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1. Introduction. Towers of function fields over a fixed finite field have
attracted much attention, especially in view of connections with coding the-
ory and cryptography (see [TV], [NX], [Z], [GS2] and [GS3]). Ihara was the
first to realize that the so-called Hasse–Weil upper bound is weak if the
genus of the function field is large with respect to the cardinality of the
finite field (see [Iha]). The first explicit tower (i.e., one with the function
fields given by explicit polynomial equations) with an optimal asymptotic
behaviour was obtained over square finite fields (see [GS]). Zink has shown
the existence of towers over cubic finite fields with an exceptional asymp-
totic behaviour (see [Z]). The first explicit tower with this behaviour was
obtained by van der Geer and van der Vlugt over the finite field with eight
elements (see [GV]). Generalizations of the tower in [GV] were obtained in
[BeGS] and [BaGS].

Here we study another tower F0 over cubic finite fields, also generalizing
the tower in [GV]. This tower was introduced by Ihara [Ih] as a subtower of
the tower in [BeGS]. A detailed exposition of F0 can be found in [C] where
the genera of the function fields of the tower in [BaGS] are also determined.

Let k be a finite field. A tower F over k is an infinite sequence

F = (F1 ⊆ F2 ⊆ · · · )
of function fields Fn over k such that:

(a) k is algebraically closed in Fn for all n ∈ N,
(b) g(Fn)→∞ as n→∞, where g(·) denotes the genus.

We can assume that the extensions Fn/F1 are finite and separable. The
ramification locus R(F) is the set of places P of the first field F1 that are
ramified in F ; i.e., for some n ≥ 2 and some place Q of Fn above P we have
e(Q|P ) > 1, where e(Q|P ) denotes the ramification index. When R(F) is a
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finite set we denote degR(F) :=
∑

degP , where we sum over P ∈ R(F).
The splitting locus S(F) is the set of k-rational places P of the first field F1

such that, for every n ≥ 2, the number of places of Fn above P is equal to
the degree [Fn : F1]. In particular, any such place of Fn is again k-rational.

The tower F has a limit (see Lemma 7.2.3 of [Sti])

λ(F) := lim
n→∞

N(Fn)
g(Fn)

,

where N(Fn) is the number of k-rational places of Fn.
A tower F over k is said to be recursive if there is a polynomial f(X,Y ) ∈

k[X,Y ] such that for each n ∈ N,

Fn = k(x1, . . . , xn) and f(xi, xi+1) = 0 for i = 1, . . . , n− 1.

In the particular case of a cubic finite field k = Fq3 , it is shown in [BeGS]
that the equation

(1.1)
1− Y
Y q

=
Xq +X − 1

X
defines a recursive tower F1 over Fq3 with an exceptional asymptotic be-
haviour, i.e.,

(1.2) λ(F1) ≥ 2(q2 − 1)
q + 2

.

A tower F = (Fn)n∈N is said to be a subtower of E = (Em)m∈N if for each
n ∈ N we have

Fn ⊆ Em for some m = m(n).

For a subtower F of E we have λ(F) ≥ λ(E) (see Prop. 7.2.8 of [Sti]).
Ihara [Ih] shows that the equation

(1.3) Y q+1 + Y =
X + 1
Xq+1

defines a subtower F0 of the tower F1 above. Actually Ihara used (5.3) below
to define the recursive tower F0.

Hence we also have

(1.4) λ(F0) ≥ 2(q2 − 1)
q + 2

.

The objective of this note is to give a direct proof of (1.4), without using
the fact that F0 is a subtower of F1. This direct proof is much simpler than
the proof of inequality (1.2) in [BeGS].

The novelty here is that although the extensions in the pyramid asso-
ciated to the tower F0 are not Galois for q 6= 2, they become Galois after
completion at certain places.

The paper is organized as follows:
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Section 2 describes ramification indices and different exponents in the
two basic extensions associated to (1.3):

k(X,Y )/k(X) and k(X,Y )/k(Y ).

Section 3 introduces the concept of B-bounded towers and gives a for-
mula for its limit (see (3.1) below). A basic reference in this section is [GS2].

Only in Section 4 do we show that F0 is indeed a tower of function fields
over the cubic finite field k = Fq3 . In that section we give the strategy to
show that the tower F0 is B-bounded with B = q/(q − 1).

Using completion at certain places in the tower F0 and showing that after
completion the bottom extensions become Galois, we finish in Section 5
the proof that B = q/(q − 1). Here we use Proposition 12 of [GS2] in a
fundamental way. We end up with a remark showing that a tower of Ihara
(see [Ih]) given by (5.3) below is the same as the tower F0 given by (1.3).

2. The tower F0 over Fq3. We consider the tower F0 over k = F` with
` = q3 given recursively by the equation

(2.1) Y q+1 + Y =
X + 1
Xq+1

.

We stress that we will show that F0 is indeed a tower over k only in Section 4.
Note that T q+1 + T + 1 = 0 is separable and has all roots in Fq3 , and also,
from (2.1),

Xq+1 +X + 1 = 0 ⇒ Y q+1 + Y + 1 = 0.

This shows that xq+1
1 +x1 +1 = 0 is completely splitting over Fq3 and hence

the splitting locus S(F0) satisfies #S(F0) ≥ q + 1.
Note that (2.1) is not irreducible; in fact, one can easily see that Y =

−(X + 1)/X is a root of it. Actually, we will see that (2.1) defines a tower
F0 = (F1, F2, . . .) over the cubic finite field Fq3 with [Fn+1 : Fn] = q.
We have the following pattern for the ramification in the basic extension
k(X,Y )/k(X) associated to (2.1):

Y = -1k( )X,Y

k X( ) X = -1

e q=

Y = 0 Y = -1

e = 1

X =

e q-= 1

Y =

e = 1

X = 0
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Above we have [k(X,Y ) : k(X)] = q and also the place of k(X) with
X = 0 has above it q places P of k̄(X,Y ) with Y =∞ and ramification index
e = 1. Here k̄ denotes an algebraic closure of k. To see the last assertion, we
substitute Y = y − X+1

X into (2.1), and get the following equation:

(2.2) (Xy)q = (X + 1)(Xy)q−1 + 1.

From (2.2) we see that at the places P of k̄(X,Y ) above X = 0, we have

(Xy)(P ) = α−1 with α ∈ k̄ such that αq + α = 1.

Similarly for the extension k(X,Y )/k(Y ) we get:

k(X,Y)

k(Y)

e = q

Y = -1

e = 1

X = 

e = q-1

Y = 

e = 1

X = 0X = -1 X = 

Y = 0

For the different exponents we have (see Prop. 3.5.12 of [Sti]):

• d(Q1|P1) = q, where Q1 is the unique place of k(X,Y ) above P1 :=
(X = −1) of k(X).
• d(R1|S1) = q, where R1 is the unique place of k(X,Y ) above S1 :=

(Y = 0) of k(Y ).

We first show that d(Q1|P1) = q. In fact, (2.2) can be written as

Zq = (X + 1)(Z + 1)q−1 where Z := Xy − 1.

The derivative is (X + 1)(Z + 1)q−2 and its value at the place Q1 is equal
to q.

Similarly we have d(R1|S1) = q. Again in this case we rewrite (2.2) as

W q = Y (W + 1)q−1 + Y q, where W :=
1
X

+ Y.

The derivative is Y (W + 1)q−2 and its value at the place R1 is equal to q.

3. Bounded towers. A place Pn of a field Fn in a tower F =
(F1 ⊆ F2 ⊆ · · · ) is called B-bounded if

d(Pn|P1) ≤ B(e(Pn|P1)− 1),

where P1 is the restriction of Pn to the first field F1, d(Pn|P1) denotes the
exponent of the different and e(Pn|P1) denotes the ramification index.

The tower F is called B-bounded if all places Pn of Fn, for every n ∈ N,
are B-bounded.
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We have the following result for the limit of a B-bounded tower F with fi-
nite ramification locus R(F) and nonempty splitting locus S(F) (see [GS2]):

(3.1) λ(F) ≥ #S(F)
g(F1)− 1 + B

2 · degR(F)
.

In the case of the tower F0 given recursively by (2.1), the point here is to
show that it is B-bounded with B = q/(q − 1). From (3.1) we then get the
limit (using #S(F0) = q + 1 and degR(F0) = 3)

λ(F0) ≥ q + 1
−1 + 3

2 ·
q

q−1

=
2(q2 − 1)
q + 2

.

4. Strategy to show that B = q/(q−1). We first show that the place
P1 := (x1 = −1) is fully ramified in the tower F0, i.e., it is fully ramified in
all extensions Fn/F1 for n ≥ 2. Indeed we have the following pattern:

k(x   , x   )
1

e =
 q e 

 =
q

e = 
 q

e =
 q

e = 1

e = 1 1 
e = e = 1

2
k(x   , x   )

3 4

x   = -11
x   = -12 x   = -13 x   = -14 x   = -15

. . . . . 

This shows that P1 is fully ramified in Fn. At the same time it shows that
F0 is a tower with [Fn+1 : Fn] = q, and in particular also that k = Fq3 is
algebraically closed in each field Fn for n ≥ 1. Denoting by Pn the unique
place of Fn above P1 we have

e(Pn+1|Pn) = d(Pn+1|Pn) = q for all n ≥ 1.

This shows that Pn is B-bounded with B = q/(q − 1), as follows from the
transitivity of different exponents (see [GS2]).

Another possible pattern of ramification is as follows:
We denote by Q2 the unique place of F2 with x1 = ∞ and x2 = −1.

We have a unique place Qn of Fn above Q2, for each n ≥ 3. For the place
extension Q3|Q2, using Abhyankar’s lemma and the transitivity of differents
(see [Sti, Sections 3.5 and 3.9]), we have

(4.1) d(Q3|Q2) + q(q − 2) = q − 2 + (q − 1)q.

Hence Q3|Q2 is 2-bounded; more precisely, d(Q3|Q2) = 2(q−1). With similar
arguments we find that Qn|Q2 is 2-bounded for all n ≥ 3; more precisely,

d(Qn|Q2) = 2(e(Qn|Q2)− 1) for n ≥ 3.

We then have a situation of ramification as follows:
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k(x   , x   , x   )
1

e =
 

-q
1

e =
 q  

e =
q  

e =
q =

q
1

e
 

-

=
e 

 1

= 1
e  e = 1

2

x   = 1
x   = -12 x   = -13 x   = -14 x   = -15

. . . . . 

3

x 5 = 0x = 03x = 2x = 1

qqq1 11

9

e

1

1

1

1 q q1 1 1
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10F   
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1
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1

4F   

Fig. 1

In the extension F2/F1 the place Q2 is tamely ramified with ramification
index e = q − 1 and in the extension Fn/F2 the place Qn of Fn above Q2

is fully ramified and 2-bounded. From the transitivity and denoting E =
e(Qn|Q2), we get

d(Qn|Q2) + E(q − 2) = 2(E − 1) + E(q − 2)(4.2)

= Eq − 2 ≤ q

q − 1
((q − 1)E − 1).

Note that (q−1)E is the ramification index of Qn over the first field F1 of the
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tower F0. This shows that the places Qn above, for n ≥ 3, are B-bounded
with B = q/(q − 1).

In Figure 1 we write ramification indices over the edges of the pyramid,
with the notation e := q − 1. We have also written 2B over an edge to
indicate that the corresponding place extension is 2-bounded, more precisely
to indicate that

different exponent = 2 · ramification index− 2.

The argument for the equality above is the one given in (4.1). Of course the
situation in Figure 1 is just a concrete instance that helps understand the
strategy.

We are then left with the problem of deciding the behaviour of different
exponents in a diamond of Fig. 2, where A denotes a place, B,C and D
denote the restrictions of A to the corresponding subfields, and we know
that

d(B|D) = 2(e(B|D)− 1), d(C|D) = 2(e(C|D)− 1).
B2

2B

A

B C

D

Fig. 2

The main difficulty of the tower F0 is to show that in Figure 2 we always
have

(4.3) d(A|B) = 2(e(A|B)− 1), d(A|C) = 2(e(A|C)− 1).

If the bottom field extensions in Figure 2 were both Galois, then this
would follow directly from Proposition 12 in [GS2]. But in our case of the
tower F0, those extensions are Galois only if q = 2. What we are going to
show in the next section is that after completion at the places in Figure 2, the
bottom extensions become Galois, thus allowing the use of Proposition 12
of [GS2]. Once we know that the completions are Galois, the proof ends
as follows (using here Figure 1 for clarity): we first deal with the diamonds
(going upwards to the right) marked ⊗ situated on the strip between x4 =∞
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and x5 = 0; having obtained the behaviour in (4.3) for the upper sides of
those diamonds, we move upwards to the left and we deal with the diamonds
marked ⊗ situated on the strip between x2 =∞ and x3 = 0, and so on.

At the end (if x1 = 0 or x1 = ∞, and xn = −1 for some n ≥ 2) we will
have in the tower F0 a situation where a ramification index e = q−1 occurs
first and it is followed by the 2-bounded behaviour:

different exponent = 2 · ramification index− 2.

Now the argument in (4.2) finishes the proof that F0 is B-bounded with
B = q/(q − 1).

5. Galois after completion. In Figure 1 we now have to focus on the
diamonds marked ⊗. Any such diamond for the tower F0 is represented in
Figure 2. We are going to show that after completion at the corresponding
places, the bottom extensions of the diamond become Galois. We will see
that the right (resp. left) strip with e = q − 1 in Figure 1 is responsible for
the bottom right (resp. left) extension in Figure 2 to become Galois.

We just prove here the right extension case, the left one is done similarly.
For the bottom right extension we have an equation (see (2.2))(

1
Xy

)q

+ (X + 1)
(

1
Xy

)
= 1,

where X = xn and y = xn+1 + (xn + 1)/xn for some n. For simpliciy we
write T = 1/Xy and we want to determine the Galois closure of the equation

(5.1) T q + (X + 1)T − 1 = 0.

If T + V is another root,

(T + V )q + (X + 1)(T + V )− 1 = 0,

then we get the Kummer extension

(5.2) V q−1 + (X + 1) = 0.

So to move to the Galois closure of equation (5.1) we have to add on top a
Kummer extension given by (5.2). At the places we are considering, X + 1
has a zero whose order is a multiple of e = q − 1, as follows from the
right strip with e = q − 1 (see Figure 1). This shows that the places we
are considering are unramified in the Kummer extension given by (5.2) and
hence we conclude that the completion becomes Galois.

This finishes the proof that the tower F0 has the exceptional asymptotic
behaviour of (2.1). The strategy used above to deal with F0 is inspired by
[GS1] and [BS]. The novelty here is the phenomenon of becoming Galois
after completion at certain places.
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Remark. In [Ih] it is shown that the equation

(5.3)
y − 1
yq+1

=
−xq

(1− x)q+1

over k = Fq3 defines a subtower of the tower F1 considered in [BeGS]. This
subtower is the same as the tower F0 considered in this paper; in fact the
substitutions

x =
1

X + 1
and y =

1
Y + 1

transform equation (5.3) of Ihara into our equation (2.1).
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