Lehmer-type congruences for lacunary harmonic sums modulo p^{2}

by
Hao Pan (Nanjing)

1. Introduction. Wolstenholme's well-known harmonic series congruence asserts that

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{1}{k} \equiv 0\left(\bmod p^{2}\right) \tag{1.1}
\end{equation*}
$$

for each prime $p \geq 5$. With the help of (1.1), Wolstenholme [9] proved that

$$
\binom{m p}{n p} \equiv\binom{m}{n}\left(\bmod p^{3}\right)
$$

for any $m, n \geq 1$ and prime $p \geq 5$. In 1938, Lehmer [2] discovered the following interesting congruence:

$$
\sum_{j=1}^{(p-1) / 2} \frac{1}{j} \equiv-\frac{2^{p}-2}{p}+\frac{\left(2^{p-1}-1\right)^{2}}{p}\left(\bmod p^{2}\right)
$$

for each prime $p \geq 3$.
Define

$$
\mathcal{H}_{r, m}(n)=\sum_{\substack{1 \leq k \leq n \\ k \equiv r(\bmod m)}} \frac{1}{k} .
$$

Clearly, with the help of (1.1), Lehmer's congruence can be rewritten as

$$
\begin{equation*}
\mathcal{H}_{p, 2}(p-1) \equiv \frac{2^{p-1}-1}{p}-\frac{\left(2^{p-1}-1\right)^{2}}{2 p}(\bmod p) . \tag{1.2}
\end{equation*}
$$

[^0]In fact, Lehmer also proved three other congruences of the same nature:

$$
\begin{align*}
\mathcal{H}_{p, 3}(p-1) \equiv & \frac{3^{p-1}-1}{2 p}-\frac{\left(3^{p-1}-1\right)^{2}}{4 p}\left(\bmod p^{2}\right) \tag{1.3}\\
\mathcal{H}_{p, 4}(p-1) \equiv & \frac{3\left(2^{p-1}-1\right)}{4 p}-\frac{3\left(2^{p-1}-1\right)^{2}}{8 p}\left(\bmod p^{2}\right) \tag{1.4}\\
\mathcal{H}_{p, 6}(p-1) \equiv & \frac{2^{p-1}-1}{3 p}+\frac{3^{p-1}-1}{4 p}-\frac{\left(2^{p-1}-1\right)^{2}}{6 p} \tag{1.5}\\
& -\frac{\left(3^{p-1}-1\right)^{2}}{8 p}\left(\bmod p^{2}\right)
\end{align*}
$$

where $p \geq 5$ is a prime. The proofs of $1.2-1.5$ are based on the values of the Bernoulli polynomial $B_{p(p-1)}(x)$ at $x=1 / 2,1 / 3,1 / 4,1 / 6$.

However, no other congruence for $\mathcal{H}_{p, m}(p-1)$ modulo p^{2} is known, mainly because there are no known closed forms for $B_{p(p-1)}(n / m)$ when $m \neq 1,2,3,4,6$. Some Lehmer-type congruences modulo p (not modulo p^{2} !) have been proved in [3]-8]. In this paper, we shall investigate Lehmer-type congruences modulo p^{2}.

Define

$$
\mathcal{T}_{r, m}(n)=\sum_{\substack{0 \leq k \leq n \\ k \equiv r(\bmod m)}}\binom{n}{k} \text { and } \mathcal{T}_{r, m}^{*}(n)=\sum_{\substack{0 \leq k \leq n \\ k \equiv r(\bmod m)}}(-1)^{k}\binom{n}{k}
$$

Clearly $\mathcal{T}_{r, m}^{*}(n)=(-1)^{n} \mathcal{T}_{n-r, m}^{*}(n)$ and

$$
\mathcal{T}_{r, m}^{*}(n)= \begin{cases}(-1)^{r} \mathcal{T}_{r, m}(n) & \text { if } m \text { is even } \\ (-1)^{r}\left(\mathcal{T}_{r, 2 m}(n)-\mathcal{T}_{m+r, 2 m}(n)\right) & \text { if } m \text { is odd }\end{cases}
$$

As we shall see soon, if $p \neq m$, it is not difficult to show that

$$
\mathcal{H}_{r, m}(p-1) \equiv \frac{\delta_{r, m}(p)-\mathcal{T}_{r, m}^{*}(p)}{p}(\bmod p)
$$

where

$$
\delta_{r, m}(p)= \begin{cases}1 & \text { if } r \equiv 0(\bmod m) \tag{1.6}\\ -1 & \text { if } r \equiv p(\bmod m) \\ 0 & \text { otherwise }\end{cases}
$$

TheOrem 1.1. Let $m \geq 2$ be an integer and let $p \geq 5$ be a prime with $p \neq m$. Then

$$
\begin{equation*}
\mathcal{H}_{p, m}(p-1) \equiv-\frac{2 \mathcal{T}_{p, m}^{*}(p)+2}{p}+\frac{\mathcal{T}_{p, m}^{*}(2 p)+2}{4 p}\left(\bmod p^{2}\right) \tag{1.7}
\end{equation*}
$$

Let us see how $\sqrt{1.2}$ follows from Theorem 1.1. Clearly, $\mathcal{T}_{0,2}^{*}(n)=2^{n-1}$ and $\mathcal{T}_{1,2}^{*}(n)=-2^{n-1}$. Hence in view of (1.7), for any prime $p \geq 5$,

$$
\begin{aligned}
\mathcal{H}_{p, 2}(p-1) & \equiv-\frac{2 \mathcal{T}_{p, 2}^{*}(p)+2}{p}+\frac{\mathcal{T}_{p, 2}^{*}(2 p)+2}{4 p} \\
& =\frac{2^{p}-2}{p}-\frac{2^{2 p-1}-2}{4 p}\left(\bmod p^{2}\right)
\end{aligned}
$$

In [7], Sun showed that $\mathcal{T}_{r, m}(n)$ can be expressed in terms of some linearly recurrent sequences with orders not exceeding $\phi(m) / 2$, where ϕ is the Euler totient function. Thus in view of Theorem 1.1, for each m, we always have a Lehmer-type congruence for $\mathcal{H}_{p, m}(p-1)$ modulo p^{2}, involving some linearly recurrent sequences.

However, as we shall see later, (1.7) is not suitable to derive (1.3), (1.4) and 1.5 . So we need the following theorem.

Theorem 1.2. Let $m \geq 2$ be an integer and let $p \geq 3$ be a prime with $p \neq m$. Then

$$
\begin{align*}
& \mathcal{H}_{p, m}(p-1) \tag{1.8}\\
& \quad \equiv-\frac{\mathcal{T}_{p, m}^{*}(2 p)+2}{4 p}-\frac{p}{2} \sum_{\substack{1 \leq r \leq m \\
2 r \not \equiv p(\bmod m)}} \mathcal{H}_{r, m}(p-1)^{2}\left(\bmod p^{2}\right)
\end{align*}
$$

When $m=3$, we have $\mathcal{T}_{p, 3}^{*}(2 p)=-2 \cdot 3^{p-1}$ (cf. [3, Theorem 1.9] and [7, Theorem 3.2]). Thus by (1.8), we get

$$
\begin{aligned}
\mathcal{H}_{p, 3}(p-1) & \equiv-\frac{\mathcal{T}_{p, 3}^{*}(2 p)+2}{4 p}-p\left(\frac{\mathcal{T}_{p, 3}^{*}(2 p)+2}{4 p}\right)^{2} \\
& =\frac{3^{p-1}-1}{2 p}-\frac{\left(3^{p-1}-1\right)^{2}}{4 p}\left(\bmod p^{2}\right)
\end{aligned}
$$

since

$$
\mathcal{H}_{0,3}(p-1) \equiv-\mathcal{H}_{p, 3}(p-1) \equiv \frac{\mathcal{T}_{p, 3}^{*}(2 p)+2}{4 p}(\bmod p)
$$

Let us apply Theorem 1.2 to obtain more congruences of Lehmer's type. The Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$ are given by $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for every $n \geq 2$. It is well-known that $F_{p} \equiv\left(\frac{5}{p}\right)(\bmod p)$ and $F_{p-\left(\frac{5}{p}\right)} \equiv 0(\bmod p)$ for any prime $p \neq 2,5$, where $(\dot{\bar{p}})$ is the Legendre symbol. Williams [8] proved that

$$
\frac{2}{5} \sum_{1 \leq k \leq 4 p / 5-1} \frac{(-1)^{k}}{k} \equiv \frac{F_{p-\left(\frac{5}{p}\right)}}{p}(\bmod p)
$$

for prime $p \neq 2,5$. Subsequently Sun and Sun [6, Corollary 3] proved that

$$
\begin{equation*}
\mathcal{H}_{2 p, 5}(p-1) \equiv-\mathcal{H}_{-p, 5}(p-1) \equiv-\frac{F_{p-\left(\frac{5}{p}\right)}}{2 p}(\bmod p) \tag{1.9}
\end{equation*}
$$

We have the following mod p^{2} congruence involving Fibonacci numbers.
Theorem 1.3. Suppose that $p>5$ is a prime. Then

$$
\begin{equation*}
\mathcal{H}_{p, 5}(p-1) \equiv \frac{5^{(p-1) / 2} F_{p}-1}{p}-\frac{5^{p-1} F_{2 p-\left(\frac{5}{p}\right)}-1}{4 p}\left(\bmod p^{2}\right) \tag{1.10}
\end{equation*}
$$

The Pell numbers $P_{0}, P_{1}, P_{2}, \ldots$ are given by $P_{0}=0, P_{1}=1$ and $P_{n}=$ $2 P_{n-1}+P_{n-2}$ for $n \geq 2$. It is known that $P_{p} \equiv\left(\frac{2}{p}\right)(\bmod p)$ and $P_{p-\left(\frac{2}{p}\right)} \equiv$ $0(\bmod p)$ for every odd prime p. In [4], Sun proved that

$$
(-1)^{(p-1) / 2} \sum_{1 \leq k \leq(p+1) / 4} \frac{(-1)^{k}}{2 k-1} \equiv-\frac{1}{4} \sum_{k=1}^{(p-1) / 2} \frac{2^{k}}{k} \equiv \frac{P_{p-\left(\frac{2}{p}\right)}}{p}(\bmod p)
$$

for any odd prime p. Similarly, we have a Lehmer-type congruence involving Pell numbers.

ThEOREM 1.4. Suppose that $p>3$ is a prime. Then

$$
\begin{align*}
\mathcal{H}_{p, 8}(p-1) \equiv & \frac{2^{2 p-4}+2^{p-3}+2^{(p-3) / 2} P_{p}-1}{p} \tag{1.11}\\
& -\frac{2^{4 p-6}+2^{2 p-4}+2^{p-2} P_{2 p-\left(\frac{2}{p}\right)}-1}{4 p}\left(\bmod p^{2}\right)
\end{align*}
$$

We shall prove Theorems 1.1 and 1.2 in Section 2, and the proofs of Theorems 1.3 and 1.4 will be given in Section 3 .

2. Proof of Theorems 1.1 and 1.2

Lemma 2.1. Suppose that p is a prime. Then

$$
\begin{align*}
& \frac{1}{p} \sum_{\substack{1 \leq k \leq p-1 \\
k \equiv r(\bmod m)}}(-a)^{k}\binom{p}{k} \tag{2.1}\\
& \equiv-\sum_{\substack{1 \leq k \leq p-1 \\
k \equiv r(\bmod m)}} \frac{a^{k}}{k}+p \sum_{\substack{1 \leq j<k \leq p-1 \\
k \equiv r(\bmod m)}} \frac{a^{k}}{j k}\left(\bmod p^{2}\right)
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{2 p} \sum_{\substack{1 \leq k \leq 2 p-1, k \neq p \\
k \equiv r(\bmod m)}}(-a)^{k}\binom{2 p}{k} \tag{2.2}\\
& \equiv-\sum_{\substack{1 \leq k \leq p-1 \\
k \equiv r(\bmod m)}} \frac{a^{k}}{k}-\sum_{\substack{1 \leq k \leq p-1 \\
k \equiv 2 p-r(\bmod m)}} \frac{a^{2 p-k}}{k} \\
& \quad+2 p \sum_{\substack{1 \leq j<k \leq p-1 \\
k \equiv r(\bmod m)}} \frac{a^{k}}{j k}+2 p \sum_{\substack{1 \leq j<k \leq p-1 \\
k \equiv 2 p-r(\bmod m)}} \frac{a^{2 p-k}}{j k}\left(\bmod p^{2}\right) .
\end{align*}
$$

Proof. We have

$$
\begin{aligned}
\frac{1}{p} \sum_{\substack{1 \leq k \leq p-1 \\
k \equiv r(\bmod m)}}(-a)^{k}\binom{p}{k} & =\sum_{\substack{1 \leq k \leq p-1 \\
k \equiv r(\bmod m)}} \frac{(-a)^{k}}{k} \prod_{j=1}^{k-1}\left(\frac{p}{j}-1\right) \\
& \equiv-\sum_{\substack{1 \leq k \leq p-1 \\
k \equiv r(\bmod m)}} \frac{a^{k}}{k}+\sum_{\substack{2 \leq k \leq p-1 \\
k \equiv r(\bmod m)}} \frac{a^{k}}{k} \sum_{j=1}^{k-1} \frac{p}{j}\left(\bmod p^{2}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \frac{1}{2 p} \sum_{\substack{1 \leq k \leq 2 p-1, k \neq p \\
k \equiv r(\bmod m)}}(-a)^{k}\binom{2 p}{k} \\
& \quad=\sum_{\substack{1 \leq k \leq p-1 \\
k \equiv r(\bmod m)}} \frac{(-a)^{k}}{k}\binom{2 p-1}{k-1}+\sum_{\substack{1 \leq k \leq p-1 \\
k \equiv 2 p-r(\bmod m)}} \frac{(-a)^{2 p-k}}{2 p-k}\binom{2 p-1}{k} .
\end{aligned}
$$

We have

$$
\sum_{\substack{1 \leq k \leq p-1 \\ k \equiv r(\bmod m)}} \frac{(-a)^{k}}{k}\binom{2 p-1}{k-1} \equiv-\sum_{\substack{1 \leq k \leq p-1 \\ k \equiv r(\bmod m)}} \frac{a^{k}}{k}+2 p \sum_{\substack{1 \leq j<k \leq p-1 \\ k \equiv r(\bmod m)}} \frac{a^{k}}{j k}\left(\bmod p^{2}\right) .
$$

Also,

$$
\begin{aligned}
& \sum_{\substack{1 \leq k \leq p-1 \\
k \equiv 2 p-r(\bmod m)}} \frac{(-a)^{2 p-k}}{2 p-k}\binom{2 p-1}{k} \\
& \equiv \sum_{\substack{1 \leq k \leq p-1 \\
k \equiv 2 p-r(\bmod m)}} \frac{a^{2 p-k}}{2 p-k}-2 p \sum_{\substack{1 \leq k \leq p-1 \\
k \equiv 2 p-r(\bmod m)}} \frac{a^{2 p-k}}{2 p-k} \sum_{j=1}^{k} \frac{1}{j}
\end{aligned}
$$

$$
\equiv-\sum_{\substack{1 \leq k \leq p-1 \\ k \equiv 2 p-r(\bmod m)}}\left(\frac{a^{2 p-k}}{k}+2 p \cdot \frac{a^{2-k}}{k^{2}}\right)+2 p \sum_{\substack{1 \leq j \leq k \leq p-1 \\ k \equiv 2 p-r(\bmod m)}} \frac{a^{2 p-k}}{j k}\left(\bmod p^{2}\right)
$$

We are done.
Define

$$
\mathcal{S}_{r, m}(n)=\sum_{\substack{2 \leq k \leq n \\ k \equiv r(\bmod m)}} \frac{1}{k} \sum_{j=1}^{k-1} \frac{1}{j}
$$

Substituting $a=1$ in (2.1), we get
Corollary 2.1. Suppose that $m \geq 2$ and p is an odd prime with $p \neq m$. Then

$$
\begin{equation*}
\mathcal{H}_{r, m}(p-1) \equiv-\frac{\mathcal{T}_{r, m}^{*}(p)-\delta_{r, m}(p)}{p}+p \mathcal{S}_{r, m}(p-1)\left(\bmod p^{2}\right) \tag{2.3}
\end{equation*}
$$

where $\delta_{r, m}(p)$ is as defined in (1.6). In particular,

$$
\begin{equation*}
\mathcal{H}_{p, m}(p-1) \equiv-\frac{\mathcal{T}_{p, m}^{*}(p)+1}{p}+p \mathcal{S}_{p, m}(p-1)\left(\bmod p^{2}\right) \tag{2.4}
\end{equation*}
$$

Substituting $r=p, p+m / 2$ and $a=1$ in 2.2 and noting that $\binom{2 p}{p} \equiv$ $2\left(\bmod p^{3}\right)$, we have

Corollary 2.2. Suppose that $m \geq 2$ and $p \geq 5$ is a prime with $p \neq m$. Then

$$
\begin{equation*}
\mathcal{H}_{p, m}(p-1) \equiv-\frac{\mathcal{T}_{p, m}^{*}(2 p)+2}{4 p}+2 p \mathcal{S}_{p, m}(p-1)\left(\bmod p^{2}\right) \tag{2.5}
\end{equation*}
$$

Furthermore, if m is even, then
(2.6) $\mathcal{H}_{p+m / 2, m}(p-1) \equiv-\frac{\mathcal{T}_{p+m / 2, m}^{*}(2 p)}{4 p}+2 p \mathcal{S}_{p+m / 2, m}(p-1)\left(\bmod p^{2}\right)$.

Combining (2.4) and 2.5), we get

$$
p \mathcal{S}_{p, m}(p-1) \equiv-\frac{\mathcal{T}_{p, m}^{*}(p)+1}{p}+\frac{\mathcal{T}_{p, m}^{*}(2 p)+2}{4 p}\left(\bmod p^{2}\right)
$$

and Theorem 1.1 easily follows.
Lemma 2.2 .

$$
\sum_{r=1}^{m} \mathcal{T}_{r, m}^{*}(n) \mathcal{T}_{r+s, m}^{*}(n)=(-1)^{n} \mathcal{T}_{n+s, m}^{*}(2 n)
$$

Proof. Let ζ be a primitive m th root of unity. Clearly,

$$
\mathcal{T}_{r, m}^{*}(n)=\frac{1}{m} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \sum_{t=1}^{m} \zeta^{(k-r) t}=\frac{1}{m} \sum_{t=1}^{m} \zeta^{-r t}\left(1-\zeta^{t}\right)^{n}
$$

Hence,

$$
\begin{aligned}
\sum_{r=1}^{m} \mathcal{T}_{r, m}^{*}(n) \mathcal{T}_{r+s, m}^{*}(n) & =\sum_{r=1}^{m} \frac{1}{m^{2}} \sum_{1 \leq t_{1}, t_{2} \leq m} \zeta^{-r\left(t_{1}+t_{2}\right)-s t_{2}}\left(1-\zeta^{t_{1}}\right)^{n}\left(1-\zeta^{t_{2}}\right)^{n} \\
& =\frac{1}{m} \sum_{\substack{1 \leq t_{1}, t_{2} \leq m \\
t_{1}+t_{2}=m}} \zeta^{-s t_{2}}\left(1-\zeta^{t_{1}}\right)^{n}\left(1-\zeta^{t_{2}}\right)^{n} \\
& =\frac{(-1)^{n}}{m} \sum_{t=1}^{m} \zeta^{-(n+s) t}\left(1-\zeta^{t}\right)^{2 n}=(-1)^{n} \mathcal{T}_{n+s, m}^{*}(2 n)
\end{aligned}
$$

Substituting $s=0$ and $n=p$ in Lemma 2.2, we have

$$
\mathcal{T}_{p, m}^{*}(2 p)=-\sum_{r=1}^{m} \mathcal{T}_{r, m}^{*}(p)^{2}
$$

Thus by noting that $\mathcal{T}_{0, m}^{*}(p)=-\mathcal{T}_{r, m}^{*}(p)$, we get

$$
\begin{align*}
\mathcal{S}_{p, m}(p-1) & \equiv-\frac{\mathcal{T}_{p, m}^{*}(p)+1}{p^{2}}+\frac{\mathcal{T}_{p, m}^{*}(2 p)+2}{4 p^{2}} \tag{2.7}\\
& =\frac{\mathcal{T}_{0, m}^{*}(p)-1}{2 p^{2}}-\frac{\mathcal{T}_{p, m}^{*}(p)+1}{2 p^{2}}-\frac{\sum_{r=1}^{m} \mathcal{T}_{r, m}^{*}(p)^{2}-2}{4 p^{2}} \\
& =-\sum_{\substack{1 \leq r \leq m \\
r \neq 0, p(\bmod m)}} \frac{\mathcal{T}_{r, m}^{*}(p)^{2}}{4 p^{2}}-\frac{\left(\mathcal{T}_{0, m}^{*}(p)-1\right)^{2}}{4 p^{2}}-\frac{\left(\mathcal{T}_{p, m}^{*}(p)+1\right)^{2}}{4 p^{2}} \\
& \equiv-\frac{1}{4} \sum_{r=1}^{m} \mathcal{H}_{r, m}(p-1)^{2}(\bmod p)
\end{align*}
$$

Since $\mathcal{H}_{p-r, m}(p-1) \equiv-\mathcal{H}_{r, m}(p-1)(\bmod p), \mathcal{H}_{r, m}(p-1) \equiv 0(\bmod p)$ provided that $2 r \equiv p(\bmod m)$. So we also have

$$
\begin{equation*}
\mathcal{S}_{p, m}(p-1) \equiv-\frac{1}{4} \sum_{\substack{1 \leq r \leq m \\ 2 r \neq p(\bmod m)}} \mathcal{H}_{r, m}(p-1)^{2}(\bmod p) \tag{2.8}
\end{equation*}
$$

Thus by 2.5 , Theorem 1.2 follows.
3. Fermat's quotient and Pell's quotient. Let L_{n} be the Lucas numbers given by $L_{0}=2, L_{1}=1$ and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. We require the following result of Sun and Sun on $\mathcal{T}_{r, 10}(n)$.

Lemma 3.1 ([6, Theorem 1]). Let n be a positive odd integer. If $n \equiv$ $1(\bmod 4)$, then

$$
\begin{aligned}
10 \mathcal{T}_{(n-1) / 2,10}(n) & =2^{n}+L_{n+1}+5^{(n+3) / 4} F_{(n+1) / 2} \\
10 \mathcal{T}_{(n+3) / 2,10}(n) & =2^{n}-L_{n-1}+5^{(n+3) / 4} F_{(n-1) / 2} \\
10 \mathcal{T}_{(n+7) / 2,10}(n) & =2^{n}-L_{n-1}-5^{(n+3) / 4} F_{(n-1) / 2} \\
10 \mathcal{T}_{(n+11) / 2,10}(n) & =2^{n}+L_{n+1}-5^{(n+3) / 4} F_{(n+1) / 2}
\end{aligned}
$$

If $n \equiv 3(\bmod 4)$, then

$$
\begin{aligned}
10 \mathcal{T}_{(n-1) / 2,10}(n) & =2^{n}+L_{n+1}+5^{(n+1) / 4} L_{(n+1) / 2} \\
10 \mathcal{T}_{(n+3) / 2,10}(n) & =2^{n}-L_{n-1}+5^{(n+1) / 4} L_{(n-1) / 2} \\
10 \mathcal{T}_{(n+7) / 2,10}(n) & =2^{n}-L_{n-1}-5^{(n+1) / 4} L_{(n-1) / 2} \\
10 \mathcal{T}_{(n+11) / 2,10}(n) & =2^{n}+L_{n+1}-5^{(n+1) / 4} L_{(n+1) / 2}
\end{aligned}
$$

Furthermore, for every odd n,

$$
10 \mathcal{T}_{(n+13) / 2,10}(n)=2^{n}-2 L_{n}
$$

For each odd $n \geq 1$, since

$$
\begin{aligned}
\mathcal{T}_{n, m}^{*}(2 n) & =\mathcal{T}_{n, m}^{*}(2 n-1)-\mathcal{T}_{n-1, m}^{*}(2 n-1)=-2 \mathcal{T}_{n-1, m}^{*}(2 n-1) \\
\mathcal{T}_{n+m, 2 m}^{*}(2 n) & =\mathcal{T}_{n+m, 2 m}^{*}(2 n-1)-\mathcal{T}_{n+m-1, m}^{*}(2 n-1)=-2 \mathcal{T}_{n+m-1, m}^{*}(2 n-1)
\end{aligned}
$$

by Lemma 3.1 we get

$$
\begin{equation*}
\mathcal{T}_{n, 5}^{*}(2 n)=-2 \cdot 5^{(n-1) / 2} F_{n} \tag{3.1}
\end{equation*}
$$

Let $p>5$ be a prime. By 1.8 ,

$$
\mathcal{H}_{p, 5}(p-1) \equiv-\frac{\mathcal{T}_{p, 5}^{*}(2 p)+2}{4 p}-p\left(\mathcal{H}_{p, 5}(p-1)^{2}+\mathcal{H}_{2 p, 5}(p-1)^{2}\right)\left(\bmod p^{2}\right)
$$

By (1.9), we have

$$
\begin{aligned}
\mathcal{H}_{p, 5}(p-1) & \equiv \frac{5^{(p-1) / 2} F_{p}-1}{2 p}-p\left(\left(\frac{F_{p-\left(\frac{5}{p}\right)}}{2 p}\right)^{2}+\left(\frac{5^{(p-1) / 2} F_{p}-1}{2 p}\right)^{2}\right) \\
& \equiv \frac{5^{(p-1) / 2} F_{p}-1}{2 p}-p\left(5^{p-1}\left(\frac{F_{p-\left(\frac{5}{p}\right)}}{2 p}\right)^{2}+\left(\frac{5^{(p-1) / 2} F_{p}-1}{2 p}\right)^{2}\right) \\
& =\frac{5^{(p-1) / 2} F_{p}-1}{p}-\frac{5^{p-1}\left(F_{p-\left(\frac{5}{p}\right)}^{2}+F_{p}^{2}\right)-1}{4 p} \\
& =\frac{5^{(p-1) / 2} F_{p}-1}{p}-\frac{5^{p-1} F_{2 p-\left(\frac{5}{p}\right)}-1}{4 p}\left(\bmod p^{2}\right)
\end{aligned}
$$

where in the last step we use the fact that $F_{2 n-1}=F_{n}^{2}+F_{n-1}^{2}$. Thus the proof of Theorem 1.3 is complete.

Remark. Similarly, we can get

$$
\begin{align*}
& \text { 3) } \sum_{\substack{1 \leq k \leq p-1 \\
k \equiv p(\bmod 5)}} \frac{(-1)^{k}}{k} \tag{3.2}\\
& \equiv \frac{5\left(2^{4 p-1}-2^{2 p+3}\right)+12 L_{4 p}+L_{4 p-4\left(\frac{5}{p}\right)}-112 L_{2 p}-4 L_{2 p-2\left(\frac{5}{p}\right)}+378}{400 p}\left(\bmod p^{2}\right)
\end{align*}
$$

Let Q_{n} be the Pell-Lucas numbers given by $Q_{0}=2, Q_{1}=2$ and $Q_{n}=$ $2 Q_{n-1}+Q_{n-2}$ for each $n \geq 2$. For $\mathcal{T}_{r, 8}(n)$, Sun proved

Lemma 3.2 ([4, Theorem 2.2]). Let n be a positive odd integer. If $n \equiv$ $1(\bmod 4)$, then

$$
\begin{aligned}
8 \mathcal{T}_{(n-1) / 2,8}(n) & =2^{n}+2^{(n+1) / 2}+2^{(n+7) / 4} P_{(n+1) / 2} \\
8 \mathcal{T}_{(n+3) / 2,8}(n) & =2^{n}-2^{(n+1) / 2}+2^{(n+7) / 4} P_{(n-1) / 2} \\
8 \mathcal{T}_{(n+7) / 2,8}(n) & =2^{n}-2^{(n+1) / 2}-2^{(n+7) / 4} P_{(n-1) / 2} \\
8 \mathcal{T}_{(n+11) / 2,8}(n) & =2^{n}+2^{(n+1) / 2}-2^{(n+7) / 4} P_{(n+1) / 2}
\end{aligned}
$$

If $n \equiv 3(\bmod 4)$, then

$$
\begin{aligned}
8 \mathcal{T}_{(n-1) / 2,8}(n) & =2^{n}+2^{(n+1) / 2}+2^{(n+1) / 4} Q_{(n+1) / 2} \\
8 \mathcal{T}_{(n+3) / 2,8}(n) & =2^{n}-2^{(n+1) / 2}+2^{(n+1) / 4} Q_{(n-1) / 2} \\
8 \mathcal{T}_{(n+7) / 2,8}(n) & =2^{n}-2^{(n+1) / 2}-2^{(n+1) / 4} Q_{(n-1) / 2} \\
8 \mathcal{T}_{(n+11) / 2,8}(n) & =2^{n}+2^{(n+1) / 2}-2^{(n+1) / 4} Q_{(n+1) / 2}
\end{aligned}
$$

Thus for every odd $n \geq 1$ we have

$$
\begin{align*}
\mathcal{T}_{n, 8}^{*}(2 n) & =-2^{2 n-3}-2^{n-2}-2^{(n-1) / 2} P_{n} \tag{3.3}\\
\mathcal{T}_{n+4,8}^{*}(2 n) & =-2^{2 n-3}-2^{n-2}+2^{(n-1) / 2} P_{n}
\end{align*}
$$

Applying 1.8,

$$
\mathcal{H}_{p, 8}(p-1) \equiv-\frac{\mathcal{T}_{p, 8}^{*}(2 p)+2}{4 p}-p \sum_{0 \leq j \leq 3} \mathcal{H}_{p+2 j, 8}(p)^{2}\left(\bmod p^{2}\right)
$$

By (2.5) and (2.6), we have

$$
\begin{aligned}
\mathcal{H}_{p, 8}(p-1) & \equiv-\frac{\mathcal{T}_{p, 8}^{*}(2 p)+2}{4 p}(\bmod p), \\
\mathcal{H}_{p+4,8}(p-1) & \equiv-\frac{\mathcal{T}_{p+4,8}^{*}(2 p)}{4 p}(\bmod p)
\end{aligned}
$$

In view of 2.3 and Lemma 3.2,

$$
\equiv\left\{\begin{array}{r}
\sum_{i=0}^{1} \frac{1}{p^{2}}\left(2^{p-3}-\left(\frac{2}{p}\right) 2^{(p-5) / 2}+(-1)^{i} 2^{(p-5) / 4} P_{\left(p-\left(\frac{2}{p}\right)\right) / 2}\right)^{2}(\bmod p) \tag{3.5}\\
\text { if } p \equiv 1(\bmod 4) \\
\sum_{i=0}^{1} \frac{1}{p^{2}}\left(2^{p-3}-\left(\frac{2}{p}\right) 2^{(p-5) / 2}+(-1)^{i} 2^{(p-11) / 4} Q_{\left(p-\left(\frac{2}{p}\right)\right) / 2}\right)^{2}(\bmod p) \\
\text { if } p \equiv 3(\bmod 4)
\end{array}\right.
$$

Lemma 3.3. Let p be an odd prime. Then

$$
\left\{\begin{align*}
& P_{(p-1) / 2} \equiv 0(\bmod p), \tag{3.6}\\
& P_{(p+1) / 2} \equiv(-1)^{(p-1) / 8} 2^{(p-1) / 4}(\bmod p), \text { if } p \equiv 1(\bmod 8) \\
& P_{(p-1) / 2} \equiv(-1)^{(p-3) / 8} 2^{(p-3) / 4}(\bmod p), \\
& P_{(p+1) / 2} \equiv(-1)^{(p+5) / 8} 2^{(p-3) / 4}(\bmod p), \text { if } p \equiv 3(\bmod 8) \\
& P_{(p-1) / 2} \equiv(-1)^{(p-5) / 8} 2^{(p-1) / 4}(\bmod p), \text { if } p \equiv 5(\bmod 8), \\
& P_{(p+1) / 2} \equiv 0(\bmod p), \\
& P_{(p-1) / 2} \equiv(-1)^{(p+1) / 8} 2^{(p-3) / 4}(\bmod p), \\
& P_{(p+1) / 2} \equiv(-1)^{(p+1) / 8} 2^{(p-3) / 4}(\bmod p),
\end{align*} \quad \text { if } p \equiv 7(\bmod 8),\right.
$$

and

$$
\begin{cases}Q_{(p-1) / 2} \equiv(-1)^{(p-1) / 8} 2^{(p+3) / 4}(\bmod p), & \text { if } p \equiv 1(\bmod 8) \tag{3.7}\\ Q_{(p+1) / 2} \equiv(-1)^{(p-1) / 8} 2^{(p+3) / 4}(\bmod p), \\ Q_{(p-1) / 2} \equiv(-1)^{(p+5) / 8} 2^{(p+5) / 4}(\bmod p), & \text { if } p \equiv 3(\bmod 8) \\ Q_{(p+1) / 2} \equiv 0(\bmod p), \\ Q_{(p-1) / 2} \equiv(-1)^{(p+3) / 8} 2^{(p+3) / 4}(\bmod p), & \text { if } p \equiv 5(\bmod 8), \\ Q_{(p+1) / 2} \equiv(-1)^{(p-5) / 8} 2^{(p+3) / 4}(\bmod p), & \\ Q_{(p-1) / 2} \equiv 0(\bmod p), & \\ Q_{(p+1) / 2} \equiv(-1)^{(p+1) / 8} 2^{(p+1) / 4}(\bmod p), & \text { if } p \equiv 7(\bmod 8)\end{cases}
$$

Proof. The congruences in (3.6) were obtained by Sun [4, Theorem 2.3]. Those in (3.7) follow from (3.6), by noting that $Q_{n}=2 P_{n+1}-2 P_{n}$ and $Q_{n+1}=2 P_{n+1}+2 P_{n}$.

Since $P_{\left(p-\left(\frac{2}{p}\right)\right) / 2} Q_{\left(p-\left(\frac{2}{p}\right)\right) / 2}=P_{p-\left(\frac{2}{p}\right)}$, by 3.5 we have

$$
\begin{aligned}
& \mathcal{H}_{p+2,8}(p-1)^{2}+\mathcal{H}_{p+6,8}(p-1)^{2} \\
& \equiv \frac{2^{p-1}\left(2^{(p-1) / 2}-\left(\frac{2}{p}\right)\right)^{2}+P_{p-\left(\frac{2}{p}\right)}^{2}}{}(\bmod p)
\end{aligned}
$$

Note that

$$
\frac{2^{p-1}-1}{p}=\frac{\left(2^{(p-1) / 2}+\left(\frac{2}{p}\right)\right)\left(2^{(p-1) / 2}-\left(\frac{2}{p}\right)\right)}{p} \equiv 2\left(\frac{2}{p}\right) \frac{2^{(p-1) / 2}-\left(\frac{2}{p}\right)}{p}(\bmod p)
$$

Hence,

$$
\begin{aligned}
& \mathcal{H}_{p, 8}(p-1) \\
& \\
& \equiv \frac{2^{2 p-4}+2^{p-3}+2^{(p-3) / 2} P_{p}-1}{p}-\frac{\left(2^{2 p-3}+2^{p-2}+2^{(p-1) / 2} P_{p}\right)^{2}-4}{16 p} \\
& \\
& \quad-\frac{\left(2^{2 p-3}+2^{p-2}-2^{(p-1) / 2} P_{p}\right)^{2}}{16 p}-\frac{2^{p-1}\left(2^{(p-1) / 2}-\left(\frac{2}{p}\right)\right)^{2}+2^{p-1} P_{p-\left(\frac{2}{p}\right)}^{2}}{8 p} \\
& \equiv \\
& \equiv \frac{2^{2 p-4}+2^{p-3}+2^{(p-3) / 2} P_{p}-1}{p}-\frac{2^{4 p-6}+2^{2 p-4}+2^{p-2} P_{2 p-\left(\frac{2}{p}\right)}-1}{4 p}\left(\bmod p^{2}\right),
\end{aligned}
$$

by noting that

$$
P_{p-\left(\frac{2}{p}\right)}^{2}+P_{p}^{2}=P_{2 p-\left(\frac{2}{p}\right)}
$$

This concludes the proof of Theorem 1.4 .
Remark. The Bernoulli polynomials $B_{n}(x)(n=0,1,2, \ldots)$ are given by

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} \frac{B_{n}(x)}{n!} t^{n}
$$

In particular, the Bernoulli numbers B_{n} are $B_{n}(0)$. Granville and Sun [1] proved that

$$
\begin{aligned}
B_{p-1}\left(\frac{\{p\}_{5}}{5}\right)-B_{p-1} & \equiv \frac{5}{4 p} F_{p-\left(\frac{5}{p}\right)}+\frac{5^{p}-5}{4 p}(\bmod p) \\
B_{p-1}\left(\frac{\{p\}_{8}}{8}\right)-B_{p-1} & \equiv \frac{2}{p} P_{p-\left(\frac{2}{p}\right)}+\frac{2^{p+1}-4}{p}(\bmod p)
\end{aligned}
$$

for any prime $p \neq 2,5$, where $\{p\}_{m}$ denotes the least non-negative residue
of p modulo m. In [5, Theorem 3.3], Sun also proved that

$$
\begin{aligned}
m \mathcal{H}_{p, m}(p-1) \equiv & \frac{B_{2 p-2}\left(\{p\}_{m} / m\right)-B_{2 p-2}}{2 p-2} \\
& -2 \frac{B_{p-1}\left(\{p\}_{m} / m\right)-B_{p-1}}{p-1}\left(\bmod p^{2}\right)
\end{aligned}
$$

Using Theorems 1.3 and 1.4 we deduce that

$$
\begin{align*}
& \frac{B_{p(p-1)}\left(\{p\}_{5} / 5\right)-B_{p(p-1)}}{5 p(p-1)} \tag{3.8}\\
& \quad \equiv-\frac{5^{(p-1) / 2} F_{p}-1}{p}+\frac{5^{p-1} F_{2 p-\left(\frac{5}{p}\right)}-1}{4 p}\left(\bmod p^{2}\right)
\end{align*}
$$

for any prime $p>5$, and

$$
\begin{align*}
& \frac{B_{p(p-1)}\left(\{p\}_{8} / 8\right)-B_{p(p-1)}}{8 p(p-1)} \tag{3.9}\\
& \equiv-\frac{2^{2 p-4}+2^{p-3}+2^{(p-3) / 2} P_{p}-1}{p} \\
& \quad+\frac{2^{4 p-6}+2^{2 p-4}+2^{p-2} P_{2 p-\left(\frac{2}{p}\right)}-1}{4 p}\left(\bmod p^{2}\right)
\end{align*}
$$

for any prime $p \geq 5$.
Acknowledgements. The author is grateful to Professor Zhi-Wei Sun for helpful discussions on this paper.

The author was supported by the National Natural Science Foundation of China (Grant No. 10901078).

References

[1] A. Granville and Z.-W. Sun, Values of Bernoulli polynomials, Pacific J. Math. 172 (1996), 117-137.
[2] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. (2) 39 (1938), 350-360.
[3] Z.-H. Sun, The combinatorial sum $\sum_{k=0, k \equiv r(\bmod m)}^{n}\binom{n}{k}$ and its applications in number theory. I, J. Nanjing Univ. Math. Biquart. 8 (1992), 227-240 (in Chinese).
[4] -, The combinatorial sum $\sum_{k=0, k \equiv r(\bmod m)}^{n}\binom{n}{k}$ and its applications in number theory. II, ibid. 10 (1993), 105-118 (in Chinese).
[5] -, Congruences involving Bernoulli and Euler numbers, J. Number Theory 128 (2008), 280-312.
[6] Z. H. Sun and Z. W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith. 60 (1992), 371-388.
[7] Z. W. Sun, On the sum $\sum_{k \equiv r(\bmod m)}\binom{n}{k}$ and related congruences, Israel J. Math. 128 (2002), 135-156.
[8] H. C. Williams, A note on the Fibonacci quotient $F_{p-\varepsilon} / p$, Canad. Math. Bull. 25 (1982), 366-370.
[9] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Math. 5 (1862), 35-39.

Hao Pan
Department of Mathematics
Nanjing University
Nanjing 210093, People's Republic of China
E-mail: haopan79@yahoo.com.cn

[^0]: 2010 Mathematics Subject Classification: Primary 11A07; Secondary 11B65.
 Key words and phrases: lacunary harmonic sum, congruence, Fibonacci number, Pell number.

