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Higher dimensional Dedekind sums in function fields

by

Abdelmejid Bayad (Évry) and Yoshinori Hamahata (Osaka)

1. Introduction. Given relatively prime integers c > 0 and a, the clas-
sical Dedekind sum is defined as

s(a, c) =
1
4c

c−1∑
k=1

cot
(
πk

c

)
cot
(
πka

c

)
.

It satisfies a famous relation called the reciprocity law,

s(a, c) + s(c, a) =
a2 + c2 + 1− 3ac

12ac
(a > 0).

See Rademacher–Grosswald [8] for details. A generalization of Dedekind
sums to higher dimensions was presented by Zagier [9]. Let p be a positive
integer, and a1, . . . , an−1 be integers relatively prime to p. We assume that
n is odd. Zagier defines a higher dimensional Dedekind sum as follows:

d(p; a1, . . . , an−1) := (−1)(n−1)/2 1
p

p−1∑
k=1

cot
(
πka1

p

)
· · · cot

(
πkan−1

p

)
.

For pairwise coprime positive integers a1, . . . , an (n odd), this sum satisfies
the reciprocity law

n∑
j=1

d(aj ; a1, . . . , aj−1, aj+1, . . . , an) = 1− ln(a1, . . . , an)
a1 · · · an

,

where ln(a1, . . . , an) is a polynomial in a1, . . . , an defined as the coefficient
of tn in the power series expansion of

n∏
j=1

ajt

tanh(ajt)
=

n∏
j=1

(
1 +

1
3
a2
j t

2 − 1
45
a4
j t

4 +
2

945
a6
j t

6 − · · ·
)
.

We note that Beck [1] generalized Zagier’s Dedekind sum.
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It is known that π cotπz can be expressed as follows:

(1.1) π cotπz =
1
z

+
∞∑
n=1

(
1

z − n
+

1
z + n

)
.

In function fields, for a given A-lattice we have periodic functions that have
expressions analogous to (1.1). Based on this, Okada [7] introduced Dedekind
sums in rational function fields, and established reciprocity laws for them.
For each A-lattice, we can define Dedekind sums which generalize those of
Okada. See [6] for details. It should be noted that we also have Dedekind
sums over finite fields ([5], [6]). These are like Apostol–Dedekind sums given
by

sn(a, c) =
c−1∑
k=1

k

c
Bn

(
ka

c

)
,

where Bn(x) denotes the nth Bernoulli function.
The goal of our paper is to introduce new kinds of Dedekind sums defined

over rational function fields. Our Dedekind sums are very similar to ordinary
Dedekind sums and to Zagier’s higher dimensional Dedekind sums [9]. As
the main theorem, we establish the reciprocity law for our Dedekind sums.
The rationality and characterization of Dedekind sums are also discussed.

Notation.∑′ : the sum over non-vanishing elements∏′ : the product over non-vanishing elements
Fq : the finite field with q elements
A = Fq[T ] : the ring of polynomials in an indeterminate T
K = Fq(T ) : the quotient field of A
| | : the normalized absolute value on K such that |T | = q

K∞ : the completion of K with respect to | |
K∞ : a fixed algebraic extension of K∞
C : the completion of K∞

2. A-lattices. In this section, we give an overview of A-lattices and
related periodic functions. For details, see Goss [4]. A rank r A-lattice Λ in
C is a finitely generated A-submodule of rank r in C that is discrete in the
topology of C. For such an A-lattice Λ, define the Euler product

eΛ(z) = z
∏′

λ∈Λ

(
1− z

λ

)
.

The product converges uniformly on bounded sets in C, and defines a map
eΛ : C → C. The map eΛ has the following properties:
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• eΛ is entire in the rigid analytic sense, and surjective;
• eΛ is Fq-linear and Λ-periodic;
• eΛ has simple zeros at the points of Λ, and no other zeros;
• deΛ(z)/dz = e′Λ(z) = 1. Hence

1
eΛ(z)

=
e′Λ(z)
eΛ(z)

=
∑
λ∈Λ

1
z − λ

.

Let φ be the Drinfeld module corresponding to Λ. For any a ∈ A \ {0},
we denote by φ[a] := {x ∈ C | φa(x) = 0} the A/aA-module of a-division
points. It is known that Λ/aΛ is isomorphic to φ[a] by λ+aΛ 7→ eΛ(λ/a). Put

Ek(φ[a]) :=
∑′

x∈φ[a]

1
xk

=
∑′

λ∈Λ/aΛ

1
eΛ(λ/a)k

for each positive integer k, and set E0(φ[a]) = −1. We adopt the convention
that

∑′
λ∈Λ/aΛ is zero when Λ/aΛ = {0}. Then we have

az

φa(z)
=
φ′a(z)
φa(z)

z =
∑

λ∈Λ/aΛ

z

z − eΛ(λa )
(2.1)

= 1−
∑′

λ∈Λ/aΛ

z
eΛ(λ/a)

1− z
eΛ(λ/a)

= −
∞∑
k=0

Ek(φ[a])zk.

If a ∈ Fq\{0}, thenEk(φ[a]) = 0 for any positive integer k, and az/φa(z) = 1.

3. Higher dimensional Dedekind sums. Let Λ be an A-lattice. We
introduce Dedekind sums for Λ. Assume n ≥ 2. Let a1, . . . , an−1 ∈ A\{0} be
relatively prime to an ∈ A\{0}. In other words, if i 6= n, then Aai+Aan = A.

Definition 3.1. The higher dimensional Dedekind sum is defined as

sΛ(an; a1, . . . , an−1) = (−1)n−1 1
an

∑′

λ∈Λ/anΛ

eΛ

(
a1λ

an

)−1

· · · eΛ
(
an−1λ

an

)−1

.

Remark 3.2. (i) When Λ/aΛ = {0},
∑′

λ∈Λ/aΛ is zero.
(ii) In the cases (n, q) = (2, 2), (3, 3), our Dedekind sum coincides with

one of the Dedekind sums introduced in [6]. In particular, if Λ = L is the
A-lattice corresponding to the Carlitz module, then this Dedekind sum is
as defined in Okada [7].

The Dedekind sum sΛ(an; a1, . . . , an−1) has similar properties to those
of Zagier’s Dedekind sum:

Proposition 3.3.

(i) sΛ(an; a1, . . . , an−1) only depends on ai + anA,
(ii) sΛ(an; a1, . . . , an−1) is symmetric in a1, . . . , an−1,
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(iii) sΛ(an; ζa1, . . . , an−1) = ζ−1sΛ(an; a1, . . . , an−1) for any ζ ∈ Fq\{0},
(iv) sΛ(an; ba1, . . . , ban−1) = sΛ(an; a1, . . . , an−1) for any b ∈ A prime

to an.

The proof is trivial, so we omit it.

Remark 3.4. By Proposition 3.3(ii)–(iv), we have

(−1)n−1sΛ(an; a1, . . . , an−1) = sΛ(an; a1, . . . , an−1).

Hence, if Char Fq 6= 2 and 2 |n, then the sum is equal to zero. Therefore in
the case Char Fq 6= 2, we may suppose in advance that n is odd.

We now state the reciprocity law for our higher dimensional Dedekind
sums.

Theorem 3.5 (Reciprocity law). Choose a1, . . . , an∈A\{0}. If a1, . . . , an
are coprime, then

(3.1)
n∑
i=1

sΛ(ai; a1, . . . , ai−1, ai+1, . . . , an)

=
1

a1 · · · an

∑
i1+···+in=n−1
i1≥0,...,in≥0

Ei1(φ[a1]) · · ·Ein(φ[an]).

Remark 3.6. We note that for a1 = · · · = an−1 = 1, an ∈ A \ {0}, we
have

sΛ(an;
n−1︷ ︸︸ ︷

1, . . . , 1) =
(−1)n−1

an
En−1(φ[an]).

Let a, c be coprime elements of A \ {0}, and let Λ denote an A-lattice
in C. The inhomogeneous Dedekind sum sΛ(a, c) is defined as

sΛ(a, c) = sΛ(c; a, 1) =
1
c

∑′

λ∈Λ/cΛ

eΛ

(
aλ

c

)−1

eΛ

(
λ

c

)−1

.

The Dedekind sum sΛ(a, c) has the following reciprocity law:

Theorem 3.7 (Reciprocity law). If a, c are coprime, then

(3.2) sΛ(a, c) + sΛ(c, a) =
E2(φ[a]) + E2(φ[c])− E1(φ[a])E1(φ[c])

ac
.

4. Example. We compute Dedekind sums for special cases. To do this,
let us prepare some results.
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4.1. Power sums of a-division points. We recall the Newton formula
for the power sums of the zeros of a given polynomial.

Proposition 4.1 (The Newton formula, cf. [2], [3]). Let

f(X) = Xn + c1X
n−1 + · · ·+ cn−1X + cn

be a polynomial over a field L, and α1, . . . , αn be the roots of f(X). For each
non-negative integer k, put

Tk = αk1 + · · ·+ αkn.

Then

Tk + c1Tk−1 + · · ·+ ck−1T1 + kck = 0 (k ≤ n),
Tk + c1Tk−1 + · · ·+ cn−1Tk−n+1 + cnTk−n = 0 (k ≥ n).

Proposition 4.2. Let φ be a Drinfeld module, and a be a fixed element
in A \ {0}. If φa(z) is written as

φa(z) =
m∑
i=0

li(a)zq
i
,

then

Ek(φ[a]) =
{
l1(a)/a (k = q − 1),
0 (k = 1, . . . , q − 2 if q > 2).

Proof. The set {1/x | x ∈ φ[a] \ {0}} consists of the roots of

a−1φa(z−1)zq
m

=
m∑
i=0

a−1li(a)zq
m−qi .

Applying the Newton formula to this polynomial, we have

Eq−1(φ[a]) + (q − 1)
l1(a)
a

= 0, Ek(φ[a]) = 0 (k = 1, . . . , q − 2).

4.2. Higher dimensional Dedekind sums. Let Λ be an A-lattice,
and φ be the corresponding Drinfeld module.

We give explicit formulas for certain higher dimensional Dedekind sums.

Proposition 4.3. If a, b ∈ A \ {0} are coprime, then

sΛ(b;
n−1︷ ︸︸ ︷

a, . . . , a) =
(−1)n−1

b
En−1(φ[b])

=
{

(−1)n−1l1(b)/b2 (n = q),
0 (n = 1, . . . , q − 1).
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Proof. We have

sΛ(b;
n−1︷ ︸︸ ︷

a, . . . , a) = sΛ(b;
n−1︷ ︸︸ ︷

1, . . . , 1) (by Proposition 3.3(iv))

=
(−1)n−1

b
En−1(φ[b]) (by definition of En−1(φ[b]))

=
{

(−1)n−1l1(b)/b2 (n = q)
0 (n = 1, . . . , q − 1)

(by Proposition 4.2).

As a corollary to Theorem 3.5, we have

Proposition 4.4. If a1, . . . , aq ∈ A \ {0} are coprime, then
q∑
i=1

sΛ(ai; a1, . . . , ai−1, ai+1, . . . , aq) =
(−1)q−1

a1 · · · aq

(
l1(a1)
a1

+ · · ·+ l1(aq)
aq

)
.

Proof. By Theorem 3.5 and Proposition 4.2, the left-hand side of the
identity is written as

(−1)q−1

a1 · · · aq
(Eq−1(φ[a1]) + · · ·+ Eq−1(φ[aq])),

which yields the right-hand side by Proposition 4.2.

We supply a few examples of the reciprocity law for higher dimensional
Dedekind sums.

• q = 2:

sΛ(a1; a2) + sΛ(a2; a1) =
1

a1a2

(
l1(a1)
a1

+
l1(a2)
a2

)
.

• q = 3:

(4.1)
sΛ(a1; a2) + sΛ(a2; a1) = 0,
sΛ(a3; a1, a2) + sΛ(a2; a1, a3) + sΛ(a1; a2, a3)

=
1

a1a2a3

(
l1(a1)
a1

+
l1(a2)
a2

+
l1(a3)
a3

)
.

• 3 ≤ q, 2 ≤ n < q:
n∑
i=1

sΛ(ai; a1, . . . , ai−1, ai+1, . . . , an) = 0.

Let L be the A-lattice corresponding to the Carlitz module ρ defined by
ρT (z) = Tz + zq. As is mentioned in Goss [4],

(4.2) l1(a) = (aq − a)/(T q − T ).

This yields the following examples, given by Okada in [7].
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• q = 2:

sL(a1; a2) + sL(a2; a1) =
a1 + a2

a1a2(T 2 − T )
.

• q = 3:

sL(a1; a2) + sL(a2; a1) = 0,

sL(a3; a1, a2) + sL(a2; a1, a3) + sL(a1; a2, a3) =
a2

1 + a2
2 + a2

3

a1a2a3(T 3 − T )
.(4.3)

• 3 ≤ q, 2 ≤ n < q:
n∑
i=1

sL(ai; a1, . . . , ai−1, ai+1, . . . , an) = 0.

4.3. Inhomogeneous Dedekind sums. Let a, c be coprime elements
of A \ {0}, and Λ be an A-lattice.

In the case q = 3, by (4.1), we have

sΛ(a, c) + sΛ(c, a) =
1
ac

(
l1(a)
a

+
l1(c)
c

)
.

Moreover assuming that Λ is the A-lattice L associated with the Carlitz
module, by (4.3), we obtain

sL(a, c) + sL(c, a) =
a2 + c2 + 1
ac(T 3 − T )

.

5. Proofs of the theorems

Proof of Theorem 3.5. Let φ be the Drinfeld module corresponding to Λ.
Let us consider the rational function

F (z) =
1

φa1(z) · · ·φan(z)
.

By assumption on a1, . . . , an, we have φ[ai]∩φ[aj ] = {0} if i 6= j. This implies
that

⋃n
i=1 φ[ai] = {0} or F (z) has a simple pole at any non-zero element of⋃n

i=1 φ[ai]. When ai is not a unit, for any non-zero element c ∈ φ[ai], there
exists a unique element λ+ aiΛ ∈ Λ/aiΛ such that x = eΛ(λ/ai). Then

Resx(F (z)dz) = Resx

(
dz

φai(z)

)∏
j 6=i

1
φaj (x)

=
1
ai

∏
j 6=i

eΛ

(
ajλ

ai

)−1

.

This contributes sΛ(ai; a1, . . . , ai−1, ai+1, . . . , an). When ai is a unit, φ[ai]=0.
Hence sΛ(ai; a1, . . . , ai−1, ai+1, . . . , an) does not appear on the right-hand
side of (3.1). In other words, it is zero. To compute the left-hand side of
Theorem 3.5, we need the following lemma.
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Lemma 5.1. Let G(z) be a polynomial over a field L of degree > 1, and
R be the set of all roots of G(z). Then∑

a∈R
Resa

(
1

G(z)
dz

)
= 0.

Proof. The partial fraction decomposition of 1/G(z) can be expressed as∑
a∈R

ord(a)∑
n=1

Ca,n
(z − a)n

,

where ord(a) is the order of a, and Ca,n the coefficient of (z − a)−n. Then
for any a ∈ R, we have Resa(1/G(z)) = Ca,1. It is easy to see that 1/G(z)
can be rewritten as

1
G(z)

=
(
∑

a∈R Ca,1)zm−1

G(z)

+
a polynomial in z with degree less than m− 1

G(z)
,

where m is the degree of G(z). Hence,

1 =
(∑
a∈R

Ca,1

)
zm−1 + a polynomial in z with degree less than m− 1.

However since m− 1 > 0, we easily obtain
∑

a∈R Ca,1 = 0.

The set of all poles of F (z) is
⋃n
i=1 φ[ai]. By the above lemma, we have

(−1)n−1
n∑
i=1

sΛ(ai; a1, . . . , ai−1, ai+1, . . . , an) + Res0(F (z)dz)

=
n∑
i=1

∑′

λ∈Λ/aiΛ

ReseΛ(λ/ai)(F (z)dz) + Res0(F (z)dz) = 0.

By (2.1), it follows that

Res0(F (z)dz) =
(−1)n

a1 · · · an

∑
i1+···+in=n−1

Ei1(φ[a1]) · · ·Ein(φ[an]).

This completes the proof.

Proof of Theorem 3.7. By the reciprocity law (3.1),

(5.1) sΛ(c; a, 1) + sΛ(1; a, c) + sΛ(a; c, 1)

=
1
ac

∑
i+j+k=2

Ei(φ[a])Ej(φ[c])Ek(φ[1]).

Since sΛ(1; a, c) = 0, E0(φ[a]) = E0(φ[c]) = E0(φ[1]) = −1 and E1(φ[1]) =
E2(φ[1]) = 0, (5.1) yields the reciprocity law (3.2).
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6. Rationality. In this section we suppose that the Drinfeld module φ
associated with Λ is defined over K.

Proposition 6.1. The higher dimensional Dedekind sum sΛ(an; a1, . . . ,
an−1) is rational, that is, sΛ(an; a1, . . . , an−1) ∈ K. In particular, the inho-
mogeneous Dedekind sum sΛ(a, c) is rational.

Proof. We know that each eΛ(λ/an) is a root of φan(z) defined over K,
and eΛ(aiλ/an) = φai(eΛ(λ/an)) for each i. Hence sΛ(an; a1, . . . , an−1) can
be rewritten as

(6.1) sΛ(an; a1, . . . , an−1) = (−1)n−1 1
an

∑′

x∈φ[an]

1
φa1(x) · · ·φan−1(x)

.

It is invariant under the action of all elements of Gal(K(φ[an])/K). The
proposition follows from it.

Remark 6.2. If φT (z) is given by

φT (z) = Tz + l1(T )zq + · · ·+ lr(T )zq
r
,

then φa1(z), . . . , φan(z) ∈ K(l1(T ), . . . , lr(T ))[z]. By (6.1), it is easy to verify

sΛ(an; a1, . . . , an−1) ∈ K(l1(T ), . . . , lr(T )).

However, sΛ(an; a1, . . . , an−1) is not always rational. For instance, when
l1(T ) 6∈ K, by Proposition 4.3 we have

sΛ(T ;

q−1︷ ︸︸ ︷
1, . . . , 1) =

(−1)q−1l1(T )
T 2

6∈ K.

7. Characterization of lower dimensional Dedekind sums. As
mentioned in Proposition 3.3 and Theorem 3.5, the higher dimensional
Dedekind sum sΛ(an; a1, . . . , an−1) has the following properties:

(1) sΛ(an; a1, . . . , an−1) only depends on ai + anA,
(2) sΛ(an; a1, . . . , an−1) is symmetric in a1, . . . , an−1,
(3) sΛ(an; ζa1, . . . , an−1) = ζ−1sΛ(an; a1, . . . , an−1) for any ζ ∈ Fq \ {0},
(4) sΛ(an; ba1, . . . , ban−1) = sΛ(an; a1, . . . , an−1) for any b ∈ A prime

to an,
(5) the reciprocity law.

These properties characterize one- and two-dimensional Dedekind sums:

Proposition 7.1.

(i) The one-dimensional Dedekind sum sΛ(b; a) is determined by the
conditions (1)–(5).

(ii) The two-dimensional Dedekind sum sΛ(c; a, b) is determined by the
conditions (1)–(5).
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Proof. (ii) By (4), we have the form sΛ(c; a, 1) for a certain b′ ∈ A with
b′b ≡ 1 (mod an). One can suppose deg a < deg c by (1). The reciprocity
law (5) justifies interchanging the roles of a and c to get sΛ(a; c, 1). Using
the Euclidean algorithm, finally, we have the form sΛ(1; a, 1) = 0.

(i) The proof is similar to case (ii).
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