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1. Introduction. The question of class number indivisibility has always
been more difficult than the question of class number divisibility. For exam-
ple, although Kummer was able to prove Fermat’s Last Theorem for regular
primes, that is, primes p not dividing the class number of the pth cyclotomic
field, it is still unknown today whether infinitely many regular primes exist
(in 1915, Jensen did prove the existence of infinitely many irregular primes).

In 1974, Hartung [8] showed that infinitely many imaginary quadratic
number fields have class number not divisible by 3. Horie and Ônishi [9,
10, 11], Jochnowitz [14], and Ono and Skinner [29] proved that there are
infinitely many imaginary quadratic number fields with class number not
divisible by a given prime p. Quantitative results on the density of quadratic
fields with class number indivisible by 3 have been obtained by Davenport
and Heilbronn [4], Datskovsky and Wright [3], and Kimura [16] (for relative
class numbers). Kohnen and Ono made further progress in [17]. They proved
that for all ε > 0 and sufficiently large x, the number of imaginary quadratic
number fields K = Q(

√
−D) with p - hK and D < x is

≥
(

2(p− 2)√
3(p− 1)

− ε
) √

x

log x
.

Less is known about class numbers in real quadratic fields, but in 1999,
Ono [28] obtained a similar lower bound for the number of real quadratic
fields K with p - hK and bounded discriminant; this bound is valid for
primes p with 3 < p < 5000. The results above do not give explicit families
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of fields with the desired class number properties. In 1999, Ichimura [12]
constructed an explicit infinite family of quadratic function fields over Fq(T )
with class number not divisible by 3; he requires that q ≡ 2 (mod 3). Pacelli
and Rosen [32] extended this to non-quadratic fields of degree m over Fq(T ),
3 - m, for an infinite number of prime powers q, also with the condition that
q ≡ 2 (mod 3).

In this paper, we generalize Pacelli and Rosen’s result, constructing,
for a large class of q, infinitely many function fields of any degree m over
Fq(T ) with class number indivisible by an arbitrary prime `. We give an ex-
plicit description of those primes (and prime powers) q for which the result
holds. For the special case where ` = 3 and m = 2, we recover Ichimura’s
result.

For related results on divisibility of class numbers, see Nagell [26] for
imaginary number fields, Yamamoto [39] or Weinberger [38] for real number
fields, and Friesen [6] for function fields. For quantitative results, see for
example Murty and Cardon [25, 2]. More generally, to see results on the
minimum n-rank of the ideal class group of a global field, see Azuhata and
Ichimura [1] or Nakano [27] for number fields and Lee and Pacelli [20, 21,
22, 30, 31] for function fields.

As in [12] and [32], the fields we construct are given explicitly. The idea
of the proof is to construct two towers of fields N1 ⊂ · · · ⊂ Nt = Fq(T ) and
M1 ⊂ · · · ⊂Mt. The fields are designed so that ` - hM1 , Ni+1/Ni is cyclic of
degree ` and ramified (totally) at exactly one prime pi, Mi/Ni is a degree m
extension in which pi is inert, andMi+1 is the composite field ofMi andNi+1.
Together with class field theory, this is enough to show that ` - hMi for any
1 ≤ i ≤ t. Thus Mt has degree m over Nt, the rational function field, and
has class number not divisible by `.

Let q be a power of an odd prime, and Fq the finite field with q elements.
The main results are as follows:

Theorem 1.1. Let m > 1 be any positive integer and ` an odd prime.
Write m = `tm1 for integers t and m1 with ` - m1. Let m0 be the square-free
part of m1, and assume that q is sufficiently large with q ≡ 1 (mod m0) and
q ≡ −1 (mod `). Then there are infinitely many function fields K of degree
m over Fq(T ) with ` - hK .

Corollary 1.2. Suppose m is indivisible by ` and that q ≡ 1 (mod m).
If, in addition, q ≡ −1 (mod `), then there are infinitely many geometric
and cyclic extensions K of degree m over Fq(T ) such that ` - hK .

Corollary 1.3. Suppose t ≥ 1 and m = `tm1 with m1 not divisible
by `. If q ≡ 1 (mod m1) and q ≡ −1 (mod `t), then there are infinitely many
geometric and cyclic extensions K of degree m over Fq(T ) such that ` - hK .
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In the remainder of this introduction, we will outline some important
results and methods which will be used in the proof of the main theorem,
Theorem 1.1. In the statement of Theorem 1.1 we use the phrase “sufficiently
large q.” In the Appendix we give a quantitative version of this restriction.
In Section 3, we prove a function field analogue of a class-field-theoretic
result of Iwasawa; this result is stated but not proved by Ichimura in [12].
In Section 4, we prove the main theorem, and in Section 5, we prove the two
corollaries stated above.

In [12] the cubic extensions needed were generated by using a vari-
ant of the “simplest cubic polynomials” discovered by Dan Shanks [36]:
X3− 3uX2− (3u+ 3)X − 1. Any root of this polynomial generates a Galois
extension of k(u) with Galois group isomorphic to Z/3Z. Here k is any field
with characteristic different from 3. Hashimoto and Miyake found generaliza-
tions of this polynomial for any odd degree `. Their work was simplified and
extended by Rikuna in [33] and further developed by Komatsu in [18]. We
will restrict ourselves to the case of ` odd and present Rikuna’s polynomials
following Komatsu.

Let k be a field whose characteristic does not divide `. Let ζ be a primitve
`th root of unity in some field K containing k and suppose ω = ζ + ζ−1 is
in K. Define

(1)
P(X) := (ζ−1 − ζ)−1(ζ−1(X − ζ)` − ζ(X − ζ−1)`),

Q(X) := (ζ−1 − ζ)−1((X − ζ)` − (X − ζ−1)`).

Note that P(X) has degree `, Q(X) has degree `− 1, and both polynomials
have coefficients in K. It will be convenient to define the rational function
r(X) = P(X)/Q(X). Finally, define

(2) F (X,u) = P(X)− uQ(X) ∈ K[X,u].

Here we assume u is transcendental overK. As can be seen from the following
theorem, this is a higher degree analogue of the Shanks polynomial.

Theorem 1.4. The polynomial F (X,u) is irreducible over K(u). Let x
be a root in some extension field of K(u). Then K(x, u) = K(x) is a Galois
extension of K(u) with Galois group isomorphic to Z/`Z. The discriminant
of F (X,u) is given by

(3) ``(4− ω2)(`−1)(`−2)/2(u2 − ωu+ 1)`−1.

Note that if x is a root of F (X,u) = 0, then u = P(x)/Q(x) = r(x).
This justifies the equality K(x, u) = K(x). The formula for the discriminant
is stated in Rikuna’s paper, but not proven there. A proof can be found in
Komatsu [18, Lemma 2.1].

Finally, we note that the polynomial

P (u) = u2 − ωu+ 1 = (u− ζ)(u− ζ−1)
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plays a big role in our considerations. From now on we will assume that
ζ /∈ K. This implies that P (u) is irreducible over K. The formula for the
discriminant then shows that the only primes of K(u) which can ramify in
K(x) are the zero divisor of P (u) and possibly the prime at infinity. A simple
calculation, using the Riemann–Hurwitz formula, shows that the prime at
infinity does not ramify. Thus, K(x)/K(u) ramifies at exactly one prime,
the zero divisor of P (u) (for details see the proof of Lemma 4.1).

2. Preliminaries. The following lemma is well known, and a proof can
be found in [19].

Lemma 2.1. Let k be a field, m an integer ≥ 2, and a ∈ k×. Assume
that for any prime p with p |m, we have a /∈ kp, and if 4 |m, then a 6∈ −4k4.
Then xm − a is irreducible in k[x].

We will also need the following lemma whose proof is elementary.
Lemma 2.2. Let A be an abelian group, and a an element of A. Suppose

that a is an n1-power and an n2-power with (n1, n2) = 1. Then a is an
n1n2-power.

The main goal of this section is to prove the following.
Lemma 2.3. Let ` be an odd prime, m > 1 an integer not divisible by `,

and ζ a primitive `th root of unity. For all sufficiently large prime powers q
satisfying

(i) q ≡ −1 (mod `),
(ii) q ≡ 1 (mod m0) where m0 is the square-free part of m,

there is a γ ∈ F×q such that Xm − (γ + `ζ) is irreducible over Fq(ζ).

Proof. We begin by reducing the problem to one which takes place en-
tirely in the field Fq.

Since q ≡ −1 (mod `) it follows that the quadratic extension of Fq has
the form Fq(ζ), where ζ is a primitive `th root of unity. Note that since
Fq(ζ) = Fq2 , −1 must be a square in Fq(ζ); say −1 = α2 in Fq(ζ). As
a result, to prove thatXm − (γ + `ζ) is irreducible over Fq(ζ), it is enough by
Lemma 2.1 to show that γ+`ζ is not a pth power for all primes p dividingm.
This suffices because if 4 |m and `ζ + γ = −4β4 for some β ∈ Fq(ζ), then
`ζ + γ = (2αβ2)2 is a square in Fq(ζ), a contradiction.

So let p be a prime dividing m and suppose that γ+ `ζ is a pth power in
Fq(ζ). Taking norms from Fq(ζ) to Fq, we find that γ2 + `(ζ + ζ−1)γ + `2 is
a pth power in Fq. Completing the square, we find c and d in Fq such that

γ2 + (ζ + ζ−1)`γ + `2 = (γ − c)2 + d.

A short computation shows that d 6= 0. It follows that if we can find a γ ∈ Fq

such that (γ − c)2 + d is not a pth power in Fq for every prime p |m, then
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Xm − (γ + `ζ) is irreducible over Fq(ζ) as required. We will show that for q
large enough, there exists λ ∈ Fq such that λ2+d is not a pth power for every
prime p dividing m. Then γ = λ+ c will be the element we are looking for.

For each k dividing q − 1, consider the curve Ck : y2 + d = xk. This
curve is absolutely irreducible and non-singular except for the unique point
at infinity when k > 3. Its genus is (k − 1)/2 when k is odd, and k/2 − 1
when k is even. Let Nk be the number of points (α, β) ∈ F(2)

q such that
β2 + d = αk, i.e. the number of rational points on Ck. Using either the
Riemann hypothesis for curves, or a more elementary argument using Jacobi
sums (see [13, Chapter 8]), one can show that |Nk − q| ≤ (k − 1)

√
q. We

will need this estimate, especially when k is square-free dividing m. Our
hypothesis ensures that in this case, k divides q − 1.

Let Rk denote the set of kth powers in Fq (including zero), and let

Sk = {η ∈ R2 | η + d ∈ Rk}.
It is easy to see that R2 has (q + 1)/2 elements. What can be said about the
size of Sk? Well, if (α, β) is a rational point on Ck, i.e. an element of Ck(Fq),
then β2 ∈ Sk. So, there is a map (α, β) 7→ β2 from Ck(Fq) to Sk. From the
definition of Sk, it is clear that this map is onto. Since ±1 ∈ Fq and the kth
roots of unity are in Fq, the map is 2k-to-1 at all but at most two elements
of Sk, namely 0 and −d (specifically, 0 if d is a kth power, and −d if −d is a
square). In all cases, one can show that |#Sk −Nk/2k| < 2. It follows that
the number of elements in Sk is approximately q/2k.

If S is a subset of R2, let S′ denote its complement in R2. Consider the
set

T =
⋂
p|m

S′p.

The intersection is over all primes dividing m. If τ ∈ T , then τ + d is not
a pth power for any prime p dividing m. Thus, if τ = λ2 then γ = λ + c is
the element we are looking for. We will show that T is non-empty for q large
enough. In fact, we will show a lot more, namely

#T =
q

2

∏
p|m

(
1− 1

p

)
+O(

√
q).

Let p1, . . . , pt be the primes dividing m. Then

T ′ =
t⋃

i=1

Spi ,

and therefore,

#T ′ =
∑

i

#Spi −
∑
i<j

#(Spi ∩ Spj ) +
∑

i<j<k

#(Spi ∩ Spj ∩ Spk
)− · · ·

by the inclusion/exclusion principle.
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The intersections simplify considerably. Namely, it can be shown via
Lemma 2.2 that

Spi1
∩ · · · ∩ Spir

= Spi1
...pir

.

Since, by hypothesis, the square-free part of m divides q− 1, we can use our
previous estimates, |#Sk − Nk/2k| < 2 and |Nk − q| ≤ k

√
q. From this we

see that
#Sk =

q

2k
+O(

√
q)

for all square-free k dividing m. Using this in the above expression for #T ′

yields

2#T ′/q =
∑

i

1
pi
−
∑
i<j

1
pipj

+
∑

i<j<k

1
pipjpk

− · · ·+O(q−1/2),

which is equivalent to (using #R2 = (q + 1)/2)

#T =
q

2

∏
i

(
1− 1

pi

)
+O(

√
q).

By paying more attention to detail it is fairly easy to give an explicit
lower bound for #T in terms of q and thus determine how large q has to be
in order to ensure the T is non-empty. See the Appendix for details.

3. Ichimura’s lemma and class number indivisibility. In [12], Ichi-
mura states a version of the following lemmas, though his proof seems in-
complete. Here we give a rigorous proof, using the same ideas which Iwasawa
used in his original result for number fields.

Proposition 3.1 (Ichimura’s lemma). Let K/k be a finite, geometric
`-extension which is ramified at exactly one prime p of k. Suppose that only
one prime P of K lies above p, and ` - deg p. Then ` |hK implies ` |hk.

First, we fix some notation. Let k be a function field in one variable with
finite field of constants Fq. Let p be a prime of k and A the subring of k
consisting of elements whose only poles are at p. It is well known that A is
a Dedekind domain and that its group of units is precisely F×q .

The proof of the following lemma is given in [34].

Lemma 3.2. Let Jk be the group of divisor classes of degree 0 of k, ClA the
ideal class group of A, and d = deg p. Then the following sequence is exact:

(0)→ Jk → ClA → Z/dZ→ (0).

Corollary 3.3. Let hA = # ClA, the class number of A, and hk = #Jk,
the class number of k. Then

hA = hkd.

A proof of the following can be found in [34].
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Proposition 3.4. Let kA be the maximal, abelian, unramified extension
of k in which p splits completely. Then kA is a finite abelian extension of k
and

Gal(kA/k) ∼= ClA .

Proof of Ichimura’s lemma. Let B be the integral closure of A in K.
Applying Lemma 3.2 and its corollary to the pair B,P, we see that ` |hK

implies ` |hB. Let E be the maximal abelian, unramified `-extension of K
in which P splits completely. Since E ⊂ KB, and ` |hB = [KB : K], we see
that E properly contains K.

It is easily seen that E/k is a Galois `-extension. Let G denote its Galois
group. For a prime P of E lying over P, let D(P/p) be its decomposition
group over k. Note that

|D(P/p)| = e(P/p)f(P/p) = e(P/p)f(P/p) = [K : k].

The last equality is because of the assumption that P is the only prime of K
lying over p. We conclude that D(P/p) is a proper subgroup of G. Since G is
an `-group, it follows from a well known result about `-groups that D(P/p)
is contained in a normal subgroup N ⊂ G of index `. Any other prime P ′ of
E over P has a decomposition group over k which is conjugate to D(P/p)
and is thus also contained in N . It follows that the fixed field L of N is a
cyclic, unramified extension of k in which p splits completely. It follows that
L ⊂ kA. Thus, l |hA = hkd by Corollary 3.3. Since we are assuming that `
does not divide d, we must have ` |hk, as asserted.

Before getting to the main result of this section we will need a lemma
whose proof is a simple consequence of class field theory. It will be notation-
ally convenient to use the language of valuations rather than primes. As is
well known, these are completely equivalent concepts. Let Mk be the set of
normalized valuations of k. For each v ∈ Mk, let kv be the completion of k
at v, Ov the ring of integers of kv, Pv the maximal ideal of Ov, and Uv the
unit group of the ring Ov. The norm of v, Nv, is the number of elements in
the residue class field κv = Ov/Pv.

Working inside a fixed algebraic closure of k, let k̄ be the maximal con-
stant field extension of k, and kun the maximal unramified extension of k.
It is well known that kun/k̄ is a finite Galois extension with Galois group
isomorphic to the divisor classes of degree zero of k. Thus, [kun : k̄] = hk.
Now choose a valuation w of k and let kw be the maximal abelian exten-
sion of k which is at most tamely ramified at w and unramified everywhere
else.

Lemma 3.5. The Galois group of k(w)/kun is cyclic of order
(Nw − 1)/(q − 1).
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Proof. We only sketch the proof. The open subgroups of the idèles of k
corresponding to kun and k(w) respectively are

k∗
∏
v

Uv and k∗
(∏

v 6=w

Uv × U (1)
w

)
,

where U (1)
w is the subgroup of Uw consisting of units congruent to 1 mod-

ulo Pw. By class field theory the Galois group in question is isomorphic to
the quotient of these two groups. The result now follows by a simple index
calculation, which shows that this quotient is isomorphic to κ∗w/F∗q .

We are now in a position to prove the following theorem. We are indebted
to the referee for a suggestion which allowed us to considerably simplify our
original proof.

Theorem 3.6. Let k/Fq be a function field in one variable over a finite
constant field Fq with q elements. Let ` be a fixed rational prime, and suppose
that ` does not divide q(q − 1). Suppose further that the class number hk is
not divisible by `. Then for every positive integer t, there are infinitely many
non-isomorphic geometric extensions L of k such that [L : k] = `t and for
which hL is not divisible by `.

Proof. It suffices to prove the result for t = 1. If one has that case in hand,
one can iterate the construction. Suppose Lt−1 is a geometric extension of k
of degree `t−1 with class number prime to `. Then all the hypotheses of the
theorem apply to Lt−1 as base field, and we can find a geometric extension
Lt of degree ` over Lt−1 whose class number is not divisible by `.

The proof will also show that the construction provides infinitely many
non-isomorphic examples of fields with the required properties.

Fix a valuation w of k, and let Gw be the Galois group of kw over k. Let
φ be a topological generator of Gal(k̄/k); for example, one can choose φ to
be the Frobenius automorphism of k̄/k. Next, choose an element σ ∈ Gw

which restricts to φ, and let D be the closure in Gw of the cyclic group
generated by σ. The restriction map from D to k̄ is an isomorphism of D
onto Gal(k̄/k) ∼= Ẑ. In particular, D is torsion free. Let N = Gal(kw/k̄).
This is a finite group, so we have D ∩ N = 〈e〉. We also deduce that
DN = Gw.

Now, let K be the fixed field of D. From Galois theory we deduce
Gal(K/k) ∼= N , and K ∩ k̄ = k. Thus, K is a finite geometric extension
of k. Let E be the maximal unramified extension of k in K. Using the
isomorphism of N with Gal(K/k) together with Lemma 3.5, we see that
[K : E] = (Nw − 1)/(q − 1) and [E : k] = hk.

Let e be the order of q modulo `. By hypothesis, e > 1. Also, e | ` − 1
so ` - e. For sufficiently large positive integers n there exist valuations of
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degree ne (see Theorem 5.12 in [35]). So, let n be a sufficiently large integer
prime to ` and choose w to be a valuation of degree ne. Then

Nw − 1
q − 1

=
qne − 1
q − 1

=
qne − 1
qe − 1

qe − 1
q − 1

.

Both factors are in Z and the last factor is divisible by ` since ` does not
divide q − 1. By Lemma 3.5, we see that ` divides [K : E], which in turn
divides [K : k]. Since K/k is an abelian extension, there is an intermedi-
ate extension L with [L : k] = `. We claim that L has all the properties
required.

First of all, L/k is a geometric extension, since K/k is geometric. Sec-
ondly, L is totally ramified at w and nowhere else. Again, since L ⊆ K we
know that L is unramified away from w. If it were also unramified at w, then
it would follow that L ⊆ E. However, [E : k] = hk, which is prime to ` by
hypothesis. This would contradict [L : k] = `. In order to apply Ichimura’s
lemma (Proposition 3.1), it remains to show that degw is prime to `. We
have chosen w such that degw = ne where n is prime to ` and since e < `
it too is prime to `. Finally, we apply Proposition 3.1 to conclude that the
class number of L is not divisible by `.

The fields L constructed in Theorem 3.6 need not be Galois over k. It is of
interest to examine under what conditions we can construct such extensions
which are cyclic over k. By restricting the prime power q somewhat, we can
ensure the existence of such fields.

Corollary 3.7. Suppose the conditions of the theorem are satisfied and
in addition that q ≡ −1 (mod `t). Then there are infinitely many geometric
and cyclic extensions L of degree `t over k = Fq(T ) such that hL is not
divisible by `.

Proof. First of all, note that the congruence q ≡ −1 (mod `) implies that
the order of q modulo ` is e = 2. Let n be a large integer prime to `, and w
a valuation of k of degree 2n.

Using Lemma 3.5, and the notation in the proof of the theorem, we see
that Gal(K/E) is a cyclic group of order

Nw − 1
q − 1

=
q2n − 1
q2 − 1

q2 − 1
q − 1

.

Thus, the order of Gal(K/E) is divisible by q + 1, and so by `t. It follows
that Gal(K/k) has a cyclic subgroup of order `t, and consequently a cyclic
quotient group of order `t. Let k ⊂ L ⊆ K be an intermediate field such
that Gal(L/k) is cyclic of order `t. We claim that L has all the desired
properties.
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The only property that is not immediate is that L/k is totally ramified
at w and nowhere else. It is certainly unramified at every valuation v 6= w.
Let T ⊆ Gal(L/k) be the ramification group of any valuation above w in L,
and L1 the fixed field of T . Then L1 is unramified everywhere and so is a
subfield of E. If L1 6= k it would follow that ` divides [E : k] = hk. This is
contrary to assumption. Thus, L1 = k, which proves L/k is totally ramified
at w. Since degw = 2n is prime to ` we can once again invoke Ichimura’s
lemma to conclude that hL is indivisible by `.

Theorem 3.6 and its corollary will be used in the proof of Corollary 1.3
to be given in Section 5.

4. Proofs of main results. We are now ready to prove Theorem 1.1.
Let m > 1 be an integer and ` an odd prime. Write m = `tm1 for integers t
and m1 with ` - m1. Let m0 be the square-free part of m1, and fix a prime
power q, sufficiently large, with q ≡ 1 (mod m0) and q ≡ −1 (mod `). First,
we prove the theorem for the case when ` - m.

Define rational functions Xj(T ) recursively as follows: X0(T ) = T and

(4) Xj =
P(Xj−1)
Q(Xj−1)

= r(Xj−1) for j ≥ 1,

where P and Q are defined as in (1). Note that Xj = r(j)(T ), where the
superscript (j) means to compose r(T ) with itself j times.

Recalling the Rikuna polynomial F (X,u) = P(X)− uQ(X) we see that
F (Xj−1, Xj) = 0. It follows from Theorem 1.4, and the remarks following,
that Fq(Xj−1)/Fq(Xj) is a cyclic extension of degree `, ramified only at the
zero divisor of X2

j − ωXj + 1.
Now fix a positive integer n ≥ 1, and for 1 ≤ i ≤ n define

Ni = Fq(Xn−i) and Mi = Ni(m
√
`Xn + γ).

Here γ ∈ Fq is chosen so that Xm − (`ζ + γ) is irreducible over Fq(ζ) (see
Lemma 2.3).

Note that Nn = Fq(T ) and Mn = Fq(T )(m
√
`Xn + γ). We will show that

Mn is an extension of Fq(T ) of degree m and that its class number is not
divisible by `. Further, the genus of Mn is an increasing function of n. Thus,
all the fields Mn are pairwise non-isomorphic. This will prove our theorem
in the case that m is not divisible by `.

We will see that for all i such that 1 ≤ i ≤ n − 1, [Ni+1 : Ni] = `,
[Mi+1 : Mi] = `, and for all i, [Mi : Ni] = m. The field diagram is shown
below:
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Mn

`Fq(T ) = Nn

m hhhhhhhhhhh

` Mn−1

`Nn−1

m hhhhhhhhhh

`
...

`...
` M2

`N2

m hhhhhhhhhh

` M1

N1

m hhhhhhhhhh

Let
Pi = X2

n−i − ωXn−i + 1,

and let (Pi) denote the divisor of Ni corresponding to the zeros of Pi. Recall
that q ≡ −1 (mod `), which implies that X2−ωX+ 1 is irreducible over Fq.
Therefore, Pi is irreducible in Fq[Xn−i], and hence (Pi) is a prime divisor.

The idea of the proof of the main result is as follows. We will show that
` - hM1 , and use Proposition 3.1 to conclude that ` - hMn . The next few
lemmas show that Proposition 3.1 applies. Finally, we show that the Mn’s
are distinct, so there are infinitely many degree m extensions of Fq with class
number indivisible by `.

Lemma 4.1. For each i, Ni+1 is a Z/`Z-extension of Ni, totally ramified
at (Pi), and unramified outside (Pi).

Proof. By the remarks preceding the lemma, we see that Ni+1 is a Z/`Z-
extension of Ni. By (3), the discriminant is

``(4− ω2)(`−1)(`−2)/2(X2
n−i − ωXn−i + 1)`−1 = ``(4− ω2)(`−1)(`−2)/2P `−1

i ,

where ``(4− ω2)(`−1)(`−2)/2 ∈ F×q . It is easy to see ``(4− ω2)(`−1)(`−2)/2 6= 0
since char Fq 6= ` and if 4−ω2 = 0, then ω = ±2. This implies that ζ+ζ−1 =
±2, so ζ = ±1, a contradiction since ` ≥ 3.

Since any finite ramified prime would divide the discriminant, it follows
that the only possible ramification is at Pi and at the prime at infinity.
Note that the infinite prime has degree 1, so if (Pi) were unramified, then
Riemann–Hurwitz implies that

2gNi+1 − 2 = `(2gNi − 2) + e∞ − 1.

Since Ni and Ni+1 are rational function fields, they both have genus 0. It
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follows that e∞ = 2`− 1, which is impossible since the ramification index is
at most the degree of the extension, which is ` in this case. So (Pi) must be
ramified in Ni+1, and the ramification index is ` since the extension is Galois
of prime degree `. It follows that the infinite prime is unramified, because

−2 = −2`+ (`− 1) deg(Pi) + e∞ − 1 = −2`+ 2`− 2 + e∞ − 1 = e∞ − 3.

So e∞ = 1, as claimed.

Lemma 4.2. The extension Mi/Ni has degree m, and the prime (Pi) of
Ni is inert in the extension Mi.

Proof. Since Mi = Ni(m
√
`Xn + γ), it suffices to show that the minimal

polynomial for m
√
`Xn + γ over Ni is irreducible mod Pi. We will show that

Xm− (`Xn +γ) is irreducible mod Pi, which implies that Xm− (`Xn +γ) is
irreducible over Ni and thus must be the minimal polynomial for m

√
`Xn + γ

over Ni.
Let λ be the unique Fq-homomorphism from Fq[Xn−i] to Fq(ζ) which

takes Xn−i to ζ. It is clear that λ is onto and has as kernel the principal
ideal generated by Pi. In the usual way, λ extends to a homomorphism from
the localization Ri of Fq[Xn−i] at the prime ideal (Pi).

By definition, we know that ri(Xn−i) = Xn. One easily checks that r(ζ)
= ζ. Using these two facts and λ(Xn−i) = ζ, one deduces that λ(Xn) = ζ.
The homomorphism λ extends in the obvious way to a homomorphism
from Ri[X] to Fq(ζ)[X]. This homomorphism takes Xm − (`Xn + γ) to
Xm − (`ζ + γ). Since the latter polynomial is irreducible by our choice of γ,
the former one must be irreducible as well. This completes the proof.

Lemma 4.3. The polynomial Q(X) ∈ Fq(X) is separable.

Proof. It suffices to show that Q(X) and Q′(X) have no common roots,
where Q′(X) is the formal derivative of Q(X). The derivative of Q(X) is
given as follows:

Q′(X) =
`((X − ζ)`−1 − (X − ζ−1)`−1)

ζ−1 − ζ
.

Let α ∈ Fq be a root of Q(X). Then, by the definition of Q(X), we have
(α − ζ)` = (α − ζ−1)`. Clearly, we cannot have α = ζ or α = ζ−1, because
ζ−ζ−1 6= 0. If α were also a root of Q′(X), then we would have (α−ζ)`−1 =
(α− ζ−1)`−1. So

(α− ζ)` = (α− ζ−1)` = (α− ζ)`−1(α− ζ−1).

Since α 6= ζ, we see that α− ζ = α− ζ−1, so ζ = ζ−1, a contradiction.

Lemma 4.4. The class number of M1 is not divisible by `.

Proof. Recall that M1 = Fq(Xn−1)(m
√
`Xn + γ). First, we claim that the

genus of M1 is (` − 1)(m − 1). For ease of notation, let Z = m
√
`Xn + γ, so
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M1 = Fq(Xn−1)(Z). Notice that M1Fq is a degree m extension of Fq(Xn−1)
with minimal polynomial

Xm − (`Xn + γ) = Xm −
(
`P(Xn−1)
Q(Xn−1)

+ γ

)
(5)

= Xm − `P(Xn−1) + γQ(Xn−1)
Q(Xn−1)

= Xm − F (Xn−1,−γ/`)
Q(Xn−1)/`

.

(Notice that the polynomial Xm−(`Xn +γ) remains irreducible over Fq: if α
is a zero, then it has multiplicity one; then, in the local ring at Xn−1−α the
polynomial in question is Eisenstein, and so irreducible.) The discriminant of
F (X,−γ/`) is `−(`−2)(4−ω2)(`−1)(`−2)/2(γ2 + `ωγ+ `2) by (3). This must be
non-zero: otherwise P1(−γ/`) = (γ2 +ωγ`+ `2)/`2 = 0, but −γ/` ∈ Fq, and
P1 is irreducible over Fq, a contradiction. So F (Xn−1,−γ/`) has non-zero
discriminant, and hence no multiple roots. By Lemma 4.3, Q(X) has no
multiple roots.

Finally, F (X,−γ/`) and Q(X) must be relatively prime. Otherwise, for
some α ∈ Fq, we would have

Q(α) = 0 = F (α,−γ/`) = P(α) + (γ/`)Q(α).

It easily follows from the last equality that P(α) = 0. Thus X − α is a
common factor of P(X) and Q(X), which contradicts the irreducibility of
F (X,u).

Hence, the numerator of the constant term in (5) has ` distinct roots,
each corresponding to a prime that is totally ramified in M1Fq. Similarly,
the denominator of the constant term in (5) has ` − 1 distinct roots, each
corresponding to a prime that is totally ramified in M1Fq. Finally, it is clear
that the infinite prime is totally ramified in M1Fq. Since F (X,−γ/`) and
Q(X) are relatively prime, these 2` primes are all distinct. Now char Fq - m,
and so each of these primes is tamely ramified in M1Fq. No other primes
can be ramified since no other primes can divide the discriminant of Xm −
(`Xn + γ). Each of the ramified primes has degree 1, so Riemann–Hurwitz
implies that

2gM1Fq
− 2 = m(2gFq(Xn−1) − 2) +

∑
p

(e(p)− 1) deg p

= −2m+ 2`(m− 1) = 2(`− 1)(m− 1)− 2,

and thus gM1Fq
= (`− 1)(m− 1), as claimed.

Next, we claim that M1 = Fq(Z)(Xn−1) is a Z/`Z-extension of Fq(Z).
We know that N1 is a Z/`Z-extension of Fq(Xn) and Fq(Z) is a degree m
extension of Fq(Xn); see figure below:
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M1 = Fq(Z)N1

iiiiiii
QQQQQQ

N1 = Fq(Xn−1)

` UUUUUUUU
Fq(Z)

mmmmmmm

Fq(Xn)

Since (`,m) = 1, we see thatM1 = Fq(Z)N1 is a Z/`Z-extension of Fq(Z).
Thus, the minimal polynomial for Xn−1 over Fq(Z) must be F (X,Xn) =
F (X, (Zm − γ)/`). The discriminant of this polynomial is, by (3),

(4− ω2)(`−1)(`−2)/2``(X2
n − ωXn + 1)`−1

= (4− ω2)(`−1)(`−2)/2``−2(`−1)((Zm − γ)2 − `ω(Zm − γ) + `2)`−1.

Let (Q) be the divisor corresponding to

Q = (Zm − γ)2 − `ω(Zm − γ) + `2 ∈ Fq(Z).

We will show that M1 is ramified only at the single prime (Q) of Fq(Z),
where ` - 2m = degQ. This completes the proof, by Proposition 3.1, since `
does not divide the class number of the rational function field Fq(Z). Notice
that Q is irreducible over Fq; if α is a root of Q in some extension of Fq, then
(αm−γ)/` is a root of X2−ωX+1, the minimal polynomial of ζ±1 over Fq.
So (αm− γ)/` = ζ±1. Since Xm− (`ζ±1 + γ) is irreducible over Fq(ζ±1), we
have [Fq(α) : Fq(ζ±1)] = m, and so

[Fq(α) : Fq] = [Fq(α) : Fq(ζ±1)][Fq(ζ±1) : Fq] = m · 2 = 2m,

which proves that Q must be irreducible over Fq. Thus the divisor (Q) is in-
deed prime. Since (Q) is the only prime of Fq(Z) that divides the discriminant
of the minimal polynomial of Xn−1 over Fq(Z), only (Q) and the prime at in-
finity could be ramified. Assume (Q) is not ramified. By Riemann–Hurwitz,
we get

2(`− 1)(m− 1)− 2 = (e∞ − 1)− 2`,

so e∞ = 2`m − 2m + 1 > `, a contradiction. So (Q) is ramified (totally
ramified since the extension is Galois and has prime degree `) in M1. To see
that M1 is ramified at no other primes of Fq(Z), we again use the Riemann–
Hurwitz formula (each sum is over all primes p 6= (Q)):

2(`− 1)(m− 1)− 2 = `(−2) + (`− 1) degQ+
∑

p

(ep − 1) deg p

= (`− 1)(2m)− 2(`− 1)− 2 +
∑

p

(ep − 1) deg p

= 2(`− 1)(m− 1)− 2 +
∑

p

(ep − 1) deg p.

Thus, all other primes must be unramified.
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Proof of Theorem 1.1. Assume that ` - m. Notice that Mi+1 = MiNi+1,
so by Lemma 4.1, Mi+1 is a Z/`Z-extension of Mi. Also by Lemma 4.1,
Mi+1 is totally ramified at the prime in Mi lying over (Pi) and unramified
everywhere else. By Proposition 3.1, ` - hMi implies that ` - hMi+1 . From
Lemma 4.4, we see that ` - hM1 . Therefore, ` does not divide hM2 , . . . , hMn .
Hence, Mn has class number indivisible by `.

To show that there are infinitely many such fields, we prove that eachMn

has genus (`n − 1)(m− 1), so the fields are pairwise non-isomorphic. It was
shown in Lemma 4.4 that the genus of M1 is (` − 1)(m − 1). Observe that
Mi+1/Mi is totally ramified at a single prime in Mi, denoted here by Pi,
lying over (Pi) in Ni. Since (Pi) is inert inMi, Pi has degree 2m inMi. Note
that Mn has degree `n−1 over M1, so by Riemann–Hurwitz,

2gMn − 2 = `n−1(2gM1 − 2) + (`n−1 − 1) deg P1

= `n−1(2`m− 2`− 2m+ 2− 2) + 2`n−1m− 2m

= `n−1(2`m− 2`)− 2m
= 2`n(m− 1)− 2(m− 1)− 2
= 2(`n − 1)(m− 1)− 2.

Therefore, gMn = (`n − 1)(m− 1).
Now we consider the general case. Write m = `tm1, where ` - m1, and let

m0 be the square-free part of m1. Since ` - m1, the results above show that
we have infinitely many extensions K1 of degree m1 over Fq(T ) with ` - hK1 .
Note that the constant field of K1 is Fq, as K1 is one of the fields Mn.
This field is at the top of a tower of totally ramified extensions. At the
bottom, M1/N1 is totally ramified at Xn−1 − α. Also, we know Mi+1/Mi is
totally ramified at the prime of Mi above (Pi). At a totally ramified prime,
the relative degree must be 1. So, in a tower of totally ramified extensions,
the constant field at the top must be the same as the constant field at the
bottom.

Since q ≡ −1 (mod `), Theorem 3.6 implies that there are infinitely many
non-isomorphic geometric extensions K of degree `t over K1 with ` - hK .
Thus we have infinitely many extensions K of degree m over Fq(T ) with
` - hK , as claimed.

5. Corollaries. We are now in a position to prove Corollaries 1.2 and 1.3,
which are stated in the introduction. We reproduce them here for the con-
venience of the reader.

Corollary 1.2. Suppose m is indivisible by ` and that q ≡ 1 (mod m).
If, in addition, q ≡ −1 (mod `), then there are infinitely many geometric
and cyclic extensions K of degree m over Fq(T ) such that ` - hK .
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Proof. In the course of proving Theorem 1.1, we have shown that the field
extensions Mn = k(m

√
`Xn + γ) have degree m and class number indivisible

by `. If q ≡ 1 (mod m), then the base field contains a primitive mth root
of unity. This implies Mn is a Kummer, and thus cyclic, extension of k of
degree m.

Corollary 1.3. Suppose t ≥ 1 and m = `tm1 with m1 not divisible
by `. If q ≡ 1 (mod m1) and q ≡ −1 (mod `t), then there are infinitely many
geometric and cyclic extensions K of degree m over Fq(T ) such that ` - hK .

Proof. By Corollary 1.2 above, there are infinitely many cyclic extensions
K1 of degree m1 over k with class number indivisible by `. By the corollary
to Theorem 3.6 and its proof, we can find a valuation w of k of large even
degree and a geometric and cyclic extension L/k of degree `t which is totally
ramified at w and unramified elsewhere. We still have a lot of flexibility in
the choice of w. Let us choose it so that degw is prime to `, w is unramified
in K1, and Frob(w) is a cyclic generator of Gal(K1/k). This is possible
by the Chebotarev density theorem (see [35, Proposition 9.13B]). To apply
this result we need to know K1/k is a geometric extension. In fact, K1 is
geometric over k because it is generated by the mth root of a non-constant
rational function (this is an exercise). With this choice, w is inert in K1. Let
W be the unique valuation of K1 lying above w. Since f(W/w) = m1, we
have degW = m1 degw, which is prime to `.

We claim that K = LK1 is a field with all the properties required. First
of all, it is clear that K1 ∩ L = k. It follows that K is a cyclic extension of
degree `tm1 = m. Next, notice that w is totally ramified in L and unramified
in K1. It follows that W is totally ramified in K. Also, no other valuation of
K1 is ramified in K. If we knew that K/K1 was a geometric extension, we
could invoke Ichimura’s lemma one more time to deduce that hL is indivisible
by `. We conclude the proof by showing that, indeed, K/K1 is a geometric
extension.

Let E be the constant field of K. The field E injects into the residue class
field of the valuation aboveW in K. This is equal to the residue class field of
W since K/K1 is totally ramified. We have shown degW = m1 degw which
is prime to `. Thus [E : F ] is prime to `. On the other hand, E ∩ K1 = F
since K1/k is geometric. It follows that [E : F] divides [K : K1], which is a
power of `. One concludes that [E : F] = 1. The corollary is proved.

6. Appendix. The theorem on indivisibility by a prime ` of the class
number of extensions of Fq(T ) of degree m is dependent on the assumption
that q is a sufficiently large prime power satisfying q ≡ −1 (mod `) and
q ≡ 1 (mod m0), where m0 is the square-free part of m. This is equivalent
to a single congruence q ≡ −1 + 2``′ (mod `m0), where `′ is a multiplicative
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inverse of ` modulo m0. We look into the question of how large q has to
be in order for the theorem to be valid. If q lies in this arithmetic progres-
sion and is large enough to make the main theorem valid, we say that q is
admissible.

The number of rational points on the curve y2 = xk − d over Fq satisfies
|Nk − q| ≤ (k − 1)

√
q if k is odd, and ≤ 1 + (k − 1)

√
q if k is even (see

Theorem 5 of Chapter 8 in [13]). The theorem there is stated over the prime
field, but the proof works over any finite field. We will work with the slightly
weaker, but uniform, inequality |Nk − q| < k

√
q. Also, for the set Sk we

have shown |#Sk − Nk/2k| < 2. Let us write Nk = q + δ1(k)k
√
q and

#Sk = Nk/2k+2δ2(k) where |δ1(k)| and |δ2(k)| are both less than 1. Putting
these two inequalities together, we find

(6) #Sk =
q

2k
+
δ1(k)

2
√
q + 2δ2(k).

Earlier in this paper, we showed that

#T ′ = −
∑

1<k|m

µ(k)#Sk.

Thus, since #T ′ + #T = (q + 1)/2, we have

(7) #T =
q + 1

2
+
∑

1<k|m

µ(k)#Sk.

Using (6) and substituting into (7) yields

#T =
q

2
+

1
2

+
q

2

∑
1<k|m

µ(k)
k

(8)

+
∑

1<k|m

µ(k)δ1(k)
2

√
q + 2

∑
1<k|m

µ(k)δ2(k).

Combining the first and third terms simplifies to the following main term:

q

2

∏
p|m

(
1− 1

p

)
=
q

2
φ(m0)
m0

.

To go further, we need the simple observation that∑
k|m

|µ(k)| =
t∑

r=0

(
t

r

)
= 2t,

where t is the number of primes dividing m. Since both δ1(k) and δ2(k) have
absolute value less than 1, the sum of the second, fourth, and fifth terms of
(8) is bounded above by 2t−1√q + 2t+1.
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Putting all this together, we have∣∣∣∣#T − q

2
φ(m0)
m0

∣∣∣∣ ≤ 2t−1√q + 2t+1.

Thus, to ensure that T is not empty, it suffices to ensure that

q >
2tm0

φ(m0)
√
q + 4

2tm0

φ(m0)
.

Set C = 2tm0/φ(m0). The condition can now be written as

(9) q > C
√
q + 4C.

Let f(x) = x2 − Cx − 4C. The largest zero, x0, of f(x) is given by 2x0 =
C +

√
C2 + 16C. Thus, x0 is less than C + 4. Equation (9) is satisfied if

f(
√
q) > 0, and this is certainly the case if √q > C + 4 since f(x) is easily

seen to be increasing at x0 and beyond. We have proved

Proposition 6.1. Let C = 2tm0/φ(m0). A prime power q is admissible
if q > (C + 4)2.

It is important to point out that this condition is sufficient but not nec-
essary. We have made a number of somewhat coarse estimates during the
derivation. For example, in the case where ` = 3 and m = m0 = 2 (the case
considered by Ichimura), every q such that q ≡ −1 (mod 3) is admissible,
whereas the proposition requires q > 16. Nevertheless, the estimate is strong
enough to give some surprising consequences, taking into account the fact
that we are looking at q lying in the arithmetic progression A(`,m0) defined
by q ≡ −1 + ``′ (mod `m0). Every q in this progression, except possibly the
smallest positive element, is greater than `m0. Thus, if `m0 ≥ (C+4)2, every
possible q in this progression with perhaps one exception is admissible. We
investigate two special cases.

Corollary 6.2. Suppose m0 = p, a prime. If p ≥ 13 then every prime
power q in A(`,m0) is admissible with at most one exception.

Proof. If p ≥ 13, we claim that `p ≥ (C + 4)2 for any odd prime `. First,
let us write out this condition explicitly:

`p ≥
(

2p
p− 1

+ 4
)2

= 4
(

p2

(p− 1)2
+

4p
p− 1

+ 4
)
.

Dividing both sides by 4p yields
`

4
≥ p

(p− 1)2
+

4
p− 1

+
4
p
.

For p ≥ 13, the right hand side is less than .74, so the inequality is satisfied
if ` is greater than 2.96. Since ` is an odd prime, this condition is always
satisfied.
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Corollary 6.3. Suppose m0 is divisible by two or more primes and
that the smallest prime dividing m0 is greater than or equal to 7. Then every
prime power q in A(`,m0) is admissible with at most one exception.

Proof. The condition we need is

`m0 ≥ 16
(

2t−2m0

φ(m0)
+ 1
)2

.

Dividing both sides by 16m0 and simplifying yields

`

16
≥ 22t−4m0

φ(m0)2
+

2t−1

φ(m0)
+

1
m0

.

If the right hand side of this inequality were less than or equal to 3/16 this
would hold for all odd primes, and the corollary would follow.

An elementary argument shows if t ≥ 2 then the largest value of the right
hand side occurs for m0 = 77 = 7 · 11. In this case the right hand side is

77
602

+
2
60

+
1
77
≈ .0677,

which is comfortably less than 3/16.
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