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1. Introduction. Kuwata and Wang [KW] considered the surface E
given by

E : (x3
1 + ax1 + b)y2 = x3

2 + cx2 + d

where a, b, c, d ∈ Q satisfy (a, c) 6= (0, 0) 6= (b, d). Considering the Euclidean
topology on the set E(R) of all real points on E , they showed that the set of
rational points E(Q) is dense in E(R). Their argument uses a special rational
curve on E , which was also independently constructed by Mestre [Me]. Using
this rational curve, Kuwata andWang deduce that if E1, E2 are elliptic curves
over Q with j-invariants (j(E1), j(E2)) 6∈ {(0, 0), (1728, 1728)}, then there
exists a polynomial d(t) ∈ Q[t] such that the quadratic twists of E1, E2 by
d(t) both have positive rank over Q(t).

In [U] it is shown that if one allows sextic resp. quartic twists, then
analogous results hold for pairs of elliptic curves with j-invariant 0 resp. 1728.
Here we extend this to a special class of hyperelliptic curves.

Theorem 1.1. Suppose n ∈ Z≥3. Given nonzero a, b ∈ Q, there exists
a polynomial d(t) ∈ Q[t] such that the Jacobians of the curves given by
y2 = xn + ad(t) and y2 = xn + bd(t) both have positive rank over Q(t).

In fact, more precise results will be given. For example, the question is
considered whether or not the polynomial d(t) ∈ Q[t] can be required to be
a square. Moreover, one can extend the result above to the case of more than
two curves:

Theorem 1.2. Suppose n ∈ Z≥3. Given nonzero a, b, c ∈ Q, there exists
a polynomial d(t) ∈ Q[t] such that the Jacobians of the curves given by
y2 = xn + ad(t) and y2 = xn + bd(t) and y2 = xn + cd(t) all have positive
rank over Q(t).
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Theorem 1.3. Suppose n ∈ Z≥3 is odd. Given nonzero a1, a2, a3, a4 ∈ Q,
there exists a polynomial d(t) ∈ Q[t] such that the Jacobians of the curves
given by y2 = xn + ajd(t) all have positive rank over Q(t).

Generalities concerning twists of varieties and in particular of curves can
be found in [MT]. Note that in the special case where n is even, the curves
considered here are equipped with two rational points ∞+,∞− “at infinity”.
The difference (∞+)− (∞−) then defines a nontrivial point in the Jacobian.
However, this is a torsion point as follows by taking the divisor of the function
y+xn/2. This is a very special case of a topic already studied by Abel; see, for
example, work of Schinzel [Sch], Hellegouarch and Lozach [HL], Berry [Be]
and the many references they provide.

The proof of our result consists of two parts. Given a point (x(t), y(t))
on a curve with equation y2 = xn +ad(t), we need a condition implying that
this point minus a point at infinity defines a point of infinite order in the
Jacobian. This is done by adapting ideas of [ST] to the present situation.
Next, we need a rational function d(t) and rational points (xa(t), ya(t)) resp.
(xb(t), yb(t)) on the curve with equation y2 = xn+ad(t) resp. y2 = xn+bd(t).
To this end, we construct rational curves on the threefold X with equa-
tion

X : b(y2
a − xn

a) = a(y2
b − xn

b ).

Parametrizing such a rational curve as t 7→ (xa(t), ya(t), xb(t), yb(t)) gives us
the required points by taking d(t) := (ya(t)2 − xa(t)n)/a. If one moreover
demands that d(t) is a square, then instead of X one considers the threefold
Y given by the two equations

Y : z2 = b(y2
a − xn

a) = a(y2
b − xn

b ),

which defines a double cover of X .
Section 2 provides details on the method used to show that certain divi-

sors have infinite order. Section 3 contains the construction of rational curves
on the threefolds X and Y, resulting in the proof of Theorem 1.1. Finally, in
Section 4 we prove Theorems 1.2 and 1.3.

2. Infinite order. In this section we take n ∈ Z≥3. Suppose K is a field
of characteristic not dividing 2n. Fix a ∈ K with a 6= 0 and take d(t) ∈ K[t]
of positive degree such that d(t) is not divisible by a nonconstant lcm(2, n)th
power in K[t]. Let α ∈ K be the leading coefficient of d(t). Define the
hyperelliptic curve C0/K by the equation

C0 : y2 = xn + aα

and C/K(t) by
C : y2 = xn + ad(t).
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Fix a point ∞ ∈ C(K(t)) at infinity. For any affine point P = (x(t), y(t)) ∈
C(K(t)), we will study the divisor class (P )− (∞) in the Jacobian of C.

Write d(t) = αf(t)m with f(t) ∈ K[t] monic and m the largest divi-
sor of lcm(2, n) such that d(t) is, up to a constant, an mth power. By the
assumptions, 1 ≤ m < lcm(2, n). Define ` := lcm(2, n)/m ∈ Z≥2. For ev-
ery extension field L ⊃ K, the polynomial s` − f(t) is irreducible in L[t, s]
since otherwise f(t) would be a kth power for some divisor k > 1 of `,
which is not the case. Hence we have an irreducible curve D/K, defined
by

D : s` = f(t).

Note that the curve D is taken such that over the function field K(D) ⊃
K(t) ⊃ K, the curves C and C0 are isomorphic: over K(D) one has

d(t) = αf(t)m = αslcm(2,n),

hence one obtains the isomorphism

C
∼→ C0 : (x, y) 7→ (xs−lcm(2,n)/n, ys−lcm(2,n)/2).

Now suppose that P = (x(t), y(t)) ∈ C(K(t)) is an affine point of C
over K(t). Via the isomorphism above, P defines a morphism ϕP : D → C0

given by
ϕP : (t, s) 7→ (x(t)s−lcm(2,n)/n, y(t)s−lcm(2,n)/2).

The Jacobian of C0 will be denoted J0. Composing ϕP with an embedding
C0 → J0 we obtain a morphism, which we will also denote by ϕP , from D
to J0. Summarizing, this defines

C(K(t))→ Mor(D,J0) : P 7→ ϕP .

(Note that the point(s) at infinity on C give rise to constant morphisms.)
Since Mor(D,J0) is a group (in fact, one may identify it with J0(K(D))),
the above assignment by linearity extends to a homomorphism

ϕ : J(K(t))→ Mor(D,J0).

Proposition 2.1. Let P ∈ C(K(t)) with P 6∈ C(K) and y(P ) 6= 0.
Then ϕ((P )−(∞)) ∈ Mor(D,J0) has infinite order. In particular, (P )−(∞)
defines an element of infinite order in J(K(t)).

The proof adapts the argument presented in Section 4 of [ST], and
runs as follows. Using the above notation, suppose, on the contrary, that
ϕ((P )− (∞)) has finite order. This means that the map D → J0 it defines
has a finite image. Since D is absolutely irreducible, so is this image, which
implies it consists of only one point. This point is the image of D under
the composition D

ϕP−−→ C0 → J0. Because C0 → J0 is injective, one con-



108 T. Jędrzejak et al.

cludes that ϕP : D → C0 is constant. A direct verification using the given
conditions on P shows that this is impossible.

Remark 2.2. The equation y2 = xn +αaf(t)m with f ∈ K[t] of positive
degree obviously has no solutions (x, y) ∈ K ×K. Hence the only points in
C(K) are the points at infinity. Furthermore, the definition of the integer
m in this section implies that a point in C(K(t)) with y-coordinate 0 exists
only when m = n and −αa is an nth power in K. It is easy to verify that
for such a point P , indeed (P )− (∞) defines a torsion point in J(K(t)) (of
order 2 when n is odd, and of order dividing n otherwise).

3. Rational curves on some threefolds. In this section, a, b are
nonzero rational numbers. First, the threefold X with equation b(y2

1−xn
1 ) =

a(y2
2 − xn

2 ) is studied.

Lemma 3.1. X is birational to A3 over Q.

Proof. First suppose that n = 2m+ 1. The birational map

(x1, y1, x2, y2) 7→ (T, p, q, r) := (x1, y1 · x−m
1 , x2/x1, y2 · x−m

1 )

shows that X is birational to the threefold given by

(aqn − b)T = ar2 − bp2.

Since this equation has degree one in the variable T , the conclusion follows
for n odd.

Now suppose n = 2m. In this case, the map

(x1, y1, x2, y2) 7→ (T, u, v, w) := (y1 − xm
1 , x1, x2, (y2 − xm

2 )/(y1 − xm
1 ))

shows that X is birational to the threefold given by

(aw2 − b)T = −2(awvm − bum).

Again, the equation has degree one in T , which finishes the proof.

It is now straightforward to finish the proof of our main result. Namely,
take, depending on n being even or odd, three (sufficiently general) ratio-
nal functions p(t), q(t), r(t) (or u(t), v(t), w(t)). Use the linear equation in
the proof of the lemma above to find a corresponding T (t). From this, via
the birational map given above, find x1(t), y1(t), x2(t), y2(t) and proceed as
explained in the introduction to obtain a rational function d(t). Clearing de-
nominators one ends up with a situation where Proposition 2.1 is applicable,
and the result follows.

Now consider the threefold Y which corresponds to the case where more-
over one desires the polynomial d(t) in the main theorem to be a square. For
this, one uses the birational map from X to A3 from the lemma. Since Y is a
double cover of X , this yields an explicit birational map over Q from Y to a
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double cover of A3. As before, the cases of n odd and n even are considered
separately.

First, suppose n = 2m+ 1. Using the variables p, q, r introduced before,
one finds that Y is birational to the threefold with equation

(aqn − b)h2 = p2qn − r2.

Now put q = u2, where u is an indeterminate. Over Q(u) the above homo-
geneous quadratic equation in the variables p, r, h defines a quadratic curve
with a rational point (p : r : h) = (1 : un : 0). It is straightforward to
parametrize this quadratic curve over Q(u). As a result, one obtains a dom-
inant, rational map of degree 2 defined over Q from A3 to the threefold Y.
We have shown the following.

Corollary 3.2. In case n is odd, for any pair a, b of nonzero rational
numbers, one can choose the polynomial d(t) ∈ Q[t] as in Theorem 1.1 to be
a square.

Next, take n = 2m. Using the variables u, v, w, T and ζ := z/(2(aw2−b))
one obtains the equation

ζ2 = −abw(umw − vm)(avmw − bum)

for a threefold birational to Y over Q. Observe that this equation defines
an elliptic curve E over the field Q(u, v). One way of constructing rational
curves over Q on Y would be to find nontrivial points in E(Q(u, v)). Indeed, if
(w(u, v), ζ(u, v)) is such a point, then for general rational functions u(t), v(t)
one obtains w(t) := w(u(t), v(t)) and this easily leads to a rational curve as
desired. Unfortunately, this idea fails, as the following proposition shows.

Proposition 3.3. With notation as above, E(Q(u, v)) is a finite group.

Proof. Put Y := a2bumvmζ and X := −a2bumvmw. Then the equation
for E becomes

Y 2 = X(X + a2bv2m)(X + ab2u2m).

Let K be an algebraic closure of Q(v). We will show the even stronger result
that over K(u), the Mordell–Weil group is finite.

Observe that our elliptic curve over K(u) is the generic fiber of an elliptic
surface E → P1 overK. This surface has fibers of type I4m over 0 and over∞,
and fibers of type I2 over all u such that bu2m = av2m. From standard theory
of elliptic surfaces (cf. [SchS, especially Sections 5, 6, 10]) one finds that the
second Betti number h2(E) is 12m − 2 and the Hodge number h0,2(E) is
m − 1. As a result, the rank ρ(E) of the Néron–Severi group of E satisfies
ρ ≤ h2 − 2h0,2 = 10m. The Shioda–Tate formula now implies that the
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Mordell–Weil rank r of E → P1 over K satisfies

r + 2 + (4m− 1) + (4m− 1) + 2m · (2− 1) ≤ 10m,

hence r = 0. This implies the proposition.

The argument above shows that for every m > 0, the elliptic surface
E → P1 over K is a so-called semi-stable extremal elliptic surface (with
geometric genus pg = m − 1; cf. [Kl]). For m ∈ {1, 2, 4} the surface corre-
sponds to certain torsion-free genus zero congruence subgroups of PSL(2,Z)
(of index 12, 24 and 48, respectively; see [TY]).

The (finite) group of sections of E → P1 over K is in fact isomorphic
to Z/2Z × Z/4Z. Indeed, a straightforward calculation (cf. [Si, Chapter X,
Prop. 1.4]) shows that in E(K(u)) the point (0, 0) is divisible by 2 but not
by 4, and other points of order 2 are not divisible by 2. So the 2-part of
E(K(u)) is isomorphic to Z/2 × Z/4Z. If it contained a point of prime or-
der p > 2, then the modular curve corresponding to Γ (4; 2, 1, 1) ∩ Γ1(p) (see
[TY] for notation) would be a rational curve, which is not the case.

Note that the points of order 4 in E(K(u)) are obtained by taking X =
αum with α ∈ K satisfying α2 = a3b3v2m. In particular, α 6∈ Q(v) in gen-
eral. The leading coefficient β ∈ K of the corresponding Y -coordinate Y =
βu2m + · · · satisfies β2 = a4b5v2m. Hence only when a, b are both squares
in Q, can the point(s) of order 4 actually be used to construct rational curves
as desired on the threefold Y.

4.Three- and four-tuples of curves. In this last section Theorems 1.2
and 1.3 are proven. Obviously, Theorem 1.3 implies the conclusion of Theo-
rem 1.2 for n odd. So we first prove Theorem 1.2 assuming that n = 2m is
even.

Let m be a positive integer, and a, b, c ∈ Q×. Consider the four-dimen-
sional variety Z = Zm defined by

Z : bc(y2
1 − x2m

1 ) = ac(y2
2 − x2m

2 ) = ab(y2
3 − x2m

3 ).

Using the same ideas as in Section 3, we will construct sufficiently general
(meaning that y2

1 − x2m
1 is nonconstant on them, and moreover not equal to

a times a 2mth power) rational curves in Z over Q. Put K := Q(x1, x2, x3).
The equations defining Z may be regarded as defining a genus one curve E
over K. This curve contains the K-rational points

(y1, y2, y3) = (±xm
1 ,±xm

2 ,±xm
3 ).

It is straightforward (e.g., using the computer algebra system Magma) to
use one of these points as zero element for a group law on E and calculate a
nontrivial linear combination of the other points. As an example, one finds



Tuples of hyperelliptic curves 111

y1, y2, y3 equal respectively to
(3a

2
x
4m
3 x

4m
2 − 2acx

2m
1 x

4m
2 x

2m
3 − 2abx

4m
3 x

2m
1 x

2m
2 − c

2
x
4m
1 x

4m
2 + 2bcx

4m
1 x

2m
2 x

2m
3 − b

2
x
4m
3 x

4m
1 )x

m
1

a
2
x
4m
3 x

4m
2 − 2abx

4m
3 x

2m
1 x

2m
2 + b

2
x
4m
3 x

4m
1 − 2acx

2m
1 x

4m
2 x

2m
3 − 2bcx

4m
1 x

2m
2 x

2m
3 + c

2
x
4m
1 x

4m
2

,

(a
2
x
4m
3 x

4m
2 − 2acx

2m
1 x

4m
2 x

2m
3 + 2abx

4m
3 x

2m
1 x

2m
2 + c

2
x
4m
1 x

4m
2 + 2bcx

4m
1 x

2m
2 x

2m
3 − 3b

2
x
4m
3 x

4m
1 )x

m
2

a
2
x
4m
3 x

4m
2 − 2abx

4m
3 x

2m
1 x

2m
2 + b

2
x
4m
3 x

4m
1 − 2acx

2m
1 x

4m
2 x

2m
3 − 2bcx

4m
1 x

2m
2 x

2m
3 + c

2
x
4m
1 x

4m
2

,

− (a
2
x
4m
3 x

4m
2 − 2abx

4m
3 x

2m
1 x

2m
2 + b

2
x
4m
3 x

4m
1 + 2acx

2m
1 x

4m
2 x

2m
3 + 2bcx

4m
1 x

2m
2 x

2m
3 − 3c

2
x
4m
1 x

4m
2 )x

m
3

a
2
x
4m
3 x

4m
2 − 2abx

4m
3 x

2m
1 x

2m
2 + b

2
x
4m
3 x

4m
1 − 2acx

2m
1 x

4m
2 x

2m
3 − 2bcx

4m
1 x

2m
2 x

2m
3 + c

2
x
4m
1 x

4m
2

.

In fact, the following Magma code produces this (we use the notation
K = Q(a, b, c, x1, x2, x3) and take m = 1):

> P<y1,y2,y3,y4>:=ProjectiveSpace(K,3);
> C:=Curve(P,[a*c*(y2^2-y4^2*x2^2)-b*c*(y1^2-y4^2*x1^2),

a*c*(y2^2-y4^2*x2^2)-b*a*(y3^2-y4^2*x3^2)]);
> P:=C![x1,x2,x3,1];
> E,phi:=EllipticCurve(C,P);
> Q:=C![-x1,x2,x3,1];
> S:=C![x1,x2,-x3,1];
> som:=phi(Q)+phi(S);
> Inverse(phi)(som);

It is easy to deduce, from this, rational curves in Z as desired. Hence
Theorem 1.2 follows for n even.

Lastly, consider a, b, c, d ∈ Q× and an integer m ≥ 1. Clearly it suffices
to prove Theorem 1.3 for a, b, c, d for pairwise distinct. We assume this con-
dition from now on (it will guarantee that the variety introduced below is
geometrically irreducible).

Define the five-dimensional variety W by

y2
1 − x2m+1

1

a
=
y2
2 − x2m+1

2

b
=
y2
3 − x2m+1

3

c
=
y2
4 − x2m+1

4

d
.

Let u be an indeterminate. Working over Q(u), we intersect W with the
linear space defined by

u−2x1 = x2 = x3 = x4.

The intersection is a surface S, in the variables y1, y2, y3, y4 and x (= x2 =
x3 = x4 = x1/u

2) given by

bcd(y2
1−u4m+2x2m+1) = acd(y2

2−x2m+1) = abd(y2
3−x2m+1) = abc(y2

4−x2m+1).

Using new variables ηj = yjx
−m one shows that S is birational over Q(u)

to the surface T with equations

bcd(η2
1 − u4m+2x) = acd(η2

2 − x) = abd(η2
3 − x) = abc(η2

4 − x).

Eliminating x from these equations shows that T is birational over Q(u) to
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the cone in A3 over the curve C defined as

C :

{
(d− c)(dη2

2 − b) = (d− b)(dη2
3 − c),

(d− c)(dη2
1 − a) = (du4m+2 − a)(dη2

3 − c).

The curve C has genus one and contains the rational points

(η1, η2, η3) = (±u2m+1,±1,±1).

Using one of them as zero for a group law on C, it is easy to combine
others and construct new Q(u)-rational points on C. An example of a point
obtained in this way, using Magma quite analogously to the case described
above, is

η1 =
v(−c2v4 + 2bcv4 + 2cdv4 − b2v4 + 2bdv4 − d2v4 − 2acv2 − 2abv2 − 2adv2 + 3a2)

c2v4 − 2bcv4 + 2cdv4 + b2v4 + 2bdv4 − 3d2v4 − 2acv2 − 2abv2 + 2adv2 + a2
,

η2 =
c2v4 + 2bcv4 − 2cdv4 − 3b2v4 + 2bdv4 + d2v4 − 2acv2 + 2abv2 − 2adv2 + a2

c2v4 − 2bcv4 + 2cdv4 + b2v4 + 2bdv4 − 3d2v4 − 2acv2 − 2abv2 + 2adv2 + a2
,

η3 = −−3c2v4 + 2bcv4 + 2cdv4 + b2v4 − 2bdv4 + d2v4 + 2acv2 − 2abv2 − 2adv2 + a2

c2v4 − 2bcv4 + 2cdv4 + b2v4 + 2bdv4 − 3d2v4 − 2acv2 − 2abv2 + 2adv2 + a2
.

with v = u2m+1. Now it is straightforward, as in the previous cases, to
complete the proof of Theorem 1.3 (and hence of Theorem 1.2).
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