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1. Introduction. Amongst the absolute values in a place v of an al-
gebraic number field K, two play a role in this article. If v is archimedean,
let ‖ · ‖v denote the unique absolute value in v that restricts to the usual
archimedean absolute value on Q. If v is non-archimedean and v | p, let ‖ · ‖v
denote the unique absolute value in v that restricts to the usual p-adic abso-
lute value on Q. For each place v of K, let Kv and Qv be the completions of
K and Q with respect to v and define the local degree of v as dv = [Kv : Qv].
For all places v let | · |v = ‖ · ‖dv/d

v .
The absolute values | · |v satisfy the product rule: if α ∈ K×, then∏

v |α|v = 1. The absolute (logarithmic) Weil height of α is defined as
h(α) =

∑
v log+ |α|v where the sum is over all places v of K. Because of

the way in which the absolute values | · |v are normalized, h(α) does not
depend on the field K in which α is contained.

By Kronecker’s theorem h(α) = 0 if and only if α = 0 or α ∈ Tor(Q×).
In 1933, Lehmer [L] asked whether or not there exists a constant % > 1 such
that

(1.1) deg(α)h(α) ≥ log %

in all other cases. Lehmer’s question remains unresolved to this day. For
algebraic numbers α the Mahler measure M(α) is defined by logM(α) =
deg(α)h(α). If mα,Z = a0

∏d
i=1(x − αi) ∈ Z[x] is the minimal polynomial

of α in Z[x], it is known that

(1.2) M(α) = |a0|
d∏
i=1

max{1, |αi|}.

The smallest non-zero Mahler measure known is that of the roots of x10 +
x9 − x7 − x6 − x5 − x4 − x3 + x + 1 and it is thought by many that if the
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answer to Lehmer’s question is yes then the minimum possible % is the log
of the Mahler measure of this polynomial.

If α ∈ Q× is not an algebraic integer, then the |a0| of equation (1.2) is
at least 2. It follows that M(α) ≥ 2 so that Lehmer’s question restricts to
algebraic integers. For an algebraic number field K, we let OK be the set of
algebraic integers in K. Also, if α ∈ Q× is an algebraic integer that is not a
unit then

(1.3) NormQ(α)/Q ≥ 2.

It follows from (1.2) that (1.3) implies M(α) ≥ 2 and that Lehmer’s prob-
lem restricts to consideration of algebraic units. We will let O×K denote the
multiplicative group of algebraic units in K.

Extending earlier work done by Schinzel [Sch], Beukers and Zagier [BZ],
Samuels [Sa] and Garza [G1], Garza, Ishak and Pinner [GIP] established the
following inequality involving the sum of logarithmic heights. Let α1, . . . , αr
∈ Q× be such that α1 + · · ·+αr 6= α−1

1 + · · ·+α−1
r . Let RS be the proportion

of the conjugates of S = α1 + · · ·+ αr that are real. Then

(1.4)
r∑
i=1

h(αi) ≥
RS

2
log
(

(2r)1−1/RS +
√

(2r)2(1−1/RS) + 4
2

)
.

From the arithmetic-geometric mean inequality, inequality (1.4) implies
a lower bound for the average of eh(αi). In this article we derive a lower
bound for h(α1)+ · · ·+h(αr) where α1, . . . , αr are multiplicatively indepen-
dent algebraic integers. This can be applied to the non-torsion units in a
generating set for O×K by using Dirichlet’s unit theorem. It is noteworthy that
Cohen and Zannier [CZ] established the upper bound h(α)+h(1−α) ≤ log 2
where α ∈ Q× and {α, 1− α} is multiplicatively dependent.

2. Main results. A set {α1, . . . , αr} ⊆ Q× is said to be multiplica-
tively independent if the only solution to the equation αm1

1 · · ·αmr
r = 1 with

m1, . . . ,mr ∈ Z is m1 = · · · = mr = 0. It follows that if {α1, . . . , αr} is
multiplicatively independent then {α1, . . . , αr} ∩ Tor(Q×) = ∅. We will say
that {α1, . . . , αr} ⊂ Q× is multiplicatively independent up to exponent n
if the inclusion αm1

1 · · ·αmr
r ∈ Tor(Q×) for 0 ≤ |mi| ≤ n implies that

m1 = · · · = mn = 0. In this article we establish the following lower bound
for h(α1) + · · ·+ h(αr) under the hypothesis of multiplicative independence
up to exponent n.

Theorem 2.1. Let α1, . . . , αr ∈ Q×, let d = [Q(α1, . . . , αr) : Q], and
let s ∈ N be minimal such that s > 2d/r. If α1, . . . , αr are multiplicatively
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independent up to exponent s− 1 then

(2.1)
r∑
i=1

h(αi) ≥
log 2

2(s− 1)
.

It follows from the arithmetic-geometric mean inequality that Theorem
2.1 and equation (2.1) imply

eh(α1) + · · ·+ eh(αr)

r
≥
(√

2
)1/r(s−1)

.

Furthermore, Theorem 2.1, applied to the units in Dirichlet’s theorem, re-
sults in the following.

Theorem 2.2. Let K be an algebraic number field of degree d ≥ 8. Let
O×K = 〈ζ, α1, . . . , αt〉 where {α1, . . . , αt} ∩ Tor(O×K) = ∅ and 〈ζ〉 = Tor(O×K).
Then t∑

i=1

h(αi) ≥
log 2

8
.

Although these theorems do not answer Lehmer’s question, they tell us
that, within a fixed algebraic number field, a large set of units of low height
satisfy a multiplicative relation with small exponents. A generalization of
this fact is used in Garza [G2].

3. Preliminary lemmas. In this section we present three lemmas used
in the proof of Theorem 2.1. Lemma 3 will be used to establish the inclusion
0 6= γ2 − β2 ∈ 4OK where γ and β are algebraic numbers to be defined
in Section 4. Lemma 1 with p = 2 will then be used to establish that∏
v|4 |γ2− β2|v ≤ 1/4. This last inequality will be used in the application of

Lemma 2 to γ2 − β2.

Lemma 1. Let K/Q be a finite Galois extension and let p ∈ N be a prime
with ramification index e in K. Let Ap = {v1, . . . , vt} be the set of places of K
extending the p-adic place of Q. For vi ∈ Ap let Mvi = {α ∈ K : |α|vi < 1}.
Let s ∈ N, s ≤ t, and let β ∈ K×. If β ∈Ma1

v1 · · ·M
as
vs

for a1, . . . , as ∈ N∪{0},
then ∑

Ap

log |β|vi ≤ (− log p) ·
(

1
e · t

)
·
( s∑
j=1

aj

)
.

Proof. Let Bi = Mvi ∩ OK and let νBi : OK → N ∪ {0} be the asso-
ciated valuation. Given φ ∈ vi there exists ρ ∈ (0,∞) such that for all
γ ∈ K×, φ(γ) = ρ−νBi

(γ). Since νBi(p) = e and ‖p‖vi = p−1, the ρ asso-
ciated to ‖ · ‖vi is p−1/e. Since K/Q is Galois, the local degrees dvi of each
place in Ap are equal. Their sum is [K : Q] so the ρ associated to | · |vi is
p−1/et. Let πi be a uniformizing parameter for | · |vi . Then νBi(πi) = 1 and
|πi|vi = p−1/et. The lemma follows from this last equality.
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Lemma 2. Let α1, . . . , αn ∈ Q×, let K be the Galois closure of
Q(α1, . . . , αn) and let d = [K : Q]. For 1 ≤ j ≤ n and 1 ≤ k ≤ m let
bj,k ∈ N ∪ {0} be such that

∑
bj,k ≥ 1 and let ck ∈ Z− {0}. Define

δ =
m∑
k=1

ck

n∏
j=1

α
bj,k

j , Mj = max{bj,k : 1 ≤ k ≤ m},

L =
∑
k

|ck|, w =
∏
s-∞

|δ|v.

For each place v |∞, let av ∈ R+ be defined via

‖δ‖v = av

n∏
j=1

max{1, ‖αMj

j ‖v}

and let
A =

∏
v|∞

(av)
dv/d .

If δ 6= 0, then

wA ≤ 1, A ≤ L and
n∑
j=1

Mj · h(αj) ≥ log(1/wA).

Proof. By the triangle inequality, av ≤ L for all v |∞, from which
we obtain A ≤ L. By the product rule,

∑
v log |δ|v = 0. By definition,∑

v-∞ log |δ|v = logw so that
∑

v|∞ |δ|v = − logw. At this point we recall

that ‖ · ‖dv/d
v = | · |v.

Fix v |∞. Then

‖δ‖v = |δ|d/dv
v = av

n∏
j=1

max{1, ‖αMj

j ‖v}.

Consequently,

log |δ|v =
(
dv
d

)
·
(

log av +
n∑
j=1

Mj log+ ‖αj‖v
)
.

Summing over all the archimedean places, we obtain∑
v|∞

log |δ|v =
∑
v|∞

log adv/d
v +

∑
v|∞

n∑
j=1

Mj log+ |αj |v.

This leads to

log(1/wA) =
n∑
j=1

Mj

∑
v|∞

log+ |αj |v.
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Since
∑

v|∞ log+ |αj |v ≤ h(αj) the last equation implies

log(1/wA) ≤
n∑
j=1

Mj · h(αj).

Lemma 3. Let K be an algebraic number field of degree d over Q. Let
α1, . . . , αr ∈ OK − {0}. Let s ∈ N be minimal such that sr > 2d. Define

A = {αδ11 · · ·α
δr
r : 0 ≤ δi ≤ s− 1, i = 1, . . . , r}.

If {α1, . . . , αr} is multiplicatively independent of exponent s − 1 then there
exist distinct elements γ and β of A such that

0 6= γ2 − β2 ∈ 4OK.

Proof. (OK,+) is a free abelian group of rank d. Let ω1, . . . , ωd ∈ OK
be such that (OK,+) = 〈ω1, . . . , ωd〉. Now, 2OK / OK and OK/2OK is an
elementary abelian 2-group. Let Ψ : OK → OK/2OK be the natural pro-
jection homomorphism. Then OK/2OK = 〈Ψ(ω1), . . . , Ψ(ωd)〉. If there exists
1 ≤ i < j ≤ d such that Ψ(ωi) = Ψ(ωj) then ωi − ωj ∈ 2OK. So there exists
τ ∈ OK such that ωi−ωj = 2τ . This last equation together with the fact that
τ is an element of the free abelian group 〈ω1, . . . , ωd〉 results in a non-trivial
Z-linear dependence equation amongst ω1, . . . , ωd. This is a contradiction.
Thus |OK : 2OK| = 2d.

Since {α1, . . . , αr} is multiplicatively independent of exponent s − 1 it
follows from the counting principle that

∣∣A∣∣ = sr. There thus exist distinct γ
and β in A such that Ψ(γ) = Ψ(β) or equivalently Ψ(γ)− Ψ(β) = Ψ(γ − β)
= 0. It follows that γ − β ∈ kerΨ = 2OK. Since 2β ∈ 2OK, (α − β) + 2β =
α+β ∈ 2OK. From this, (α−β)(α+β) = α2−β2 ∈ 4OK. Since {α1, . . . , αr}
is multiplicatively independent of exponent s − 1, we have 0 6= γ − β and
0 6= γ + β. It follows that 0 6= (γ + β)(γ − β) = γ2 − β2.

4. Proof of the main results

Proof of Theorem 2.1. Define

A = {αδ11 · · ·α
δr
r : 0 ≤ δi ≤ s− 1, i = 1, . . . , r}.

Since {α1, . . . , αr} is multiplicatively independent of exponent s− 1, we see
that |A| > 2d. By Lemma 3, there exist γ and β in A such that 0 6= γ2−β2 ∈
4OK. By Lemma 1 with p = 2,∏

v-∞

|γ2 − β2|v ≤
1
4
.

In this case, the notation of Lemma 2 corresponds with w ≤ 1/4, L = 2,
Mj ≤ 2(s− 1), and log 2 ≤ 2(s− 1)

∑r
i=1 h(αi).
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Proof of Theorem 2.2. Let r1 be the number of isomorphisms of K into R,
let r2 be the number of complex conjugation pairs of isomorphisms of K
into C and not into R and let r = r1 + r2. By Dirichlet’s unit theorem,
there exist ζ ∈ Tor(O×K) and ω1, . . . , ωr−1 ∈ O×K − Tor(O×K) such that every
ε ∈ O×K can be uniquely represented as ε = ζk

∏r−1
i=1 ω

mi
i where mi ∈ Z

for i = 1, . . . , r − 1 and k = 0, . . . , |Tor(O×K)|. By definition, r ≥ d/2, so
that r − 1 ≥ (d− 2)/2. Since 〈ζ, α1, . . . , αt〉 = O×K, we see that {α1, . . . , αt}
contains a set of r− 1 multiplicatively independent algebraic units. If d ≥ 8
then 5r−1 > 2d. By Theorem 2.1,

t∑
i=1

h(αi) ≥
log 2

8
.
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