Function fields with class number indivisible by a prime ℓ

by
Michael Daub (Berkeley, CA), Jaclyn Lang (Los Angeles, CA), Mona Merling (Chicago, IL), Allison M. Pacelli (Williamstown, MA), Natee Pitiwan (Los Angeles, CA) and Michael Rosen (Providence, RI)

1. Introduction. The question of class number indivisibility has always been more difficult than the question of class number divisibility. For example, although Kummer was able to prove Fermat's Last Theorem for regular primes, that is, primes p not dividing the class number of the p th cyclotomic field, it is still unknown today whether infinitely many regular primes exist (in 1915, Jensen did prove the existence of infinitely many irregular primes).

In 1974, Hartung [8] showed that infinitely many imaginary quadratic number fields have class number not divisible by 3 . Horie and Ônishi (9, 10, 11, Jochnowitz [14], and Ono and Skinner [29] proved that there are infinitely many imaginary quadratic number fields with class number not divisible by a given prime p. Quantitative results on the density of quadratic fields with class number indivisible by 3 have been obtained by Davenport and Heilbronn [4], Datskovsky and Wright [3], and Kimura [16] (for relative class numbers). Kohnen and Ono made further progress in [17]. They proved that for all $\epsilon>0$ and sufficiently large x, the number of imaginary quadratic number fields $K=\mathbb{Q}(\sqrt{-D})$ with $p \nmid h_{K}$ and $D<x$ is

$$
\geq\left(\frac{2(p-2)}{\sqrt{3}(p-1)}-\epsilon\right) \frac{\sqrt{x}}{\log x} .
$$

Less is known about class numbers in real quadratic fields, but in 1999, Ono [28] obtained a similar lower bound for the number of real quadratic fields K with $p \nmid h_{K}$ and bounded discriminant; this bound is valid for primes p with $3<p<5000$. The results above do not give explicit families

[^0]of fields with the desired class number properties. In 1999, Ichimura [12] constructed an explicit infinite family of quadratic function fields over $\mathbb{F}_{q}(T)$ with class number not divisible by 3 ; he requires that $q \equiv 2(\bmod 3)$. Pacelli and Rosen [32] extended this to non-quadratic fields of degree m over $\mathbb{F}_{q}(T)$, $3 \nmid m$, for an infinite number of prime powers q, also with the condition that $q \equiv 2(\bmod 3)$.

In this paper, we generalize Pacelli and Rosen's result, constructing, for a large class of q, infinitely many function fields of any degree m over $\mathbb{F}_{q}(T)$ with class number indivisible by an arbitrary prime ℓ. We give an explicit description of those primes (and prime powers) q for which the result holds. For the special case where $\ell=3$ and $m=2$, we recover Ichimura's result.

For related results on divisibility of class numbers, see Nagell [26] for imaginary number fields, Yamamoto [39] or Weinberger [38] for real number fields, and Friesen [6] for function fields. For quantitative results, see for example Murty and Cardon [25, 2]. More generally, to see results on the minimum n-rank of the ideal class group of a global field, see Azuhata and Ichimura [1] or Nakano [27] for number fields and Lee and Pacelli [20, 21, 22, 30, 31] for function fields.

As in [12] and [32], the fields we construct are given explicitly. The idea of the proof is to construct two towers of fields $N_{1} \subset \cdots \subset N_{t}=\mathbb{F}_{q}(T)$ and $M_{1} \subset \cdots \subset M_{t}$. The fields are designed so that $\ell \nmid h_{M_{1}}, N_{i+1} / N_{i}$ is cyclic of degree ℓ and ramified (totally) at exactly one prime $\mathfrak{p}_{i}, M_{i} / N_{i}$ is a degree m extension in which \mathfrak{p}_{i} is inert, and M_{i+1} is the composite field of M_{i} and N_{i+1}. Together with class field theory, this is enough to show that $\ell \nmid h_{M_{i}}$ for any $1 \leq i \leq t$. Thus M_{t} has degree m over N_{t}, the rational function field, and has class number not divisible by ℓ.

Let q be a power of an odd prime, and \mathbb{F}_{q} the finite field with q elements. The main results are as follows:

TheOrem 1.1. Let $m>1$ be any positive integer and ℓ an odd prime. Write $m=\ell^{t} m_{1}$ for integers t and m_{1} with $\ell \nmid m_{1}$. Let m_{0} be the square-free part of m_{1}, and assume that q is sufficiently large with $q \equiv 1\left(\bmod m_{0}\right)$ and $q \equiv-1(\bmod \ell)$. Then there are infinitely many function fields K of degree m over $\mathbb{F}_{q}(T)$ with $\ell \nmid h_{K}$.

Corollary 1.2. Suppose m is indivisible by ℓ and that $q \equiv 1(\bmod m)$. If, in addition, $q \equiv-1(\bmod \ell)$, then there are infinitely many geometric and cyclic extensions K of degree m over $\mathbb{F}_{q}(T)$ such that $\ell \nmid h_{K}$.

Corollary 1.3. Suppose $t \geq 1$ and $m=\ell^{t} m_{1}$ with m_{1} not divisible by ℓ. If $q \equiv 1\left(\bmod m_{1}\right)$ and $q \equiv-1\left(\bmod \ell^{t}\right)$, then there are infinitely many geometric and cyclic extensions K of degree m over $\mathbb{F}_{q}(T)$ such that $\ell \nmid h_{K}$.

In the remainder of this introduction, we will outline some important results and methods which will be used in the proof of the main theorem, Theorem 1.1. In the statement of Theorem 1.1 we use the phrase "sufficiently large q." In the Appendix we give a quantitative version of this restriction. In Section 3, we prove a function field analogue of a class-field-theoretic result of Iwasawa; this result is stated but not proved by Ichimura in 12 . In Section 4, we prove the main theorem, and in Section 5, we prove the two corollaries stated above.

In 12 the cubic extensions needed were generated by using a variant of the "simplest cubic polynomials" discovered by Dan Shanks [36]: $X^{3}-3 u X^{2}-(3 u+3) X-1$. Any root of this polynomial generates a Galois extension of $k(u)$ with Galois group isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$. Here k is any field with characteristic different from 3. Hashimoto and Miyake found generalizations of this polynomial for any odd degree ℓ. Their work was simplified and extended by Rikuna in [33] and further developed by Komatsu in [18]. We will restrict ourselves to the case of ℓ odd and present Rikuna's polynomials following Komatsu.

Let k be a field whose characteristic does not divide ℓ. Let ζ be a primitve ℓ th root of unity in some field K containing k and suppose $\omega=\zeta+\zeta^{-1}$ is in K. Define

$$
\begin{align*}
& \mathcal{P}(X):=\left(\zeta^{-1}-\zeta\right)^{-1}\left(\zeta^{-1}(X-\zeta)^{\ell}-\zeta\left(X-\zeta^{-1}\right)^{\ell}\right) \\
& \mathcal{Q}(X):=\left(\zeta^{-1}-\zeta\right)^{-1}\left((X-\zeta)^{\ell}-\left(X-\zeta^{-1}\right)^{\ell}\right) \tag{1}
\end{align*}
$$

Note that $\mathcal{P}(X)$ has degree $\ell, \mathcal{Q}(X)$ has degree $\ell-1$, and both polynomials have coefficients in K. It will be convenient to define the rational function $r(X)=\mathcal{P}(X) / \mathcal{Q}(X)$. Finally, define

$$
\begin{equation*}
F(X, u)=\mathcal{P}(X)-u \mathcal{Q}(X) \in K[X, u] \tag{2}
\end{equation*}
$$

Here we assume u is transcendental over K. As can be seen from the following theorem, this is a higher degree analogue of the Shanks polynomial.

Theorem 1.4. The polynomial $F(X, u)$ is irreducible over $K(u)$. Let x be a root in some extension field of $K(u)$. Then $K(x, u)=K(x)$ is a Galois extension of $K(u)$ with Galois group isomorphic to $\mathbb{Z} / \ell \mathbb{Z}$. The discriminant of $F(X, u)$ is given by

$$
\begin{equation*}
\ell^{\ell}\left(4-\omega^{2}\right)^{(\ell-1)(\ell-2) / 2}\left(u^{2}-\omega u+1\right)^{\ell-1} . \tag{3}
\end{equation*}
$$

Note that if x is a root of $F(X, u)=0$, then $u=\mathcal{P}(x) / \mathcal{Q}(x)=r(x)$. This justifies the equality $K(x, u)=K(x)$. The formula for the discriminant is stated in Rikuna's paper, but not proven there. A proof can be found in Komatsu [18, Lemma 2.1].

Finally, we note that the polynomial

$$
P(u)=u^{2}-\omega u+1=(u-\zeta)\left(u-\zeta^{-1}\right)
$$

plays a big role in our considerations. From now on we will assume that $\zeta \notin K$. This implies that $P(u)$ is irreducible over K. The formula for the discriminant then shows that the only primes of $K(u)$ which can ramify in $K(x)$ are the zero divisor of $P(u)$ and possibly the prime at infinity. A simple calculation, using the Riemann-Hurwitz formula, shows that the prime at infinity does not ramify. Thus, $K(x) / K(u)$ ramifies at exactly one prime, the zero divisor of $P(u)$ (for details see the proof of Lemma 4.1).
2. Preliminaries. The following lemma is well known, and a proof can be found in [19].

Lemma 2.1. Let k be a field, m an integer ≥ 2, and $a \in k^{\times}$. Assume that for any prime p with $p \mid m$, we have $a \notin k^{p}$, and if $4 \mid m$, then $a \notin-4 k^{4}$. Then $x^{m}-a$ is irreducible in $k[x]$.

We will also need the following lemma whose proof is elementary.
Lemma 2.2. Let A be an abelian group, and a an element of A. Suppose that a is an n_{1}-power and an n_{2}-power with $\left(n_{1}, n_{2}\right)=1$. Then a is an $n_{1} n_{2}$-power.

The main goal of this section is to prove the following.
LEMMA 2.3. Let ℓ be an odd prime, $m>1$ an integer not divisible by ℓ, and ζ a primitive ℓ th root of unity. For all sufficiently large prime powers q satisfying
(i) $q \equiv-1(\bmod \ell)$,
(ii) $q \equiv 1\left(\bmod m_{0}\right)$ where m_{0} is the square-free part of m, there is a $\gamma \in \mathbb{F}_{q}^{\times}$such that $X^{m}-(\gamma+\ell \zeta)$ is irreducible over $\mathbb{F}_{q}(\zeta)$.

Proof. We begin by reducing the problem to one which takes place entirely in the field \mathbb{F}_{q}.

Since $q \equiv-1(\bmod \ell)$ it follows that the quadratic extension of \mathbb{F}_{q} has the form $\mathbb{F}_{q}(\zeta)$, where ζ is a primitive ℓ th root of unity. Note that since $\mathbb{F}_{q}(\zeta)=\mathbb{F}_{q^{2}}$, -1 must be a square in $\mathbb{F}_{q}(\zeta)$; say $-1=\alpha^{2}$ in $\mathbb{F}_{q}(\zeta)$. As a result, to prove that $X^{m}-(\gamma+\ell \zeta)$ is irreducible over $\mathbb{F}_{q}(\zeta)$, it is enough by Lemma 2.1 to show that $\gamma+\ell \zeta$ is not a p th power for all primes p dividing m. This suffices because if $4 \mid m$ and $\ell \zeta+\gamma=-4 \beta^{4}$ for some $\beta \in \mathbb{F}_{q}(\zeta)$, then $\ell \zeta+\gamma=\left(2 \alpha \beta^{2}\right)^{2}$ is a square in $\mathbb{F}_{q}(\zeta)$, a contradiction.

So let p be a prime dividing m and suppose that $\gamma+\ell \zeta$ is a p th power in $\mathbb{F}_{q}(\zeta)$. Taking norms from $\mathbb{F}_{q}(\zeta)$ to \mathbb{F}_{q}, we find that $\gamma^{2}+\ell\left(\zeta+\zeta^{-1}\right) \gamma+\ell^{2}$ is a p th power in \mathbb{F}_{q}. Completing the square, we find c and d in \mathbb{F}_{q} such that

$$
\gamma^{2}+\left(\zeta+\zeta^{-1}\right) \ell \gamma+\ell^{2}=(\gamma-c)^{2}+d
$$

A short computation shows that $d \neq 0$. It follows that if we can find a $\gamma \in \mathbb{F}_{q}$ such that $(\gamma-c)^{2}+d$ is not a p th power in \mathbb{F}_{q} for every prime $p \mid m$, then
$X^{m}-(\gamma+\ell \zeta)$ is irreducible over $\mathbb{F}_{q}(\zeta)$ as required. We will show that for q large enough, there exists $\lambda \in \mathbb{F}_{q}$ such that $\lambda^{2}+d$ is not a p th power for every prime p dividing m. Then $\gamma=\lambda+c$ will be the element we are looking for.

For each k dividing $q-1$, consider the curve $C_{k}: y^{2}+d=x^{k}$. This curve is absolutely irreducible and non-singular except for the unique point at infinity when $k>3$. Its genus is $(k-1) / 2$ when k is odd, and $k / 2-1$ when k is even. Let N_{k} be the number of points $(\alpha, \beta) \in \mathbb{F}_{q}^{(2)}$ such that $\beta^{2}+d=\alpha^{k}$, i.e. the number of rational points on C_{k}. Using either the Riemann hypothesis for curves, or a more elementary argument using Jacobi sums (see [13, Chapter 8]), one can show that $\left|N_{k}-q\right| \leq(k-1) \sqrt{q}$. We will need this estimate, especially when k is square-free dividing m. Our hypothesis ensures that in this case, k divides $q-1$.

Let R_{k} denote the set of k th powers in \mathbb{F}_{q} (including zero), and let

$$
S_{k}=\left\{\eta \in R_{2} \mid \eta+d \in R_{k}\right\} .
$$

It is easy to see that R_{2} has $(q+1) / 2$ elements. What can be said about the size of S_{k} ? Well, if (α, β) is a rational point on C_{k}, i.e. an element of $C_{k}\left(\mathbb{F}_{q}\right)$, then $\beta^{2} \in S_{k}$. So, there is a map $(\alpha, \beta) \mapsto \beta^{2}$ from $C_{k}\left(\mathbb{F}_{q}\right)$ to S_{k}. From the definition of S_{k}, it is clear that this map is onto. Since $\pm 1 \in \mathbb{F}_{q}$ and the k th roots of unity are in \mathbb{F}_{q}, the map is $2 k$-to- 1 at all but at most two elements of S_{k}, namely 0 and $-d$ (specifically, 0 if d is a k th power, and $-d$ if $-d$ is a square). In all cases, one can show that $\left|\# S_{k}-N_{k} / 2 k\right|<2$. It follows that the number of elements in S_{k} is approximately $q / 2 k$.

If S is a subset of R_{2}, let S^{\prime} denote its complement in R_{2}. Consider the set

$$
T=\bigcap_{p \mid m} S_{p}^{\prime}
$$

The intersection is over all primes dividing m. If $\tau \in T$, then $\tau+d$ is not a p th power for any prime p dividing m. Thus, if $\tau=\lambda^{2}$ then $\gamma=\lambda+c$ is the element we are looking for. We will show that T is non-empty for q large enough. In fact, we will show a lot more, namely

$$
\# T=\frac{q}{2} \prod_{p \mid m}\left(1-\frac{1}{p}\right)+O(\sqrt{q})
$$

Let p_{1}, \ldots, p_{t} be the primes dividing m. Then

$$
T^{\prime}=\bigcup_{i=1}^{t} S_{p_{i}}
$$

and therefore,

$$
\# T^{\prime}=\sum_{i} \# S_{p_{i}}-\sum_{i<j} \#\left(S_{p_{i}} \cap S_{p_{j}}\right)+\sum_{i<j<k} \#\left(S_{p_{i}} \cap S_{p_{j}} \cap S_{p_{k}}\right)-\cdots
$$

by the inclusion/exclusion principle.

The intersections simplify considerably. Namely, it can be shown via Lemma 2.2 that

$$
S_{p_{i_{1}}} \cap \cdots \cap S_{p_{i_{r}}}=S_{p_{i_{1}} \ldots p_{i_{r}}} .
$$

Since, by hypothesis, the square-free part of m divides $q-1$, we can use our previous estimates, $\left|\# S_{k}-N_{k} / 2 k\right|<2$ and $\left|N_{k}-q\right| \leq k \sqrt{q}$. From this we see that

$$
\# S_{k}=\frac{q}{2 k}+O(\sqrt{q})
$$

for all square-free k dividing m. Using this in the above expression for $\# T^{\prime}$ yields

$$
2 \# T^{\prime} / q=\sum_{i} \frac{1}{p_{i}}-\sum_{i<j} \frac{1}{p_{i} p_{j}}+\sum_{i<j<k} \frac{1}{p_{i} p_{j} p_{k}}-\cdots+O\left(q^{-1 / 2}\right),
$$

which is equivalent to (using $\left.\# R_{2}=(q+1) / 2\right)$

$$
\# T=\frac{q}{2} \prod_{i}\left(1-\frac{1}{p_{i}}\right)+O(\sqrt{q})
$$

By paying more attention to detail it is fairly easy to give an explicit lower bound for $\# T$ in terms of q and thus determine how large q has to be in order to ensure the T is non-empty. See the Appendix for details.
3. Ichimura's lemma and class number indivisibility. In [12], Ichimura states a version of the following lemmas, though his proof seems incomplete. Here we give a rigorous proof, using the same ideas which Iwasawa used in his original result for number fields.

Proposition 3.1 (Ichimura's lemma). Let K / k be a finite, geometric ℓ-extension which is ramified at exactly one prime \mathfrak{p} of k. Suppose that only one prime \mathfrak{P} of K lies above \mathfrak{p}, and $\ell \nmid \operatorname{deg} \mathfrak{p}$. Then $\ell \mid h_{K}$ implies $\ell \mid h_{k}$.

First, we fix some notation. Let k be a function field in one variable with finite field of constants \mathbb{F}_{q}. Let \mathfrak{p} be a prime of k and A the subring of k consisting of elements whose only poles are at \mathfrak{p}. It is well known that A is a Dedekind domain and that its group of units is precisely \mathbb{F}_{q}^{\times}.

The proof of the following lemma is given in [34].
Lemma 3.2. Let J_{k} be the group of divisor classes of degree 0 of k, Cl_{A} the ideal class group of A, and $d=\operatorname{deg} \mathfrak{p}$. Then the following sequence is exact:

$$
(0) \rightarrow J_{k} \rightarrow \mathrm{Cl}_{A} \rightarrow \mathbb{Z} / d \mathbb{Z} \rightarrow(0)
$$

Corollary 3.3. Let $h_{A}=\# \mathrm{Cl}_{A}$, the class number of A, and $h_{k}=\# J_{k}$, the class number of k. Then

$$
h_{A}=h_{k} d .
$$

A proof of the following can be found in (34.

Proposition 3.4. Let k_{A} be the maximal, abelian, unramified extension of k in which \mathfrak{p} splits completely. Then k_{A} is a finite abelian extension of k and

$$
\operatorname{Gal}\left(k_{A} / k\right) \cong \mathrm{Cl}_{A} .
$$

Proof of Ichimura's lemma. Let B be the integral closure of A in K. Applying Lemma 3.2 and its corollary to the pair B, \mathfrak{P}, we see that $\ell \mid h_{K}$ implies $\ell \mid h_{B}$. Let E be the maximal abelian, unramified ℓ-extension of K in which \mathfrak{P} splits completely. Since $E \subset K_{B}$, and $\ell \mid h_{B}=\left[K_{B}: K\right]$, we see that E properly contains K.

It is easily seen that E / k is a Galois ℓ-extension. Let G denote its Galois group. For a prime \mathcal{P} of E lying over \mathfrak{P}, let $D(\mathcal{P} / \mathfrak{p})$ be its decomposition group over k. Note that

$$
|D(\mathcal{P} / \mathfrak{p})|=e(\mathcal{P} / \mathfrak{p}) f(\mathcal{P} / \mathfrak{p})=e(\mathfrak{P} / \mathfrak{p}) f(\mathfrak{P} / \mathfrak{p})=[K: k] .
$$

The last equality is because of the assumption that \mathfrak{P} is the only prime of K lying over \mathfrak{p}. We conclude that $D(\mathcal{P} / \mathfrak{p})$ is a proper subgroup of G. Since G is an ℓ-group, it follows from a well known result about ℓ-groups that $D(\mathcal{P} / \mathfrak{p})$ is contained in a normal subgroup $N \subset G$ of index ℓ. Any other prime \mathcal{P}^{\prime} of E over \mathfrak{P} has a decomposition group over k which is conjugate to $D(\mathcal{P} / \mathfrak{p})$ and is thus also contained in N. It follows that the fixed field L of N is a cyclic, unramified extension of k in which \mathfrak{p} splits completely. It follows that $L \subset k_{A}$. Thus, $l \mid h_{A}=h_{k} d$ by Corollary 3.3. Since we are assuming that ℓ does not divide d, we must have $\ell \mid h_{k}$, as asserted.

Before getting to the main result of this section we will need a lemma whose proof is a simple consequence of class field theory. It will be notationally convenient to use the language of valuations rather than primes. As is well known, these are completely equivalent concepts. Let M_{k} be the set of normalized valuations of k. For each $v \in M_{k}$, let k_{v} be the completion of k at v, O_{v} the ring of integers of k_{v}, P_{v} the maximal ideal of O_{v}, and U_{v} the unit group of the ring O_{v}. The norm of $v, N v$, is the number of elements in the residue class field $\kappa_{v}=O_{v} / P_{v}$.

Working inside a fixed algebraic closure of k, let \bar{k} be the maximal constant field extension of k, and $k^{\text {un }}$ the maximal unramified extension of k. It is well known that $k^{\mathrm{un}} / \bar{k}$ is a finite Galois extension with Galois group isomorphic to the divisor classes of degree zero of k. Thus, $\left[k^{\mathrm{un}}: \bar{k}\right]=h_{k}$. Now choose a valuation w of k and let k_{w} be the maximal abelian extension of k which is at most tamely ramified at w and unramified everywhere else.

Lemma 3.5. The Galois group of $k(w) / k^{\mathrm{un}}$ is cyclic of order $(N w-1) /(q-1)$.

Proof. We only sketch the proof. The open subgroups of the idèles of k corresponding to $k^{\text {un }}$ and $k(w)$ respectively are

$$
k^{*} \prod_{v} U_{v} \quad \text { and } \quad k^{*}\left(\prod_{v \neq w} U_{v} \times U_{w}^{(1)}\right)
$$

where $U_{w}^{(1)}$ is the subgroup of U_{w} consisting of units congruent to 1 modulo P_{w}. By class field theory the Galois group in question is isomorphic to the quotient of these two groups. The result now follows by a simple index calculation, which shows that this quotient is isomorphic to $\kappa_{w}^{*} / \mathbb{F}_{q}^{*}$ -

We are now in a position to prove the following theorem. We are indebted to the referee for a suggestion which allowed us to considerably simplify our original proof.

THEOREM 3.6. Let k / \mathbb{F}_{q} be a function field in one variable over a finite constant field \mathbb{F}_{q} with q elements. Let ℓ be a fixed rational prime, and suppose that ℓ does not divide $q(q-1)$. Suppose further that the class number h_{k} is not divisible by ℓ. Then for every positive integer t, there are infinitely many non-isomorphic geometric extensions L of k such that $[L: k]=\ell^{t}$ and for which h_{L} is not divisible by ℓ.

Proof. It suffices to prove the result for $t=1$. If one has that case in hand, one can iterate the construction. Suppose L_{t-1} is a geometric extension of k of degree ℓ^{t-1} with class number prime to ℓ. Then all the hypotheses of the theorem apply to L_{t-1} as base field, and we can find a geometric extension L_{t} of degree ℓ over L_{t-1} whose class number is not divisible by ℓ.

The proof will also show that the construction provides infinitely many non-isomorphic examples of fields with the required properties.

Fix a valuation w of k, and let G_{w} be the Galois group of k_{w} over k. Let ϕ be a topological generator of $\operatorname{Gal}(\bar{k} / k)$; for example, one can choose ϕ to be the Frobenius automorphism of \bar{k} / k. Next, choose an element $\sigma \in G_{w}$ which restricts to ϕ, and let D be the closure in G_{w} of the cyclic group generated by σ. The restriction map from D to \bar{k} is an isomorphism of D onto $\operatorname{Gal}(\bar{k} / k) \cong \hat{\mathbb{Z}}$. In particular, D is torsion free. Let $N=\operatorname{Gal}\left(k_{w} / \bar{k}\right)$. This is a finite group, so we have $D \cap N=\langle e\rangle$. We also deduce that $D N=G_{w}$.

Now, let K be the fixed field of D. From Galois theory we deduce $\operatorname{Gal}(K / k) \cong N$, and $K \cap \bar{k}=k$. Thus, K is a finite geometric extension of k. Let E be the maximal unramified extension of k in K. Using the isomorphism of N with $\operatorname{Gal}(K / k)$ together with Lemma 3.5, we see that $[K: E]=(N w-1) /(q-1)$ and $[E: k]=h_{k}$.

Let e be the order of q modulo ℓ. By hypothesis, $e>1$. Also, $e \mid \ell-1$ so $\ell \nmid e$. For sufficiently large positive integers n there exist valuations of
degree ne (see Theorem 5.12 in [35]). So, let n be a sufficiently large integer prime to ℓ and choose w to be a valuation of degree ne. Then

$$
\frac{N w-1}{q-1}=\frac{q^{n e}-1}{q-1}=\frac{q^{n e}-1}{q^{e}-1} \frac{q^{e}-1}{q-1} .
$$

Both factors are in \mathbb{Z} and the last factor is divisible by ℓ since ℓ does not divide $q-1$. By Lemma 3.5, we see that ℓ divides $[K: E]$, which in turn divides $[K: k]$. Since K / k is an abelian extension, there is an intermediate extension L with $[L: k]=\ell$. We claim that L has all the properties required.

First of all, L / k is a geometric extension, since K / k is geometric. Secondly, L is totally ramified at w and nowhere else. Again, since $L \subseteq K$ we know that L is unramified away from w. If it were also unramified at w, then it would follow that $L \subseteq E$. However, $[E: k]=h_{k}$, which is prime to ℓ by hypothesis. This would contradict $[L: k]=\ell$. In order to apply Ichimura's lemma (Proposition 3.1), it remains to show that $\operatorname{deg} w$ is prime to ℓ. We have chosen w such that $\operatorname{deg} w=n e$ where n is prime to ℓ and since $e<\ell$ it too is prime to ℓ. Finally, we apply Proposition 3.1 to conclude that the class number of L is not divisible by ℓ.

The fields L constructed in Theorem 3.6 need not be Galois over k. It is of interest to examine under what conditions we can construct such extensions which are cyclic over k. By restricting the prime power q somewhat, we can ensure the existence of such fields.

Corollary 3.7. Suppose the conditions of the theorem are satisfied and in addition that $q \equiv-1\left(\bmod \ell^{t}\right)$. Then there are infinitely many geometric and cyclic extensions L of degree ℓ^{t} over $k=\mathbb{F}_{q}(T)$ such that h_{L} is not divisible by ℓ.

Proof. First of all, note that the congruence $q \equiv-1(\bmod \ell)$ implies that the order of q modulo ℓ is $e=2$. Let n be a large integer prime to ℓ, and w a valuation of k of degree $2 n$.

Using Lemma 3.5, and the notation in the proof of the theorem, we see that $\operatorname{Gal}(K / E)$ is a cyclic group of order

$$
\frac{N w-1}{q-1}=\frac{q^{2 n}-1}{q^{2}-1} \frac{q^{2}-1}{q-1}
$$

Thus, the order of $\operatorname{Gal}(K / E)$ is divisible by $q+1$, and so by ℓ^{t}. It follows that $\operatorname{Gal}(K / k)$ has a cyclic subgroup of order ℓ^{t}, and consequently a cyclic quotient group of order ℓ^{t}. Let $k \subset L \subseteq K$ be an intermediate field such that $\operatorname{Gal}(L / k)$ is cyclic of order ℓ^{t}. We claim that L has all the desired properties.

The only property that is not immediate is that L / k is totally ramified at w and nowhere else. It is certainly unramified at every valuation $v \neq w$. Let $T \subseteq \operatorname{Gal}(L / k)$ be the ramification group of any valuation above w in L, and L_{1} the fixed field of T. Then L_{1} is unramified everywhere and so is a subfield of E. If $L_{1} \neq k$ it would follow that ℓ divides $[E: k]=h_{k}$. This is contrary to assumption. Thus, $L_{1}=k$, which proves L / k is totally ramified at w. Since $\operatorname{deg} w=2 n$ is prime to ℓ we can once again invoke Ichimura's lemma to conclude that h_{L} is indivisible by ℓ.

Theorem 3.6 and its corollary will be used in the proof of Corollary 1.3 to be given in Section 5 .
4. Proofs of main results. We are now ready to prove Theorem 1.1. Let $m>1$ be an integer and ℓ an odd prime. Write $m=\ell^{t} m_{1}$ for integers t and m_{1} with $\ell \nmid m_{1}$. Let m_{0} be the square-free part of m_{1}, and fix a prime power q, sufficiently large, with $q \equiv 1\left(\bmod m_{0}\right)$ and $q \equiv-1(\bmod \ell)$. First, we prove the theorem for the case when $\ell \nmid m$.

Define rational functions $X_{j}(T)$ recursively as follows: $X_{0}(T)=T$ and

$$
\begin{equation*}
X_{j}=\frac{\mathcal{P}\left(X_{j-1}\right)}{\mathcal{Q}\left(X_{j-1}\right)}=r\left(X_{j-1}\right) \quad \text { for } j \geq 1 \tag{4}
\end{equation*}
$$

where \mathcal{P} and \mathcal{Q} are defined as in (1). Note that $X_{j}=r^{(j)}(T)$, where the superscript (j) means to compose $r(T)$ with itself j times.

Recalling the Rikuna polynomial $F(X, u)=\mathcal{P}(X)-u \mathcal{Q}(X)$ we see that $F\left(X_{j-1}, X_{j}\right)=0$. It follows from Theorem 1.4, and the remarks following, that $\mathbb{F}_{q}\left(X_{j-1}\right) / \mathbb{F}_{q}\left(X_{j}\right)$ is a cyclic extension of degree ℓ, ramified only at the zero divisor of $X_{j}^{2}-\omega X_{j}+1$.

Now fix a positive integer $n \geq 1$, and for $1 \leq i \leq n$ define

$$
N_{i}=\mathbb{F}_{q}\left(X_{n-i}\right) \quad \text { and } \quad M_{i}=N_{i}\left(\sqrt[m]{\ell X_{n}+\gamma}\right)
$$

Here $\gamma \in \mathbb{F}_{q}$ is chosen so that $X^{m}-(\ell \zeta+\gamma)$ is irreducible over $\mathbb{F}_{q}(\zeta)$ (see Lemma 2.3).

Note that $N_{n}=\mathbb{F}_{q}(T)$ and $M_{n}=\mathbb{F}_{q}(T)\left(\sqrt[m]{\ell X_{n}+\gamma}\right)$. We will show that M_{n} is an extension of $\mathbb{F}_{q}(T)$ of degree m and that its class number is not divisible by ℓ. Further, the genus of M_{n} is an increasing function of n. Thus, all the fields M_{n} are pairwise non-isomorphic. This will prove our theorem in the case that m is not divisible by ℓ.

We will see that for all i such that $1 \leq i \leq n-1,\left[N_{i+1}: N_{i}\right]=\ell$, $\left[M_{i+1}: M_{i}\right]=\ell$, and for all $i,\left[M_{i}: N_{i}\right]=m$. The field diagram is shown below:

Let

$$
P_{i}=X_{n-i}^{2}-\omega X_{n-i}+1
$$

and let $\left(P_{i}\right)$ denote the divisor of N_{i} corresponding to the zeros of P_{i}. Recall that $q \equiv-1(\bmod \ell)$, which implies that $X^{2}-\omega X+1$ is irreducible over \mathbb{F}_{q}. Therefore, P_{i} is irreducible in $\mathbb{F}_{q}\left[X_{n-i}\right]$, and hence $\left(P_{i}\right)$ is a prime divisor.

The idea of the proof of the main result is as follows. We will show that $\ell \nmid h_{M_{1}}$, and use Proposition 3.1 to conclude that $\ell \nmid h_{M_{n}}$. The next few lemmas show that Proposition 3.1 applies. Finally, we show that the M_{n} 's are distinct, so there are infinitely many degree m extensions of \mathbb{F}_{q} with class number indivisible by ℓ.

LEMMA 4.1. For each i, N_{i+1} is a $\mathbb{Z} / \ell \mathbb{Z}$-extension of N_{i}, totally ramified at $\left(P_{i}\right)$, and unramified outside $\left(P_{i}\right)$.

Proof. By the remarks preceding the lemma, we see that N_{i+1} is a $\mathbb{Z} / \ell \mathbb{Z}^{-}$ extension of N_{i}. By (3), the discriminant is

$$
\ell^{\ell}\left(4-\omega^{2}\right)^{(\ell-1)(\ell-2) / 2}\left(X_{n-i}^{2}-\omega X_{n-i}+1\right)^{\ell-1}=\ell^{\ell}\left(4-\omega^{2}\right)^{(\ell-1)(\ell-2) / 2} P_{i}^{\ell-1}
$$

where $\ell^{\ell}\left(4-\omega^{2}\right)^{(\ell-1)(\ell-2) / 2} \in \mathbb{F}_{q}^{\times}$. It is easy to see $\ell^{\ell}\left(4-\omega^{2}\right)^{(\ell-1)(\ell-2) / 2} \neq 0$ since char $\mathbb{F}_{q} \neq \ell$ and if $4-\omega^{2}=0$, then $\omega= \pm 2$. This implies that $\zeta+\zeta^{-1}=$ ± 2, so $\zeta= \pm 1$, a contradiction since $\ell \geq 3$.

Since any finite ramified prime would divide the discriminant, it follows that the only possible ramification is at P_{i} and at the prime at infinity. Note that the infinite prime has degree 1 , so if $\left(P_{i}\right)$ were unramified, then Riemann-Hurwitz implies that

$$
2 g_{N_{i+1}}-2=\ell\left(2 g_{N_{i}}-2\right)+e_{\infty}-1
$$

Since N_{i} and N_{i+1} are rational function fields, they both have genus 0 . It
follows that $e_{\infty}=2 \ell-1$, which is impossible since the ramification index is at most the degree of the extension, which is ℓ in this case. So $\left(P_{i}\right)$ must be ramified in N_{i+1}, and the ramification index is ℓ since the extension is Galois of prime degree ℓ. It follows that the infinite prime is unramified, because

$$
-2=-2 \ell+(\ell-1) \operatorname{deg}\left(P_{i}\right)+e_{\infty}-1=-2 \ell+2 \ell-2+e_{\infty}-1=e_{\infty}-3
$$

So $e_{\infty}=1$, as claimed.
Lemma 4.2. The extension M_{i} / N_{i} has degree m, and the prime $\left(P_{i}\right)$ of N_{i} is inert in the extension M_{i}.

Proof. Since $M_{i}=N_{i}\left(\sqrt[m]{\ell X_{n}+\gamma}\right)$, it suffices to show that the minimal polynomial for $\sqrt[m]{\ell X_{n}+\gamma}$ over N_{i} is irreducible $\bmod P_{i}$. We will show that $X^{m}-\left(\ell X_{n}+\gamma\right)$ is irreducible $\bmod P_{i}$, which implies that $X^{m}-\left(\ell X_{n}+\gamma\right)$ is irreducible over N_{i} and thus must be the minimal polynomial for $\sqrt[m]{\ell X_{n}+\gamma}$ over N_{i}.

Let λ be the unique \mathbb{F}_{q}-homomorphism from $\mathbb{F}_{q}\left[X_{n-i}\right]$ to $\mathbb{F}_{q}(\zeta)$ which takes X_{n-i} to ζ. It is clear that λ is onto and has as kernel the principal ideal generated by P_{i}. In the usual way, λ extends to a homomorphism from the localization R_{i} of $\mathbb{F}_{q}\left[X_{n-i}\right]$ at the prime ideal $\left(P_{i}\right)$.

By definition, we know that $r^{i}\left(X_{n-i}\right)=X_{n}$. One easily checks that $r(\zeta)$ $=\zeta$. Using these two facts and $\lambda\left(X_{n-i}\right)=\zeta$, one deduces that $\lambda\left(X_{n}\right)=\zeta$. The homomorphism λ extends in the obvious way to a homomorphism from $R_{i}[X]$ to $\mathbb{F}_{q}(\zeta)[X]$. This homomorphism takes $X^{m}-\left(\ell X_{n}+\gamma\right)$ to $X^{m}-(\ell \zeta+\gamma)$. Since the latter polynomial is irreducible by our choice of γ, the former one must be irreducible as well. This completes the proof.

Lemma 4.3. The polynomial $\mathcal{Q}(X) \in \mathbb{F}_{q}(X)$ is separable.
Proof. It suffices to show that $\mathcal{Q}(X)$ and $\mathcal{Q}^{\prime}(X)$ have no common roots, where $\mathcal{Q}^{\prime}(X)$ is the formal derivative of $\mathcal{Q}(X)$. The derivative of $\mathcal{Q}(X)$ is given as follows:

$$
\mathcal{Q}^{\prime}(X)=\frac{\ell\left((X-\zeta)^{\ell-1}-\left(X-\zeta^{-1}\right)^{\ell-1}\right)}{\zeta^{-1}-\zeta}
$$

Let $\alpha \in \overline{\mathbb{F}_{q}}$ be a root of $\mathcal{Q}(X)$. Then, by the definition of $\mathcal{Q}(X)$, we have $(\alpha-\zeta)^{\ell}=\left(\alpha-\zeta^{-1}\right)^{\ell}$. Clearly, we cannot have $\alpha=\zeta$ or $\alpha=\zeta^{-1}$, because $\zeta-\zeta^{-1} \neq 0$. If α were also a root of $\mathcal{Q}^{\prime}(X)$, then we would have $(\alpha-\zeta)^{\ell-1}=$ $\left(\alpha-\zeta^{-1}\right)^{\ell-1}$. So

$$
(\alpha-\zeta)^{\ell}=\left(\alpha-\zeta^{-1}\right)^{\ell}=(\alpha-\zeta)^{\ell-1}\left(\alpha-\zeta^{-1}\right)
$$

Since $\alpha \neq \zeta$, we see that $\alpha-\zeta=\alpha-\zeta^{-1}$, so $\zeta=\zeta^{-1}$, a contradiction.
LEmmA 4.4. The class number of M_{1} is not divisible by ℓ.
Proof. Recall that $M_{1}=\mathbb{F}_{q}\left(X_{n-1}\right)\left(\sqrt[m]{\ell X_{n}+\gamma}\right)$. First, we claim that the genus of M_{1} is $(\ell-1)(m-1)$. For ease of notation, let $Z=\sqrt[m]{\ell X_{n}+\gamma}$, so
$M_{1}=\mathbb{F}_{q}\left(X_{n-1}\right)(Z)$. Notice that $M_{1} \overline{\mathbb{F}_{q}}$ is a degree m extension of $\overline{\mathbb{F}_{q}}\left(X_{n-1}\right)$ with minimal polynomial

$$
\begin{align*}
X^{m}-\left(\ell X_{n}+\gamma\right) & =X^{m}-\left(\frac{\ell \mathcal{P}\left(X_{n-1}\right)}{\mathcal{Q}\left(X_{n-1}\right)}+\gamma\right) \tag{5}\\
& =X^{m}-\frac{\ell \mathcal{P}\left(X_{n-1}\right)+\gamma \mathcal{Q}\left(X_{n-1}\right)}{\mathcal{Q}\left(X_{n-1}\right)} \\
& =X^{m}-\frac{F\left(X_{n-1},-\gamma / \ell\right)}{\mathcal{Q}\left(X_{n-1}\right) / \ell}
\end{align*}
$$

(Notice that the polynomial $X^{m}-\left(\ell X_{n}+\gamma\right)$ remains irreducible over $\overline{\mathbb{F}_{q}}$: if α is a zero, then it has multiplicity one; then, in the local ring at $X_{n-1}-\alpha$ the polynomial in question is Eisenstein, and so irreducible.) The discriminant of $F(X,-\gamma / \ell)$ is $\ell^{-(\ell-2)}\left(4-\omega^{2}\right)^{(\ell-1)(\ell-2) / 2}\left(\gamma^{2}+\ell \omega \gamma+\ell^{2}\right)$ by (3). This must be non-zero: otherwise $P_{1}(-\gamma / \ell)=\left(\gamma^{2}+\omega \gamma \ell+\ell^{2}\right) / \ell^{2}=0$, but $-\gamma / \ell \in \mathbb{F}_{q}$, and P_{1} is irreducible over \mathbb{F}_{q}, a contradiction. So $F\left(X_{n-1},-\gamma / \ell\right)$ has non-zero discriminant, and hence no multiple roots. By Lemma 4.3, $\mathcal{Q}(X)$ has no multiple roots.

Finally, $F(X,-\gamma / \ell)$ and $\mathcal{Q}(X)$ must be relatively prime. Otherwise, for some $\alpha \in \overline{\mathbb{F}_{q}}$, we would have

$$
\mathcal{Q}(\alpha)=0=F(\alpha,-\gamma / \ell)=\mathcal{P}(\alpha)+(\gamma / \ell) \mathcal{Q}(\alpha) .
$$

It easily follows from the last equality that $\mathcal{P}(\alpha)=0$. Thus $X-\alpha$ is a common factor of $\mathcal{P}(X)$ and $\mathcal{Q}(X)$, which contradicts the irreducibility of $F(X, u)$.

Hence, the numerator of the constant term in (5) has ℓ distinct roots, each corresponding to a prime that is totally ramified in $M_{1} \overline{\mathbb{F}_{q}}$. Similarly, the denominator of the constant term in (5) has $\ell-1$ distinct roots, each corresponding to a prime that is totally ramified in $M_{1} \overline{\mathbb{F}_{q}}$. Finally, it is clear that the infinite prime is totally ramified in $M_{1} \overline{\mathbb{F}_{q}}$. Since $F(X,-\gamma / \ell)$ and $\mathcal{Q}(X)$ are relatively prime, these 2ℓ primes are all distinct. Now char $\mathbb{F}_{q} \nmid m$, and so each of these primes is tamely ramified in $M_{1} \overline{\mathbb{F}_{q}}$. No other primes can be ramified since no other primes can divide the discriminant of $X^{m}-$ $\left(\ell X_{n}+\gamma\right)$. Each of the ramified primes has degree 1, so Riemann-Hurwitz implies that

$$
\begin{aligned}
2 g_{M_{1} \overline{\mathbb{F}_{q}}}-2 & =m\left(2 g_{\overline{\mathbb{F}_{q}}\left(X_{n-1}\right)}-2\right)+\sum_{\mathfrak{p}}(e(\mathfrak{p})-1) \operatorname{deg} \mathfrak{p} \\
& =-2 m+2 \ell(m-1)=2(\ell-1)(m-1)-2
\end{aligned}
$$

and thus $g_{M_{1} \overline{\mathbb{F}_{q}}}=(\ell-1)(m-1)$, as claimed.
Next, we claim that $M_{1}=\mathbb{F}_{q}(Z)\left(X_{n-1}\right)$ is a $\mathbb{Z} / \ell \mathbb{Z}$-extension of $\mathbb{F}_{q}(Z)$. We know that N_{1} is a $\mathbb{Z} / \ell \mathbb{Z}$-extension of $\mathbb{F}_{q}\left(X_{n}\right)$ and $\mathbb{F}_{q}(Z)$ is a degree m extension of $\mathbb{F}_{q}\left(X_{n}\right)$; see figure below:

Since $(\ell, m)=1$, we see that $M_{1}=\mathbb{F}_{q}(Z) N_{1}$ is a $\mathbb{Z} / \ell \mathbb{Z}$-extension of $\mathbb{F}_{q}(Z)$. Thus, the minimal polynomial for X_{n-1} over $\mathbb{F}_{q}(Z)$ must be $F\left(X, X_{n}\right)=$ $F\left(X,\left(Z^{m}-\gamma\right) / \ell\right)$. The discriminant of this polynomial is, by (3),

$$
\begin{aligned}
& \left(4-\omega^{2}\right)^{(\ell-1)(\ell-2) / 2} \ell^{\ell}\left(X_{n}^{2}-\omega X_{n}+1\right)^{\ell-1} \\
& \quad=\left(4-\omega^{2}\right)^{(\ell-1)(\ell-2) / 2} \ell^{\ell-2(\ell-1)}\left(\left(Z^{m}-\gamma\right)^{2}-\ell \omega\left(Z^{m}-\gamma\right)+\ell^{2}\right)^{\ell-1}
\end{aligned}
$$

Let (Q) be the divisor corresponding to

$$
Q=\left(Z^{m}-\gamma\right)^{2}-\ell \omega\left(Z^{m}-\gamma\right)+\ell^{2} \in \mathbb{F}_{q}(Z)
$$

We will show that M_{1} is ramified only at the single prime (Q) of $\mathbb{F}_{q}(Z)$, where $\ell \nmid 2 m=\operatorname{deg} Q$. This completes the proof, by Proposition 3.1, since ℓ does not divide the class number of the rational function field $\mathbb{F}_{q}(Z)$. Notice that Q is irreducible over \mathbb{F}_{q}; if α is a root of Q in some extension of \mathbb{F}_{q}, then $\left(\alpha^{m}-\gamma\right) / \ell$ is a root of $X^{2}-\omega X+1$, the minimal polynomial of $\zeta^{ \pm 1}$ over \mathbb{F}_{q}. So $\left(\alpha^{m}-\gamma\right) / \ell=\zeta^{ \pm 1}$. Since $X^{m}-\left(\ell \zeta^{ \pm 1}+\gamma\right)$ is irreducible over $\mathbb{F}_{q}\left(\zeta^{ \pm 1}\right)$, we have $\left[\mathbb{F}_{q}(\alpha): \mathbb{F}_{q}\left(\zeta^{ \pm 1}\right)\right]=m$, and so

$$
\left[\mathbb{F}_{q}(\alpha): \mathbb{F}_{q}\right]=\left[\mathbb{F}_{q}(\alpha): \mathbb{F}_{q}\left(\zeta^{ \pm 1}\right)\right]\left[\mathbb{F}_{q}\left(\zeta^{ \pm 1}\right): \mathbb{F}_{q}\right]=m \cdot 2=2 m
$$

which proves that Q must be irreducible over \mathbb{F}_{q}. Thus the divisor (Q) is indeed prime. Since (Q) is the only prime of $\mathbb{F}_{q}(Z)$ that divides the discriminant of the minimal polynomial of X_{n-1} over $\mathbb{F}_{q}(Z)$, only (Q) and the prime at infinity could be ramified. Assume (Q) is not ramified. By Riemann-Hurwitz, we get

$$
2(\ell-1)(m-1)-2=\left(e_{\infty}-1\right)-2 \ell
$$

so $e_{\infty}=2 \ell m-2 m+1>\ell$, a contradiction. So (Q) is ramified (totally ramified since the extension is Galois and has prime degree ℓ) in M_{1}. To see that M_{1} is ramified at no other primes of $\mathbb{F}_{q}(Z)$, we again use the RiemannHurwitz formula (each sum is over all primes $\mathfrak{p} \neq(Q)$):

$$
\begin{aligned}
2(\ell-1)(m-1)-2 & =\ell(-2)+(\ell-1) \operatorname{deg} Q+\sum_{\mathfrak{p}}\left(e_{\mathfrak{p}}-1\right) \operatorname{deg} \mathfrak{p} \\
& =(\ell-1)(2 m)-2(\ell-1)-2+\sum_{\mathfrak{p}}\left(e_{\mathfrak{p}}-1\right) \operatorname{deg} \mathfrak{p} \\
& =2(\ell-1)(m-1)-2+\sum_{\mathfrak{p}}\left(e_{\mathfrak{p}}-1\right) \operatorname{deg} \mathfrak{p} .
\end{aligned}
$$

Thus, all other primes must be unramified.

Proof of Theorem 1.1. Assume that $\ell \nmid m$. Notice that $M_{i+1}=M_{i} N_{i+1}$, so by Lemma 4.1, M_{i+1} is a $\mathbb{Z} / \ell \mathbb{Z}$-extension of M_{i}. Also by Lemma 4.1, M_{i+1} is totally ramified at the prime in M_{i} lying over $\left(P_{i}\right)$ and unramified everywhere else. By Proposition 3.1, $\ell \nmid h_{M_{i}}$ implies that $\ell \nmid h_{M_{i+1}}$. From Lemma 4.4, we see that $\ell \nmid h_{M_{1}}$. Therefore, ℓ does not divide $h_{M_{2}}, \ldots, h_{M_{n}}$. Hence, \bar{M}_{n} has class number indivisible by ℓ.

To show that there are infinitely many such fields, we prove that each M_{n} has genus $\left(\ell^{n}-1\right)(m-1)$, so the fields are pairwise non-isomorphic. It was shown in Lemma 4.4 that the genus of M_{1} is $(\ell-1)(m-1)$. Observe that M_{i+1} / M_{i} is totally ramified at a single prime in M_{i}, denoted here by \mathfrak{P}_{i}, lying over $\left(P_{i}\right)$ in N_{i}. Since $\left(P_{i}\right)$ is inert in M_{i}, \mathfrak{P}_{i} has degree $2 m$ in M_{i}. Note that M_{n} has degree ℓ^{n-1} over M_{1}, so by Riemann-Hurwitz,

$$
\begin{aligned}
2 g_{M_{n}}-2 & =\ell^{n-1}\left(2 g_{M_{1}}-2\right)+\left(\ell^{n-1}-1\right) \operatorname{deg} \mathfrak{P}_{1} \\
& =\ell^{n-1}(2 \ell m-2 \ell-2 m+2-2)+2 \ell^{n-1} m-2 m \\
& =\ell^{n-1}(2 \ell m-2 \ell)-2 m \\
& =2 \ell^{n}(m-1)-2(m-1)-2 \\
& =2\left(\ell^{n}-1\right)(m-1)-2
\end{aligned}
$$

Therefore, $g_{M_{n}}=\left(\ell^{n}-1\right)(m-1)$.
Now we consider the general case. Write $m=\ell^{t} m_{1}$, where $\ell \nmid m_{1}$, and let m_{0} be the square-free part of m_{1}. Since $\ell \nmid m_{1}$, the results above show that we have infinitely many extensions K_{1} of degree m_{1} over $\mathbb{F}_{q}(T)$ with $\ell \nmid h_{K_{1}}$. Note that the constant field of K_{1} is \mathbb{F}_{q}, as K_{1} is one of the fields M_{n}. This field is at the top of a tower of totally ramified extensions. At the bottom, M_{1} / N_{1} is totally ramified at $X_{n-1}-\alpha$. Also, we know M_{i+1} / M_{i} is totally ramified at the prime of M_{i} above $\left(P_{i}\right)$. At a totally ramified prime, the relative degree must be 1 . So, in a tower of totally ramified extensions, the constant field at the top must be the same as the constant field at the bottom.

Since $q \equiv-1(\bmod \ell)$, Theorem 3.6 implies that there are infinitely many non-isomorphic geometric extensions K of degree ℓ^{t} over K_{1} with $\ell \nmid h_{K}$. Thus we have infinitely many extensions K of degree m over $\mathbb{F}_{q}(T)$ with $\ell \nmid h_{K}$, as claimed.
5. Corollaries. We are now in a position to prove Corollaries 1.2 and 1.3 , which are stated in the introduction. We reproduce them here for the convenience of the reader.

Corollary 1.2. Suppose m is indivisible by ℓ and that $q \equiv 1(\bmod m)$. If, in addition, $q \equiv-1(\bmod \ell)$, then there are infinitely many geometric and cyclic extensions K of degree m over $\mathbb{F}_{q}(T)$ such that $\ell \nmid h_{K}$.

Proof. In the course of proving Theorem 1.1, we have shown that the field extensions $M_{n}=k\left(\sqrt[m]{\ell X_{n}+\gamma}\right)$ have degree m and class number indivisible by ℓ. If $q \equiv 1(\bmod m)$, then the base field contains a primitive m th root of unity. This implies M_{n} is a Kummer, and thus cyclic, extension of k of degree m. -

Corollary 1.3. Suppose $t \geq 1$ and $m=\ell^{t} m_{1}$ with m_{1} not divisible by ℓ. If $q \equiv 1\left(\bmod m_{1}\right)$ and $q \equiv-1\left(\bmod \ell^{t}\right)$, then there are infinitely many geometric and cyclic extensions K of degree m over $\mathbb{F}_{q}(T)$ such that $\ell \nmid h_{K}$.

Proof. By Corollary 1.2 above, there are infinitely many cyclic extensions K_{1} of degree m_{1} over k with class number indivisible by ℓ. By the corollary to Theorem 3.6 and its proof, we can find a valuation w of k of large even degree and a geometric and cyclic extension L / k of degree ℓ^{t} which is totally ramified at w and unramified elsewhere. We still have a lot of flexibility in the choice of w. Let us choose it so that $\operatorname{deg} w$ is prime to ℓ, w is unramified in K_{1}, and $\operatorname{Frob}(w)$ is a cyclic generator of $\operatorname{Gal}\left(K_{1} / k\right)$. This is possible by the Chebotarev density theorem (see [35, Proposition 9.13B]). To apply this result we need to know K_{1} / k is a geometric extension. In fact, K_{1} is geometric over k because it is generated by the m th root of a non-constant rational function (this is an exercise). With this choice, w is inert in K_{1}. Let W be the unique valuation of K_{1} lying above w. Since $f(W / w)=m_{1}$, we have $\operatorname{deg} W=m_{1} \operatorname{deg} w$, which is prime to ℓ.

We claim that $K=L K_{1}$ is a field with all the properties required. First of all, it is clear that $K_{1} \cap L=k$. It follows that K is a cyclic extension of degree $\ell^{t} m_{1}=m$. Next, notice that w is totally ramified in L and unramified in K_{1}. It follows that W is totally ramified in K. Also, no other valuation of K_{1} is ramified in K. If we knew that K / K_{1} was a geometric extension, we could invoke Ichimura's lemma one more time to deduce that h_{L} is indivisible by ℓ. We conclude the proof by showing that, indeed, K / K_{1} is a geometric extension.

Let \mathbb{E} be the constant field of K. The field \mathbb{E} injects into the residue class field of the valuation above W in K. This is equal to the residue class field of W since K / K_{1} is totally ramified. We have shown $\operatorname{deg} W=m_{1} \operatorname{deg} w$ which is prime to ℓ. Thus $[E: F]$ is prime to ℓ. On the other hand, $\mathbb{E} \cap K_{1}=\mathbb{F}$ since K_{1} / k is geometric. It follows that $[\mathbb{E}: \mathbb{F}]$ divides $\left[K: K_{1}\right]$, which is a power of ℓ. One concludes that $[\mathbb{E}: \mathbb{F}]=1$. The corollary is proved.
6. Appendix. The theorem on indivisibility by a prime ℓ of the class number of extensions of $\mathbb{F}_{q}(T)$ of degree m is dependent on the assumption that q is a sufficiently large prime power satisfying $q \equiv-1(\bmod \ell)$ and $q \equiv 1\left(\bmod m_{0}\right)$, where m_{0} is the square-free part of m. This is equivalent to a single congruence $q \equiv-1+2 \ell \ell^{\prime}\left(\bmod \ell m_{0}\right)$, where ℓ^{\prime} is a multiplicative
inverse of ℓ modulo m_{0}. We look into the question of how large q has to be in order for the theorem to be valid. If q lies in this arithmetic progression and is large enough to make the main theorem valid, we say that q is admissible.

The number of rational points on the curve $y^{2}=x^{k}-d$ over \mathbb{F}_{q} satisfies $\left|N_{k}-q\right| \leq(k-1) \sqrt{q}$ if k is odd, and $\leq 1+(k-1) \sqrt{q}$ if k is even (see Theorem 5 of Chapter 8 in [13]). The theorem there is stated over the prime field, but the proof works over any finite field. We will work with the slightly weaker, but uniform, inequality $\left|N_{k}-q\right|<k \sqrt{q}$. Also, for the set S_{k} we have shown $\left|\# S_{k}-N_{k} / 2 k\right|<2$. Let us write $N_{k}=q+\delta_{1}(k) k \sqrt{q}$ and $\# S_{k}=N_{k} / 2 k+2 \delta_{2}(k)$ where $\left|\delta_{1}(k)\right|$ and $\left|\delta_{2}(k)\right|$ are both less than 1. Putting these two inequalities together, we find

$$
\begin{equation*}
\# S_{k}=\frac{q}{2 k}+\frac{\delta_{1}(k)}{2} \sqrt{q}+2 \delta_{2}(k) . \tag{6}
\end{equation*}
$$

Earlier in this paper, we showed that

$$
\# T^{\prime}=-\sum_{1<k \mid m} \mu(k) \# S_{k}
$$

Thus, since $\# T^{\prime}+\# T=(q+1) / 2$, we have

$$
\begin{equation*}
\# T=\frac{q+1}{2}+\sum_{1<k \mid m} \mu(k) \# S_{k} \tag{7}
\end{equation*}
$$

Using (6) and substituting into (7) yields

$$
\begin{align*}
\# T= & \frac{q}{2}+\frac{1}{2}+\frac{q}{2} \sum_{1<k \mid m} \frac{\mu(k)}{k} \tag{8}\\
& +\sum_{1<k \mid m} \frac{\mu(k) \delta_{1}(k)}{2} \sqrt{q}+2 \sum_{1<k \mid m} \mu(k) \delta_{2}(k) .
\end{align*}
$$

Combining the first and third terms simplifies to the following main term:

$$
\frac{q}{2} \prod_{p \mid m}\left(1-\frac{1}{p}\right)=\frac{q}{2} \frac{\phi\left(m_{0}\right)}{m_{0}}
$$

To go further, we need the simple observation that

$$
\sum_{k \mid m}|\mu(k)|=\sum_{r=0}^{t}\binom{t}{r}=2^{t}
$$

where t is the number of primes dividing m. Since both $\delta_{1}(k)$ and $\delta_{2}(k)$ have absolute value less than 1 , the sum of the second, fourth, and fifth terms of (8) is bounded above by $2^{t-1} \sqrt{q}+2^{t+1}$.

Putting all this together, we have

$$
\left|\# T-\frac{q}{2} \frac{\phi\left(m_{0}\right)}{m_{0}}\right| \leq 2^{t-1} \sqrt{q}+2^{t+1}
$$

Thus, to ensure that T is not empty, it suffices to ensure that

$$
q>\frac{2^{t} m_{0}}{\phi\left(m_{0}\right)} \sqrt{q}+4 \frac{2^{t} m_{0}}{\phi\left(m_{0}\right)} .
$$

Set $C=2^{t} m_{0} / \phi\left(m_{0}\right)$. The condition can now be written as

$$
\begin{equation*}
q>C \sqrt{q}+4 C . \tag{9}
\end{equation*}
$$

Let $f(x)=x^{2}-C x-4 C$. The largest zero, x_{0}, of $f(x)$ is given by $2 x_{0}=$ $C+\sqrt{C^{2}+16 C}$. Thus, x_{0} is less than $C+4$. Equation (9) is satisfied if $f(\sqrt{q})>0$, and this is certainly the case if $\sqrt{q}>C+4$ since $f(x)$ is easily seen to be increasing at x_{0} and beyond. We have proved

Proposition 6.1. Let $C=2^{t} m_{0} / \phi\left(m_{0}\right)$. A prime power q is admissible if $q>(C+4)^{2}$.

It is important to point out that this condition is sufficient but not necessary. We have made a number of somewhat coarse estimates during the derivation. For example, in the case where $\ell=3$ and $m=m_{0}=2$ (the case considered by Ichimura), every q such that $q \equiv-1(\bmod 3)$ is admissible, whereas the proposition requires $q>16$. Nevertheless, the estimate is strong enough to give some surprising consequences, taking into account the fact that we are looking at q lying in the arithmetic progression $A\left(\ell, m_{0}\right)$ defined by $q \equiv-1+\ell \ell^{\prime}\left(\bmod \ell m_{0}\right)$. Every q in this progression, except possibly the smallest positive element, is greater than ℓm_{0}. Thus, if $\ell m_{0} \geq(C+4)^{2}$, every possible q in this progression with perhaps one exception is admissible. We investigate two special cases.

Corollary 6.2. Suppose $m_{0}=p$, a prime. If $p \geq 13$ then every prime power q in $A\left(\ell, m_{0}\right)$ is admissible with at most one exception.

Proof. If $p \geq 13$, we claim that $\ell p \geq(C+4)^{2}$ for any odd prime ℓ. First, let us write out this condition explicitly:

$$
\ell p \geq\left(\frac{2 p}{p-1}+4\right)^{2}=4\left(\frac{p^{2}}{(p-1)^{2}}+\frac{4 p}{p-1}+4\right)
$$

Dividing both sides by $4 p$ yields

$$
\frac{\ell}{4} \geq \frac{p}{(p-1)^{2}}+\frac{4}{p-1}+\frac{4}{p}
$$

For $p \geq 13$, the right hand side is less than .74 , so the inequality is satisfied if ℓ is greater than 2.96. Since ℓ is an odd prime, this condition is always satisfied.

Corollary 6.3. Suppose m_{0} is divisible by two or more primes and that the smallest prime dividing m_{0} is greater than or equal to 7 . Then every prime power q in $A\left(\ell, m_{0}\right)$ is admissible with at most one exception.

Proof. The condition we need is

$$
\ell m_{0} \geq 16\left(\frac{2^{t-2} m_{0}}{\phi\left(m_{0}\right)}+1\right)^{2}
$$

Dividing both sides by $16 m_{0}$ and simplifying yields

$$
\frac{\ell}{16} \geq \frac{2^{2 t-4} m_{0}}{\phi\left(m_{0}\right)^{2}}+\frac{2^{t-1}}{\phi\left(m_{0}\right)}+\frac{1}{m_{0}}
$$

If the right hand side of this inequality were less than or equal to $3 / 16$ this would hold for all odd primes, and the corollary would follow.

An elementary argument shows if $t \geq 2$ then the largest value of the right hand side occurs for $m_{0}=77=7 \cdot 11$. In this case the right hand side is

$$
\frac{77}{60^{2}}+\frac{2}{60}+\frac{1}{77} \approx .0677
$$

which is comfortably less than $3 / 16$.

References

[1] T. Azuhata and H. Ichimura, On the divisibility problem of the class numbers of algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), 579-585.
[2] D. Cardon and R. Murty, Exponents of class groups of quadratic function fields over finite fields, Canad. Math. Bull. 44 (2001), 398-407.
[3] B. Datskovsky and D. Wright, Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116-138.
[4] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Roy. Soc. London Ser. A 322 (1971), 405-420.
[5] J. Esmonde and R. Murty, Problems in Algebraic Number Theory, Springer, New York, 2005.
[6] C. Friesen, Class number divisibility in real quadratic function fields, Canad. Math. Bull. 35 (1992), 361-370.
[7] A. Fröhlich and M. Taylor, Algebraic Number Theory, Cambridge Univ. Press, Cambridge, 1991.
[8] P. Hartung, Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, J. Number Theory 6 (1974), 276-278.
[9] K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31-38.
[10] -, Trace formulae and imaginary quadratic fields, Math. Ann. 288 (1990), 605-612.
[11] K. Horie and Y. Ônishi, The existence of certain infinite families of imaginary quadratic fields, J. Reine Angew. Math. 390 (1988), 97-133.
[12] H. Ichimura, Quadratic function fields whose class numbers are not divisible by three, Acta Arith. 91 (1999), 181-190.
[13] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Springer, New York, 1990.
[14] N. Jochnowitz, Congruences between modular forms of half integral weights and implications for class numbers and elliptic curves, unpublished.
[15] C. Jordan, Recherches sur les substitutions, J. Liouville 17 (1872), 351-367.
[16] I. Kimura, On class numbers of quadratic extensions over function fields, Manuscripta Math. 97 (1998), 81-91.
[17] W. Kohnen and K. Ono, Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication, Invent. Math. 135 (1999), 387-398.
[18] T. Komatsu, Arithmetic of Rikuna's generic cyclic polynomial and generalization of Kummer theory, Manuscripta Math. 114 (2004), 265-279.
[19] S. Lang, Algebra, 2nd ed., Addison-Wesley, Reading, MA, 1984.
[20] Y. Lee, The structure of the class groups of global function fields with any unit rank, J. Ramanujan Math. Soc. 20 (2005), 125-145.
[21] Y. Lee and A. Pacelli, Class groups of imaginary function fields: the inert case, Proc. Amer. Math. Soc. 133 (2005), 2883-2889.
[22] -, 一, Higher rank subgroups in the class groups of imaginary function fields, J. Pure Appl. Algebra 207 (2006), 51-62.
[23] H. Lenstra and P. Stevenhagen, Chebotarëv and his density theorem, Math. Intelligencer 18 (1996), no. 2, 26-37.
[24] D. Marcus, Number Fields, Springer, New York, 1977.
[25] R. Murty, Exponents of class groups of quadratic fields, in: Topics in Number Theory (University Park, PA, 1997), Math. Appl. 467, Kluwer, Dordrecht, 1999, 229-239.
[26] T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140-150.
[27] S. Nakano, On ideal class groups of algebraic number fields, J. Reine Angew. Math. 358 (1985), 61-75.
[28] K. Ono, Indivisibility of class numbers of real quadratic fields, Compos. Math. 119 (1999), 1-11.
[29] K. Ono and C. Skinner, Fourier coefficients of half-integral weight modular forms modulo ℓ, Ann. of Math. 147 (1998), 453-470.
[30] A. Pacelli, Abelian subgroups of any order in class groups of global function fields, J. Number Theory 106 (2004), 29-49.
[31] -, The prime at infinity and the rank of the class group in global function fields, ibid. 116 (2006), 311-323.
[32] A. Pacelli and M. Rosen, Indivisibility of class numbers of global function fields, Acta Arith. 138 (2009), 269-287.
[33] Y. Rikuna, On simple families of cyclic polynomials, Proc. Amer. Math. Soc. 130 (2002), 2215-2218.
[34] M. Rosen, The Hilbert class field in function fields, Expo. Math. 5 (1987), 365-378.
[35] -, Number Theory in Function Fields, Springer, New York, 2002.
[36] D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137-1157.
[37] L. Washington, Class numbers of the simplest cubic fields, ibid. 48 (1987), 371-384.
[38] P. Weinberger, Real quadratic fields with class numbers divisible by n, J. Number Theory 5 (1973), 237-241.
[39] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76.

Michael Daub
Department of Mathematics
University of California, Berkeley
970 Evans Hall \#3840
Berkeley, CA 94720, U.S.A.
E-mail: mwdaub@math.berkeley.edu
Mona Merling
Department of Mathematics
The University of Chicago
5734 S. University Avenue
Chicago, IL 60637, U.S.A.
E-mail: monieleinadams@yahoo.es
Michael Rosen
Department of Mathematics
Brown University
Box 1917
Providence, RI 02912, U.S.A.
E-mail: mrosen@math.brown.edu

Jaclyn Lang, Natee Pitiwan
Department of Mathematics
UCLA
Box 951555
Los Angeles, CA 90095, U.S.A.
E-mail: jaclyn.ann.lang@gmail.com npitiwan@math.ucla.edu

Allison M. Pacelli
Department of Mathematics and Statistics
Williams College
Williamstown, MA 01267, U.S.A.
E-mail: apacelli@williams.edu

Received on 10.10.2009 and in revised form on 6.1.2011

[^0]: 2010 Mathematics Subject Classification: 11R29, 11R58.
 Key words and phrases: class number, class group, indivisibility of class numbers, function fields.

