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Application of the circle method on multidimensional
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Eugen Keil (Stuttgart and Bristol)

1. Introduction and notation. Limit-periodic functions f : N → C
are limits of periodic functions under the Besicovitch seminorm

‖f‖2 := lim sup
N→∞

(
1
N

∑
n≤N
|f(n)|2

)1/2

.

These functions appear naturally in number-theoretical problems and a fa-
mous example is the indicator function of square-free numbers. For some
general properties of limit-periodic functions, the interested reader is re-
ferred to the book [S].

In forthcoming work (see also [B]) Brüdern shows among other things
that binary additive problems with limit-periodic functions are within the
grasp of the circle method. Thereby he gives alternative characterisations
for limit-periodicity.

We will extend some of his results to higher dimensions using elementary
functional analysis and the circle method.

Before we can state the results, we need notation and some definitions.
Vectors x = (x1, . . . , xd) in Nd or Rd will be written in bold face, and in

particular 1 = (1, . . . , 1). The relations ≤ and ≡ (congruence modulo q) are
to be understood componentwise, and |x| := max |xi|.

For p ≥ 1 and f : Nd → C, the Besicovitch seminorms are given by

‖f‖p := lim sup
N→∞

(
1
Nd

∑
|n|≤N

|f(n)|p
)1/p

,(1.1)

and the function spaces

Ldp := {f : Nd → C : ‖f‖p <∞}
are defined as usual.
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A function f : Nd → C is called periodic if there is a q ∈ N such that
f(n) = f(m) whenever n ≡ m mod q. A function f : Nd → C is called
limit-periodic (in Ldp) if there is a sequence of periodic functions fm with
limm→∞ ‖f − fm‖p = 0. The space of limit-periodic functions is denoted
by Ddp. We will give an interesting example of a multidimensional limit-
periodic function in Section 5.

Surprisingly, we have to deal with a directed scalar product to under-
stand the Fourier analysis of limit-periodic functions. For N ∈ N and a
direction w in

Kd := {x ∈ Rd : |x| = 1, xi > 0},(1.2)

let Θ(w, N) be the number of elements in the rectangle {n ∈ Nd : n ≤ wN}.
For f and g in suitable function spaces, the limit

〈f, g〉w := lim
N→∞

1
Θ(w, N)

∑
n≤wN

f(n)g(n)(1.3)

will exist, and we refer to it as “scalar product”, although it is not definite.
In the special case w = 1 we have Θ(1, N) = Nd and get the standard
scalar product 〈f, g〉. If g is the constant function g(n) = 1, we obtain the
mean value M(f) of f .

The auxiliary functions

eα(n) := e(α · n) := exp (2πiα · n) for α ∈ Rd,

ψq,a(n) :=
{

1 if n ≡ a mod q,
0 else

for q ∈ N and a ∈ Nd

will be useful because the set {eα : α ∈ Rd/Zd} is an orthonormal basis
with regard to our scalar product in the space of periodic functions. The
functions ψq,a on the other hand provide a basis with the additional property
of decreasing norm for q →∞.

We can only hope to be able to apply the cirle method to a function f
if the scalar products 〈f, ea/q〉 exist. For this reason, we define

Vdp := {f ∈ Ldp : 〈f, ea/q〉 exists for all q ∈ N, a ∈ Nd}.

But it turns out to be an insufficient condition for d ≥ 2 as we will see in
Section 6. The function f has to be even in

Wd
p := {f ∈ Vdp : 〈f, ea/q〉w = 〈f, ea/q〉 for all w ∈ Kd, q ∈ N, a ∈ Nd}.

The generalised Fourier coefficients 〈f, ea/q〉w have to be independent of w.
But fortunately this is true for limit-periodic functions, as we will see in
Section 2.
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In Sections 3 and 4 we will look at the case p = 2. One tool in the
analysis of functions in Ld2 is the exponential sum

Sf (α) :=
∑
|n|≤N

f(n)eα(n),(1.4)

which satisfies the orthogonality relation∑
|n|≤N

|f(n)|2 =
�

[0,1]d

|Sf (α)|2 dα.(1.5)

The integral on the right-hand side can be evaluated by the circle method.
In this context, the major arcs M = M(Q,N) are defined by

M =
⋃
q≤Q

⋃
|a|≤q

(a;q)=1

{α ∈ Rd : |α− a/q| ≤ Q/N},(1.6)

where Q = Q(N) ≤ N1/4 is a monotone and unbounded function in N . The
minor arcs m are the complement of M in (Q/N, 1 +Q/N ]d.

For a function f ∈ Vd2 let

Sf :=
∞∑
q=1

∑
|a|≤q

(a;q)=1

|〈f, ea/q〉|2

be the singular series of f , where (a; q) := gcd(a1, . . . , ad, q). This is just the
sum of all rational Fourier coefficients of f . Therefore, by Bessel’s inequality,
this series is bounded by ‖f‖22 and convergent as we shall show in Section 3
below (see Lemma 3.1). We give an asymptotic formula for the contribution
of M to (1.5).

Theorem 1.1. For all f ∈ Wd
2 there is a function Q(N)→∞ with�

M

|Sf (α)|2 dα = SfN
d + o(Nd).

In Landau’s O-, o-notation the constants may depend on the functions
f and Q(N) of course, but we will suppress this dependence here.

If the function f is regular, we can save a small power of N in the term
o(Nd) (see [BGPVW] for a one-dimensional example). But even for general
limit-periodic functions, o(Nd) is the best we can hope for.

This allows us to show that limit-periodic functions can be characterised
by their contribution on the minor arcs.

Theorem 1.2. A function f ∈ Ld2 is limit-periodic if and only if f ∈ Wd
2 ,

and for all Q(N)→∞ we have
	
m |Sf (α)|2 dα = o(Nd).

We will deduce Theorem 1.2 from Theorem 1.1 by a functional-analytic
argument in Section 3. It can be used to deal with binary problems involving
limit-periodic functions, as we will see in Section 5.
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2. Basic lemmata. In this section we will deduce some important prop-
erties of limit-periodic functions from periodic ones by the continuity of the
scalar product. The proofs are all quite standard but it is not easy to find
an adequate reference, so we will give a sketch of every proof.

Lemma 2.1. Let w ∈ Kd and for m ∈ N let f, fm ∈ Ldp. If p > 1 let
g, gm ∈ Ldp′ with the dual index p′ given by 1/p+ 1/p′ = 1.

(i) If 〈f, g〉w exists, then |〈f, g〉w| ≤ 1
w1···wd ‖f‖p · ‖g‖p′.

(ii) If limm→∞ ‖f − fm‖p = 0, limm→∞ ‖g − gm‖p′ = 0, and 〈fm, gm〉w
exist for all m ∈ N, then 〈f, g〉w exists and satisfies 〈f, g〉w =
limm→∞〈fm, gm〉w.

(iii) If M(fm) exists for all m ∈ N and limm→∞ ‖f − fm‖p = 0, then
M(f) exists and M(f) = limm→∞M(fm). The case p = 1 is al-
lowed.

Proof. First, we see that for N ≥ max{1/wi : 1 ≤ i ≤ d},

Θ(w, N) =
d∏
i=1

[wiN ] ≥
d∏
i=1

wi

(
N − 1

wi

)
,

where [x] := max{n ∈ N : n ≤ x}. Since n ≤ wN implies |n| ≤ N , we can
use Hölder’s inequality and the estimate above to bound |〈f, g〉w| by

1
w1 · · ·wd

lim sup
N→∞

d∏
i=1

(N − 1/wi)−1
( ∑
|n|≤N

|f(n)|p
)1/p( ∑

|n|≤N

|g(n)|p′
)1/p′

and thus gain statement (i). Applying this inequality to the situation in (ii),
we see by standard arguments that 〈fm, gm〉w is a Cauchy sequence in C
and that the limit G = limm→∞〈fm, gm〉w exists. To compare the finite
approximation on 〈f, g〉w with G, we split the expression as follows:∣∣∣∣G− 1

Θ(w, N)

∑
n≤wN

f(n)g(n)
∣∣∣∣

≤ |G− 〈fm, gm〉w|+
∣∣∣∣〈fm, gm〉w − 1

Θ(w, N)

∑
n≤wN

fm(n)gm(n)
∣∣∣∣

+
∣∣∣∣ 1
Θ(w, N)

∑
n≤wN

fm(n)gm(n)− 1
Θ(w, N)

∑
n≤wN

f(n)g(n)
∣∣∣∣.

The first term is small due to the definition of G when m is large enough,
while the second one is small because the limits 〈fm, gm〉w exist. The last
one can be treated by limm→∞ ‖f − fm‖p = 0, limm→∞ ‖g − gm‖p′ = 0 and
Hölder’s inequality. Choose m = m(ε) large enough; then for N ≥ N0(m, ε)
the difference is bounded by ε.

Since |M(f)| ≤ ‖f‖1 ≤ ‖f‖p, a similar calculation yields (iii).
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The next three lemmata give some basic properties, which can be trans-
ferred from periodic functions to limit-periodic functions by Lemma 2.1.

Lemma 2.2. For f ∈ Ddp the mean value M(f) exists. When p > 1 and
g ∈ Vdp′ (1/p+ 1/p′ = 1) the scalar product 〈f, g〉 exists and is given by

〈f, g〉 =
∞∑
q=1

∑
|a|≤q

(a;q)=1

〈f, ea/q〉〈ea/q, g〉.

In particular, Ddp ⊆ Vdp .

Proof. Use Lemma 2.1, linearity and observe that this lemma is clear for
f = ea/q.

It will be important that 〈f, ea/q〉w is even independent of w for f ∈ Ddp.

Lemma 2.3. We have Ddp ⊂ Wd
p .

Proof. Due to Lemma 2.1, it suffices to show that 〈f, ea/q〉w is inde-
pendent of w for periodic functions f . Using the tensor product property
e(α·n) =

∏d
i=1 e(αini) we can verify that 〈eα, eβ〉w = 〈eα, eβ〉 for α,β ∈ Rd.

The result follows by linearity and the fact that periodic functions are linear
combinations of functions eα with α ∈ Qd.

As the periodic functions form a C-algebra, we also get a multiplicative
structure for limit-periodic functions.

Lemma 2.4. Let f ∈ Ddp and g ∈ Ddp̂ be limit-periodic functions and
r ≥ 1 with 1/p+ 1/p̂ = 1/r. Then the product fg is also limit-periodic with
fg ∈ Ddr .

Proof. A variant of Hölder’s inequality states that ‖fg‖r ≤ ‖f‖p‖g‖p̂ for
functions f ∈ Ldp and g ∈ Ddp̂. Let (fm) and (gm) be sequences of periodic
functions which approximate f and g. Apply this estimate to the right side
of ‖fg − fmgm‖r ≤ ‖f(g − gm)‖r + ‖(f − fm)gm‖r and use the fact that
convergent series have bounded norms.

3. Parseval’s formula. In this section we will turn to the case p = 2
and give a characterisation of limit-periodic functions in Ld2 by functional
analysis. The following proposition may be viewed as a generalised Parseval’s
formula for functions in Dd2 ⊆ Ld2.

Proposition. A function f ∈ Ld2 is limit-periodic if and only if f ∈ Vd2
and ‖f‖22 = Sf .

It can be used to deduce Theorem 1.2 from Theorem 1.1, which we shall
do first.
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Proof of Theorem 1.2. Lemma 2.3 gives Dd2 ⊆ Wd
2 and therefore it suf-

fices to show the part about the minor arc integral. We may choose Q(N)
to be a slowly growing function in N . (The theorem is true if it is true for
these functions Q(N).) By inserting formula (1.5) in Theorem 1.1 we get�

m

|Sf (α)|2 dα =
�

[0,1]d

|Sf (α)|2 dα−
�

M

|Sf (α)|2 dα

=
(

1
Nd

∑
|n|≤N

|f(n)|2 −Sf

)
Nd + o(Nd).

If f is limit-periodic, we have the relation Sf = ‖f‖22, and thus the integral
over the minor arcs is of order o(Nd). Otherwise, we obtain Sf < ‖f‖22, and
the first term is no longer of order o(Nd).

The proof of the Proposition itself is quite standard but has some small
subtleties because the scalar product is not defined on the whole space Ld2.
We will give a sketch of the proof for the sake of completeness by decompo-
sition into the next two lemmata.

For a function f ∈ Vd2 , we look at the periodic approximation

Fm :=
∑
q≤m

∑
|a|≤q

(a;q)=1

〈f, ea/q〉ea/q

and the truncated singular series

Sf (m) :=
∑
q≤m

∑
|a|≤q

(a;q)=1

|〈f, ea/q〉|2.

Lemma 3.1. For f ∈ Vd2 and m ∈ N we have ‖f−Fm‖22 = ‖f‖22−Sf (m).
In particular, Sf exists, and Sf ≤ ‖f‖22.

Proof. Noting that f ∈ Vd2 , we get by direct calculation

‖f − Fm‖22 = ‖f‖22 − 〈f, Fm〉 − 〈Fm, f〉+ 〈Fm, Fm〉.

The orthogonality of {eα : α ∈ Rd/Zd} provides

〈f, Fm〉 = 〈Fm, f〉 = 〈Fm, Fm〉 = Sf (m).

The convergence of Sf and the estimate Sf ≤ ‖f‖22 are due to the positivity
of ‖f − Fm‖22.

For periodic functions f of period q, we have the identities f = Fm and
Sf (m) = Sf for m ≥ q. Thus, we get the equation

‖f‖22 = Sf ,(3.1)

which can be transferred to limit-periodic functions by the following lemma.

Lemma 3.2. The functional S : Vd2 → R; f 7→ Sf is continuous.
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Proof. For f, g ∈ Vd2 , by the triangle inequality and Cauchy’s inequality,

|Sf −Sg| ≤
∞∑
q=1

∑
|a|≤q

(a;q)=1

|〈f, ea/q〉〈ea/q, f − g〉+ 〈f − g, ea/q〉〈ea/q, g〉|

≤ (Sf )1/2(Sf−g)1/2 + (Sf−g)1/2(Sg)1/2.

Recalling the estimate Sf ≤ ‖f‖22 from Lemma 3.1, we obtain the result.

Finally, we put all together and get the proof of the Proposition.

Proof of Proposition. Lemma 2.2 gives Dd2 ⊆ Vd2 . Let fk be a sequence of
periodic functions converging to f ∈ Dd2 . Then (3.1) provides ‖fk‖22 = Sfk .
Since both sides are continuous, taking the limit k →∞ gives the result.

If now ‖f‖22 = Sf is assumed, then we get the convergence ‖f−Fm‖22 → 0
for m → ∞ from Lemma 3.1. As the functions Fm are periodic, f is limit-
periodic.

4. Application of the circle method. Now, we focus on the proof of
Theorem 1.1. The evaluation of the major arc integral�

M

|Sf (α)|2 dα =
∑
q≤Q

∑
|a|≤q

(a;q)=1

�

|α−a/q|≤Q/N

|Sf (α)|2 dα(4.1)

can be reduced to the approximation of Sf (α) in the neighbourhood of
rational points with small denominator. The main ingredient is the following
lemma.

Lemma 4.1. For functions f ∈ Wd
2 , we have the asymptotic formula∑

n≤x

f(n)ψq,a(n) = 〈f, ψq,a〉
∑
n≤x

1 + o(Nd)

uniformly in a ∈ Nd, q ∈ N, and |x| ≤ N .

Proof. We define

T :=
1
Nd

∣∣∣∑
n≤x

f(n)ψq,a(n)− 〈f, ψq,a〉
∑
n≤x

1
∣∣∣.

The dependence of T on N,x, q, and a is suppressed. We have to show that
for every ε > 0 there is an N0 ∈ N so that for all N ≥ N0, q ∈ N, a ∈ Nd,
and |x| ≤ N, we have T < ε.

Due to the fact that ‖f‖2 <∞, there is a constant cf > 0 such that
1
Nd

∑
n≤x

|f(n)|2 ≤ 1
Nd

∑
|n|≤N

|f(n)|2 ≤ cf

for all N ∈ N and |x| ≤ N .
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Let us first look at the case where q > q0 is large. Using the triangle
inequality and Cauchy’s inequality as well as Lemma 2.1(i), we get

T ≤
(

1
Nd

∑
n≤x

|f(n)|2
)1/2( 1

Nd

∑
n≤x

ψq,a(n)
)1/2

+ ‖f‖2‖ψq,a‖2
1
Nd

∑
n≤x

1.

For N > q we can estimate N−d
∑

n≤x ψq,a(n) by (2/q)d while for N ≤ q

this expression can be estimated by 1/Nd. We end up with

T ≤ √cf
√

max{(2/q)d, 1/Nd}+
√
cf

√
1/qd < ε

for all q ≥ q0 and N ≥ N1 if we choose q0 and N1 large enough. To obtain
the uniformity in q and a, it now suffices to show the estimate for any fixed
q < q0 and |a| ≤ q.

The special case of small x has to be treated separately before we embark
on the general proof. Let κ > 0; then for |x| ≤ κN we get N−d

∑
n≤x ψq,a(n)

≤ κd and N−d
∑

n≤x 1 ≤ κd. This provides the estimate

T ≤ √cf κd/2 +
√
cf κ

d < ε

if we choose κ so small that each term is less than ε/2.
For x with |x| > κN , choose eventually a parameter η > 0 with d

√
cf η

< ε/3 and dcfη < ε2/9. Now, we can approximate our directions in Kd

(see (1.2)) by a finite set of points wj ∈ Kd such that for every w ∈ Kd

there is a wj with |w −wj | < η (Kd is relatively compact). As f ∈ Wd
2 , it

is possible to choose N0 ≥ N1 such that∣∣∣∣ 1
Θ(wj ,M)

∑
n≤wjM

f(n)ψq,a(n)− 〈f, ψq,a〉
∣∣∣∣ < ε/3(4.2)

for all wj , N ≥ N0, and M > κN .
The vector x/|x| is in Kd. Therefore, |x/|x|−wj | < η for some wj . With

this approximation, we obtain the estimate∣∣∣∑
n≤x

f(n)ψq,a(n)−〈f, ψq,a〉
∑
n≤x

1
∣∣∣ ≤ ∣∣∣∑

n≤x

f(n)ψq,a(n)−
∑

n≤wj |x|

f(n)ψq,a(n)
∣∣∣

+
∣∣∣ ∑
n≤wj |x|

f(n)ψq,a(n)− 〈f, ψq,a〉
∑

n≤wj |x|

1
∣∣∣+ |〈f, ψq,a〉|

∣∣∣ ∑
n≤wj |x|

1−
∑
n≤x

1
∣∣∣.

By (4.2) and the restriction |x| > κN , the middle term does not exceed
Ndε/3. We apply Cauchy’s inequality to the first term and see that it is
bounded by∣∣∣ ∑
|n|≤N

f(n)ψq,a(n)(1n≤x−1n≤wj |x|)
∣∣∣≤√cf Nd/2

( ∑
|n|≤N

|1n≤x−1n≤wj |x||
)1/2

,
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where 1n≤x = 1 if the condition n ≤ x is satisfied and 1n≤x = 0 otherwise.
Write y = wj |x|. Then the sum on the right can be estimated by∑

|n|≤N

d∑
i=1

|1ni≤xi − 1ni≤yi | ≤
d∑
i=1

|xi − yi|Nd−1 ≤ d|x− y|Nd−1.

Because of
∣∣x − wj |x|

∣∣ < ηN and the choice of η, we obtain the desired
estimate. The inequality |〈f, ψq,a〉| ≤

√
cf allows us to apply this calculation

also to the third term. This concludes the proof.

Lemma 4.1 used with the formula ea/q =
∑
|b|≤q ea/q(b)ψq,b provides∑

n≤x

f(n)ea/q(n) = 〈f, ea/q〉
∑
n≤x

1 + qd · o(Nd).(4.3)

For α in the major arcs, we get an asymptotic expression by using sum-
mation by parts. In order to describe this in the multidimensional setting,
we need some more notation.

Multiindices τ ∈ Id := {0, 1}d are used to make some choice operation.
We write |τ | := τ1 + · · · + τd and τ = (σ, τd) with σ ∈ Id−1. We need the
same decomposition for x = (y, xd), a d-dimensional vector of variables, to
define the differential operator ∂ τx inductively by

∂τx :=
{
∂σy if τd = 0,
∂xd∂

σ
y if τd = 1,

where ∂x := ∂/∂x. For d = 1 the symbol ∂σy with empty indices y and σ is
to be understood as the identity. Using additionally the vector N = (M, Nd)
∈ Rd and the notation [1,N] = {x ∈ Rd : 1 ≤ xi ≤ Ni}, we can define an
integral operator in a similar way by

τ�

[1,N]

f(x) dx :=

{ 	σ
[1,M] f(y, Nd) dy if τd = 0,
	Nd
1

	σ
[1,M] f(y, xd) dy dxd if τd = 1.

In the case d = 1, the integral over y has to be ignored.
As this is only a new notation for well-known operators, the linearity is

preserved and can be shown by induction.

Lemma 4.2 (Summation by parts). Let f : Rd → C be d times continu-
ously differentiable and g : Nd → C. Then∑

n≤N

f(n) · g(n) =
∑
τ∈Id

(−1)|τ |
τ�

[1,N]

∂ τx f(x) ·
∑
n≤x

g(n) dx.

Proof. We will give a proof by induction. The case d = 1 is well-known
and can be found, for example, in [S, p. 2]. If d ≥ 2, we use the notation
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n = (k, nd) with k ∈ Nd−1 and, as above, N = (M, Nd), x = (y, xd) and
τ = (σ, τd). Separating one summation, we obtain∑

n≤N

f(n) · g(n) =
∑

nd≤Nd

∑
k≤M

f(k, nd) · g(k, nd)

=
∑

nd≤Nd

∑
σ∈Id−1

(−1)|σ|
σ�

[1,M]

∂ σy f(y, nd) ·
∑
k≤y

g(k, nd) dy

where we have applied our induction hypothesis to the inner sum over d− 1
variables. Now, we can invoke the one-dimensional formula for the summa-
tion over nd inside the integral to find that the above equals∑
σ∈Id−1

(−1)|σ|
σ�

[1,M]

∑
k≤y

[ ∑
nd≤Nd

∂ σy f(y, nd) · g(k, nd)
]
dy

=
∑

σ∈Id−1

(−1)|σ|

×
σ�

[1,M]

∑
k≤y

[ ∑
τd∈I1

(−1)τd
τd�

[1,Nd]

∂ τdxd ∂
σ
y f(y, xd) ·

∑
nd≤xd

g(k, nd) dxd
]
dy.

Rearranging and combining the terms, we end up with the expression∑
σ∈Id−1

∑
τd∈I1

(−1)τd(−1)|σ|

×
σ�

[1,M]

τd�

[1,Nd]

∂ τdxd ∂
σ
y f(y, xd) ·

∑
k≤y

∑
nd≤xd

g(k, nd) dxd dy

=
∑
τ∈Id

(−1)|τ |
τ�

[1,N]

∂ τx f(x) ·
∑
n≤x

g(n) dx.

At this point, we are in a position to give the approximation for the
exponential sum on the major arcs.

Lemma 4.3. Let Sf (α) be the exponential sum for f ∈ Wd
p . Then

Sf (a/q + β) = 〈f, ea/q〉
∑
|n|≤N

e(β · n) +Q2d · o(Nd)

for α = a/q + β ∈M with |β| ≤ Q/N .

Proof. We write

Sf (a/q + β) =
∑
|n|≤N

f(n)ea/q+β(n) =
∑
|n|≤N

eβ(n)f(n)ea/q(n)
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and apply Lemma 4.2 to get

=
∑
τ∈Id

(−1)|τ |
τ�

[1,N]

∂ τx eβ(x) ·
∑
n≤x

f(n)ea/q(n) dx.

Next, we insert formula (4.3) to obtain

Sf (a/q + β) =
∑
τ∈Id

(−1)|τ |
τ�

[1,N]

∂ τx eβ(x)〈f, ea/q〉
∑
n≤x

1 dx

+
∑
τ∈Id

(−1)|τ |
τ�

[1,N]

(−2πi)|τ |βτeβ(x) · qd · o(Nd) dx,

where βτ :=
∏
τi=1 βi for a vector β ∈ Rd and τ ∈ Id.

The first integral can be treated with Lemma 4.2 by doing the calculation
backwards. The second one is estimated with |β| < Q/N and |eβ(x)| ≤ 1,
yielding

Sf (a/q + β) = 〈f, ea/q〉
∑
|n|≤N

eβ(n) + qd · o
(∑
τ∈Id

(Q/N)|τ |Nd+|τ |
)

= 〈f, ea/q〉
∑
|n|≤N

eβ(n) +Q2d · o(Nd).

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Squaring the formula of Lemma 4.3 and using the
estimates |〈f, ea/q〉| ≤ ‖f‖2 and |

∑
|n|≤N e(β · n)| ≤ Nd, we get

|Sf (a/q + β)|2 = |〈f, ea/q〉|2
∣∣∣ ∑
|n|≤N

e(β · n)
∣∣∣2 +Q4d · o(N2d).(4.4)

The sum splits up into one-dimensional parts. We have∣∣∣ ∑
|n|≤N

e(β · n)
∣∣∣ =

d∏
i=1

∣∣∣ ∑
ni≤N

e(βini)
∣∣∣,

which can be estimated by making use of the geometric sum formula and the
inequalities |β| ≤ |1 − e(β)| as well as |e(β)| ≤ 1, valid for β ∈ [−1/2, 1/2].
Thus, we have ∣∣∣ ∑

ni≤N
e(βini)

∣∣∣ =
∣∣∣∣1− e(βi(N + 1))

1− e(βi)

∣∣∣∣ ≤ 2
|βi|

.

This allows us to extend the integration over the major arc (|β| ≤ Q/N) to
an integration over [−1/2, 1/2]d and to estimate the error when |β| > Q/N .
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This case occurs if there exists a βj with |βj | > Q/N and we can bound the
contribution of the large β by

�

|β|>Q/N

∣∣∣ ∑
|n|≤N

e(β · n)
∣∣∣2 dβ ≤ d∑

j=1

�

|βj |>Q/N

∣∣∣ ∑
|n|≤N

e(β · n)
∣∣∣2 dβ

≤
d∑
j=1

∏
i 6=j

�

βi∈[−1/2,1/2]

∣∣∣ ∑
ni≤N

e(βini)
∣∣∣2 dβi · �

|βj |>Q/N

4
|βj |2

dβj

= O(Nd−1 ·N/Q) = O(Nd/Q),

where a complete integral over [−1/2, 1/2] yields N by the orthogonality
relation (1.5).

If we put all together and insert equation (4.4) into (4.1), we get∑
q≤Q

∑
|a|≤q

(a;q)=1

�

|α−a/q|≤Q/N

|Sf (α)|2 dα

=
∑
q≤Q

∑
|a|≤q

(a;q)=1

(
|〈f, ea/q〉|2

�

|β|≤Q/N

∣∣∣ ∑
|n|≤N

e(β · n)
∣∣∣2 dβ +Q5d · o(Nd)

)

= Sf (Q)
( �

[−1/2,1/2]d

∣∣∣ ∑
|n|≤N

e(β ·n)
∣∣∣2 dβ +O(Nd/Q)

)
+Q7d ·o(Nd).

The remaining integral gives Nd by the orthogonality relation (1.5).
Eventually, we obtain

�

M

|Sf (α)|2 dα = Sf (Q)(Nd +O(Nd/Q)) +Q7d · o(Nd).

Now, choose for Q a function in N which goes to infinity, but still satisfies
Q7d · o(Nd) = o(Nd). Noting that the left-hand side above is bounded by
(‖f‖22 + ε)Nd for N ≥ N0(ε), we get once more the estimate Sf ≤ ‖f‖22 and
the desired asymptotic formula.

5. Examples and applications. First we give a natural example for
a limit-periodic function in dimension d ≥ 2. Let τ ∈ Id = {0, 1}d be a
multiindex with |τ | ≥ 2. Define

γτ (n) =
{

1 if gcd(nτ ) = 1,
0 else,

where we use the notation nτ = (n1τ1, . . . , ndτd).
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To see that the function is indeed limit-periodic, we note that it can be
written as

γτ (n) =
∑

e|gcd(nτ )

µ(e) =
∞∑
e=1

µ(e)
∏
τi=1

ψe,0(ni) =
∏
π

(1− ψπ,0(nτ )),

where µ is the Möbius function and the product goes over all primes π. The
condition |τ | ≥ 2 and the multiplicative structure ensures convergence in Ldp
for all p ≥ 1.

More generally let G be a finite set of such multiindices. Then the func-
tion

γG =
∏
τ∈G

γτ

is also limit-periodic in Ldp for all p ≥ 1 due to Lemma 2.4.
If we choose G = {τ ∈ Id : |τ | = 2} for example, we get the indicator

function of the set of integers with pairwise coprime components.
Taking products is one possibility to get new examples of limit-periodic

functions. Another is to take linear transformations fA,m(n) := f(An + m)
with A ∈ Nc×d,m ∈ Nc and f ∈ Dc2.

Now we want to see how Theorem 1.2 (and the proof of Theorem 1.1)
may be used to solve some binary additive problems. Lemma 2.2 allows us
to compute scalar products 〈f, g〉 of functions f ∈ Ddp and g ∈ Vdp′ . But when
it comes to more elaborate binary problems, such as the evaluation of the
sum ∑

n+m=k

f(n)g(m),

functional analysis gives no simple answer. In the special case of f ∈ Dd2 and
g ∈ Wd

2 however, we can immediately write down an asymptotic formula for
the sum above:∑

n+m=k

f(n)g(m)

= k1 · · · kd
∞∑
q=1

∑
|a|≤q

(a;q)=1

〈f, ea/q〉〈g, ea/q〉e(k · a/q) + o(|k|d).

This can be achieved by expressing the sum as�

[0,1]d

S(α)T (α)e(k ·α) dα,

where S and T are the exponential sums of f and g respectively with sum-
mation constraint n ≤ k. Then we split the integral into major and minor
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arcs. The minor arcs give a contribution of o(|k|d) due to f ∈ Dd2 when we
apply the Cauchy–Schwarz inequality and Theorem 1.2. The major arcs can
be evaluated similarly to the procedure in the proof of Theorem 1.1 and give
the main term in the asymptotics.

Now a few words about the space Wd
2 . First of all we have Dd2 ⊆ Wd

2

from Lemma 2.3. Therefore, we get many interesting examples of functions
g ∈ Wd

2 by looking at the space Dd2 .
Many other examples can be found if we use the tensor product. We

define (g1 ⊗ g2)(n) = g1(n1)g2(n2), where n = (n1,n2) and gi ∈ Wdi
2 (i ∈

{1, 2}, d1 + d2 = d). Then we obtain g1 ⊗ g2 ∈ Wd
2 .

Let V⊗d2 be the closure of the space of linear combinations of functions
g with g(n) =

∏d
i=1 gi(ni) and gi ∈ V1

2 . Then V⊗d2 ⊆ Wd
2 by the identities

V1
2 =W1

2 , ‖g‖p =
∏d
i=1 ‖gi‖p and Lemma 2.1.

6. A counterexample. Theorem 1.1 is not always true for functions
f ∈ Vd2 . To see this, we look at the counterexample f : N2

0 → R given by

f(n1, n2) :=
{ 1 if n1 > n2,

−1 if n1 ≤ n2.

The symmetry f(n1, n2) = −f(n2, n1) (n1 6= n2) simplifies the calcula-
tion of

〈f, ψq,a〉 = lim
N→∞

1
N2

∑
|n|≤N−1
n≡amod q

f(n) = 0.

A direct consequence is that 〈f, ea/q〉 = 0 for every q ∈ N, |a| ≤ q, and
thus we have Sf = 0. On the other hand, we are also able to calculate the
exponential sum for the parameter N−1 explicitly, using the geometric sum
formula.

For α2 /∈ Z, α1 /∈ Z, and α1 + α2 /∈ Z we get

Sf (α) =
1

e(α2)− 1

(
2
e(α1N + α2N)− 1
e(α1 + α2)− 1

− (e(α2N) + 1)
e(α1N)− 1
e(α1)− 1

)
.

Let α1 = β1, α2 = 1/N+β2, and |βi| < δ/N , β1 6= 0 for some 1/100 > δ > 0.
Substituting and using the 1-periodicity of e gives

Sf (α) =
1

e(1/N + β2)− 1

×
(

2
e(β1N + β2N)− 1
e(1/N + β1 + β2)− 1

− (e(β2N) + 1)
e(β1N)− 1
e(β1)− 1

)
.
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The (rough) estimates

|e(1/N + β1)− 1| ≤ 20/N,
|e(1/N + β1 + β2)− 1| ≥ 1/N,

|e(β2N) + 1| ≥ 1,
|e(β1N + β2N)− 1| ≤ 20δ,∣∣∣∣1− e(β1N)

1− e(β1)

∣∣∣∣ ≥ N/2
are valid when N ≥ 10 and imply the lower bound

|Sf (β1, 1/N + β2)| ≥ (N/20)(−40δN +N/2) ≥ N2/200.

Since the δ/N -neighbourhood of (0, 1/N) is part of the major arcs, we get�

M

|Sf (α)|2 dα ≥ (N2/200)2 · (δ/N)2 = ηN2

with some η > 0.

7. Further directions and generalisations. An obvious generalisa-
tion of limit-periodicity are almost-periodic functions. A function f ∈ Ld2 is
almost-periodic if it is the limit of linear combinations of functions eα in the
Besicovitch seminorm. Theorem 1.2 and the relevant lemmata generalise to
this function space with the appropriate adaptations (see also [P]).

Sometimes, when the function f under consideration is regular enough,
it is possible to improve significantly on the o(Nd)-bounds in this paper.
This is possible for the indicator function of k-free numbers and should be
possible for our functions γG, too. Possible applications are binary problems
involving prime numbers and multidimensional sets with similar structural
properties.
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