
(
y2

m

)−αu
du

∣∣∣∣
x=0

.

Proof. Let N be the integral to be computed. We begin with the identity

(β + s)2 =
d2

dx2
e(β+s)x

∣∣∣
x=0

,

whence

N =
d2

dx2
eβxN1(x)

∣∣∣
x=0

, where N1(x) =
1

2πi

�(
ex
y2

m

)s 1
α+ s

ds

si−1
.

Taking a power series, we have

N1(x) =
∑
l≥0

(
x+ log y2

m

)l
l!

1
2πi

� sl−i+1

α+ s
ds.

As there are two poles inside the contour, it is easier to compute the residue
at infinity. In other words, change variables s 7→ 1/s to get

N1(x) =
∑
l≥0

(
x+ log y2

m

)l
l!

1
2πi

� si−l−2

1 + αs
ds.
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Taking a power series of (1 + αs)−1, we get

N1(x) =
∑
l≥0

(
x+ log y2

m

)l
l!

∑
k≥0

(−α)k
1

2πi

�
sk+i−l−2 ds.

The integral picks out l = k + i− 1, giving

N1(x) =
(
x+ log

y2

m

)i−1∑
k≥0

(−α)k
(
x+ log y2

m

)k
(k + i− 1)!

.

Now separate the variables i and k by the following trick (with B(x, y)
denoting the standard beta function):

1
(k + i− 1)!

= B(i− 1, k + 1)
1

k!(i− 2)!

followed by the usual integral representation definition of the beta function,
getting

N1(x) =

(
x+ log y2

m

)i−1

(i− 2)!

1�

0

(1− u)i−2
∑
k≥0

(−α)kuk
(
x+ log y2

m

)k
k!

du.

Of course the sum over k is easily computable, which completes the proof.

Applying Lemmas 6.1 and 6.2 to (6.6) gives

(6.9) J ′2 =
16

(i− 2)!(j − 2)!

∑
m≤y2

d5(m)
m

d4

dx2dy2

[
eβx+αy

(
x+ log

y2

m

)i−1

×
(
y+log

y2

m

)j−1 1�

0

1�

0

(1−u)i−2(1−v)j−2e−αxu−βyv
(
y2

m

)−αu−βv
du dv

]
x=y=0

+O

(
Li+j−7

∑
m≤y2

d5(m)
m

)
+O

(
(Li−3 + Lj−3)Lε

∑
m≤y2

d5(m)
m

(
y2

m

)−ν)
.

Applying Lemma 4.6 and noting max(i+ 1, j + 1) ≤ i+ j − 2, which is true
since i, j ≥ 3, shows that the error terms above are

� Li+j−2 + Lε(Li+1 + Lj+1)� Li+j−2+ε.

Thus inserting (6.9) into (6.5) and recalling I ′2(α, β) = I ′20(α, β) +O(T 1−ε)
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we get

I ′2(α, β) =
16ŵ(0)
α+ β

d4

dx2dy2

[ 1�

0

1�

0

ex(β−αu)+y(α−βv)

×
∑
m≤y2

d5(m)
m

(
x+ log y2

m

)(
y + log y2

m

)
(log y2)4

P ′′2

(
(1− u)

x+ log y2
m

log y2

)

× P ′′2
(

(1− v)
y + log y2

m

log y2

)(
y2

m

)−αu−βv
du dv

]
x=y=0

+O(TL−1+ε).

We write this main term in a more convenient way as

I ′2(α, β) =
16ŵ(0)

(α+ β)(log y2)6
d4

dx2dy2

[ 1�

0

1�

0

y
x(β−αu)+y(α−βv)
2

×
∑
m≤y2

d5(m)
m

(
y2

m

)−αu−βv(
x+

log y2
m

log y2

)(
y +

log y2
m

log y2

)

× P ′′2
(

(1− u)
(
x+

log y2
m

log y2

))
P ′′2

(
(1− v)

(
y +

log y2
m

log y2

))
du dv

]
x=y=0

.

Now apply Corollary 4.5 to this sum over m to get

I ′2(α, β) =
(2/3)ŵ(0)

(α+ β)(log y2)
d4

dx2dy2

[ 1�

0

1�

0

1�

0

(1− r)4

× yβ(x−v(y+r))+α(y−u(x+r))
2 (x+ r)(y + r)P ′′2 ((1− u)(x+ r))

× P ′′2 ((1− v)(y + r)) dr du dv
]
x=y=0

+O

(
T

L1−ε

)
.

To form I2(α, β), recall that we need to add I ′2 and I ′′2 , where I ′′2 is formed
by taking I ′2, switching α and −β, and multiplying by T−α−β. Letting

(6.10) U(α, β)

=
y
β(x−v(y+r))+α(y−u(x+r))
2 − T−α−βy−α(x−v(y+r))−β(y−u(x+r))

2

α+ β
,

we then have

(6.11) I2(α, β) =
2ŵ(0)

3(log y2)
d4

dx2dy2

[ 1�

0

1�

0

1�

0

(1− r)4U(α, β)(x+ r)(y + r)

× P ′′2 ((1− u)(x+ r))P ′′2 ((1− v)(y + r)) dr du dv
]
x=y=0

+O(TL−1+ε).
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Now write

U(α, β) = y
β(x−v(y+r))+α(y−u(x+r))
2

1− (Tyx+y−v(y+r)−u(x+r)2 )−α−β

α+ β
.

Using the integral formula

1− z−α−β

α+ β
= log z

1�

0

z−t(α+β) dt,

and simplifying, we finish the proof of Lemma 3.5.

6.2. The arithmetical factor. Here we compute B(0, 0, 0). The first
thing to notice is that since B is holomorphic with respect to α, β near
the origin, we have B(0, 0, 0) = B0(0, 0, 0)(1 + O(L−1)), where B0 is B
specialized with α = β = 0. For this choice of α, β and with u = z = s, the
expression (6.3) simplifies greatly. Thus

B0(s, s, s) =
∑

h1k2m=h2k1n

µ2(h1)µ2(h2)
(h1k1h2k2mn)1/2+s

.

Making h1k2 = l1 and h2k1 = l2 new variables and using
∑

h|l µ2(h) = µ(l),
we get

B0(s, s, s) =
∑

l1m=l2n

µ(l1)µ(l2)
(l1l2mn)1/2+s

= 1.
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