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Class groups under relative quadratic extensions

by

Qin Yue (Nanjing)

1. Introduction. Let A be a finite abelian group. We will denote by
r2k(A) the 2k-rank of A. The beginning of the genus theory of quadratic ex-
tensions can be traced back to the work of C. F. Gauss (see [2, Chapter 3, Sec-
tion 8]). Namely, in our current language, C. F. Gauss computed the 2-rank
of the narrow class group C+(E) of a quadratic number field E = Q(

√
d). He

showed that r2(C+(E)) = t−1, where t is the number of primes that ramify
in E (see [7, p. 159]). Moreover, Gauss also obtained the following result: an
ideal class [I] is in C+(E)2 if and only if |NE/Q(I)| ∈ NE/Q(E∗), where I is a
fractional ideal of E and |NE/Q(I)| is the norm of I (see [7, Theorem 145]).
Then L. Rédei found a method to compute the 4-rank of C+(E), namely
r4(C+(E)) = t− 1− rankRE , where RE is the Rédei matrix of E (see [13]).
Throughout, the rank is computed over F2.

For a relative quadratic extension E/F , class groups have been studied
by several authors (see [1, 3, 4, 8, 9, 11, 14, 15]). In particular, Gras gave a
method to compute the 2-Sylow subgroup of the class group C(E) (see [5, 6]).

This paper is mainly devoted to generalizing the Rédei formula to a
relative quadratic extension E/F . Let E = F (

√
d) be a relative quadratic

extension of F and Gal(E/F ) = {1, σ} the Galois group. Then Gal(E/F )
acts on the class group C(E) of E and there is an exact sequence

1→ Am(E/F )→ C(E) 1−σ−−→ C(E)1−σ → 0,

where Am(E/F ) is the subgroup generated by all ambiguous ideal classes of
C(E). There is the well-known formula

#Am(E/F ) = h(F )
2m−1

[UF : UF ∩NE/F (E∗)]
,

where m is the number of primes of F ramifying in E, h(F ) is the class
number of F and UF is the unit group of the integral ring OF (see [1] or [10,
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p. 307]). If h(F ) is odd, we have the well-known result

r2(C(E)) = r2(Am(E/F )) = m− 1− r2(UF /UF ∩NE/F (E∗)).

Moreover, in [15] we get a formula

r4(C(E)) = m− 1− rankRE/F ,

where RE/F is a matrix of local Hilbert symbols with coefficients in F2.
In this paper, we mainly generalize the above formulas provided that

C(F ) has even order. We make the following standing assumptions: E =
F (
√
d) is a relative quadratic extension of F , the 2-Sylow subgroup of the

class group C(F ) is elementary, i.e. r2(C(F )) = s and r4(C(F )) = 0, S is
a set consisting of all infinite primes of F and some finite primes P1, . . . , Ps
of F , which ramify in E, such that the S-ideal class group CS(F ) has odd
order. We give two formulas for the 2-rank and the 4-rank of the class
group C(E):

r2(C(E)) = m− 1− r2(USF /USF ∩NE/F (E∗)),

where USF is the S-unit group of F , and

r4(C(E)) = m− 1− rankRE/F
+ r2(USF /U

S
F ∩NE/F (E∗))− r2(UF /UF ∩NE/F (E∗)),

where RE/F is a matrix of local Hilbert symbols with coefficients in F2. We
call RE/F the generalized Rédei matrix. We also give algorithms to compute
the values of r2(C(E)) and r4(C(E)).

A key step in the proofs of the formulas for the 2-rank and 4-rank of C(E)
is the use of the exact hexagon of Conner and Hurrelbrink. We recall this
hexagon in Section 2. For convenience, we introduce the following notation:

E/F relative quadratic extension,
OF , OE ring of integers of F , ring of integers of E,
UF , UE unit group of OF , unit group of OE ,
USF , U

S
E S-unit group of F , S-unit group of E,

C(F ), C(E) ideal class group of F , ideal class group of E,
h(F ), h(E) class number of F , class number of E,
[P ], [P] class of an ideal P in C(F ), class of an ideal P in C(E),
N field norm map from E to F ,
N(x), NE norm of x ∈ E to F , set of norms from E to F ,
A2 2-Sylow subgroup of an abelian group A,
2A subgroup of elements of order ≤ 2 of a finite abelian group A,
r2k(A) 2k-rank of a finite abelian group A,
m number of primes of F ramifying in E,
n number of finite primes of F ramifying in E.
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2. An exact hexagon. In [4, Theorem 2.3], Conner and Hurrelbrink
introduced the exact hexagon which is analogous to Herbrand’s theorem.
Now we describe it. Let C2 = Gal(E/F ) = {1, σ} be the Galois group
of E/F . As the class group C(E) and the unit group UE are C2-modules,
we define H0(C2, C(E)) = Am(E/F )/NC(E) and H0(C2, UE) = UF /NUE .
There is a homomorphism

d0 : H0(C2, C(E))→ H0(C2, UE), cl(A) 7→ cl(u),

where A is a fractional ideal of E, σA = yA, y ∈ E∗, N(y) = u ∈ UF .
Moreover, there is a homomorphism between first cohomology groups:

d1 : H1(C2, C(E))→ H1(C2, O
∗
E), cl(A) 7→ cl(w),

where σA ·A = yOE , y ∈ E∗, w = σ(y) · y−1 ∈ UE (for details, see [4, p. 2]).
Let I(E) be the multiplicative group of fractional ideals of E. We now

define two groups. Let

R0 = {(x,A) ∈ F ∗ × I(E) | xAσ(A) = OE},
a subgroup of the direct product F ∗ × I(E) of the multiplicative groups F ∗
and I(E). Let

N0 = {(N(y), y−1σ(B)B−1) ∈ R0 | y ∈ E∗, B ∈ I(E)},
a subgroup of R0. We define the quotient group

R0(E/F ) = R0/N0

and denote the class of (x,A) by 〈x,A〉.
Let

R1 = {(w,A) ∈ UE × I(E) | N(w) = 1, σA = A},
a subgroup of the direct product UE × I(E) of the multiplicative groups UE
and I(E). Let

N1 = {(σ(y)y−1, yσ(B)B) ∈ R1 | y ∈ E∗, B ∈ I(E)},
a subgroup of R1. We define the quotient group

R1(E/F ) = R1/N1

and denote the class of (w,A) by |w,A|.
By [4, Theorem 2.3] we have

Lemma 2.1. There is an exact hexagon

H1(C2, C(E)) −→
d1

H1(C2, UE)
↘
i1

R0(E/F )
↗
j1

R1(E/F ),
↙
j0

H0(C2, UE) ←−
d0

H0(C2, C(E))
↖
i0
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where i1 : cl(w) 7→ |w,OE |, j0 : |w,A| 7→ cl(A), i0 : cl(u) 7→ 〈u,OE〉,
j1 : 〈x,A〉 7→ cl(A).

Since C(E) is finite and E/F is a cyclic extension, by Herbrand’s theorem
(see [12, p. 13, Proposition 4.3])

h(C2, C(E)) = |H0(C2, C(E))/H1(C2, C(E))| = 1.

By the exact hexagon,

r2(H1(C2, UE))− r2(H0(C2, UE)) = r2(R1(E/F ))− r2(R0(E/F )).

If E/F is ramified, then, by [4, Theorems 4.2 and 5.1], r2(R0(E/F )) =
m− 1 and r2(R1(E/F )) = n. Hence

r2(H1(C2, UE))− r2(H0(C2, UE)) = 1− (m− n).

If P1, . . . , Pn are all finite prime ideals of F that ramify inE/F andP1, . . . ,Pn
are finite prime ideals of E with P2

i = PiOE , i = 1, . . . , n, then, by [4, Theo-
rem 5.1], R1(E/F ) has generators

(2.1) |1,P1|, . . . , |1,Pn|.

3. 2-rank. For convenience, “primes of F ” will be prime ideals of F .
In this paper, we always assume that r2(C(F )) = s, r4(C(F )) = 0, Sf =
{P1, . . . , Ps} is a set of some finite primes of F that ramify in E/F , S is the
set consisting of all infinite primes of F and all primes in Sf , and the S-ideal
class group CS(F ) has odd order. Note that if r2(C(F )) = s, r4(C(F )) = 0,
and S′ is the set consisting of all infinite primes of F and all finite primes of
F ramifying in E such that the S′-ideal class group CS′(E) has odd order,
then there must exist a subset S of S′ as above such that the S-ideal class
group CS(E) has odd order.

LetH be the subgroup ofC(F ) generated by the ideal classes [P1], . . . , [Ps].
Then the S-ideal class group CS(F ) = C(F )/H has odd order. Without loss
of generality, we always assume that [P1], . . . , [Ps] are elements of order 2,
i.e.

(3.2) P 2
i = xiOF , xi ∈ F ∗, i = 1, . . . , s,

and
C(F )2 = H = ([P1])× · · · × ([Ps]).

If necessary we replace [Pi] with [Pi]h, where h = h(F )/2s is odd.
In the following, we decompose H into three direct summands. For each

ideal class [P ] ∈ H,
POE = P2, P 2 = xOF .

Let H ′ be the subgroup of H generated by all [P ] ∈ H with xUF ∩NE 6= ∅.
Hence we can decompose H as

H = H ′ ×H3.
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Note that H ′ is unique but H3 is not. We have two facts: 1 6= [P ] ∈ H ′ if
and only if xUF ∩NE 6= ∅; if 1 6= [P ] ∈ H3, then xUF ∩NE = ∅. Moreover
we can decompose H ′ as

H ′ = H1 ×H2,

where H1 is the subgroup generated by all [P ] ∈ H ′ with xUF ∩NOE 6= ∅,
NOE being the set of norms from OE to F . Note that H1 is unique but H2

is not. In fact, 1 6= [P ] ∈ H1 if and only if xUF ∩NOE 6= ∅; if 1 6= [P ] ∈ H2,
then xUF ∩NE 6= ∅ and xUF ∩NOE = ∅. Hence we get the following result.

Lemma 3.1. Let 1 6= [P ] ∈ H = C(F )2 with P 2 = xOF . Then there is a
decomposition of subgroups:

C(F )2 = H = H1 ×H2 ×H3,

where [P ] ∈ H1 if and only if xUF ∩ NOE 6= ∅; [P ] ∈ H1 × H2 if and
only if xUF ∩ NE 6= ∅; moreover, r2(H1) = s1, r2(H2) = s2, r2(H3) = s3,
r2(C(F )) = s = s1 + s2 + s3 are determined uniquely by E/F .

Now we lift direct summands of H into C(E). Suppose E/F is a ramified
extension. Then there is a well-known exact sequence of 2-Sylow subgroups

(3.3) 0→ kerN → C(E)2
N−→ C(F )2 → 0,

where N : [A] 7→ [A] and N(A) = A is an ideal of F . Let 1 6= [P ] ∈ H,
P 2 = xOF and POE = P2. Then [P]4 = 1 in C(E) and N : [P] 7→ [P ], so
the order of [P] is either 2 or 4 in C(E).

Lemma 3.2. Suppose 1 6= [P ] ∈ H = C(F )2, P 2 = xOF and POE = P2.
Then

(1) [P ] ∈ H1 if and only if [P] is of order 2 in C(E).
(2) [P ] ∈ H1×H2 if and only if there is an element [B] ∈ C(E) of order 2

such that N : [B] 7→ [P ]. Moreover, [P ] ∈ H2 if and only if [P] is of
order 4 in C(E) and there is an element [B] ∈ C(E) of order 2 such
that N : [B] 7→ [P ].

(3) [P ] ∈ H3 if and only if [P] is of order 4 in C(E) and there is no
[B] ∈ C(E) of order 2 such that N : [B] 7→ [P ].

Proof. (1) If [P] is of order 2 in C(E), i.e. P2 = yOE , y ∈ OE , then
xOF = P 2 = N(P)2 = N(y)OF and there is u ∈ UF such that N(y) =
xu, y ∈ OE , i.e. xUF ∩NOE 6= ∅. Hence [P ] ∈ H1 by Lemma 3.1. Conversely,
if [P ] ∈ H1, then xUF ∩NOE 6= ∅ by Lemma 3.1, i.e. there is a y ∈ OE such
that N(y) = xu, u ∈ UF ; then yOE = P2 = POE as each prime ideal divisor
of P ramifies in E, so N : [P] 7→ [P ]. Hence [P] is of order 2 in C(E).

(2) Suppose that [P ] ∈ H1 ×H2, i.e. xUF ∩ NE 6= ∅ by Lemma 3.1, so
there is y ∈ E∗ such that N(y) = xu, u ∈ UF . For all finite primes Q of E,
we have vQ(y) + vQ(σ(y)) = vQ(x), where vQ is the normalized exponential
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valuation belonging to Q. Hence

yOE = P2 B1

σB1
, σ(y)OE = P2σB1

B1
, [P2] =

[B1]
σ[B1]

,

where B1 is an integral ideal of OE . Let B1σB1 = B1OE , where B1 is an
integral ideal of OF . In C(F ), there is [P1] ∈ H such that [P1][B1] = [B2]2 ∈
C(F )2, i.e. [B1] = [B2]2[P1]. Hence in C(E), [B1]σ[B1] = [B1OE ] = [B2P1]2,
where P2

1 = P1OE . Set

B = P B1

B2P1
.

Then [B]2 = [P]2 [B1]2

[B2P1]2
= 1 in C(E) and N([B]) = N([P]) = [P ], so [B]

is of order 2 in C(E). Conversely, if there is a [B] ∈ C(E) of order 2 such
that N([B]) = [P ], then B2 = yOE , y ∈ E∗, and N(y)OF = (NB)2 =
(kP )2 = k2xOF , k ∈ F ∗. Hence there is a u ∈ UF such that N(y/k) = xu,
i.e. xUF ∩ NE 6= ∅. Hence [P ] ∈ H1 ×H2 by Lemma 3.1. The second part
of (2) is clear from (1) and the first part of (2).

(3) This is straightforward from (1) and (2).

By Lemmas 3.1 and 3.2, we have a natural lift of C(F )2 to C(E).

Corollary 3.1. Let Ki = {[P] ∈ C(E) | P2 = POE , [P ] ∈ Hi},
i = 1, 2, 3. Then

K = K1 ×K2 ×K3, K1
∼= H1, K2/K

2
2
∼= H2, K3/K

2
3
∼= H3,

where K1 is 2-elementary abelian and r4(Ki) = r2(Ki) = r2(Hi), i = 2, 3.

We know that i : C(F )2 → C(E)2, [P ] 7→ [POE ], is a homomorphism of
groups.

Lemma 3.3.

(1) There is an exact sequence

0→ H1 → C(F )2
i→ C(E)2.

(2) There is a decomposition into subgroups

C(E)2 = K1 ×K ′2 ×K3 · kerN,

where K ′2 ∼= H2 and K2
2 ,K

2
3 ⊂ kerN .

Proof. (1) This is clear from Lemma 3.2.
(2) We consider the exact sequence of (3.3). By Lemma 3.2(1), there is

an isomorphism of groups j1 : H1 → K1, [P ] 7→ [P], where POE = P2.
By Lemma 3.2(2), for each 1 6= [P ] ∈ H2, there is a [B] ∈ C(E) of order 2
such that N : [B] 7→ [P ]; let K ′2 be the subgroup of C(E) generated by all
such [B]. Then j2 : H2 → K ′2, [P ] 7→ [B], is an isomorphism. Hence there
are subgroups K1 and K ′2 such that C(E)2 = K1 ×K ′2 × N−1(H3), where
K1
∼= H1, K ′2 ∼= H2, N−1(H3) = K3 · kerN and K2

2 ,K
2
3 ⊂ kerN .
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Lemma 3.4. Let CS(E) = C(E)/K be the S-ideal class group of E. Sup-
pose that the S-ideal class group CS(F ) of F has odd order. Then r2(CS(E))
= m− 1− r2(USF /USF ∩NE), where USF is the S-unit group of F .

Proof. In the exact hexagon, if we replace C(E) and UE with CS(E)
and USE , respectively, we also obtain an exact hexagon (see [4]). Suppose
CS(F ) has odd order. Then im d1 = 1 and there is an exact sequence (see
[4, Lemma 9.1])

→ H0(C2, U
S
E) i0→ R0S(E/F )

j1→ H1(C2, C
S(E))→ 1.

We know (see [4, p. 24]) that im i0 ∼= USF /U
S
F ∩NE), r2(R0S(E/F )) = m−1,

and r2(CS(E)) = r2(H1(C2, C
S(E))) since the order of CS(F ) is odd. Hence

r2(CS(E)) = m− 1− r2(USF /USF ∩NE).

Theorem 3.1.

(1) r2(C(E)) = s+m− 1− r2(USF /USF ∩NE), where USF is the S-ideal
class group of F .

(2) r2(K3) = s3 = r2(USF /U
S
F ∩NE)− r2(UF /UF ∩NE).

Proof. Let Am(E/F ) = {[P] ∈ C(E) | σ[P] = [P]} be the subgroup
generated by all ambiguous ideal classes of C(E). By [10], we have the well-
known formula

# Am(E/F ) = h(F )
2m−1

[UF : UF ∩NE]
.

Since K = K1 ×K2 ×K3 ⊂ Am(E/F )2, there is an exact sequence

0→ Am→ Am(E/F )2
N→ H → 0,

where Am is a 2-elementary subgroup. Hence

(3.4) Am(E/F )2 = K1 ×K2 ×K3 ×Am1, Am1 ⊂ Am,

and
r2(Am(E/F )) = m− 1 + s1 − r2(UF /UF ∩NE).

On the other hand, by Lemma 3.3(2) it is clear that

2Am(E/F ) = K1 × 2kerN = K1 × 2(K3 · kerN)

and 2(C(E)) = K ′2 × 2Am(E/F ). Hence

r2(C(E)) = r2(K ′2) + r2(Am(E/F ))(3.5)
= s1 + s2 +m− 1− r2(UF /UF ∩NE),

r2(kerN) = m− 1− r2(UF /UF ∩NE).

Now we investigate the S-ideal class group CS(E) = C(E)/K, where
K = K1 ×K2 ×K3. There is an exact sequence

0→ K1 ×K2 ×K3 → C(E)→ CS(E)→ 0.
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By tensoring the above exact sequence with F2 = Z/2Z, we obtain the exact
sequence

0→ (K1 ×K2 ×K3)⊗ F2
i⊗1−−→ C(E)⊗ F2 → CS(E)⊗ F2 → 0.

In fact, C(E)⊗F2
∼= C(E)/C(E)2 and Ki⊗F2

∼= Ki/K
2
i , i = 2, 3. For each

[P] ∈ Ki of order 4, i = 2, 3, we have [P] /∈ C(E)2 by (3.3), hence i ⊗ 1 is
injective. Then

(3.6) r2(C(E)) = r2(CS(E)) + r2(K).

By Lemma 3.4 and (3.6),

(3.7) r2(C(E)) = s+m− 1− r2(USF /USF ∩NE).

This proves (1). By (3.5), (3.7), Corollary 3.1 and s = s1 + s2 + s3, we have

r2(K3) = s3 = r2(USF /U
S
F ∩NE)− r2(UF /UF ∩NE).

This proves (2).

We now give an algorithm to compute r2(UF /UF ∩NE) and r2(K3) = s3.
Let r2(UF /U2

F ) = l, UF /U2
F = ({u1, . . . , ul}). For each prime Q of F which

splits or is inert in E, the local Hilbert symbol (ui, d)Q is 1. Thus, by Hasse’s
norm theorem, we only need to investigate the local Hilbert symbols (ui, d)P
for all primes of F which ramify in E. Let P1, . . . , Pm be all primes (finite
or infinite) of F which ramify in E. For convenience, we construct a matrix
of local Hilbert symbols over F2:

MU =

 (u1, d)P1 · · · (u1, d)Pm

· · · · · · · · · · · · · · · · · · · · · · · ·
(ul, d)P1 · · · (ul, d)Pm

 .

We replace the 1’s with 0’s, and the −1’s with 1’s. Then

r2(UF /UF ∩NE) = rankMU .

In order to compute r2(K3), as above we also construct a matrix of local
Hilbert symbols over F2:

MS =



(x1, d)P1 · · · (x1, d)Pm

· · · · · · · · · · · · · · · · · · · · · · · ·
(xs, d)P1 · · · (xs, d)Pm

(u1, d)P1 · · · (u1, d)Pm

· · · · · · · · · · · · · · · · · · · · · · · ·
(ul, d)P1 · · · (ul, d)Pm


,

where x1, . . . , xs are defined in (3.2). If the first row ofMS cannot be linearly
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represented by the last l rows of MS , then x1UF ∩NE = ∅. Hence
r2(K3) = rankMS − rankMU .

4. 4-rank. In this section, we investigate the 4-rank of C(E). By (3.3)
we have

r4(C(E)) = r2(2C(E) ∩ C(E)2) = r2(2kerN ∩ C(E)2).

We will construct all elements of 2kerN to compute r2(2kerN ∩ C(E)2).
First we investigate H0(C2, C(E)) = Am(E/F )/N(C(E)). It is clear

that H0(C2, C(E)) = Am(E/F )2/N(C(E))2. By (3.4), we have
Am(E/F )2 = K1 ×K2 ×K3 ×Am1, 2kerN = K2

2 ×K2
3 ×Am1,

where Am1 is a 2-elementary subgroup of Am(E/F )2. Since N(C(E))2 =
K2

2 ×K2
3 ,

H0(C2, C(E)) = K1 ×K2/K
2
2 ×K3/K

2
3 ×Am1 .

By the exact hexagon, there is an exact sequence
(4.8)
H1(C2, UE) i1→ R1(E/F )

j0→ H0(C2, C(E)) d0→ H0(C2, UE) i0→ R0(E/F ),

where r2(R1(E/F )) = n.
For convenience, we assume that {P1, . . . , Ps, Ps+1, . . . , Pn} is the set

of all finite prime ideals of F which ramify in E, H1 = ([P1], . . . , [Ps1 ]),
H2×H3 = ([Ps1+1], . . . , [Ps]). For each [Pj ] ∈ C(F ) (s+1 ≤ j ≤ n), without
loss of generality, we assume that there is a [P ′j ] ∈ H such that [Pj ][P ′j ] = 1.
If necessary we can replace [Pj ] with [P hj ], h = h(F )/2s odd. Let

PiOE = P2
i , i = 1, . . . , n,

PjP
′
j = xjOF , (PjP ′j)2 = PjP

′
jOE , j = 1, . . . , n,(4.9)

where we take Pj = P ′j if j = 1, . . . , s. By [2], we know that

R1(E/F ) = (|1,P1|, . . . , |1,Ps|, |1,Ps+1P ′s+1|, . . . , |1,PnP ′n|).
We investigate the inverse image of d0 in (4.8). We know that d0 :

H0(C2, C(E)) → H0(C2, UE), cl(A) 7→ cl(u), where σA = yA and N(y) =
u ∈ UF ∩ NE. Conversely, let r2(UF /U2

F ) = l and r2((UF ∩ NE)/U2
F ) = t,

i.e.
(4.10) UF /U

2
F = (u1)× · · · × (ut)× (ut+1)× · · · × (ul)

and
(UF ∩NE)/U2

F = (u1)× · · · × (ut).

If N(yi) = ui ∈ UF ∩ NE, then yiOE = σBi
Bi

by the Hilbert–Noether
theorem, i.e. H1(C1, I(E)) = 1. Since N(Bi) = Bi is an ideal of F , there is
an ideal class [P ′′i ] ∈ C(F )2 such that [Bi][P ′′i ] ∈ C(F )2. Hence, without loss
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of generality, we assume that [Bi][P ′′i ] = 1; if necessary we replace yi with
yhi , h = h(F )/2s, so there are vi ∈ F ∗ such that BiP ′′i = viOF , i = 1, . . . , t.
Let P ′′2i = P ′′i OE . Then

(4.11) yiOE =
σ(BiP ′′i )
BiP ′′i

, BiP ′′i σ(BiP ′′i ) = viOE , i = 1, . . . , t,

and d0 : cl(BiP ′′i ) 7→ cl(ui). Hence by (4.8),

Am(E/F )2 = ([P1], . . . , [Ps], [Ps+1P ′s+1], . . . , [PnP ′n], [B1P ′′1 ], . . . , [BtP ′′t ])

and

2kerN = ([P2
s1+1], . . . , [P2

s ], [Ps+1P ′s+1], . . . , [PnP ′n], [B1P ′′1 ], . . . , [BtP ′′t ]).

We define KerN={[A] ∈ C(E) | [A]σ[A] = 1}, IC2(C(E))={σ[A]/[A] |
[A] ∈ C(E)} and H1(C2, C(E)) = KerN/IC2(C(E)).

Lemma 4.1.

(1) (KerN)2 = kerN ×K1, where kerN is defined as (3.3).
(2) 2C(E) ∩ C(E)2 = 2kerN ∩ C(E)2 = (2kerN ∩ IC2(C(E))) × K2

3

and K2
3 ∩ IC2(C(E)) = 1. Moreover 2kerN/(2kerN ∩ IC2(C(E))) ∼=

2kerN/(2kerN ∩ C(E)2)×K2
3 .

Proof. (1) By Lemma 3.3, it is clear that K1 × kerN ⊂ (KerN)2. Con-
versely, if [A] ∈ (KerN)2, then [A]σ[A] = 1 in C(E). On the other hand,
N(A) = A is an ideal of F , so there is a [P ] ∈ H such that [A][P ] = 1 in
C(F ). Then for P2 = POE , [A]σ[A][P2] = 1 and [P2] = 1 in C(E). Hence
[A][P] ∈ kerN and [P] ∈ K1×K2

2 ×K2
3 ⊂ K1× kerN , so [A] ∈ K1× kerN .

(2) By Lemma 3.3(2), we have 2C(E) ∩ C(E)2 = 2 kerN ∩ C(E)2. Let

σ[A]
[A]

=
(σ[A])2

[AOE ]
∈ IC2(C(E)),

where N(A) = A is an ideal of OF . Then since C(F )2 is 2-elementary there is
a [P ] ∈ H such that [PA] ∈ C(F )2, [PAOE ] ∈ C(E)2 and [AOE ] ∈ C(E)2,
where [POE ] = [P2] ∈ C(E)2. Hence IC2(C(E)) ⊂ C(E)2 and 2kerN ∩
IC2(C(E)) ⊂ 2kerN ∩ C(E)2. Conversely, let [A] = [B]2 ∈ 2kerN ∩ C(E)2

and N(B) = B, an ideal of F . Then there is an ideal class [P ] ∈ H such that
[BP ] has odd order. On the other hand, since [A] = [B]2 ∈ 2kerN , we have
1 = N([A]) = N([B])2 = [B]2 and N([B][P]) = [B][P ] has even order, where
POE = P2. Hence N([BP ]) = [BP ] = 1 in C(F ) and

[A] = [BP2]2 =
[BP ]
σ[BP ]

[P2].

By the proof of Lemma 3.2, we know that [P2] ∈ K2
2 if and only if [P2] ∈

IC2(C(E)). Therefore 2kerN∩C(E)2 = (2kerN∩IC2(C(E)))×K2
3 . We have

proved the first part of (2).
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Moreover, there is an exact sequence

0→ K2
3 → 2kerN/2kerN ∩ IC2(C(E))→ 2kerN/2kerN ∩ C(E)2 → 0,

so we have proved the second part.

Now we calculate r4(C(E)). By the exact hexagon, we have

(4.12) → H0(C2, UE) i0→ R0(E/F )
j1→ H1(C2, C(E))→ .

Let R be the subgroup of R0(E/F ) generated by {〈xs1+s2+1,P2
s1+s2+1〉,

. . . , 〈xn,PnP ′n〉, 〈v1,B1P ′′1 〉, . . . , 〈vt,B′′t P ′′t 〉, 〈ut+1, OE〉, . . . , 〈ul, OE〉}, where
xi, uj , vk are given in (4.9)–(4.11). By (4.12), there is an exact sequence

(4.13) 0→ UF
UF ∩NE

→ R→ 2kerN
2kerN ∩ IC2(C(E))

→ 0.

Hence by Lemma 4.1(2),

r2(2kerN/2kerN ∩ C(E)2) = r2(2kerN/2kerN ∩ IC2(C(E)))− r2(K3)
= r2(R)− r2(UF /UF ∩NE)− r2(K3).

Now we give an algorithm to compute r2(R). Let P1, . . . , Pn, . . . , Pm be
all finite and infinite primes of F which ramify in E. We construct a matrix
of local Hilbert symbols

RE/F =



(xs1+s2+1, d)P1 · · · (xs1+s2+1, d)Pn · · · (xs1+s1+1, d)Pm

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(xn, d)P1 · · · (xn, d)Pn · · · (xn, d)Pm

(v1, d)P1 · · · (v1, d)Pn · · · (v1, d)Pm

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(vt, d)P1 · · · (vt, d)Pn · · · (vt, d)Pm

(ut+1, d)P1 · · · (ut+1, d)Pn · · · (ut+1, d)Pm

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(ul, d)P1 · · · (ul, d)Pn · · · (ul, d)Pm


.

We consider the above matrix with coefficients in F2 by replacing the 1’s by
0’s and the −1’s by 1’s. With this notation,

r2(R) = rankRE/F .

Hence by (3.5),

r4(C(E)) = r2(2kerN ∩ C(E)2) = r2(kerN)− r2(2kerN/2kerN ∩ C(E)2)
= m− 1− r2(UF /UF ∩NE)
− [r2(R)− r2(UF /UF ∩NE)− r2(K3)]

= m− 1− rankRE/F + r2(K3).

By Theorem 3.1, we have
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Theorem 4.1.

r4(C(E)) = m− 1− rankRE/F + r2(USF /U
S
F ∩NE)− r2(UF /UF ∩NE).

5. Some examples. Let F = Q(
√
−d1) be an imaginary quadratic num-

ber field andD = p∗1 . . . p
∗
s+1 the discriminant of F , where p∗i = (−1)(pi−1)/2pi

if pi is an odd prime and p∗s+1 = −4, 8, or −8 if 2 |D. We have the (s+ 1)×
(s+ 1) Rédei matrix of Legendre or Kronecker symbols over F2,

RF =


(D/p∗1

p1

) (p2
p1

)
· · ·

(ps+1

p1

)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(p1
ps

) (p2
ps

)
· · ·

(ps+1

ps

)
(p∗s+1

p1

) (p∗s+1

p2

)
· · ·

(D/p∗s+1

ps+1

)

 .

Note that we replace the 1’s with 0’s and the −1’s with 1’s. Then

r4(C(F )) = s− rankRF .

Let R′F be the s × (s + 1) matrix obtained by deleting the (s + 1)th row
of RF . It is clear that r4(C(F )) = 0 if and only if rankRF = rankR′F = s.

Let E = F (
√
d), d ∈ Z, be a relative quadratic extension of F . Let F0 =

Q(
√
d) be a quadratic number field. Suppose S′f ={q1, . . . , qr, qr+1, . . . , qr+r′}

is the set of all prime numbers of Q which ramify in F0, q1, . . . , qr split in F ,
and qr+1, . . . , qr+r′ are inert in F . Consider the following matrix of Legendre
symbols over F2:

ME =


( q1
p1

)
· · ·

( qr
p1

)
· · · · · · · · · · · · · · ·( q1
ps

)
· · ·

( qr
ps

)
 .

Suppose S′ is the set consisting of all infinite primes of F and all finite
primes of F ramifying in E. Then #S′ = n + 1 = 2r + r′ + 1. By [14,
Proposition 2.2], we have

Lemma 5.1. If r4(C(F )) = 0, then the S′-ideal class group CS′(F ) has
odd order if and only if rankME = s.

In fact, if rankME = s, then s ≤ r. Without loss of generality, consider
the submatrix of ME :

M ′E =


( q1
p1

)
· · ·

( qs
p1

)
· · · · · · · · · · · · · · ·( q1
ps

)
· · ·

( qs
ps

)


with rankM ′E = s. Let

qiOF = QiQ
′
i, i = 1, . . . , s,
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Sf = {Q1, . . . , Qs}, and S the set including the infinite prime and all primes
in Sf . Then CS(F ) has odd order (for details, see [14]). Hence we use the
method to compute the 2-rank and 4-rank of C(E) for all such biquadratic
fields E.

Example 5.1. Let

F = Q(
√
−21), E = F (

√
5 · 11 · 13).

Set p1 = 3, p2 = 7, p3 = 2. We have the Rédei matrix over F2

R′F =

((D/p∗1
p1

) (p2
p1

) (p3
p1

)(p1
p2

) (D/p∗2
p2

) (p3
p2

)) =

(
0 0 1
1 1 0

)
.

It is clear that 5, 11 split in F and 13 is inert in F . Set q1 = 5, q2 = 11,
q3 = 13 and there is a matrix over F2

ME =

(( q1
p1

) ( q2
p1

)( q1
p2

) ( q2
p2

)) =

(
1 1
1 0

)
.

We have rankME = s = 2. In fact, since 2 · 11 = 12 + 21, we have [Q2][Q11]
= 1 and Q2

11 = (10−
√
−21)OF , where Q2

2 = 2OF and Q11Q
′
11 = 11OF ; since

5 · 2 · 7 = 72 + 21, we have [Q5][Q2Q7] = 1 and Q2
5 = (2−

√
−21)OF , where

Q2
7 = 7OF , Q5Q

′
5 = 5OF . Let Sf = {Q5, Q11} and S = {∞, Q5, Q11}. Then

CS(F ) has odd order. It is clear that m = n = 5 and UF /U2
F = (−1). Let

P1 = (5, 2−
√
−21) = Q5, P2 = (11, 10−

√
−21) = Q11, P3 = (5, 2+

√
−21),

P4 = (11, 10 +
√
−21), P5 = 13OF be all finite prime ideals of F ramifying

in E and x1 = 2−
√
−21, x2 = 10−

√
−21, x3 = 5, x4 = 11, x5 = 13, i.e.

P 2
1 = x1OF , P 2

2 = x2OF , P1P3 = x3OF , P2P4 = x4OF , P5 = x5OF .

Let d = 5 · 11 · 13. Then

MS =

 (x1, d)P1 (x1, d)P2 (x1, d)P3 (x1, d)P4 (x1, d)P5

(x2, d)P1 (x2, d)P2 (x2, d)P3 (x2, d)P4 (x2, d)P5

(−1, d)P1 (−1, d)P2 (−1, d)P3 (−1, d)P4 (−1, d)P5



=

 0 0 0 0 0
1 0 1 0 0
0 1 0 1 0

 .

Hence r2(K3) = s3 = 1, i.e. x1 = 2 −
√
−21 ∈ NE, and −1 /∈ NE, so

r2(C(E)) = s + m − 1 − r2(UF /UF ∩ NE) − s3 = 2 + 5 − 1 − 1 − 1 = 4.
Moreover, if d = 5 · 11 · 13,
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RE/F =


(x2, d)P1 (x2, d)P2 (x2, d)P3 (x2, d)P4 (x2, d)P5

(x3, d)P1 (x3, d)P2 (x3, d)P3 (x3, d)P4 (x3, d)P5

(x4, d)P1 (x4, d)P2 (x4, d)P3 (x4, d)P4 (x4, d)P5

(x5, d)P1 (x5, d)P2 (x5, d)P3 (x5, d)P4 (x5, d)P5

(−1, d)P1 (−1, d)P2 (−1, d)P3 (−1, d)P4 (−1, d)P5



=


1 0 1 0 0
1 0 1 0 0
0 0 0 0 0
1 1 1 1 0
0 1 0 1 0

 .

Since rankRE/F = 2, we have r4(C(E)) = m − 1 − rankRE/F + s3 =
5− 1− 2 + 1 = 3.

Remark 5.1. If E is a biquadratic number field with Gal(E/Q) ∼= K4

(Klein’s four group), then E/Q has three intermediate fields, say F1, F2, F3;
let U1, U2, U3, UE be the unit groups of F1, F2, F3, E, respectively. Kuroda
gave a formula for the class number (see [11]):

h(E) =

{
1
4 [UE : U1U2U3]h(F1)h(F2)h(F3) if E is real,
1
2 [UE : U1U2U3]h(F1)h(F2)h(F3) if E is imaginary.

In Example 5.1, we get the structure of the 2-Sylow subgroup of C(E).

In the following, we give an example where E is a relative quadratic
extension of F = Q(

√
d1), d1 ∈ Z, and E/Q is not a Galois extension.

Example 5.2. Let

F = Q(
√
−21), E = F

(√
11(8 +

√
−21)

)
.

Since NE/F (8 +
√
−21) = 5 · 17, we know that the prime ideals Q5 = (5, 8 +√

−21) = (5, 2 −
√
−21), Q11 = (11, 10 −

√
−21), Q′11 = (11, 10 +

√
−21),

Q17 = (17, 8 +
√
−21) of F ramify in E and the dyadic ideal D = (2, 1 +√

−21) of F ramifies in E. In fact, let FD be the complete field of F at D.
Then FD ∼= Q2(

√
3). Since 11(8 +

√
−21) ≡ 3

√
3 mod 8, it follows that

f(x+
√

3) = (x+
√

3)2 − 3
√

3 = x2 + 2
√

3x+ 3(1−
√

3)

is an Eisenstein polynomial in Q2(
√

3). Hence the dyadic prime D of F
ramifies in E, so m = n = 5. Let Sf = {Q5, Q11} and S = {∞, Q5, Q11}.
Then CS(F ) has odd order by Example 5.1. Let P1 = Q5 = (5, 2−

√
−21),

P2 = (11, 10 −
√
−21), P3 = (11, 10 +

√
−21), P4 = (17, 8 +

√
−21) = Q17,

P5 = (2, 1 +
√
−21) be all finite prime ideals of F ramifying in E and
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x1 = 2−
√
−21, x2 = 10−

√
−21, x3 = 11, x4 = 8+

√
−21, x5 = 1+

√
−21, i.e.

P 2
1 = x1OF , P 2

2 = x2OF , P3P2 = x3OF , P4P1 = x4OF , P5P2 = x5OF .

Let d = 11(8 +
√
−21). Then

MS =

 (x1, d)P1 (x1, d)P2 (x1, d)P3 (x1, d)P4 (x1, d)P5

(x2, d)P1 (x2, d)P2 (x2, d)P3 (x2, d)P4 (x2, d)P5

(−1, d)P1 (−1, d)P2 (−1, d)P3 (−1, d)P4 (−1, d)P5



=

 0 0 0 1 1
1 0 0 0 1
0 1 1 0 0

 .

Hence r2(K3) = s3 = 2 and r2(C(E)) = s+m−1−r2(UF /UF ∩NE)−s3 =
2 + 5− 1− 1− 2 = 3. Moreover,

RE/F =



(x1, d)P1 (x1, d)P2 (x1, d)P3 (x1, d)P4 (x1, d)P5

(x2, d)P1 (x2, d)P2 (x2, d)P3 (x2, d)P4 (x2, d)P5

(x3, d)P1 (x3, d)P2 (x3, d)P3 (x3, d)P4 (x3, d)P5

(x4, d)P1 (x4, d)P2 (x4, d)P3 (x4, d)P4 (x4, d)P5

(x5, d)P1 (x5, d)P2 (x5, d)P3 (x5, d)P4 (x5, d)P5

(−1, d)P1 (−1, d)P2 (−1, d)P3 (−1, d)P4 (−1, d)P5



=



0 0 0 1 1
1 0 0 0 1
0 0 1 1 0
0 1 0 1 0
1 0 1 1 1
0 1 1 0 0


.

Hence rankRE/F = 4, so r4(C(E)) = m− 1− rankRE/F + s3 = 2.
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