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Tuples of hyperelliptic curves y? = 2" + a
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1. Introduction. Kuwata and Wang |[KW| considered the surface £
given by
E: (3 +axy + by’ =23+ cag+d

where a, b, ¢, d € Q satisfy (a,c) # (0,0) # (b, d). Considering the Euclidean
topology on the set £(R) of all real points on &, they showed that the set of
rational points £(Q) is dense in £(R). Their argument uses a special rational
curve on &£, which was also independently constructed by Mestre [Me]. Using
this rational curve, Kuwata and Wang deduce that if E'1, Fs are elliptic curves
over Q with j-invariants (j(E1),j(E2)) € {(0,0),(1728,1728)}, then there
exists a polynomial d(t) € Q[t] such that the quadratic twists of Eq, F5 by
d(t) both have positive rank over Q(t).

In U] it is shown that if one allows sextic resp. quartic twists, then
analogous results hold for pairs of elliptic curves with j-invariant 0 resp. 1728.
Here we extend this to a special class of hyperelliptic curves.

THEOREM 1.1. Suppose n € Z>3. Given nonzero a,b € Q, there exists
a polynomial d(t) € Q[t] such that the Jacobians of the curves given by
y? = 2" + ad(t) and y*> = 2™ + bd(t) both have positive rank over Q(t).

In fact, more precise results will be given. For example, the question is
considered whether or not the polynomial d(t) € Q[t] can be required to be
a square. Moreover, one can extend the result above to the case of more than
two curves:

THEOREM 1.2. Suppose n € Z>3. Given nonzero a,b,c € Q, there exists
a polynomial d(t) € Q[t] such that the Jacobians of the curves given by
y? = 2" + ad(t) and y?> = 2™ + bd(t) and y?> = 2™ + cd(t) all have positive
rank over Q(t).
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THEOREM 1.3. Supposen € Zx>3 is odd. Given nonzero ay, az, a3, as € Q,
there exists a polynomial d(t) € Q[t] such that the Jacobians of the curves
given by y* = 2" + a;d(t) all have positive rank over Q(t).

Generalities concerning twists of varieties and in particular of curves can
be found in [MT]. Note that in the special case where n is even, the curves
considered here are equipped with two rational points co4, co_ “at infinity”.
The difference (0o4) — (00— ) then defines a nontrivial point in the Jacobian.
However, this is a torsion point as follows by taking the divisor of the function
y—+2™2. This is a very special case of a topic already studied by Abel; see, for
example, work of Schinzel [Schl, Hellegouarch and Lozach [HL|, Berry [Be]
and the many references they provide.

The proof of our result consists of two parts. Given a point (x(t),y(t))
on a curve with equation y? = 2" +ad(t), we need a condition implying that
this point minus a point at infinity defines a point of infinite order in the
Jacobian. This is done by adapting ideas of [ST| to the present situation.
Next, we need a rational function d(t) and rational points (x4 (), y.(t)) resp.
(z(t), yp(t)) on the curve with equation y? = 2" +ad(t) resp. y? = z"+bd(t).
To this end, we construct rational curves on the threefold X with equa-
tion

X by —xp) = alyy — a3).
Parametrizing such a rational curve as t — (x4(t), yo(t), zp(t), yp(t)) gives us
the required points by taking d(t) := (y4(t)?> — 24(t)")/a. If one moreover
demands that d(t) is a square, then instead of X’ one considers the threefold
Y given by the two equations

Vi 22 =by; —af) = aly; — 2}),
which defines a double cover of X.
Section [2] provides details on the method used to show that certain divi-

sors have infinite order. Section Bl contains the construction of rational curves
on the threefolds X and Y, resulting in the proof of Theorem [I.1} Finally, in

Section [ we prove Theorems and

2. Infinite order. In this section we take n € Z>3. Suppose K is a field
of characteristic not dividing 2n. Fix a € K with a # 0 and take d(t) € K][t]
of positive degree such that d(t) is not divisible by a nonconstant lem(2, n)th
power in K[t]. Let o« € K be the leading coefficient of d(t). Define the
hyperelliptic curve Cy/K by the equation

Co: v =2" + ax
and C/K(t) by
C: y? =a" +ad(t).
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Fix a point co € C'(K(t)) at infinity. For any affine point P = (z(t),y(t)) €
C(K(t)), we will study the divisor class (P) — (o0) in the Jacobian of C.

Write d(t) = af(t)™ with f(¢) € K[t] monic and m the largest divi-
sor of lem(2,n) such that d(t) is, up to a constant, an mth power. By the
assumptions, 1 < m < lem(2,n). Define ¢ := lem(2,n)/m € Z>9. For ev-
ery extension field L D K, the polynomial s* — f(t) is irreducible in LIt, 5]
since otherwise f(t) would be a kth power for some divisor £ > 1 of ¢,
which is not the case. Hence we have an irreducible curve D/K, defined
by

D: s' = f(t).

Note that the curve D is taken such that over the function field K (D) D
K(t) D K, the curves C' and Cj are isomorphic: over K (D) one has

d(t) = af (t)" = s,
hence one obtains the isomorphism
cS Co: (x’y) — (xs—lcm(Q,n)/n,ys—lcm(Z,n)/Q).

Now suppose that P = (z(t),y(t)) € C(K(t)) is an affine point of C
over K (t). Via the isomorphism above, P defines a morphism ¢p : D — Cj
given by

©p (t, 5) N (x(t)s—lcm(zn)/n’ y(t)s—lcm(Q,n)/Q).

The Jacobian of Cy will be denoted Jy. Composing ¢p with an embedding
Cy — Jo we obtain a morphism, which we will also denote by ¢p, from D
to Jp. Summarizing, this defines

C(K(t)) — Mor(D, Jy) : P+ pp.
(Note that the point(s) at infinity on C give rise to constant morphisms.)

Since Mor (D, Jp) is a group (in fact, one may identify it with Jo(K(D))),
the above assignment by linearity extends to a homomorphism

v : J(K(t)) — Mor(D, Jy).

PROPOSITION 2.1. Let P € C(K(t)) with P ¢ C(K) and y(P) # 0.
Then o((P)—(00)) € Mor(D, Jy) has infinite order. In particular, (P)—(c0)
defines an element of infinite order in J(K(t)).

The proof adapts the argument presented in Section 4 of [ST], and
runs as follows. Using the above notation, suppose, on the contrary, that
©((P) — (00)) has finite order. This means that the map D — Jj it defines
has a finite image. Since D is absolutely irreducible, so is this image, which
implies it consists of only one point. This point is the image of D under
the composition D LEN Co — Jo. Because Cy — Jy is injective, one con-
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cludes that ¢p : D — (Y is constant. A direct verification using the given
conditions on P shows that this is impossible. =

REMARK 2.2. The equation y? = 2™+ aaf(t)™ with f € K|[t] of positive
degree obviously has no solutions (z,y) € K x K. Hence the only points in
C(K) are the points at infinity. Furthermore, the definition of the integer
m in this section implies that a point in C(K(¢)) with y-coordinate 0 exists
only when m = n and —aa is an nth power in K. It is easy to verify that
for such a point P, indeed (P) — (o0) defines a torsion point in J(K(t)) (of
order 2 when n is odd, and of order dividing n otherwise).

3. Rational curves on some threefolds. In this section, a,b are
nonzero rational numbers. First, the threefold X with equation b(y} —x7) =
a(y3 — %) is studied.

LEMMA 3.1. X is birational to A® over Q.
Proof. First suppose that n = 2m + 1. The birational map

(z1,91,22,92) = (Tsp g, ) == (z1, 91 - 2y ™, w2 /w1, 92 - 21 ")
shows that X is birational to the threefold given by
(aq" — b)T = ar? — bp°.
Since this equation has degree one in the variable T', the conclusion follows

for n odd.
Now suppose n = 2m. In this case, the map

(21,91, 22, y2) = (T, u,v,w) = (y1 — 27", 21, 22, (Y2 — 23") /(31 — 27"))
shows that X is birational to the threefold given by
(aw? — b)T = —2(awv™ — bu™).
Again, the equation has degree one in T', which finishes the proof. =

It is now straightforward to finish the proof of our main result. Namely,
take, depending on n being even or odd, three (sufficiently general) ratio-
nal functions p(t),q(t),r(t) (or u(t),v(t),w(t)). Use the linear equation in
the proof of the lemma above to find a corresponding 7'(t). From this, via
the birational map given above, find x1(t), y1(t), z2(t), y2(t) and proceed as
explained in the introduction to obtain a rational function d(¢). Clearing de-
nominators one ends up with a situation where Proposition [2.1]is applicable,
and the result follows. m

Now consider the threefold ) which corresponds to the case where more-
over one desires the polynomial d(¢) in the main theorem to be a square. For
this, one uses the birational map from X to A3 from the lemma. Since ) is a
double cover of X, this yields an explicit birational map over QQ from )Y to a
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double cover of A®. As before, the cases of n odd and n even are considered
separately.

First, suppose n = 2m + 1. Using the variables p, ¢, r introduced before,
one finds that ) is birational to the threefold with equation

(ag" — b)h* = p°q" —r*.

Now put ¢ = u?, where u is an indeterminate. Over Q(u) the above homo-
geneous quadratic equation in the variables p,r, h defines a quadratic curve
with a rational point (p : r : h) = (1 : w™ : 0). It is straightforward to
parametrize this quadratic curve over Q(u). As a result, one obtains a dom-
inant, rational map of degree 2 defined over Q from A3 to the threefold ).
We have shown the following.

COROLLARY 3.2. In case n is odd, for any pair a,b of nonzero rational
numbers, one can choose the polynomial d(t) € Q[t] as in Theorem[1.1] to be
a square.

Next, take n = 2m. Using the variables u, v, w, T and ¢ := z/(2(aw? —b))
one obtains the equation

¢? = —abw(u™w — v™)(av™w — bu™)

for a threefold birational to ) over Q. Observe that this equation defines
an elliptic curve E over the field Q(u,v). One way of constructing rational
curves over Q on ) would be to find nontrivial points in E(Q(w, v)). Indeed, if
(w(u,v),(u,v)) is such a point, then for general rational functions u(t), v(t)
one obtains w(t) := w(u(t),v(t)) and this easily leads to a rational curve as
desired. Unfortunately, this idea fails, as the following proposition shows.

PROPOSITION 3.3. With notation as above, E(Q(u,v)) is a finite group.

Proof. Put Y := a?bu™v™( and X := —a’bu™v™w. Then the equation
for F becomes

Y? = X(X + a*bv®™)(X + ab*u®™).

Let K be an algebraic closure of Q(v). We will show the even stronger result
that over K (u), the Mordell-Weil group is finite.

Observe that our elliptic curve over K (u) is the generic fiber of an elliptic
surface £ — P! over K. This surface has fibers of type Iy, over 0 and over oo,
and fibers of type I5 over all u such that bu?™ = av®™. From standard theory
of elliptic surfaces (cf. [SchS| especially Sections 5, 6, 10]) one finds that the
second Betti number h%(£) is 12m — 2 and the Hodge number h%2(&) is
m — 1. As a result, the rank p(&) of the Néron—Severi group of £ satisfies
p < h%? — 2h%2 = 10m. The Shioda-Tate formula now implies that the
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Mordell-Weil rank r of & — P! over K satisfies
r+2+@dm—-1)+@Am—1)+2m-(2—-1) < 10m,
hence r = 0. This implies the proposition. m

The argument above shows that for every m > 0, the elliptic surface
£ — P! over K is a so-called semi-stable extremal elliptic surface (with
geometric genus p; = m — 1; cf. [KI]). For m € {1,2,4} the surface corre-
sponds to certain torsion-free genus zero congruence subgroups of PSL(2,7Z)
(of index 12, 24 and 48, respectively; see [TY]).

The (finite) group of sections of & — P! over K is in fact isomorphic
to Z/27 x 7/AZ. Indeed, a straightforward calculation (cf. [Si, Chapter X,
Prop. 1.4]) shows that in E(K(u)) the point (0,0) is divisible by 2 but not
by 4, and other points of order 2 are not divisible by 2. So the 2-part of
E(K(u)) is isomorphic to Z/2 x Z/47Z. If it contained a point of prime or-
der p > 2, then the modular curve corresponding to 1'(4;2,1,1) N I (p) (see
[TY] for notation) would be a rational curve, which is not the case.

Note that the points of order 4 in E(K (u)) are obtained by taking X =
au™ with a € K satisfying a? = a®b3v*™. In particular, o ¢ Q(v) in gen-
eral. The leading coefficient 3 € K of the corresponding Y-coordinate Y =
Bu?™ 4 - - - satisfies 3% = a*b®v*™. Hence only when a,b are both squares
in Q, can the point(s) of order 4 actually be used to construct rational curves
as desired on the threefold ).

4. Three- and four-tuples of curves. In this last section Theorems[I.2]
and [I[.3] are proven. Obviously, Theorem [I.3] implies the conclusion of Theo-
rem for n odd. So we first prove Theorem assuming that n = 2m is
even.

Let m be a positive integer, and a,b,c € Q*. Consider the four-dimen-
sional variety Z = Z,,, defined by

2m 2m

Z: be(y? — af™) = ac(ys — x3™) = ab(yf — 23™).

Using the same ideas as in Section 3] we will construct sufficiently general
(meaning that y — x2™ is nonconstant on them, and moreover not equal to
a times a 2mth power) rational curves in Z over Q. Put K := Q(z1,x2,z3).
The equations defining Z may be regarded as defining a genus one curve F

over K. This curve contains the K-rational points

(y17 Y2, y3) = (i$;n7 :l:xgny :txgn)

It is straightforward (e.g., using the computer algebra system Magma) to
use one of these points as zero element for a group law on F and calculate a
nontrivial linear combination of the other points. As an example, one finds
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Y1, Y2, ys equal respectively to

2 _4m 4771. 4m 2m 27n 2 47n. 47n

(30, 3"y _ QQCW%V"'xg"L:tz"L 2abx 4 chxél'm 277:, g'm, b2x§'m, 47")92
2 4771, 4777, _ 2abm§7n1§7n227n + b2 4'm 47n _ 2(1.("6?”1. %m gnL _ 2b(‘r47n 2771. 2771. + 2”4an Am ’
<a21§m am 2aczl'm‘r421'm mgm + 2abz3 I%m 2m + C2334771 4m + 2bczil'm.zg‘m. 2m 3b2(1:4m 4'm)z2,
2 4m 4711. Am _2m 2771 2 _4m 4m 2m 4m 2m am 2m 2m 2 _4m 4'm, ’
a“x3 — 2abxz " xy + b7z — 2acxy ®y w3 — 2bcxy ) + Tz
(GQIgnLI;hn 2 bz4rnz21n 2'm +b2 4m 4m +2acz?nlzgynz§7n +2bcl“11m'1§m:l:§m _ 3¢ 2 4'mz47n)zgl
2 _4dm_4m 4m 2m 2m 2 4m 4m 2m _4dm_2m 4m _2m _2m 2 _4m 47n
a“z3 Ty — 2abz oy + b T3 — 2acz] T, T3 — 2bcx x5 3 +czy

In fact, the following Magma code produces this (we use the notation
K =Q(a,b,c,x1,x2,x3) and take m = 1):

> P<yl,y2,y3,y4>:=ProjectiveSpace(K,3);

> C:=Curve (P, [a*xc*(y2~2-y4~2%x272) -bxcx(y1~2-y4~2%x1"2) ,
axc* (y272-y4~2*x272) -b*ax (y3~2-y4~2*x3°2)]) ;

> P:=C![x1,x2,x3,1];

> E,phi:=EllipticCurve(C,P);

> Q:=C![-x1,x2,x3,1];

> S:=C![x1,x2,-x3,1];

> som:=phi(Q)+phi(8);

> Inverse(phi) (som);

It is easy to deduce, from this, rational curves in Z as desired. Hence
Theorem [1.2] follows for n even. m

Lastly, consider a,b,c,d € Q* and an integer m > 1. Clearly it suffices
to prove Theorem [I.3] for a, b, ¢, d for pairwise distinct. We assume this con-
dition from now on (it will guarantee that the variety introduced below is
geometrically irreducible).

Define the five-dimensional variety WW by

2m+1 2 2m+1 2m+1 2 2m+1
yl Y3 — Xy Z/3 Yg—xy

a b c d

Let uw be an indeterminate. Working over Q(u), we intersect VW with the
linear space defined by

u*2a:1 = T9 = I3 = X4.

The intersection is a surface S, in the variables y1, y2,y3,y4 and x (= z9 =
r3 = x4 = x1/u?) given by

bcd(y%_u4m+2x2m+1) — acd(y%—aerH) — abd(yg_meJrl) — abc(yz—ﬁmﬂ).

Using new variables 1; = y;2~"" one shows that S is birational over Q(u)
to the surface 7 with equations

bed(n? — u'™*2x) = acd(n3 — x) = abd(n? — ) = abe(n? — x).

Eliminating = from these equations shows that 7 is birational over Q(u) to



112 T. Jedrzejak et al.

the cone in A3 over the curve C' defined as
(d = ¢)(dn3 — b) = (d — b)(dn3 — c),
(d = c)(dni — a) = (du™*? — a)(dn3 — c).
The curve C' has genus one and contains the rational points
(m,m2,m3) = (Fu®™ T £1,£1).

Using one of them as zero for a group law on C, it is easy to combine
others and construct new Q(u)-rational points on C'. An example of a point
obtained in this way, using Magma quite analogously to the case described
above, is

v(=c?v? + 2bcv? 4 2cdv® — b2v* + 2bdv* — d*v* — 2acv® — 2abv® — 2adv? + 3a?)

m= c2vt — 2bcvt 4 2cdv? + b2vt + 2bdvt — 3d2vt — 2acv? — 2abv? + 2adv? + a2
B Aot + 2bev* — 2edv® — 3b%0* + 2bdv* + d*v* — 2acv? + 2abv? — 2adv? + o
= c2vt — 2bcvt 4 2cdv? + b2v + 2bdvt — 3d2v4 — 2acv? — 2abv? + 2adv? + a2’
_ =320t 4 2bcv* 4 2¢dv? + b2t — 2bdv? + &0 + 2acv? — 2abv? — 2adv? + a?
= c2vt — 2bcvt + 2cdv? + b2vt + 2bdvt — 3d2v4 — 2acv? — 2abv? + 2adv? + a2
with v = w?t!. Now it is straightforward, as in the previous cases, to

complete the proof of Theorem (and hence of Theorem [1.2)). m
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