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estimates for the zeros of Dirichlet L-functions
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1. Introduction. Let P (a, q) be the least prime in an arithmetic pro-
gression a (mod q) where a and q are coprime positive integers. In 1944
Linnik proved [12, 13] the impressive upper bound

P (a, q) ≤ CqL

with effectively computable constants C and L. We will refer to this last in-
equality as Linnik’s theorem. The following table, taken from [8, p. 266] and
supplemented by three additional references, lists some proven admissible
values for L.

Table 1. Admissible values for L

L Year of publication Author Reference

10000 1957 Pan [15]

5448 1958 Pan [16]

777 1965 Chen [1]

630 1971 Jutila [17, p. 370]

550 1970 Jutila [10]

168 1977 Chen [2]

80 1977 Jutila [11]

36 1977 Graham [6]

20 1981 Graham [7]

17 1979 Chen [3]

16 1986 Wang [18]

13.5 1989 Chen and Liu [4]

11.5 1991 Chen and Liu [5]

8 1991 Wang [19]

5.5 1992 Heath-Brown [8]
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In [8, pp. 332–337] Heath-Brown mentions several small suggestions for
improvement to his work. Making use of these suggestions we prove

Theorem 1.1. We have

P (a, q) ≤ Cq5.18

with an effectively computable constant C.

In the course of the proof of Theorem 1.1 we improve on several results
in [8] concerning zero-free regions and zero-density estimates for Dirichlet
L-functions. Let us cite, for example, the following result.

Theorem 1.2. There is an effectively computable constant q0, such that
for q ≥ q0 the function ∏

χ (mod q)

L(s, χ)

has at most one zero in the region

σ ≥ 1− 0.440
log q

, |t| ≤ 1.

If this exceptional zero (“Siegel zero”) exists then it is real, simple and be-
longs to a non-principal real character.

Remark. Heath-Brown [8, Theorem 1, p. 268] has proved this estimate
with c = 0.348 instead of c = 0.440. By a small variation of Heath-Brown’s
argument, Liu and Wang [14, pp. 345–346] achieved c = 0.364.

For a motivation as well as a more detailed introduction into this topic
we refer to [9, §18], [8, pp. 265–270] and [20, pp. 7–10].

In this paper we refine certain arguments of [8] in the way proposed
by the nine improvement suggestions in [8, pp. 332–337]. To be precise,
we use suggestions (2), (5), (7) and (9), the largest contribution to our
improved estimates being due to suggestion (2). On the other hand, the
improvement of the admissible value for L resulting from our use of the
other five suggestions is too small and will not be discussed here.

Besides some small variations, this paper is a shorter version of our work
[20] and the reader is referred to that work whenever more details are desired.

Standard notation from analytic number theory is used. For q ∈ N =
{1, 2, 3, . . .} we use χ to denote a Dirichlet character modulo q, χ0 for the
principal character modulo q and L(s, χ) to denote the corresponding Dirich-
let L-function. Furthermore, we use ordχ for the order of χ in the group of
Dirichlet characters modulo q, and the notation [x] = max{a ∈ Z | a ≤ x}
and

L = log q.
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The real part of a complex number z is denoted by <{z} and its imaginary
part by ={z}. We refer the unfamiliar reader to the detailed explanations
given in [20, pp. 4–5]. Generally, the results in this paper are proven for
q ≥ q0 with q0 being an absolute and effectively computable constant.

In analogy to [8] we need computer calculations along the way. These
have been done with the computing software Maple and a standard home
computer.

Remark. Some test calculations indicate that if one increased the com-
puter calculations towards infinity one would get about L = 5.13.

2. Some preliminaries from [8]

2.1. An important lemma. In order to improve the admissible value
for L in Linnik’s theorem it turns out to be sufficient to improve the available
estimates concerning the location of zeros of Dirichlet L-functions in the
rectangle

(2.1) R := R(l)

where l ≤ L /10 is the positive integer defined in [8, Lemma 6.1] (depending
on q) and

(2.2) R(x) :=
{
σ + it ∈ C

∣∣∣∣ 1− log log L

3L
≤ σ ≤ 1, |t| ≤ x

}
.

We will extensively use Lemma 5.2 from [8] and want to reformulate it in
order to make its application in this paper more convenient. For this purpose,
let χ be a non-principal character modulo q. As in [8, Lemma 2.5] we set

φ = φ(χ) =
{

1/4 if q is cube-free (1) or ordχ ≤ L ,
1/3 else.

Lemma 2.1 (variation of [8, Lemma 5.2]). Let χ be a non-principal
character modulo q and let R, l, R(x) and φ be as above. Furthermore,
let s ∈ R(9l) and suppose the number of zeros (2) ρ ∈ R of L(s, χ) with
<{ρ} > <{s} is at most 10, i.e.

A1 := {ρ ∈ R | L(ρ, χ) = 0, <{ρ} > <{s}} and #̃A1 ≤ 10

with #̃ indicating that we count the elements of the set A1 with multiplicity.

(1) By this we mean that for all prime numbers p we have p3 - q.
(2) By this we always mean the number of zeros counted with multiplicity.
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Let A2 be an arbitrary set with

A2 ⊆ {ρ ∈ R | L(ρ, χ) = 0, <{ρ} ≤ <{s}} and #̃A2 ≤ 10.

If f is a function satisfying Conditions 1 and 2 of [8, pp. 280, 286] then for
any ε > 0 and q ≥ q0(f, ε) we have

K(s, χ) :=
∞∑
n=1

Λ(n)<
{
χ(n)
ns

}
f(L −1 log n)

≤ −L
∑

ρ∈A1∪A2

<{F ((s− ρ)L )}+ f(0)
φ

2
L + εL .

Proof. Let ε > 0 and s ∈ R(9l). By [8, Lemma 5.2] the statement follows
from the verification of the following two inequalities:

−
∑

|1+it−ρ|≤δ

<{F ((s− ρ)L )} ≤ −
∑
ρ∈R

|1+it−ρ|≤δ
<{ρ}≤<{s}⇒ρ∈A2

<{F ((s− ρ)L )}

≤ −
∑
ρ∈R

<{ρ}≤<{s}⇒ρ∈A2

<{F ((s− ρ)L )}+ ε/2

=−
∑

ρ∈A1∪A2

<{F ((s− ρ)L )}+ ε/2.

For the first inequality use [8, Lemma 6.1] and Condition 2. For the second
use partial integration on the Laplace transform F to show that the addi-
tional ρ’s contribute at most ε/2 (cf. the reasoning in [8, p. 287]). For more
details see [20, Proof of Lemma 2.4].

In Lemma 2.1 and [8, Lemma 5.3], both of which will be used extensively
throughout this paper, one needs to choose some function f . We will use
the following ones which appear in [8, Lemma 7.2]. Let γ > 0 be a real
parameter. Set g(x) := γ2 − x2 and define

(2.3) f(t) :=


	γ
t−γ g(x)g(t− x) dx

= − 1
30 t

5 + 2γ2

3 t3 − 4γ3

3 t2 + 16γ5

15 , t ∈ [0, 2γ),
0 t ≥ 2γ.

The function f satisfies Condition 1 in [8, p. 280] and according to [8, p. 289]
the Laplace transform

F (z) :=
∞�

0

e−ztf(t) dt

of f satisfies the following Condition 2 [8, p. 286]:

(2.4) <{z} ≥ 0 ⇒ <{F (z)} ≥ 0.
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By partial integration we get

(2.5) F (z) =


16γ5

15 z−1 − 8γ3

3 z−3 + 4γ2(1 + e−2γz)z−4

+ 4(−1 + e−2γz + 2γze−2γz)z−6, z 6= 0,
8γ6

9 , z = 0.

We will normally refer to the above functions f and F just by giving an
explicit γ > 0.

2.2. Labeling of the interesting zeros. We proceed to label some
of the zeros in the rectangle R (defined in (2.1)) and their corresponding
characters χ in the same way as in [8, pp. 285, 287]. Note that, whenever we
write down a specific zero ρ of a Dirichlet L-function, it will be done under
the implicit assumption that this zero exists.

For a fixed positive integer q we consider all zeros ρ ∈ R of the function

(2.6) P (s) :=
∏

χ (mod q)
χ 6=χ0

L(s, χ).

First, let ρ1 be a zero of P (s) in R for which <{ρ1} is maximal and let χ1

be a corresponding character, that is, L(ρ1, χ1) = 0. Then in the kth step
(k ≥ 2) consider the zeros ρ ∈ R of the function

P (s)
L(s, χ1)L(s, χ1) · . . . · L(s, χk−1)L(s, χk−1)

and choose a zero ρk among them with maximal real part. Write χk for the
corresponding character. Continue until there are no more zeros to consider.
Then

χi 6= χj , χj for i 6= j.

Also, by [8, Lemma 6.1] and for q large enough, if L(ρ, χ) = 0 and χ 6=
χi, χi for 1 ≤ i < k then

<{ρ} ≤ <{ρk} or |={ρ}| ≥ 10l.

We set
ρk = βk + iγk, βk = 1−L −1λk, γk = L −1µk.

We proceed to label one more potential zero. Suppose L(s, χ1) has a zero
ρ′ ∈ R \{ρ1} or ρ1 is a multiple zero, i.e. the zero order of ρ1 is greater than
or equal to two. Then choose a zero ρ′ ∈ R of L(s, χ1) according to the
following steps:

Case 1: If ρ1 is a multiple zero choose ρ′ = ρ1.
Case 2: If we are not in Case 1 and χ1 is real and ρ1 is complex choose ρ′

among the zeros in R \ {ρ1, ρ1} such that <{ρ′} is maximal.
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Case 3: If we are not in Case 1 or 2 choose ρ′ among the zeros in R \ {ρ1}
such that <{ρ′} is maximal.

In analogy to the previous notation we set

ρ′ = β′ + iγ′, β′ = 1−L −1λ′, γ′ = L −1µ′.

2.3. Estimation of certain suprema. We will need estimates of the
type

(2.7) Asup := sup
s1∈[s11,s12]
s2∈[s21,s22]
s2≤s1, t∈R

A(s1, s2, t) ≤ C

with an explicit numerical value C. Here,

A(s1, s2, t) := <{k1F (−s1 + it)− k2F (−(s1 − s2) + it)− k3F (it)},

sij and ki are non-negative constants with

0 ≤ s11 ≤ s12 ≤ 4, 0 ≤ s21 ≤ s22 ≤ s12,

and F is given by (2.5). We also define

(2.8) s3 := s1 − s2 ∈ [max{0, s11 − s22}, s12 − s21] =: [s31, s32].

Heath-Brown [8, pp. 312–313] proves an estimate of the form (2.7) for a
concrete F and k1 = 1, k2 = 0, k3 = 2, s11 = 0, s12 = (7/6 + 2ε)−1. We
will proceed similarly for general parameters ki and sij although at some
points we choose to make some minor modifications in order to get sharper
estimates. Since

(2.9) <{F (z)} = <{F (z)}

we may assume that t ≥ 0. We distinguish two cases.

2.3.1. Estimates for t ≥ x1. Suppose that t ≥ x1 ≥ 4. Since F satisfies
(2.4) and k3 ≥ 0 we have

<{k1F (−s1 + it)− k2F (−(s1 − s2) + it)− k3F (it)}
≤ <{k1F (−s1 + it)− k2F (−s3 + it)} =: Ã(s1, s3, t).

By (2.5) the function F is a sum of four terms. Accordingly, we write

Ã(s1, s3, t) = Ã1(s1, s3, t) + Ã2(s1, s3, t) + Ã3(s1, s3, t) + Ã4(s1, s3, t).

For instance, Ã3(s1, s3, t) is equal to

<{4k1γ
2(1+e−2γ(−s1+it))(−s1 +it)−4−4k2γ

2(1+e−2γ(−s3+it))(−s3 +it)−4}.
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Estimating in an elementary way we get (more details in [20, §3.1])

Ã1(s1, s3, t) ≤
16γ5

15
· t

2 max{0, s32k2 − s11k1}
(s232 + t2)(s211 + t2)

(2.10)

+
16γ5

15
· s11s32 max{0, s11k2 − s32k1}

(s232 + t2)(s211 + t2)
=: A1(t),

Ã2(s1, s3, t) ≤
8γ3k2s32t

2

(s231 + t2)3
=: A2(t),(2.11)

|Ã3(s1, s3, t)| ≤ 4γ2k1
1 + e2γs12

(s212 + t2)2
+ 4γ2k2

1 + e2γs32

(s232 + t2)2
=: A3(t),(2.12)

|Ã4(s1, s3, t)| ≤ 4k1
1 + e2γs12 + 2γ

√
s212 + t2e2γs12

t6
(2.13)

+ 4k2
1 + e2γs32 + 2γ

√
s232 + t2e2γs32

t6
=: A4(t).

The functions Ai(t) (i ∈ {1, 2, 3, 4}) are decreasing in t since they are sums
and products of non-negative decreasing functions.

2.3.2. Estimates for t ∈ [0, x1]. Let ∆1, ∆2, ∆t and x1 be some arbitrary
positive constants. Define a grid

G ⊆M := [s11, s12]× [s21, s22]× [0, x1]
by

G :=
{

(s1, s2, t) ∈ R3

∣∣∣∣ s1 = min{s11+j1∆1, s12}, j1 =0, . . . ,
[
s12 − s11

∆1

]
+1,

(2.14)

s2 = min{s21+j2∆2, s22}, j2 =0, . . . ,
[
s22 − s21

∆2

]
+1,

t = min{j3∆t, x1}, j3 = 0, . . . ,
[
x1

∆t

]
+ 1
}

and set

(2.15) M0 := max
(s1,s2,t)∈G

A(s1, s2, t).

If si1 = si2 for an i ∈ {1, 2} then we also allow ∆i = 0, in which case we
replace the term ([(si2 − si1)/∆i] + 1) in the definition of G with 0.

Furthermore, for (s1, s2, t) ∈M we have∣∣∣∣dA(s1, s2, t)
ds1

∣∣∣∣ ≤ d 2γ�

0

xf(x)es12x dx =: D1,(2.16)

∣∣∣∣dA(s1, s2, t)
ds2

∣∣∣∣ ≤ k2

2γ�

0

xf(x)es32x dx =: D2,(2.17)
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∣∣∣∣dA(s1, s2, t)
dt

∣∣∣∣ ≤ d 2γ�

0

xf(x)es12x dx+ k3

2γ�

0

xf(x) dx =: D3(2.18)

with

(2.19) d := sup
x∈[0,2γ]

|k1 − k2e
−s2x| = max{k2 − k1, k1 − k2e

−2s22γ}.

Putting everything together and using the mean value theorem of differ-
ential calculus in the case t ∈ [0, x1] we get

Lemma 2.2. Let s11, s12, s21, s22 and ki (i ∈ {1, 2, 3}) be non-negative
constants and γ, ∆1, ∆2, ∆t and x1 be positive constants with

0 ≤ s11 ≤ s12 ≤ 4, 0 ≤ s21 ≤ s22 ≤ s12, x1 ≥ 4.

If si1 = si2 for an i ∈ {1, 2} then ∆i = 0 is allowed as well. Using the
definitions (2.7)–(2.8) and (2.10)–(2.19) we have

Asup ≤ max {A1(x1) +A2(x1) +A3(x1) +A4(x1),
M0 + (∆1/2)D1 + (∆2/2)D2 + (∆t/2)D3}.

The inequality in Lemma 2.2 gets sharper for greater x1 and smaller
∆1, ∆2 or ∆t. However, at the same time the number of grid points for
evaluation increases. If the number of grid points is kept fixed then one
should choose the parameters in such a way that ∆1D1 ≈ ∆2D2 ≈ ∆tD3 in
order to optimize the estimate.

3. Estimates for zeros of Dirichlet L-functions

3.1. Zero-free regions and almost zero-free regions. Let λ ∈
{λ1, λ2, λ3, λ

′} (cf. the notation introduced in §2.2). Our goal in this sec-
tion is to prove estimates of the form

(3.1) λ1 ≤ C1 ⇒ λ ≥ C2.

Such estimates are related to zero-free regions (if λ = λ1) or almost zero-free
regions (in the other cases) for the function in (2.6). Note that in this section
we will extensively use the improvement suggestion (2) of [8, p. 332].

3.1.1. Estimates for λ = λ′ and χ1 or ρ1 complex. This section improves
on [8, Table 8]. In order to deduce estimates of the form (3.1) we use the
following two inequalities together with monotonicity arguments.

Lemma 3.1. Let f be the function defined in (2.3) and let ε and k be
positive constants.

• Suppose ordχ1 ≥ 5 and λ? is a positive number with λ? ≤ min{λ′, λ2}.
In case ρ2 does not exist just assume λ? ≤ λ′. Then for q ≥ q0(f, k, ε)
we have
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0 ≤ (k2 + 1/2)(F (−λ?)− F (λ′ − λ?))− 2kF (λ1 − λ?)(3.2)

+
f(0)

6
(k2 + 3k + 3/2) + ε

+ sup
t∈R
<{kF (−λ? + it)− (k2 + 3/4)F (λ1 − λ? + it)}.

• Let ordχ1 ∈ {2, 3, 4}. If χ1 is real (3) then assume that ρ1 is complex.
For q ≥ q0(f, k, ε) we have

(3.3) 0 ≤ (k2 + 1/2)(F (−λ1)− F (λ′ − λ1))− 2kF (0)

+
f(0)

8
(k2 + 3k + 3/2) + ε+ sup

t∈R
<
{

1
2
F (−λ1 + it)− 2kF (it)

}
+ 2 · sup

t∈R
<{kF (−λ1 + it)− (k2 + 3/4)F (it)}.

Proof. The proof is carried out in analogy to the arguments used in [8]
for similar inequalities. However, instead of working with [8, Lemma 5.2] we
prefer to work with our Lemma 2.1. A complete proof can be found in [20,
§3.2.1–3.2.3] which is why we skip the details in what follows.

To prove the first item start with the trigonometric inequality in
[8, p. 302, 2nd line]. Set β? := 1 − L −1λ?, multiply the inequality with
n−β

?
Λ(n)f(L −1 log n) and sum over n. The result is the inequality [20,

(3.18)]. Applying Lemma 2.1 for each term with χ 6= χ0 and [8, Lemma 5.3]
for each term with χ = χ0 will yield the result. The only thing one has to
look closely at is how the set A1 looks like when Lemma 2.1 is used and how
to choose the set A2:

Now, Lemma 2.1 is used for the terms 2, 4, 5, 6, 7 and 8 (counting
successively) of the inequality [20, (3.18)]. For term 2 we choose A2 in such
a way that A1 ∪ A2 = {ρ1, ρ

′}. For terms 4 and 6 we get A1 ∪ A2 = {ρ1}
and for the other terms we get A1 ∪ A2 = ∅. In each of these cases one has
to check which zeros lie in A1 and that it is indeed possible to choose A2 in
such a way that we get the desired form for A1 ∪A2. The first item follows
by putting everything together and noting (2.9).

For the second item, one has to deduce an inequality for each of the
three cases ordχ1 ∈ {2, 3, 4} in the same way as the inequality for the first
item was derived. One uses the same starting inequality [20, (3.18)] but with
β? replaced by β1. Also, in the cases ordχ1 ∈ {2, 3} one has to consider at
some terms the zero ρ1. Finally, one has to show that from each of the three
derived inequalities the inequality (3.3) follows. This is done using the fact
that Asup (see (2.7)) is always non-negative (let t→∞).

(3) By this we mean that ordχ1 = 2.
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We now use this lemma to prove estimates for λ′. First note that λ1 ≥
0.34 by [8, Lemma 9.5]. Now suppose

λ1 ∈ [0.34, 0.36] =: [λ11, λ12] and ordχ1 ≥ 5.

Because of [8, Table 8] and [8, Table 10, Lemma 9.4] we have λ′ ≥ 1.309 and
λ2 ≥ 0.903. Hence, we choose λ? = 0.903.

We need to estimate the supremum on the right side of (3.2), that is,

(3.4) S := sup
t∈R
<{kF (−λ? + it)− (k2 + 3/4)F (λ1 − λ? + it)}.

We use Lemma 2.2 with

γ = 1.13− λ12/5, k = 0.75 + λ12/7,
∆1 = 0, ∆2 = 0.004, ∆t = 0.004, x1 = 15,

and

s11 = s12 = λ?, s21 = λ11, s22 = λ12,

k1 = k, k2 = k2 + 3/4, k3 = 0.

In fact, the choice of the sij and ki is clear from the context, which is why
in future applications of Lemma 2.2 we will generally not mention these.
Lemma 2.2 gives

S ≤ 0.0172 =: C.

Feeding this into (3.2) and replacing λ1 by 0.36 and λ′ by 2.06 one gets for
sufficiently small ε a negative value for the right side of (3.2). Since this right
side without the supremum is increasing in λ1 and λ′ we conclude λ′ > 2.06.
We do the same for the intervals

[0.36, 0.38], . . . , [0.80, 0.82], [0.82, 0.827]

and summarize the results in Table 2. Note that for λ1 ≥ 0.68 we choose
λ? = λ1 and take

∆1 = 0.004, ∆2 = 0, ∆t = 0.004, x1 = 15.

For the case ordχ1 ≤ 4 we use intervals with twice the length and the
parameters

γ = 1.21− 5λ12/12, k = 0.77 + λ12/10,
∆1 = 0.004, ∆2 = 0, ∆t = 0.004, x1 = 15.

Note that in this case we need to estimate two suprema. We denote by C1

the upper estimate for the first supremum on the right side of (3.3), and
by C2 the upper estimate for the second. It turns out that we get better
estimates in this case than in the case ordχ1 ≥ 5. The results are given in
Tables 2 and 3.
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Table 2. λ′-estimates
(χ1 or ρ1 complex, all cases)

λ1 ≤ λ′ > λ? = C ≤
0.36 2.06 0.903 0.0172

0.38 1.96 0.887 0.0134

0.40 1.86 0.871 0.0102

0.42 1.77 0.856 0.0074

0.44 1.69 0.842 0.0049

0.46 1.61 0.829 0.0032

0.48 1.53 0.816 0.0028

0.50 1.47 0.803 0.0025

0.52 1.40 0.791 0.0021

0.54 1.34 0.780 0.0018

0.56 1.28 0.769 0.0015

0.58 1.23 0.759 0.0012

0.60 1.18 0.749 0.0009

0.62 1.13 0.739 0.0008

0.64 1.09 0.730 0.0008

0.66 1.04 0.714 0.0007

0.68 1.00 0.712 0.0007

0.70 0.96 0.0012

0.72 0.93 0.0011

0.74 0.91 0.0010

0.76 0.89 0.0009

0.78 0.86 0.0008

0.80 0.84 0.0007

0.82 0.83 0.0006

0.827 0.827 0.0005

Table 3. λ′-estimates
(χ1 or ρ1 complex, ordχ1∈{2, 3, 4})
λ1 ≤ λ′ > C1 ≤ C2 ≤
0.38 2.53 0.0060 0.0027

0.42 2.35 0.0051 0.0024

0.46 2.20 0.0043 0.0020

0.50 2.06 0.0035 0.0017

0.54 1.94 0.0028 0.0015

0.58 1.84 0.0021 0.0012

0.62 1.75 0.0015 0.0010

0.66 1.67 0.0010 0.0008

0.70 1.59 0.0006 0.0006

0.74 1.52 0.0006 0.0004

0.78 1.46 0.0006 0.0003

0.82 1.40 0.0006 0.0002

0.86 1.35 0.0006 0.0002

0.90 1.30 0.0006 0.0002

0.94 1.25 0.0006 0.0002

0.98 1.21 0.0006 0.0002

1.02 1.17 0.0006 0.0002

1.06 1.13 0.0006 0.0002

1.099 1.099 0.0006 0.0002

The above results in combination with [8] yield a slight improvement
of the constant in [8, Theorem 2a] from c = 0.696 to c = 0.702. For more
details on this see [20, pp. 38–39].

3.1.2. Estimates for λ = λ2 and χ1 or ρ1 complex. This section improves
on [8, Tables 9–11]. In fact, the largest contribution to the improvement from
L = 5.5 to L = 5.18 in Theorem 1.1 is due to better estimates for λ2 and λ3;
these follow from the next lemma which is a refinement of [8, Lemma 9.2].

Lemma 3.2. Let χ1 or ρ1 be complex, j ∈ {2, 3} and λ? > 0 with λ? ≤
min{λ′, λ2}. If ρ′ does not exist then only assume λ? ≤ λ2. Furthermore, let
ε and k be positive constants. Then for q ≥ q0(ε, f, k) we have

(3.5) 0 ≤ (k2 + 1/2)(F (−λ?)− F (λj − λ?))− 2kF (λ1 − λ?) +D + ε
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with

D =



f(0)
6 (k2 + 4k + 3

2), χ2
1, χ

3
1 6= χ0, χj , χj ,

S1 + f(0)
6 (k2 + 4k + 5

4), χ2
1 ∈ {χj , χj} and ordχ1 ≥ 6,

2S1 + f(0)
8 (k2 + 4k + 1), χ2

1 ∈ {χj , χj} and ordχ1 = 4,

S1 + S2 + f(0)
8 (k2 + 4k + 5

4), χ2
1 ∈ {χj , χj} and ordχ1 = 5,

S2 + f(0)
6 (k2 + 4k + 3

2), χ3
1 ∈ {χj , χj} and ordχ1 ≥ 7,

2S2 + f(0)
8 (k2 + 4k + 3

2), χ3
1 ∈ {χj , χj} and ordχ1 = 6,

2S1 + f(0)
6 (k2 + 7

2k + 1), ordχ1 = 2,

2S2 + f(0)
6 (k2 + 7

2k + 11
8 ), ordχ1 = 3

and

S1 = sup
t∈R
<
{

1
4
F (−λ? + it)− kF (λ1 − λ? + it)

}
,

S2 = sup
t∈R
<
{
−1

4
F (λ1 − λ? + it)

}
.

In the definition of D all possible cases are considered.

Proof. One can check that the cases appearing in the definition of D do
not overlap and do cover all possible cases. Also, by symmetry (or renaming)
we can assume whenever we have the condition χk1 ∈ {χj , χj} for a k ∈ {2, 3}
that χk1 = χj .

As proposed in suggestion (5) of [8, p. 334] we use the inequality in [8,
p. 306, 2nd line] with β? = 1 −L −1λ? instead of β1. Now proceed in the
same way as in Lemma 3.1, that is: apply Lemma 2.1 for each term with
χ 6= χ0 and [8, Lemma 5.3] for each term with χ = χ0. The lemma then
follows by an adequate choice of the set A2 (each of the eight cases has to be
worked out separately). The details are written down in [20, pp. 40–43].

Using this lemma we want to first deduce estimates for λ2. For this
purpose we choose j = 2, λ? = λ2 and assume λ2 ≤ λ′. If this inequality
does not hold then Tables 2 and 3 give better estimates than those we will
prove with this assumption.

In analogy to Tables 2 and 3, one could now set up a table for each of
the eight cases in Lemma 3.2. However, with negligible costs to the results
we can save some work by simultaneously covering the cases 2, 3, 4, 6 and 8.
The cases 1, 5 and 7 are discussed separately.

Let us start with Case 1. Then we have χ2
1, χ

3
1 6= χ0, χj , χj . We use the

respective inequalities in Lemma 3.2 in order to prove estimates in a similar
manner as was done for λ′. However, this time we can only guarantee strict
monotony of the right side of the inequality in λ1 but not in λ2. To overcome
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this problem we use the method in [8, p. 307 top]. In particular, suppose
that

λ1 ≤ λ12, λ2 ∈ [λ2,old, λ2,old + δ] and 2k ≥ k2 + 1/2

for certain concrete values λ12, λ2,old, k and δ > 0. Then we deduce from
(3.5) that

(3.6) − ε ≤ (k2 + 1/2)(F (−λ2,old − δ)− F (λ12 − λ2,old − δ)− F (0))

− (2k − (k2 + 1/2))F (λ12 − λ2,old) +
f(0)

6
(k2 + 4k + 3/2).

Our goal is to find a γ > 0 for which the right side of (3.6) is negative, thus
getting a contradiction for ε sufficiently small. Similarly for the intervals

λ2 ∈ [λ2,old + jδ, λ2,old + (j + 1)δ] with j ∈
{

1, 2, . . . ,
[
λ2,new − λ2,old

δ

]}
.

If in addition we know that λ2 ≥ λ2,old by [8, Table 10, Lemma 9.4] then we
have proven that

λ1 ≤ λ12 ⇒ λ2 > λ2,new.

Using the parameters

(3.7) γ = 0.42 + λ12, k = 0.59 + 2λ12/5, δ = 0.0001

we indeed get Table 4 below.
Before we write this table down we want to incorporate the cases 2, 3,

4, 6 and 8 into it. For this purpose we choose the parameters as in (3.7). In
order to prove estimates S1 ≤ C1 and S2 ≤ C2 we use Lemma 2.2 with

s1 = λ2, s11 = λ2,old, s12 = λ2,new,

s2 = λ1, s21 = λ11, s22 = λ12,

∆1 = 0.015, ∆2 = 0.007, ∆t = 0.015, x1 = 7.

Using the estimates S1 ≤ C1 (one for each interval λ1 ∈ [λ11, λ12]) one
checks that the bounds which were proven for Case 1 also hold for Case 2.
Now for Case 3 it remains to be shown that

D(Case 3) := 2C1 +
f(0)

8
(k2 + 4k + 1)

≤ C1 +
f(0)

6

(
k2 + 4k +

5
4

)
=: D(Case 2).

If the last inequality holds, then by the inequality which according to Lemma
3.2 holds for Case 3 one gets the inequality which was used in order to
prove the estimates for Case 2. Everything proven on the basis of this last
inequality is then also true for Case 3.
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Cases 4, 6 and 8 are proven in the same way as Case 3. Altogether we
obtain Table 4.

Table 4. λ2-estimates
(χ1 or ρ1 complex, Cases 1–4, 6 and 8)

λ1 ≤ λ2 > λ2,old = C1 ≤ C2 ≤
0.36 1.69 0.903 0.0223 0.0152

0.38 1.69 0.887 0.0263 0.0181

0.40 1.69 0.871 0.0310 0.0214

0.42 1.69 0.856 0.0362 0.0252

0.44 1.67 0.842 0.0408 0.0287

0.46 1.59 0.829 0.0414 0.0297

0.48 1.52 0.816 0.0420 0.0307

0.50 1.45 0.803 0.0420 0.0315

0.52 1.39 0.791 0.0423 0.0324

0.54 1.31 0.780 0.0401 0.0317

0.56 1.23 0.769 0.0373 0.0305

0.58 1.13 0.759 0.0320 0.0274

0.60 1.04 0.749 0.0271 0.0245

0.62 0.96 0.739 0.0226 0.0216

0.64 0.88 0.730 0.0176 0.0182

0.66 0.82 0.721 0.0144 0.0156

0.68 0.76 0.712 0.0139 0.0126

Table 5. λ2-estimates
(χ1 or ρ1 complex, Case 5)

λ1 ≤ λ2 > λ2,old = C2 ≤
0.36 1.69 0.903 0.0664

0.38 1.69 0.887 0.0702

0.40 1.69 0.871 0.0742

0.42 1.69 0.856 0.0783

0.44 1.67 0.842 0.0799

0.46 1.56 0.829 0.0700

0.48 1.45 0.816 0.0606

0.50 1.36 0.803 0.0535

0.52 1.27 0.791 0.0465

0.54 1.19 0.780 0.0406

0.56 1.11 0.769 0.0348

0.58 1.04 0.759 0.0299

0.60 0.97 0.749 0.0249

0.62 0.91 0.739 0.0208

0.64 0.85 0.730 0.0167

0.66 0.79 0.721 0.0126

0.68 0.74 0.712 0.0092

Cases 5 and 7 are treated in complete analogy to Case 2. However, for
Case 5 (Table 5) we choose the parameters

γ = 0.76 +
λ12

2
, k = 0.84, δ = 0.0001,

∆1 = 0.01, ∆2 = 0.007, ∆t = 0.01, x1 = 7

and for Case 7 (Table 6) the parameters

γ = 0.61 +
λ12

2
, k = 0.81, δ = 0.0001,

∆1 = ∆2 = ∆t = 0.015, x1 = 7.

Note that for λ11 ≥ 0.70 we have no values for λ2,old from [8, Table 10]
which is why we then choose λ2,old = λ11. Also, in Case 7 we have λ1 ≥ 0.50
by [8, Lemma 9.5].

The minimum of the entries in Tables 4, 5 and 6 is summarized in Table 7
which is valid whenever χ1 or ρ1 is complex.
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Table 6. λ2-estimates
(χ1 real and ρ1 complex, Case 7)

λ1 ≤ λ2 > λ2,old = C1 ≤
0.54 1.43 0.780 0.0301

0.58 1.36 0.759 0.0276

0.62 1.28 0.739 0.0242

0.66 1.20 0.721 0.0206

0.70 1.11 0.704 0.0167

0.74 1.02 0.70 0.0128

0.78 0.93 0.74 0.0090

0.82 0.82 0.78 0.0070

Table 7. λ2-estimates
(χ1 or ρ1 complex, all cases)

(new) (old)
λ1 ≤ λ2 > λ2 >

0.36 1.69 0.903

0.38 1.69 0.887

0.40 1.69 0.871

0.42 1.69 0.856

0.44 1.67 0.842

0.46 1.56 0.829

0.48 1.45 0.816

0.50 1.36 0.803

0.52 1.27 0.791

0.54 1.19 0.780

0.56 1.11 0.769

0.58 1.04 0.759

0.60 0.97 0.749

0.62 0.91 0.739

0.64 0.85 0.730

0.66 0.79 0.721

0.68 0.74 0.712

0.70 – 0.704

0.702 – 0.702

3.1.3. Estimates for λ = λ3 if λ1 ∈ [0.52, 0.62] and χ1 or ρ1 complex.
Suppose χ1 or ρ1 is complex. This section improves on parts of [8, Table 9].
We want to deduce lower bounds for λ3 using Lemma 3.2 with j=3. Let us go
over the eight cases in this lemma and therefore assume for the moment that

λ1 ∈ [0.54, 0.56].

If we are in Case 1, that is, χ2
1, χ

3
1 6= χ0, χ3, χ3, then we take λ? to

be the minimum of the λ′- and λ2-estimate from Tables 2 and 7, that is,
λ? = min{1.28, 1.11} = 1.11, and use (3.5) to get estimates for λ3. This
time, we do not need to work with a δ > 0 since the right side of (3.5)
without D is monotone in λ3 and λ1. We use the parameters γ and k as in
(3.7). The result is

λ3 > 1.160.

For Case 2 we again choose the parameters as in (3.7). Also, we use the
estimates of S1 and S2 as calculated for Table 4. We get

λ3 ≥ 1.167.

This last estimate is valid for Cases 3 and 4 as well according to the reasoning
and calculations which led to Table 4.
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If we are in Case 5 or 6 then χ3
1 ∈ {χ3, χ3}, in which case we have

χ3
1 /∈ {χ2, χ2}. Thus, we are in the situation of Table 4 or 6 and conclude

λ3 ≥ λ2 ≥ min{1.36, 1.23} = 1.23.

Apparently, this last estimate applies in Cases 7 and 8 as well.
Altogether we have

λ3 ≥ min{1.160, 1.167, 1.23} = 1.160.

We do the same for the other λ1-ranges and get the following table.

Table 8. λ3-estimates
(χ1 or ρ1 complex)

(all cases) (Case 1) (Case 2, 3, 4) (Case 5, 6, 7, 8)
λ1 ≤ λ3 > λ3 > λ3 > λ3 > λ? =

0.52 1.320 1.352 1.320 1.39 1.27

0.54 1.243 1.253 1.243 1.31 1.19

0.56 1.160 1.160 1.167 1.23 1.11

0.58 1.079 1.079 1.103 1.13 1.04

0.60 1.001 1.001 1.038 1.04 0.97

0.62 0.933 0.933 0.979 0.96 0.91

3.1.4. Estimates for λ = λ3 if λ1 ∈ [0.62, 0.72] or χ1 and ρ1 both real.
This section refines [8, Lemma 10.3].

Lemma 3.3. There is an effectively computable constant q0 such that for
q ≥ q0 we have for χ1 complex, respectively χ1 and ρ1 both real, the following
Table 9 respectively Table 10:

Table 9. λ3-estimates
(χ1 complex)

λ1 ∈ Additional condition λ3 >

[0.62, 0.64] – 0.902

[0.64, 0.66] – 0.898

[0.64, 0.66] λ2 ≤ 0.86 0.938

[0.66, 0.68] – 0.893

[0.66, 0.68] λ2 ≤ 0.83 0.960

[0.68, 0.72] – 0.883

[0.68, 0.72] λ2 ≤ 0.81 0.962

Table 10. λ3-estimates
(χ1 and ρ1 real)

λ1 ∈ λ3 >

[0.44, 0.60] 1.175

[0.60, 0.68] 1.078

[0.68, 0.78] 0.971

Explanation of the tables: The first line in Table 9 means

λ1 ∈ [0.62, 0.64] ⇒ λ3 > 0.902

while the third line means

(λ1 ∈ [0.64, 0.66] and λ2 ≤ 0.86) ⇒ λ3 > 0.938.

Similarly for the rest.
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Proof. The proof is carried out in analogy to the proof of [8, Lemma
10.3]. It starts with the inequality [8, (10.2)] and then makes use of Lemma
2.1 and [8, Lemma 5.3]. More details can be found in [20, pp. 49–52]. We
start with the proof of Table 9.

In this case χ1 is complex. First suppose that none of the characters
involved in Σ3 (see [8, (10.3)]) equals χ0. The inequality [8, (10.6)] follows:

(3.8) 0 ≤ F (−λ1)− F (λ3 − λ1)− F (λ2 − λ1)− F (0) +
7
6
f(0) + ε.

We want to prove that (3.8) is always valid if χ1 is complex and λ1 ∈
[0.62, 0.72]. Therefore, we need to analyze how the inequality (3.8) is altered
if one or more of the characters involved equal χ0. By a straightforward
analysis it follows that we only need to verify that

(3.9) sup
t∈R
<{F (−λ1 + it)− 2F (it)} ≤ 1

6
f(0)

in order to prove (3.8). Putting s1 = λ1 ∈ [0.62, 0.72] and taking

γ = 1.25, ∆1 = 0.03, ∆2 = 0, ∆t = 0.03, x1 = 6

we confirm in the usual way that (3.9) holds and thus (3.8) is valid whenever
χ1 is complex.

We now proceed to prove the values in Table 9 using γ = 1.25. The right
side of (3.8) is strictly increasing in λ2 and λ3. Also, F (−λ1)− F (λ3 − λ1)
is strictly increasing in λ1. Hence, if

λ1 ∈ [λ11, λ12], λ2 ≤ λ22 and λ3 ≤ λ32

then

(3.10) − ε ≤ F (−λ12)− F (λ32 − λ12)− F (λ22 − λ11)− F (0) +
7
6
f(0).

To prove the statement

λ1 ∈ [0.62, 0.64] ⇒ λ3 > 0.902

we calculate the right side of (3.10) for λ22 = λ32 = 0.902 and the pairs

(λ11, λ12) = (0.62 + jδ, 0.62 + (j + 1)δ)

where

δ = 0.0001 and j = 0, . . . ,
[

0.64− 0.62
δ

]
.

A calculation shows that for each j we get something negative, thus proving
the statement. In the same way and with the same parameters we prove all
values of Table 9. The additional condition λ2 ≤ c is easily incorporated by
putting λ22 = c.

For the proof of Table 10 suppose χ1 and ρ1 are both real. We start with
the inequality [8, (10.2)] in which we replace β1 by β2. This time all terms
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K(β2 + it, χ) in Σ2 and Σ3 with χ ∈ {χ0, χ1} need extra treatment. We can
assume that λ2 ≤ 1.294. Then by [8, Lemma 8.4] we have λ′ ≥ λ2, which
will be used in connection with the sets A1 and A2 of Lemma 2.1.

• Case A: Suppose no character in Σ3 is equal to χ0. Then

(3.11) − ε ≤ F (−λ2)− F (λ3 − λ2)− F (0)− F (λ1 − λ2) +
9
8
f(0).

• Case B: Suppose that at least one character in Σ3 is equal to χ0.
Then a straightforward analysis yields the inequality (3.11) with the
additional term

(3.12) + sup
t∈R
<{F (−λ2 + it)− F (λ1 − λ2 + it)− F (it)} − 5

48
f(0)

on the right side. Using γ = 1.04 and

s1 = λ2, s11 = 0.44, s12 = 1.175,
s2 = λ1, s21 = 0.44, s22 = 0.80,
∆1 = 0.03, ∆2 = 0.03, ∆t = 0.03, x1 = 6

it follows that (3.12) is negative. Thus (3.11) is always valid if χ1 and
ρ1 are both real.

The rest is proven in analogy to the proof of Table 9: We first have

(3.13) − ε ≤ F (−λ22)− F (λ32 − λ22)− F (0)− F (λ12 − λ21) +
9
8
f(0).

To prove the first line in Table 10 we take λ11 = 0.44, λ12 = 0.60, λ32 = 1.175
and

(λ21, λ22) = (0.44 + jδ, 0.44 + (j + 1)δ)

with j ∈ {0, 1, . . . , [δ−1(λ32 − λ11)]} and δ = 0.001. For all j one gets some-
thing negative for the right side of (3.13) and hence the statement

λ3 > λ32 = 1.175.

Proceed similarly for the other entries in Table 10.

3.1.5. Estimates for λ = λ1, proof of Theorem 1.2. Again we assume
that χ1 or ρ1 is complex. In this section we improve [8, Lemma 9.5]. This is
done on the one hand by using the improved estimates for λ′ and λ2 from
the previous sections and on the other hand by incorporating suggestion (2)
of [8, p. 332] for the cases in which ordχ1 ≤ 5. We start with the inequality
[8, (9.16)] and choose β = β? = 1−L −1λ? with a

λ? ≤ min{λ2, λ
′}.

Using the standard method we get

0 ≤ 14379F (−λ?)− 24480F (λ1 − λ?) +D + ε
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with

D =



46630
6 f(0), ordχ1 ≥ 6,

46630
8 f(0) + sup

t∈R
<{−1250F (λ1 − λ? + it)}, ordχ1 = 5,

45380
8 f(0) + sup

t∈R
<{1250F (−λ? + it)− 6000F (λ1 − λ? + it)}, ordχ1 = 4,

40630
8 f(0) + sup

t∈R
<{6000F (−λ? + it)− 16150F (λ1 − λ? + it)}, ordχ1 = 3,

30480
8 f(0) + sup

t∈R
<{1250F (−λ? + it)− 6000F (λ1 − λ? + it)}

+ sup
t∈R
<{14900F (−λ? + it)− 30480F (λ1 − λ? + it)}, ordχ1 = 2.

The different suprema are estimated by choosing

s11 = s12 = λ?, s21 = λ1,old, s22 = λ1,assu

and
∆1 = 0, ∆2 = 0.005, ∆t = 0.005, x1 = 12.

Here, λ1,old is the old lower bound for λ1 from [8, Lemma 9.5] and λ1,assu is
some specific value which in the end is going to be slightly above the proven
lower bound. We assume that

λ1 ≤ λ1,assu

and choose a corresponding λ? which we get from Tables 2 and 7 (resp.
Tables 3 and 6 if ordχ1 = 2). The results are summarized in Table 11.
There, the value C is the calculated upper estimate for the corresponding
supremum, respectively the sum of the two suprema in the case ordχ1 = 2.

Table 11. λ1-estimates
(χ1 or ρ1 complex)

ordχ1 λ1 > λ1,new = λ1,old = λ1,assu = λ? = γ = C ≤
≥ 6 0.440 0.364 0.44 1.67 1.00 –

= 5 0.493 0.397 0.50 1.36 0.90 120

= 4 0.478 0.348 0.48 1.45 0.82 235

= 3 0.498 0.389 0.50 1.36 0.82 290

= 2 0.628 0.518 0.66 1.20 0.70 58

As a consequence Theorem 1.2 follows for the case of χ1 or ρ1 complex. If
χ1 and ρ1 are both real then the theorem follows from [8, Lemma 8.4 and
Lemma 8.8].

3.2. (Weighted) zero-density estimates. Let q ∈ N and λ > 0. As
in [8, p. 316] we define

N(λ) := #{χ (mod q) | χ 6= χ0,

L(s, χ) has a zero in σ ≥ 1−L −1λ, |t| ≤ 1}
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and denote by χ(1), . . . , χ(N(λ)) the corresponding characters. To each of the
N(λ) characters χ we choose a corresponding zero ρ(χ) = ρ(k) with maximal
real part, that is,

<{ρ(k)} = max{<{ρ} | ρ ∈ C, <{ρ} ≥ 1−L −1λ, |={ρ}| ≤ 1,

L(ρ, χ(k)) = 0}

and set
ρ(k) = β(k) + iγ(k), β(k) = 1−L −1λ(k).

3.2.1. For large λ. This section slightly improves [8, Lemma 11.1] as
suggested in suggestion (7) of [8, pp. 336–337]. There, Heath-Brown de-
scribes a variation of the proof of [8, Lemma 11.1] by incorporating a weight
function w(t) into the argument. This leads to the following generalization
of [8, Lemma 11.1]. By choosing w1(t) ≡ 1 one recovers that lemma.

Lemma 3.4. Let δ, c1, c2 be positive constants, λ0 = (1/3) · log log L
and

u = 1/3 + 2c1, v = 1/3 + 2c1 + c2, x = 2/3 + 3c1 + c2.

Furthermore let w1 : R≥0 → R be a continuous function with continuous
first derivative on [0, v) and (v,∞) and suppose

1� w1(t)� 1 and w′1(t)� 1

with absolute implicit constants. Then for q ≥ q0(δ, c1, c2, w1) we have

(3.14)
∑

1≤k≤N(λ0)

(x�
u

w1(t)2e2λ
(k)t dt

)−1

≤ 1 + δ

c1c22

x�

u

w1(t)−2 min{t− u, v − u} dt.

Proof. This is proved in analogy to the proof of [8, Lemma 11.1]. The
only difference lies in the definition of the parameters anχ and bn; see [8,
(11.11), (11.12)]. We introduce into these parameters a weight function w1(t)
as suggested in [8, p. 335]. After this alteration, it is necessary to adjust the
arguments which follow [8, (11.11), (11.12)]. This mainly involves proving
the following three estimates for all ε > 0 and q ≥ q0(ε)

∞∑
n=1

anχanχ′ � w1/2
χ w

1/2
χ′ L −1 (χ 6= χ′),(3.15)

∞∑
n=1

|anχ|2 ≤ wχ
1 + ε

c1

x�

u

w1(t)2e2(1−<{ρ(χ)})L t dt,(3.16)
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∞∑
n=1

|bn|2 ≤
1 + ε

(v − u)2

x�

u

w1(t)−2 min{t− u, v − u} dt(3.17)

and then choosing

wχ =
(
c−1
1

x�

u

w1(t)2e2(1−<{ρ(χ)})L t dt
)−1

.

The estimates (3.15)–(3.17) are proven in the same manner as the respective
estimates in the proof of [8, Lemma 11.1]. However, to do it precisely we saw
no other way than to carry out some straightforward but lengthy calculations
which are written down in [20, §3.6] and which therefore do not need to be
repeated here. Having these three estimates and the above choice of wχ one
gets the lemma in the same way as [8, Lemma 11.1] is deduced.

3.2.2. For small λ. This section improves the results in [8, §12] con-
cerning upper bounds for N(λ) by using the remarks in suggestion (9) of [8,
pp. 336–337]. The following lemma generalizes [8, Lemma 12.1]. Put N0 = 0
to recover that lemma.

Lemma 3.5. Suppose ε, γ, λ and λ11 are positive constants with

λ11 ≤ λ ≤ 2.

Assume that λ1 ≥ λ11 and that for our choice of γ we have

F (λ− λ11) > f(0)/6.

Also let λ0 ≥ 0 and N0 ∈ N0 be constants with λ0 ≤ λ, N0 ≤ 10000 and
assume that N(λ0) ≥ N0. Then for q ≥ q0(ε, f) we have

(3.18) ((N(λ)−N0)F (λ− λ11) +N0F (λ0 − λ11)−N(λ)f(0)/6)2

≤ N(λ)F (−λ11)(F (−λ11) + (N(λ)− 1)f(0)/6) + ε.

Proof. This result is mentioned for the case N(1) ≥ 5 without proof (and
with a misprint) in [8, p. 336]. Indeed, it follows easily by incorporating the
assumption N(λ0) ≥ N0 into the proof of [8, Lemma 12.1]. The details are
written down in [20, pp. 64–65].

We are interested in upper estimates for N(λ). Suppose we have chosen
some parameters λ, λ11, λ0 and N0. In addition we choose ε = 10−7 and

γ = 0.975 + 0.525λ− 0.550λ11 − 0.014N0 · (λ− λ0).

The latter choice for γ turns out to give nearly optimal results. Now, by
(3.18) we get

(3.19) h(N) ≥ 0

where h(N) is a quadratic polynomial in N . Its leading coefficient is negative
if

(F (λ− λ11)− f(0)/6)2 > F (−λ11)f(0)/6.
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If in addition h has two real zeros, say h1 ≤ h2, then

N(λ) ≤ [h2].

This reasoning will be used in §4.2 to get concrete upper bounds for N(λ).

4. Proof of Theorem 1.1

4.1. A variation of [8, Lemma 15.1]. Theorem 1.1 is basically proven
using [8, Lemma 15.1]. However, for clarity as well as in order to incorporate
Lemma 3.4 we will introduce a slight variation of [8, Lemma 15.1]. We use
the notation of [8, §13, §15] which we will give here in full detail. We want
to specify at once all objects that are necessary for the formulation of the
lemma. Therefore, let L, K, θ, R and Λ be some positive constants. Note
that in what follows the functions f and F will be different from those
defined in (2.3) and (2.5). Define

f(x) =


0, x ≤ L− 2K,
x− (L− 2K), L− 2K ≤ x ≤ L−K,
L− x L−K ≤ x ≤ L,
0, x ≥ L

([8, p. 324]),

F (z) =
∞�

0

e−zxf(x) dx = e−(L−2K)z

(
1− e−Kz

z

)2

([8, p. 324]),

F2(z) =
(

1− e−Kz

z

)2

([8, p. 324]),(4.1)

Σ =
∑

p≡a (mod q)

log p
p

f(L −1 log p) ([8, p. 324]),

R̃ = {σ + it ∈ C | 1−L −1R ≤ σ ≤ 1, |t| ≤ L −1R},
w1(t) = e−θt/2 min{t− u+ 10−7, v − u+ 10−7}1/4 (t ∈ [u,∞)),(4.2)

w(s) =
( x�
u

w1(t)2e2st dt
)−1

,(4.3)

B(λ) =
1− e−2Kλ

6K2λ
+

2Kλ− 1 + e−2Kλ

2K2λ2
([8, p. 328]),(4.4)

A(χ1)=
{

(e−(L−2K)λ1 − e−(L−2K)λ′
)(B(λ1)− α(χ1)K−2F2(λ1)) if ρ1∈R̃,

0 else,

α(χ1) =
{

2 if χ1 is real and ρ1 complex,
1 else

([8, p. 329]),(4.5)

n(χ1) =
{

2 if χ1 is complex,
1 if χ1 is real

([8, p. 329]),(4.6)
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C(λ) = w(λ)
(
e−(L−2K)λB(λ)

w(λ)
− e−(L−2K)ΛB(Λ)

w(Λ)

)
([8, p. 329]),(4.7)

λ?3 = min(Λ, λ3),
Λr = Λ− 0.001r,(4.8)
s = [1000(Λ− λ?3)],

λ?1 =
{
λ1, ρ1 ∈ R̃,
λ′, else,

T ′ = max{0, n(χ1)(C(λ?1)−A(χ1))}+ (2− n(χ1))C(λ?3).

We use the convention that if ρ′ does not exist then we set λ′ = ∞ and
C(∞) = 0. Similarly we put w(∞) = 0. Also, we will need estimates

(4.9) N(Λj) ≤ N0(Λj)

with concrete values N0(Λj) for j = 0, . . . , s. These will be derived using
§3.2.2.

Now, by [8, Lemma 13.2] we have the following inequality for a constant
R = R(ε) and L > 3 + 2K:

(4.10)
K−2ϕ(q)

L
Σ ≥ 1−K−2

∑
χ 6=χ0

∑
ρ∈ eR
|F ((1− ρ)L )| − ε.

This inequality forms the basis of the proof of Theorem 1.1. The goal is
to estimate the right side of (4.10) from below in such a way that one is
able to feed in the estimates that have been proven so far for the zeros
ρ ∈ R̃. Hopefully, we will then get Σ > 0 and will thus have proved Linnik’s
theorem for some constant L.

At some points we will implicitly assume the existence of certain zeros ρ.
If those did not exist then it will be apparent that one would get even better
estimates. For instance, if ρ1 did not exist then (4.10) immediately yields
the admissible value L = 3 + δ with any δ > 0 for Linnik’s theorem.

We incorporate the following three minor variations into the deduction
of [8, Lemma 15.1]:

• we explicitly include the cases ρ1 /∈ R̃ and “ρ′ does not exist”,
• instead of [8, Lemma 11.1] and the function w(s) in [8, p. 329] we use

Lemma 3.4 (with the weight function w1(t) from (4.2)) and w(s) as in
(4.3),
• we use Λr = Λ− 0.001r instead of Λr = Λ− 0.025r.

As a result we get (more details can be found in [20, §4.1])

Lemma 4.1 (variation of [8, Lemma 15.1]). We use the notation intro-
duced in this section and in Lemma 3.4. Let λ1 ≥ 0.348 and L, K, θ, c1,
c2, Λ and ε be positive constants with L − 2K > max{3, 2x}. Then there
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exists an effectively computable constant q0, depending on all of the chosen
constants, such that

(4.11) K−2
∑
χ 6=χ0

∑
ρ∈ eR
|F ((1− ρ)L )|

≤ e−(L−2K)ΛB(Λ)
c1c22w(Λ)

x�

u

w1(t)−2 min{t− u, v − u} dt

+ max{2C(λ2), 0}+ max{(N0(Λs)− 4)C(λ?3), 0}

+
s−1∑
r=0

(N0(Λr)−N0(Λr+1))C(Λr+1) + T ′ + ε.

Theorem 1.1 is deduced from (4.10) and (4.11) by showing that the right
side of (4.11) is strictly smaller than 1. So suppose we have some constants
0 < λ11 ≤ λ12 ≤ ∞ and assume that

(4.12) λ1 ∈ [λ11, λ12].

Further suppose that by the previous sections and/or [8] we have some
explicit estimates

(4.13) λ′ ≥ λ′11, λ2 ≥ λ21, λ3 ≥ λ31.

We choose the parameters

L = 5.18, K = 0.32, θ = 1.15, c1 = 0.11, c2 = 0.27,(4.14)

Λ = max{λ31, [1000(1.08 + 0.35λ11)]/1000}, ε = 10−7,(4.15)

which turn out to be fairly optimal. We set

(4.16) λ?31 = min{λ31, Λ} and s = [1000(Λ− λ?31)].

By monotonicity (more details in [20, p. 74]) we get the following upper
bound W for the right side of (4.11):

W =
e−(L−2K)ΛB(Λ)

c1c22w(Λ)

x�

u

w1(t)−2 min{t− u, v − u} dt(4.17)

+ max{2C(λ21), 0}+ max{(N0(Λs)− 4)C(λ?31), 0}

+
s−1∑
r=0

(N0(Λr)−N0(Λr+1))C(Λr+1)

+ (2− n(χ1))C(λ?31) + n(χ1) ·D + 10−7

with D being the maximum of three quantities:
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(4.18) D = max
{

0, C(λ′11),

e−(L−2K)λ′
11 max{0, B(λ11)− α(χ1)K−2F2(λ11)}

− e−(L−2K)ΛB(Λ)
w(λ12)
w(Λ)

+ α(χ1)K−2F2(λ11)e−(L−2K)λ11

}
.

Let us recall what we need: Start with a case given by (4.12), and per-
haps some additional assumptions (e.g. χ1 and ρ1 both real). Choose the
parameters as in (4.14)–(4.15) and use the definitions in (4.1)–(4.8) and
(4.16)–(4.18). Collect the bounds of type (4.9) with Lemma 3.5 (use the
computer) and the bounds of type (4.13) given by Tables 2–11 and [8]. If
W < 1 then Theorem 1.1 is proven for the special case which we assumed
at the beginning.

4.2. Discussion of three cases

4.2.1. Case 1: χ1 and ρ1 both real. Assume that χ1 and ρ1 are both
real. If λ1 < 0.348 then by [8, Lemma 14.2] we have Linnik’s theorem with
L = 4.9. So let us start with the case

λ1 ∈ [0.348, 0.40] =: [λ11, λ12].

Then [8, Tables 4 and 7] give λ′ ≥ 2.108 and λ2 ≥ 1.29. For the λ3-estimate,
we use the maximum of the last λ2-estimate, Table 10 and 0.857 (by [8,
Lemma 10.3]) which results in λ3 ≥ 1.29. If there were no estimates available
for λ′, λ2 or λ3 then we would have chosen the lower bound λ11. We have
s = 0 and C(Λ) = 0, thus no estimates for N(λ) are needed. A calculation
yields W < 0.85 < 1, hence Theorem 1.1 is proven for this special case.

If λ1 ∈ [0.40, 0.42] we similarly get λ′ ≥ 2.030, λ2 ≥ 1.18 and λ3 ≥ 1.18.
We now introduce an additional split-up of this case which will be used in
the same manner in all of the following cases except when χ3 is complex
and λ1 ∈ [0.44, 0.54]. We choose

λ0 = 1.19.

Now by Lemma 3.5 with N0 = 0 and λ1 ≥ λ11 we get N(λ0) ≤ 55 in the way
outlined in §3.2.2. We then separately calculate by computer the 52 cases

N(λ0) ∈ [0, 4], N(λ0) = 5, N(λ0) = 6, . . . , N(λ0) = 54, N(λ0) = 55

in the following way:
Consider a case of the form N(λ0) ∈ [Nmin, Nmax] where Nmin and Nmax

are natural numbers and in most cases identical. We need upper estimates
for N(Λr). So, if Λr ≤ λ0 then we take the minimum of Nmax and the
estimate derived by Lemma 3.5 with N0 = 0. For Λr > λ0 we take the
estimate derived by Lemma 3.5 with N0 = Nmin. In this way we get 52
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different W ’s, all of which are strictly smaller than 1, thus proving Theorem
1.1 whenever λ1 ∈ [0.40, 0.42] and χ1 and ρ1 are both real.

For each of the λ1-intervals

[0.42, 0.44], [0.44, 0.60], [0.60, 0.68], [0.68, 0.78], [0.78,∞)

we do the same and always get W < 1. Theorem 1.1 follows for χ1 and ρ1

both real.

4.2.2. Case 2: χ1 real and ρ1 complex. Assume χ1 is real and ρ1 is
complex. We proceed in exactly the same way as in Case 1, but this time
taking always

λ0 = 1.05

and having λ1 ≥ 0.628 according to Table 11. Thus, it is sufficient to check
the cases when λ1 is in one of the intervals

[0.628, 0.74], [0.74, 0.78], [0.78,∞).

We use Tables 3 and 7 for the λ′- and λ2-estimates. As a λ3-estimate we
take the maximum of the last λ2-estimate and 0.857. Again we always get
W < 1 and Theorem 1.1 follows for this case.

4.2.3. Case 3: χ1 complex. By Table 11 we have λ1 ≥ 0.44. It is sufficient
to distinguish the cases when λ1 is in

[0.44, 0.54], [0.54, 0.58], [0.58, 0.60], [0.60, 0.62], [0.62, 0.64],
[0.64, 0.66], [0.66, 0.68], [0.68, 0.72], [0.72, 0.84], [0.84,∞).

We choose

λ0 =


1.12 if λ11 ∈ {0.44, 0.54, 0.58},
1.04 if λ11 ∈ {0.60, 0.62, 0.64},
1.07 if λ11 ∈ {0.66, 0.68},
1.02 if λ11 ∈ {0.72, 0.84}.

Additionally, in virtue of Table 9, in the case λ1 ∈ [0.64, 0.66] we distinguish
the two cases λ2 ≤ 0.86 and λ2 > 0.86. Similarly for λ1 ∈ [0.66, 0.68] and
λ1 ∈ [0.68, 0.72]. Checking that W < 1 in all the different cases (do not
forget the split-up of cases mentioned in Case 1) yields the result. Hence,
the proof of Theorem 1.1 is complete.
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