Multiplicative independence and bounded height

by
John Garza (Brownsville, TX)

1. Introduction. Amongst the absolute values in a place v of an algebraic number field \mathbb{K}, two play a role in this article. If v is archimedean, let $\|\cdot\|_{v}$ denote the unique absolute value in v that restricts to the usual archimedean absolute value on \mathbb{Q}. If v is non-archimedean and $v \mid p$, let $\|\cdot\|_{v}$ denote the unique absolute value in v that restricts to the usual p-adic absolute value on \mathbb{Q}. For each place v of \mathbb{K}, let \mathbb{K}_{v} and \mathbb{Q}_{v} be the completions of \mathbb{K} and \mathbb{Q} with respect to v and define the local degree of v as $d_{v}=\left[\mathbb{K}_{v}: \mathbb{Q}_{v}\right]$. For all places v let $|\cdot|_{v}=\|\cdot\|_{v}^{d_{v} / d}$.

The absolute values $|\cdot|_{v}$ satisfy the product rule: if $\alpha \in \mathbb{K}^{\times}$, then $\prod_{v}|\alpha|_{v}=1$. The absolute (logarithmic) Weil height of α is defined as $h(\alpha)=\sum_{v} \log ^{+}|\alpha|_{v}$ where the sum is over all places v of \mathbb{K}. Because of the way in which the absolute values $|\cdot|_{v}$ are normalized, $h(\alpha)$ does not depend on the field \mathbb{K} in which α is contained.

By Kronecker's theorem $h(\alpha)=0$ if and only if $\alpha=0$ or $\alpha \in \operatorname{Tor}\left(\overline{\mathbb{Q}}^{\times}\right)$. In 1933, Lehmer [L] asked whether or not there exists a constant $\varrho>1$ such that

$$
\begin{equation*}
\operatorname{deg}(\alpha) h(\alpha) \geq \log \varrho \tag{1.1}
\end{equation*}
$$

in all other cases. Lehmer's question remains unresolved to this day. For algebraic numbers α the Mahler measure $M(\alpha)$ is defined by $\log M(\alpha)=$ $\operatorname{deg}(\alpha) h(\alpha)$. If $m_{\alpha, \mathbb{Z}}=a_{0} \prod_{i=1}^{d}\left(x-\alpha_{i}\right) \in \mathbb{Z}[x]$ is the minimal polynomial of α in $\mathbb{Z}[x]$, it is known that

$$
\begin{equation*}
M(\alpha)=\left|a_{0}\right| \prod_{i=1}^{d} \max \left\{1,\left|\alpha_{i}\right|\right\} . \tag{1.2}
\end{equation*}
$$

The smallest non-zero Mahler measure known is that of the roots of $x^{10}+$ $x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1$ and it is thought by many that if the

[^0]answer to Lehmer's question is yes then the minimum possible ϱ is the \log of the Mahler measure of this polynomial.

If $\alpha \in \overline{\mathbb{Q}}^{\times}$is not an algebraic integer, then the $\left|a_{0}\right|$ of equation (1.2) is at least 2. It follows that $M(\alpha) \geq 2$ so that Lehmer's question restricts to algebraic integers. For an algebraic number field \mathbb{K}, we let $\mathcal{O}_{\mathbb{K}}$ be the set of algebraic integers in \mathbb{K}. Also, if $\alpha \in \overline{\mathbb{Q}}^{\times}$is an algebraic integer that is not a unit then

$$
\begin{equation*}
\operatorname{Norm}_{\mathbb{Q}(\alpha) / \mathbb{Q}} \geq 2 \tag{1.3}
\end{equation*}
$$

It follows from (1.2) that (1.3) implies $M(\alpha) \geq 2$ and that Lehmer's problem restricts to consideration of algebraic units. We will let $\mathcal{O}_{\mathbb{K}}^{\times}$denote the multiplicative group of algebraic units in \mathbb{K}.

Extending earlier work done by Schinzel [Sch], Beukers and Zagier [BZ], Samuels [Sa] and Garza [G1], Garza, Ishak and Pinner [GIP] established the following inequality involving the sum of logarithmic heights. Let $\alpha_{1}, \ldots, \alpha_{r}$ $\in \overline{\mathbb{Q}}^{\times}$be such that $\alpha_{1}+\cdots+\alpha_{r} \neq \alpha_{1}^{-1}+\cdots+\alpha_{r}^{-1}$. Let $\mathcal{R}_{\mathcal{S}}$ be the proportion of the conjugates of $\mathcal{S}=\alpha_{1}+\cdots+\alpha_{r}$ that are real. Then

$$
\begin{equation*}
\sum_{i=1}^{r} h\left(\alpha_{i}\right) \geq \frac{\mathcal{R}_{\mathcal{S}}}{2} \log \left(\frac{(2 r)^{1-1 / \mathcal{R}_{\mathcal{S}}}+\sqrt{(2 r)^{2\left(1-1 / \mathcal{R}_{S}\right)}+4}}{2}\right) \tag{1.4}
\end{equation*}
$$

From the arithmetic-geometric mean inequality, inequality (1.4) implies a lower bound for the average of $e^{h\left(\alpha_{i}\right)}$. In this article we derive a lower bound for $h\left(\alpha_{1}\right)+\cdots+h\left(\alpha_{r}\right)$ where $\alpha_{1}, \ldots, \alpha_{r}$ are multiplicatively independent algebraic integers. This can be applied to the non-torsion units in a generating set for $\mathcal{O}_{\mathbb{K}}^{\times}$by using Dirichlet's unit theorem. It is noteworthy that Cohen and Zannier [CZ] established the upper bound $h(\alpha)+h(1-\alpha) \leq \log 2$ where $\alpha \in \overline{\mathbb{Q}}^{\times}$and $\{\alpha, 1-\alpha\}$ is multiplicatively dependent.
2. Main results. A set $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subseteq \overline{\mathbb{Q}}^{\times}$is said to be multiplicatively independent if the only solution to the equation $\alpha_{1}^{m_{1}} \cdots \alpha_{r}^{m_{r}}=1$ with $m_{1}, \ldots, m_{r} \in \mathbb{Z}$ is $m_{1}=\cdots=m_{r}=0$. It follows that if $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is multiplicatively independent then $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \cap \operatorname{Tor}\left(\overline{\mathbb{Q}}^{\times}\right)=\emptyset$. We will say that $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset \overline{\mathbb{Q}}^{\times}$is multiplicatively independent up to exponent n if the inclusion $\alpha_{1}^{m_{1}} \cdots \alpha_{r}^{m_{r}} \in \operatorname{Tor}\left(\overline{\mathbb{Q}}^{\times}\right)$for $0 \leq\left|m_{i}\right| \leq n$ implies that $m_{1}=\cdots=m_{n}=0$. In this article we establish the following lower bound for $h\left(\alpha_{1}\right)+\cdots+h\left(\alpha_{r}\right)$ under the hypothesis of multiplicative independence up to exponent n.

TheOrem 2.1. Let $\alpha_{1}, \ldots, \alpha_{r} \in \overline{\mathbb{Q}}^{\times}$, let $d=\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{r}\right): \mathbb{Q}\right]$, and let $s \in \mathbb{N}$ be minimal such that $s>2^{d / r}$. If $\alpha_{1}, \ldots, \alpha_{r}$ are multiplicatively
independent up to exponent $s-1$ then

$$
\begin{equation*}
\sum_{i=1}^{r} h\left(\alpha_{i}\right) \geq \frac{\log 2}{2(s-1)} . \tag{2.1}
\end{equation*}
$$

It follows from the arithmetic-geometric mean inequality that Theorem 2.1 and equation (2.1) imply

$$
\frac{e^{h\left(\alpha_{1}\right)}+\cdots+e^{h\left(\alpha_{r}\right)}}{r} \geq(\sqrt{2})^{1 / r(s-1)} .
$$

Furthermore, Theorem 2.1, applied to the units in Dirichlet's theorem, results in the following.

Theorem 2.2. Let \mathbb{K} be an algebraic number field of degree $d \geq 8$. Let $\mathcal{O}_{\mathbb{K}}^{\times}=\left\langle\zeta, \alpha_{1}, \ldots, \alpha_{t}\right\rangle$ where $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\} \cap \operatorname{Tor}\left(\mathcal{O}_{\mathbb{K}}^{\times}\right)=\emptyset$ and $\langle\zeta\rangle=\operatorname{Tor}\left(\mathcal{O}_{\mathbb{K}}^{\times}\right)$. Then

$$
\sum_{i=1}^{t} h\left(\alpha_{i}\right) \geq \frac{\log 2}{8} .
$$

Although these theorems do not answer Lehmer's question, they tell us that, within a fixed algebraic number field, a large set of units of low height satisfy a multiplicative relation with small exponents. A generalization of this fact is used in Garza [G2].
3. Preliminary lemmas. In this section we present three lemmas used in the proof of Theorem 2.1. Lemma 3 will be used to establish the inclusion $0 \neq \gamma^{2}-\beta^{2} \in 4 \mathcal{O}_{\mathbb{K}}$ where γ and β are algebraic numbers to be defined in Section 4. Lemma 1 with $p=2$ will then be used to establish that $\prod_{v \mid 4}\left|\gamma^{2}-\beta^{2}\right|_{v} \leq 1 / 4$. This last inequality will be used in the application of Lemma 2 to $\gamma^{2}-\beta^{2}$.

Lemma 1. Let \mathbb{K} / \mathbb{Q} be a finite Galois extension and let $p \in \mathbb{N}$ be a prime with ramification index e in \mathbb{K}. Let $\mathcal{A}_{p}=\left\{v_{1}, \ldots, v_{t}\right\}$ be the set of places of \mathbb{K} extending the p-adic place of \mathbb{Q}. For $v_{i} \in \mathcal{A}_{p}$ let $\mathcal{M}_{v_{i}}=\left\{\alpha \in \mathbb{K}:|\alpha|_{v_{i}}<1\right\}$. Let $s \in \mathbb{N}, s \leq t$, and let $\beta \in \mathbb{K}^{\times}$. If $\beta \in \mathcal{M}_{v_{1}}^{a_{1}} \cdots \mathcal{M}_{v_{s}}^{a_{s}}$ for $a_{1}, \ldots, a_{s} \in \mathbb{N} \cup\{0\}$, then

$$
\sum_{\mathcal{A}_{p}} \log |\beta|_{v_{i}} \leq(-\log p) \cdot\left(\frac{1}{e \cdot t}\right) \cdot\left(\sum_{j=1}^{s} a_{j}\right) .
$$

Proof. Let $\mathfrak{B}_{i}=\mathcal{M}_{v_{i}} \cap \mathcal{O}_{\mathbb{K}}$ and let $\nu_{\mathfrak{B}_{i}}: \mathcal{O}_{\mathbb{K}} \rightarrow \mathbb{N} \cup\{0\}$ be the associated valuation. Given $\phi \in v_{i}$ there exists $\rho \in(0, \infty)$ such that for all $\gamma \in \mathbb{K}^{\times}, \phi(\gamma)=\rho^{-\nu_{\mathfrak{B}_{i}}(\gamma)}$. Since $\nu_{\mathfrak{B}_{i}}(p)=e$ and $\|p\|_{v_{i}}=p^{-1}$, the ρ associated to $\|\cdot\|_{v_{i}}$ is $p^{-1 / e}$. Since \mathbb{K} / \mathbb{Q} is Galois, the local degrees $d_{v_{i}}$ of each place in \mathcal{A}_{p} are equal. Their sum is $[\mathbb{K}: \mathbb{Q}]$ so the ρ associated to $|\cdot|_{v_{i}}$ is $p^{-1 / e t}$. Let π_{i} be a uniformizing parameter for $|\cdot|_{v_{i}}$. Then $\nu_{\mathfrak{B}_{i}}\left(\pi_{i}\right)=1$ and $\left|\pi_{i}\right|_{v_{i}}=p^{-1 / e t}$. The lemma follows from this last equality.

Lemma 2. Let $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}^{\times}$, let \mathbb{K} be the Galois closure of $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and let $d=[\mathbb{K}: \mathbb{Q}]$. For $1 \leq j \leq n$ and $1 \leq k \leq m$ let $b_{j, k} \in \mathbb{N} \cup\{0\}$ be such that $\sum b_{j, k} \geq 1$ and let $c_{k} \in \mathbb{Z}-\{0\}$. Define

$$
\begin{aligned}
\delta & =\sum_{k=1}^{m} c_{k} \prod_{j=1}^{n} \alpha_{j}^{b_{j, k}}, & M_{j}=\max \left\{b_{j, k}: 1 \leq k \leq m\right\} \\
L & =\sum_{k}\left|c_{k}\right|, & w=\prod_{s \nmid \infty}|\delta|_{v}
\end{aligned}
$$

For each place $v \mid \infty$, let $a_{v} \in \mathbb{R}^{+}$be defined via

$$
\|\delta\|_{v}=a_{v} \prod_{j=1}^{n} \max \left\{1,\left\|\alpha_{j}^{M_{j}}\right\|_{v}\right\}
$$

and let

$$
A=\prod_{v \mid \infty}\left(a_{v}\right)^{d_{v} / d}
$$

If $\delta \neq 0$, then

$$
w A \leq 1, \quad A \leq L \quad \text { and } \quad \sum_{j=1}^{n} M_{j} \cdot h\left(\alpha_{j}\right) \geq \log (1 / w A)
$$

Proof. By the triangle inequality, $a_{v} \leq L$ for all $v \mid \infty$, from which we obtain $A \leq L$. By the product rule, $\sum_{v} \log |\delta|_{v}=0$. By definition, $\sum_{v \nmid \infty} \log |\delta|_{v}=\log w$ so that $\sum_{v \mid \infty}|\delta|_{v}=-\log w$. At this point we recall that $\|\cdot\|_{v}^{d_{v} / d}=|\cdot|_{v}$.

Fix $v \mid \infty$. Then

$$
\|\delta\|_{v}=|\delta|_{v}^{d / d_{v}}=a_{v} \prod_{j=1}^{n} \max \left\{1,\left\|\alpha_{j}^{M_{j}}\right\|_{v}\right\}
$$

Consequently,

$$
\log |\delta|_{v}=\left(\frac{d_{v}}{d}\right) \cdot\left(\log a_{v}+\sum_{j=1}^{n} M_{j} \log ^{+}\left\|\alpha_{j}\right\|_{v}\right)
$$

Summing over all the archimedean places, we obtain

$$
\sum_{v \mid \infty} \log |\delta|_{v}=\sum_{v \mid \infty} \log a_{v}^{d_{v} / d}+\sum_{v \mid \infty} \sum_{j=1}^{n} M_{j} \log ^{+}\left|\alpha_{j}\right|_{v}
$$

This leads to

$$
\log (1 / w A)=\sum_{j=1}^{n} M_{j} \sum_{v \mid \infty} \log ^{+}\left|\alpha_{j}\right|_{v}
$$

Since $\sum_{v \mid \infty} \log ^{+}\left|\alpha_{j}\right|_{v} \leq h\left(\alpha_{j}\right)$ the last equation implies

$$
\log (1 / w A) \leq \sum_{j=1}^{n} M_{j} \cdot h\left(\alpha_{j}\right)
$$

Lemma 3. Let \mathbb{K} be an algebraic number field of degree d over \mathbb{Q}. Let $\alpha_{1}, \ldots, \alpha_{r} \in \mathcal{O}_{\mathbb{K}}-\{0\}$. Let $s \in \mathbb{N}$ be minimal such that $s^{r}>2^{d}$. Define

$$
\mathcal{A}=\left\{\alpha_{1}^{\delta_{1}} \cdots \alpha_{r}^{\delta_{r}}: 0 \leq \delta_{i} \leq s-1, i=1, \ldots, r\right\} .
$$

If $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is multiplicatively independent of exponent $s-1$ then there exist distinct elements γ and β of \mathcal{A} such that

$$
0 \neq \gamma^{2}-\beta^{2} \in 4 \mathcal{O}_{\mathbb{K}} .
$$

Proof. $\left(\mathcal{O}_{\mathbb{K}},+\right)$ is a free abelian group of rank d. Let $\omega_{1}, \ldots, \omega_{d} \in \mathcal{O}_{\mathbb{K}}$ be such that $\left(\mathcal{O}_{\mathbb{K}},+\right)=\left\langle\omega_{1}, \ldots, \omega_{d}\right\rangle$. Now, $2 \mathcal{O}_{\mathbb{K}} \triangleleft \mathcal{O}_{\mathbb{K}}$ and $\mathcal{O}_{\mathbb{K}} / 2 \mathcal{O}_{\mathbb{K}}$ is an elementary abelian 2-group. Let $\Psi: \mathcal{O}_{\mathbb{K}} \rightarrow \mathcal{O}_{\mathbb{K}} / 2 \mathcal{O}_{\mathbb{K}}$ be the natural projection homomorphism. Then $\mathcal{O}_{\mathbb{K}} / 2 \mathcal{O}_{\mathbb{K}}=\left\langle\Psi\left(\omega_{1}\right), \ldots, \Psi\left(\omega_{d}\right)\right\rangle$. If there exists $1 \leq i<j \leq d$ such that $\Psi\left(\omega_{i}\right)=\Psi\left(\omega_{j}\right)$ then $\omega_{i}-\omega_{j} \in 2 \mathcal{O}_{\mathbb{K}}$. So there exists $\tau \in \mathcal{O}_{\mathbb{K}}$ such that $\omega_{i}-\omega_{j}=2 \tau$. This last equation together with the fact that τ is an element of the free abelian group $\left\langle\omega_{1}, \ldots, \omega_{d}\right\rangle$ results in a non-trivial \mathbb{Z}-linear dependence equation amongst $\omega_{1}, \ldots, \omega_{d}$. This is a contradiction. Thus $\left|\mathcal{O}_{\mathbb{K}}: 2 \mathcal{O}_{\mathbb{K}}\right|=2^{d}$.

Since $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is multiplicatively independent of exponent $s-1$ it follows from the counting principle that $|\mathcal{A}|=s^{r}$. There thus exist distinct γ and β in \mathcal{A} such that $\Psi(\gamma)=\Psi(\beta)$ or equivalently $\Psi(\gamma)-\Psi(\beta)=\Psi(\gamma-\beta)$ $=0$. It follows that $\gamma-\beta \in \operatorname{ker} \Psi=20_{\mathbb{K}}$. Since $2 \beta \in 20_{\mathbb{K}},(\alpha-\beta)+2 \beta=$ $\alpha+\beta \in 2 \mathcal{O}_{\mathbb{K}}$. From this, $(\alpha-\beta)(\alpha+\beta)=\alpha^{2}-\beta^{2} \in 4 \mathcal{O}_{\mathbb{K}}$. Since $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is multiplicatively independent of exponent $s-1$, we have $0 \neq \gamma-\beta$ and $0 \neq \gamma+\beta$. It follows that $0 \neq(\gamma+\beta)(\gamma-\beta)=\gamma^{2}-\beta^{2}$.

4. Proof of the main results

Proof of Theorem 2.1. Define

$$
\mathcal{A}=\left\{\alpha_{1}^{\delta_{1}} \cdots \alpha_{r}^{\delta_{r}}: 0 \leq \delta_{i} \leq s-1, i=1, \ldots, r\right\} .
$$

Since $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is multiplicatively independent of exponent $s-1$, we see that $|\mathcal{A}|>2^{d}$. By Lemma 3 , there exist γ and β in \mathcal{A} such that $0 \neq \gamma^{2}-\beta^{2} \in$ $4 \mathcal{O}_{\mathbb{K}}$. By Lemma 1 with $p=2$,

$$
\prod_{v \nmid \infty}\left|\gamma^{2}-\beta^{2}\right|_{v} \leq \frac{1}{4}
$$

In this case, the notation of Lemma 2 corresponds with $w \leq 1 / 4, L=2$, $M_{j} \leq 2(s-1)$, and $\log 2 \leq 2(s-1) \sum_{i=1}^{r} h\left(\alpha_{i}\right)$.

Proof of Theorem 2.2. Let r_{1} be the number of isomorphisms of \mathbb{K} into \mathbb{R}, let r_{2} be the number of complex conjugation pairs of isomorphisms of \mathbb{K} into \mathbb{C} and not into \mathbb{R} and let $r=r_{1}+r_{2}$. By Dirichlet's unit theorem, there exist $\zeta \in \operatorname{Tor}\left(\mathcal{O}_{\mathbb{K}}^{\times}\right)$and $\omega_{1}, \ldots, \omega_{r-1} \in \mathcal{O}_{\mathbb{K}}^{\times}-\operatorname{Tor}\left(\mathcal{O}_{\mathbb{K}}^{\times}\right)$such that every $\epsilon \in \mathcal{O}_{\mathbb{K}}^{\times}$can be uniquely represented as $\epsilon=\zeta^{k} \prod_{i=1}^{r-1} \omega_{i}^{m_{i}}$ where $m_{i} \in \mathbb{Z}$ for $i=1, \ldots, r-1$ and $k=0, \ldots,\left|\operatorname{Tor}\left(\mathcal{O}_{\mathbb{K}}^{\times}\right)\right|$. By definition, $r \geq d / 2$, so that $r-1 \geq(d-2) / 2$. Since $\left\langle\zeta, \alpha_{1}, \ldots, \alpha_{t}\right\rangle=\mathcal{O}_{\mathbb{K}}^{\times}$, we see that $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$ contains a set of $r-1$ multiplicatively independent algebraic units. If $d \geq 8$ then $5^{r-1}>2^{d}$. By Theorem 2.1,

$$
\sum_{i=1}^{t} h\left(\alpha_{i}\right) \geq \frac{\log 2}{8}
$$

References

[BZ] F. Beukers and D. Zagier, Lower bounds of heights of points on hypersurfaces, Acta Arith. 79 (1997), 103-111.
[CZ] P. B. Cohen and U. Zannier, Multiplicative dependence and bounded height, an example, in: Algebraic Number Theory and Diophantine Approximation (Graz, 1998), de Gruyter, 2000, 93-101.
[G1] J. Garza, On the height of algebraic numbers with real conjugates, Acta Arith. 128 (2007), 385-389.
[G2] -, Polynomial relations amongst algebraic units of low measure, preprint.
[GIP] J. Garza, M. I. M. Ishak and C. Pinner, On the product of heights of algebraic numbers summing to real numbers, Acta Arith. 142 (2010), 51-58.
[L] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933), 461-479.
[Sa] C. L. Samuels, Lower bounds on the projective heights of algebraic points, Acta Arith. 125 (2006), 41-50.
[Sch] A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, ibid. 24 (1973), 385-399; Addendum, ibid. 26 (1975), 329-331.

John Garza
Department of Mathematics
The University of Texas at Brownsville
80 Fort Brown
Brownsville, TX 78520, U.S.A.
E-mail: John.Garza@utb.edu

Received on 21.3.2010
and in revised form on 29.1.2011

[^0]: 2010 Mathematics Subject Classification: Primary 11R09; Secondary 11G50. Key words and phrases: Mahler measure, Weil height.

