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Complete asymptotic expansions for certain multiple
q-integrals and q-differentials of Thomae–Jackson type
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Masanori Katsurada (Yokohama)

1. Introduction. We suppose for a moment that q is a real parameter
with 0 < q < 1. Let ϕ(u) be a function integrable on the interval [0, x].
A q-analogue of the ordinary integral

	x
0 ϕ(u) du, in the form

(1.1)
x�

0

ϕ(u) dqu = (1− q)x
∞∑
n=0

ϕ(qnx)qn,

was first introduced by Thomae [Th] in 1869 and extensively studied by
Jackson [Ja] during 1910–1951 (see also [GR, p. 23, Chap. 1, 1.11]). One
natural motivation to formulate (1.1) is that the limiting relation

(1.2) lim
q→1−

x�

0

ϕ(u) dqu =
x�

0

ϕ(u) du

holds for all ϕ(u) continuous on [0, x]. A q-analogue, on the other hand, of
the ordinary differentiation is defined by

(1.3) ∂q,zψ(z) =
ψ(z)− ψ(qz)

(1− q)z
(cf. [GR, p. 27, 1.12]), and again satisfies the limiting relation

(1.4) lim
q→1−

∂q,zψ(z) = ψ′(z) = ∂zψ(z),

say, for all ψ(z) complex differentiable at z.
Throughout this paper, q is a complex parameter with 0 < |q| < 1, and

the substitution q = e−t will be made if necessary, transforming the half-
plane Re t > 0 to the unit disk |q| < 1. A complex domain D ⊂ C is called
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star-shaped if 0 ∈ D and for any z ∈ D the line segment 0, z is included
in D. We suppose throughout the paper that f(z) is a function holomorphic
in a star-shaped domain D, and ρf denotes the distance between 0 and the
singularity of f(z) closest to 0.

Let x and y be real numbers with x > 0 and y ≥ 0. Then we define the
q-integral and q-differential operators Ixq,z and Dyq,z by

(1.5) Ixq,zf(z) =
1�

0

ux−1f(uz) dqu = z−x
z�

0

wx−1f(w) dqw

and

(1.6) Dyq,zf(z) =
f(z)− qyf(qz)

1− q
= z−y(z∂q,z){zyf(z)}

for any z in |z| < ρf , where the latter equalities follow from (1.1) and (1.3)
respectively.

Remark. If the base q is restricted to the range 0 < q < 1, then the
domain of z in which the definitions in (1.5) and (1.6) are valid is extended
to the whole D by its star-shapedness.

Proposition 1. The operator relations

Ixq,zDxq,z = 1 and Dxq,zIxq,z = 1

hold for any x > 0, where 1 denotes the identity operation.

Proof. Let ϕ(z) be a function holomorphic on D. In view of the lat-
ter equalities in (1.5) and (1.6), the first assertion reduces to the identity	z
0 ∂q,wϕ(w) dqw = ϕ(z)− ϕ(0), while the second to ∂q,z

	z
0 ϕ(w) dqw = ϕ(z);

both of these identities are direct consequences of (1.1) and (1.3).

It is the principal aim of this paper to extend (1.2) and (1.4); this leads
us to show that complete asymptotic expansions as t→ 0 through the sec-
tor |arg t| < π/2 exist for the multiple q-integrals (Ixq,z)rf(qyz) (Theorem 1)
and the multiple q-differentials (Dxq,z)rf(qyz) (Theorem 2) with any integer
r ≥ 1, under fairly generic conditions. A full extension of the domain of z in
which Theorems 1 and 2 are valid is possible when 0 < q < 1 (Theorem 3).
Several applications of our main formulae (2.4) and (2.9) will further be
given to the generalized Lerch zeta-function (Theorems 4–6), q-factorials
(Corollary 4.1), and q-analogues of the exponential function (Corollary 4.2),
binomial function (Corollary 4.3), and poly-logarithmic function (Corollar-
ies 4.4 and 5.1). As for the methods used, a Mellin transform technique is cru-
cial in the proofs of Theorems 1 and 2, which reveals that multiple q-integrals
and multiple q-differentials are linked to the particular case of Barnes’ (mul-
tiple) zeta-functions in (4.1) below, through (inverse) Mellin transforms.
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The generic function in (4.2) is inserted in a class of zeta-functions such
as Φf (s, x, z) in (4.9) defined by Hadamard’s convolution with a (generic)
function f(z); this is a key to incorporate (4.2) in the Mellin transform for-
mulae (4.8) and (6.7), which play crucial rôles in establishing the asymptotic
expansions in (2.4) and (2.9).

It seems that the q-integrals and their asymptotic aspects first ap-
peared in the 1961 paper of Agarwal [Ag]. He defined a q-analogue of
McRobert’s E-function by means of a certain q-integral, and derived several
of its analytic properties including the asymptotic expansions when the vari-
able z tends to∞. Asymptotic analysis from the point of view of q-analogues
has recently been developed by Fitouhi–Brahim–Bettaibi [FBB], who estab-
lished (for instance) a q-analogue of Watson’s lemma on q-Laplace integrals
to derive various asymptotic expansions (in small and large variable values)
of certain q-special functions including q-error, q-Bessel and q-gamma func-
tions; this direction was further pursued by Bettaibi–Kamel [BeKa] who in-
vestigated asymptotic aspects of q-Mellin, q-Laplace, q-Fourier and q-Hankel
transforms. Note that all the studies above were carried out with a base q
fixed in the range 0 < q < 1.

Let s be a complex variable, u and v real parameters, and write
e(s) = e2πis. As for asymptotic aspects of q-series when q → 1, we have
established recently in [Ka3, Theorem 0] complete asymptotic expansions of
the generalized Lambert series

(1.7) Ss(x, y;u, v; q) = e(ux)
∞∑′

n=0

(y + n)−s
e(v(y + n))qx(y+n)

1− e(u)qy+n

as t → 0 through the sector |arg t| < π/2 by means of a Mellin transform
technique, where the term with n = 0 is to be omitted if y = 0. The
customary notation

(1.8) (z; q)∞ =
∞∏
m=0

(1− qmz) and (z; q)n = (z; q)∞/(zqn; q)∞

for any integer n will be used. [Ka3, Theorem 0] in particular implies a
complete asymptotic expansion of log (qα; q)∞ as q → 1−, and it further
allows us to treat the q-series

F (q) =
∞∑
n=0

qn
2

(q; q)2n
, G(q) =

∞∑
n=0

qn
2

(q; q)n
, H(q) =

∞∑
n=0

qn(n+1)

(q; q)n
.

These are typical examples of theta series (in the transformed Eulerian form)
whose asymptotic behaviour near the singularities at qk = 1 (k = 1, 2, . . .)
was first considered by Ramanujan in his last letter to Hardy (see [Wa]).
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Ramanujan showed

F (q) =
(
t

2π

)1/2

exp
(
π2

6t
− t

24

)
+ o(1),

G(q) =
(

2
5−
√

5

)1/2

exp
(
π2

15t
− t

60

)
+ o(1),

H(q) =
(

2
5 +
√

5

)1/2

exp
(
π2

15t
+

11t
60

)
+ o(1),

(1.9)

as t → 0+, and similar asymptotic formulae for certain other q-series; im-
provements upon (1.9) to complete forms were deduced as a corollary of
[Ka3, Theorem 0]. Zagier [Za] and McIntosh [Mc3] more recently made fur-
ther progress in this direction. Next letBk (k = 0, 1, . . .) denote the Bernoulli
numbers (cf. [Er1, p. 35, 1.13(1)]). Then [Ka3, Theorem 0] also yields Ra-
manujan’s famous formula for specific values of the Riemann zeta-function
ζ(s) at odd integers (cf. [Be1, Theorem 2.4], [Be2, Chap. 14, Entry 21(i)]),
which asserts that, for any integer k 6= 0,

(1.10)

α−k
{

1
2
ζ(2k+ 1) +

∞∑
m=1

m−2k−1

e2mα−1

}
+ 22k

k+1∑
j=0

B2k+2−2jB2j

(2k + 2− 2j)!(2j)!
αk+1−j(−β)j

= (−β)−k
{

1
2
ζ(2k+1) +

∞∑
m=1

m−2k−1

e2mβ−1

}
,

where α and β are positive numbers satisfying αβ = π2 and the finite sum
on the left side is to be regarded as null if k < −1. The use of a Mellin
transform technique to treat (1.7) in fact clarifies that the excluded case
k = 0 of (1.10) re-emerges (in a sense) in asymptotic formulae for F (q), G(q)
and H(q) in (1.9), and in their improvements (see [Ka3, Corollary 1.4]).
One of the major features of the results in [Ka3] is that various specific
values of zeta-functions appear in the coefficients of the asymptotic series
therein. The Mellin transform technique, applied in the present paper (see
Sections 4–6 below), also clarifies that the same phenomena as above occur
in our main formulae (2.4) and (2.9), whose coefficients may be regarded as
specific values of the zeta-functions Φf (s, x, z) in (4.9) and ζr(s, y) in (4.1).
One can further observe the same phenomena e.g. in the papers of Berndt–
Sohn [BS], Coogan–Ono [CO], and Berndt–Yee [BY]. It is to be remarked
that the applications of Theorems 1 and 2 cover the classes of q-series which
could not be treated in our previous study [Ka3].

The paper is organized as follows. Our main results (Theorems 1–3 and
their corollaries) are stated in the next section, while Section 3 is devoted
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to the applications of our main formulae. Theorems 1 and 2 will be shown
in Sections 4–6, while in Section 7 the proofs of Corollaries 1.1, 2.1 and
Theorem 3 are given. The final section is devoted to the derivation of The-
orems 4–6 and their corollaries. All the results in the present paper have
been announced in [Ka4].

2. Statement of results. Let r be any integer, and w a complex
variable. To describe our results we introduce the sequences of functions
Af,k(x, z) and the generalized Bernoulli polynomials B(r)

k (y) of rank r (due
to Nörlund [Nö]) defined for k = 0, 1, . . . by the respective Taylor series
expansions

(2.1) exwf(ewz) =
∞∑
k=0

Af,k(x, z)
k!

wk

and

(2.2) eyw
(

w

ew − 1

)r
=
∞∑
k=0

B
(r)
k (y)
k!

wk

near w = 0. Note that B(1)
k (y) = Bk(y) is the usual Bernoulli polynomial,

and so Bk(0) = Bk is the usual Bernoulli number. We write B(r)
k (0) = B

(r)
k .

We will also use Euler’s differential operator ϑz = z∂z.
We now state our first main result.

Theorem 1. Let x and y be real parameters with x > 0 and y ≥ 0,
q = e−t, and r ≥ 1 a fixed integer. Further let (Ixq,z)rf(z) denote the r-fold
iteration of (1.5) applied to any function f(z) holomorphic in a star-shaped
domain D, and define the coefficients Af,−j(x, z) (j = 1, 2, . . .) by

(2.3) Af,−j(x, z) =
1�

0

ux−1
j

1�

0

ux−1
j−1 · · ·

1�

0

ux−1
1 f(u1 · · ·ujz) du1 · · · duj .

Then for any integer K ≥ 0 the formula

(2.4)
qxy

(1− q)r
(Ixq,z)rf(qyz) =

r∑
j=1

(−1)r−jAf,−j(x, z)B
(r)
r−j(y)

(r − j)!
t−j

+
K−1∑
k=0

(−1)r+kAf,k(x, z)B
(r)
r+k(y)

(r + k)!
tk +R

(r)
f,K(x, y; q, z)

holds in the sector |arg t| < π/2 and on the disk |z| < ρf . Here R(r)
f,K is the
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remainder term expressed by the Mellin transform formula (5.5) below, and

(2.5) R
(r)
f,K(x, y; q, z) = O(|t|K)

as t → 0 through |arg t| ≤ π/2 − δ with any small δ > 0, where the implied
O-constant depends at most on r, x, y, z, K and δ. In particular if 0 ≤ y ≤ r
and K ≥ 1, we have the representation

(2.6) R
(r)
f,K(x, y; q, z) = (−t)K

r−1∑
l=0

(−1)r−1−lB
(r)
r−1−l(y)

l!(r − 1− l)!

∞∑′

n=−∞

e(ny)
(2πin)K+l

×
(
∂

∂u

)l
uK+l

1�

0

ξxtu+2πin−1(x+ ϑz)Kf(ξtuz) dξ
∣∣∣
u=1

,

where the primed summation symbol indicates the omission of the term with
n = 0.

Remark 1. The presence of the negative order terms (with j = 1, . . . , r)
on the right side of (2.4) is reasonable, since the factor (1− q)−r on the left
side is asymptotically t−r as t→ 0.

Remark 2. The n-sum on the right side of (2.6) converges absolutely
for all K ≥ 1, since the ξ-integral (differentiated with respect to u) is of
order O(|n|−1) as n→ ±∞ by partial integration.

Remark 3. The explicit formula (2.6) will be used to extend the domain
of z where (2.4) with (2.5) is valid (see Theorem 3).

From the point of view of applications it is necessary to obtain the
asymptotic expansions for (Ixq,z)rf(z) both with and without the associ-
ated q-multiples (see (3.5), (3.11) and (3.12) below). The case y = 0 of
Theorem 1 in fact yields, in view of the latter equality in (1.5), the following
corollary.

Corollary 1.1. Let r and x be as in Theorem 1. Then for any integer
K ≥ 0 the asymptotic formula

(2.7)
z�

0

w−1
r

wr−1�

0

w−1
r−1 · · ·w

−1
2

w2�

0

wx−1
1 f(w1) dqw1 · · · dqwr

=
K−1∑
k=0

(−1)kC(r)
f,k(x, z)

k!
tk +O(|t|K)

holds as t → 0 through |arg t| ≤ π/2 − δ for any small δ > 0, on the disk
|z| < ρf with |arg z| < π, where the implied O-constant depends at most on
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x, z, K and δ. Here the coefficients C(r)
f,k (k = 0, 1, . . .) are given by

C
(r)
f,k(x, z) =

r∑
j=max(1,r−k)

(
k

r − j

)
B

(−r)
k−r+jB

(r)
r−j(2.8)

×
z�

0

w−1
j

wj�

0

w−1
j−1 · · ·w

−1
2

w2�

0

wx−1
1 f(w1) dw1 · · · dwj

+
k−r∑
j=0

(
k

r + j

)
B

(−r)
k−r−jB

(r)
r+jϑ

j
z{zxf(z)},

which reduces if r = 1 to

C
(1)
f,k(x, z) =

1
k + 1

[ z�
0

wx−1f(w) dw +
k−1∑
j=0

(
k + 1
j + 1

)
Bj+1ϑ

j
z{zxf(z)}

]
,

where the empty sums are to be regarded as null.

The case K = 1 of Corollary 1.1 readily implies the following corollary.

Corollary 1.2. Under the same assumptions as in Corollary 1.1,

lim
q→1
|q|<1

z�

0

w−1
r

wr−1�

0

w−1
r−1 · · ·w

−1
2

w2�

0

wx−1
1 f(w1) dqw1 · · · dqwr

= C
(r)
f,0(x, z) =

z�

0

w−1
r

wr−1�

0

w−1
r−1 · · ·w

−1
2

w2�

0

wx−1
1 f(w1) dw1 · · · dwr.

We proceed to state our second main result. Throughout the following,
Γ (s) denotes the gamma function, and (s)n = Γ (s+n)/Γ (s) for any integer
n is the shifted factorial of s.

Theorem 2. Let x, y ≥ 0 be real parameters, q = e−t, and r ≥ 1 a fixed
integer. Further let (Dxq,z)rf(z) denote the r-fold iteration of (1.6) applied
to any function f(z) holomorphic in a star-shaped domain D. Then for any
integer K ≥ 0 the formula

(2.9) qxy
(

1− q
t

)r
(Dxq,z)rf(qyz)

=
K−1∑
k=0

(−1)kAf,r+k(x, z)B
(−r)
k (y)

k!
tk +R

(−r)
f,K (x, y; q, z)

holds in the sector |arg t| < π/2 and on the disk |z| < ρf . Here the remainder
term R

(−r)
f,K is expressed by the Mellin transform formula (6.10) below, and

(2.10) R
(−r)
f,K (x, y; q, z) = O(|t|K)
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as t → 0 through |arg t| ≤ π/2 − δ with any small δ > 0, where the implied
O-constant depends at most on r, x, y, z, K and δ. Furthermore, for any
real x, y ≥ 0, and any integer K ≥ 0,

(2.11)

R
(−r)
f,K (x, y; q, z) =

(−1)r+KtK

Γ (r +K)

r∑
n=0

(−r)n
n!

(y + n)r+K
1�

0

(1− ξ)r+K−1qx(y+n)ξ

× (x+ ϑz)r+Kf(q(y+n)ξz) dξ.

In view of the latter equality in (1.6), the case y = 0 of Theorem 2 in
fact yields the following corollary.

Corollary 2.1. Let r and x be as in Theorem 2. Then for any integer
K ≥ 0 the asymptotic formula

(2.12) (z∂q,z)r{zxf(z)} =
K−1∑
k=0

(−1)kC(−r)
f,k (x, z)

k!
tk +O(|t|K)

holds as t → 0 through |arg t| ≤ π/2 − δ for any small δ > 0, on the disk
|z| < ρf with |arg z| < π, where the implied O-constant depends at most on
r, x, z, K and δ. Here the coefficients C(−r)

f,k (k = 0, 1, . . .) are given by

(2.13) C
(−r)
f,k (x, z) =

k∑
j=0

(
k

j

)
B

(r)
k−jB

(−r)
j ϑr+jz {zxf(z)},

which reduces if r = 1 to

C
(−1)
f,k (x, z) =

1
k + 1

k∑
j=0

(
k + 1
j + 1

)
Bk−jϑ

1+j
z {zxf(z)}.

The case K = 1 of Corollary 2.1 readily implies the following corollary.

Corollary 2.2. Under the same assumptions as in Corollary 2.1,

lim
q→1
|q|<1

(z∂q,z)rf(z) = C
(−r)
f,0 (x, z) = (z∂z)r{zxf(z)}.

We lastly proceed to state the full extension of the domain of z in The-
orems 1 and 2 under the restriction that 0 < q < 1 (see Remark just
below (1.6)).

Theorem 3. Set q = e−t with any real t > 0, and let f(z) be any
function holomorphic in a star-shaped domain D.

(i) Let x and y be real with x > 0 and 0 ≤ y ≤ r. Then the asymptotic
expansion (2.4) with the estimate (2.5) when t→ 0+, as well as the
explicit formula (2.6), remain valid throughout the domain D.
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(ii) Let x, y ≥ 0 be real. Then the asymptotic expansion (2.9) with the
estimate (2.10) when t→ 0+, as well as the explicit formula (2.11),
remain valid throughout the domain D.

(iii) The asymptotic expansion (2.7) with (2.8) when t → 0+ for x > 0,
and also (2.12) with (2.13) when t → 0+ for x ≥ 0, remain valid
throughout the domain D.

3. Applications of Theorems 1 and 2. We suppose for simplicity
that 0 < q < 1 throughout this section. Let [s]q = (1 − qs)/(1 − q) be
a q-analogue of s, and let [s]q;n =

∏n−1
m=0[s + m]q and [1]q;n = [n]q! for

n = 0, 1, . . . denote q-analogues of the shifted factorial of s and the factorial
of n respectively (cf. [GR, p. 7, Chap. 1]), where the empty products are
regarded to be 1. Note that limq→1− [s]q = s readily implies that

(3.1) lim
q→1−

[s]q;n = (s)n and lim
q→1−

[n]q! = n!.

We define the generalized Lerch zeta-function Φ(s, x, z) by

(3.2) Φ(s, x, z) =
∞∑
m=0

(x+m)−szm

for any complex s if |z| < 1, and for Re s > 1 if |z| = 1 (cf. [Er1, p. 27,
Chap. I, 1.11(1)]); this reduces to the ordinary Lerch zeta-function φ(s, x, λ)
when z = e(λ) with any λ ∈ R, and further to the Hurwitz zeta-function
ζ(s, x) when z = 1, while ζλ(s) = e(λ)φ(s, 1, λ) is the exponential zeta-
function, and so ζ(s) = ζ(s, 1) = ζλ(s) for λ ∈ Z is the Riemann zeta-
function. The contour integral expression (5.2) below in fact shows that
Φ(s, x, z) continues to a holomorphic function of (s, z) ∈ C×D, where

(3.3) D = {z ∈ C : |arg(1− z)| < π} = C \ [1,∞)

is a complex cut-plane. Note here that D is a star-shaped domain. We can
therefore apply Theorem 3(i) (on (2.4) with (2.5)) to f(z) = Φ(s, x, z), and
obtain the following theorem.

Theorem 4. Let x and y be real with x > 0 and 0 ≤ y ≤ r, and s any
complex number. Then for any integer K ≥ 0 the asymptotic expansion

(3.4)
qxy

(1− q)r
(Ixq,z)rΦ(s, x, qyz) =

r∑
j=1

(−1)r−jΦ(s+ j, x, z)B(r)
r−j(y)

(r − j)!
t−j

+
K−1∑
k=0

(−1)r+kΦ(s− k, x, z)B(r)
r+k(y)

(r + k)!
tk +O(tK)

holds as t→ 0+, in |arg(1− z)| < π, where the implied O-constant depends
at most on r, s, x, y, z and K.
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Let Lil(z) for any l ∈ Z be the poly-logarithmic function defined by
Lil(z) = zΦ(l, 1, z) for any z ∈ D. It is seen from (1.1), (1.5), (1.8) and the
relation log (1− z) = −zΦ(1, 1, z), by (3.2), that

(3.5) log (qyz; q)∞ = − qyz

1− q
I1
q,zΦ(1, 1, qyz)

for any real y ≥ 0 and in |arg(1− z)| < π. Then the case (r, s, x) = (1, 1, 1)
of Theorem 4 yields the following corollary.

Corollary 4.1. Let y be real with 0 ≤ y ≤ 1. Then for any integer
K ≥ 0 the asymptotic expansion

(3.6) log (qyz; q)∞ = −Li2(z)t−1−
K−1∑
k=0

(−1)k+1 Li1−k(z)Bk+1(y)
(k + 1)!

tk+O(tK)

holds as t→ 0+, in |arg(1− z)| < π, where the implied O-constant depends
at most on y, z and K.

Remark. The assertion (3.6) was first established by McIntosh [Mc1],
[Mc2] in a more general setting.

We next present applications to q-analogues of the exponential and bi-
nomial functions defined respectively by

eq(z) =
∞∑
n=0

zn

[n]q!

(
|z| < 1

1− q

)
,

fq(y; z) =
∞∑
n=0

[y]q;n
[n]q!

zn (|z| < 1),

from which together with (3.1) the limiting relations limq→1− eq(z) = ez and
limq→1− fq(y; z) = (1−z)−y follow. It is known that the q-binomial theorem
(cf. [GR, p. 8, Chap. 1, 1.3]) asserts that

(3.7) eq(z) =
1

((1− q)z; q)∞
and fq(y; z) =

(qyz; q)∞
(z; q)∞

for any y ≥ 0; these further provide the meromorphic continuations of eq(z)
and fq(y; z) respectively over the whole z-plane. Corollary 4.1 can therefore
be applied to the right sides above, yielding the following corollaries.

Corollary 4.2. For any integer K ≥ 0 the asymptotic expansion

(3.8) log eq(z) = z +
K−1∑
k=1

αk(z)tk +O(tK)
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holds as t→ 0+, in |arg(1− z)| < π, and this further implies that

eq(z) = ez
{

1 +
K−1∑
k=1

βk(z)tk +O(tK)
}

as t→ 0+, where the coefficients αk(z) and βk(z) are given by

αk(z) =
k∑
j=0

(−1)k−jBk−j
(k − j)!

j∑
h=0

(1 + h)k−j−2
B

(−h−1)
j−h z1+h

(j − h)!
,(3.9)

βk(z) =
∑

Pk
j=1 jlj=k

lj≥0 (j=1,...,k)

k∏
j=1

αj(z)lj

lj !

for k = 0, 1, . . . , and the implied O-constants depend on z and K.

Corollary 4.3. Let y be real with 0 ≤ y ≤ 1. Then for any integer
K ≥ 0 the asymptotic expansion

log fq(y; z) =
K−1∑
k=0

(−1)k+1 Li1−k(z)
(k + 1)!

{Bk+1 −Bk+1(y)}tk +O(tK)

holds as t→ 0+, in |arg(1− z)| < π, and this further implies that

fq(y; z) = (1− z)−y
{

1 +
K−1∑
k=1

γk(y, z)tk +O(tK)
}

as t→ 0+, where the coefficients γk(y, z) are given by

γk(y, z) = (−1)k
∑

Pk
j=1 jlj=k

lj≥0 (j=1,...,k)

k∏
j=1

1
lj !

[
Li1−j(z)
(j + 1)!

{Bj+1(y)−Bj+1}
]lj

for k = 0, 1, . . . . Here the implied O-constants depend at most on y, z and K.

We thirdly present applications to a q-analogue Liq,l(z) of the poly-
logarithmic function for any l ∈ Z, defined by

(3.10) Liq,l(z) =
∞∑
m=0

z1+m

[1 +m]lq
(|z| < 1),

which by (3.1) satisfies limq→1− Liq,l(z) = Lil(z). We can in fact show

(3.11) Liq,r(z) = z(I1
q,z)

rΦ(0, 1, z)

for any integer r ≥ 0; this further provides the meromorphic continuation
of Liq,r(z) for all z ∈ D. Corollary 1.1 can therefore be applied upon taking
f(z) = Φ(0, 1, z) to yield the following corollary.
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Corollary 4.4. Let r ∈ Z be fixed with r ≥ 1. Then for any integer
K ≥ 0 the asymptotic expansion

Liq,r(z) =
K−1∑
k=0

(−1)kC(r)
f,k(1, z)

k!
tk +O(tK)

holds as t→ 0+, in |arg(1− z)| < π, where the coefficients C(r)
f,k are given by

C
(r)
f,k(1, z) =

r∑
j=max(1,r−k)

(
k

r − j

)
B

(−r)
k−r+jB

(r)
r−j Lij(z)

+
k−r∑
j=0

(
k

r + j

)
B

(−r)
k−r−jB

(r)
r+j Li−j(z)

for k = 0, 1, . . . . Here the implied O-constant depends at most on r, z and K.

We fourthly discuss applications of Theorem 2; it first yields, upon taking
f(z) = Φ(s, x, z), the following theorem.

Theorem 5. Let x ≥ 0 and y ≥ 0 be real, and s any complex number.
Then for any integer K ≥ 0 the asymptotic expansion

qxy
(

1− q
t

)r
(Dxq,z)rΦ(s, x, qyz) =

K−1∑
k=0

(−1)kΦ(s− r − k, x, z)B(−r)
k (y)

k!
tk

+O(tK)

holds as t→ 0+, in |arg(1− z)| < π, where the implied O-constant depends
at most on r, s, x, y, z and K.

We can in fact show

(3.12) Liq,−r(z) = z(D1
q,z)

rΦ(0, 1, z)

for any integer r ≥ 0. Corollary 2.1 can therefore be applied by taking
f(z) = Φ(0, 1, z) to yield the following corollary.

Corollary 5.1. Let r ∈ Z be fixed with r ≥ 1. Then for any integer
K ≥ 0 the asymptotic expansion

Liq,−r(z) =
K−1∑
k=0

(−1)kC(−r)
f,k (1, z)

k!
tk +O(tK)

holds as t→ 0+, in |arg(1−z)|<π, where the coefficients C(−r)
f,k are given by

C
(−r)
f,k (1, z) =

k∑
j=0

(
k

j

)
B

(r)
k−jB

(−r)
j Li−r−j(z)

for k= 0, 1, . . . . Here the implied O-constant depends at most on r, z and K.
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We finally present applications of Theorems 1 and 2 to the ordinary Lerch
zeta-function φ(s, x, λ) = Φ(s, x, e(λ)) with any λ ∈ R. Let a > 0 be any
fixed real number. Then the domain of the parameter z in φ(s, a + z, λ)
can be extended, by the same argument as in [Ka1], to the whole sec-
tor |arg(a + z)| < π, which is again star-shaped; Theorems 1 and 2 can
therefore be applied with f(z) = φ(s, a + z, λ) to yield the following theo-
rem.

Theorem 6. Set q = e−t with any t > 0.

(i) Let x > 0 and 0 ≤ y ≤ r. Then qxy(1−q)−r(Ixq,z)rφ(s, a+qyz, λ) has
the asymptotic expansion (2.4) with (2.5) when t → 0+, and for its
remainder term the explicit formula (2.6) holds, both in the sector
|arg(a + z)| < π, where the coefficients Af,k(x, z) (k ∈ Z) are given
by (2.1) and (2.3).

(ii) Let x ≥ 0 and y ≥ 0. Then qxy{(1− q)/t}r(Dxq,z)rφ(s, a+ qyz, λ) has
the asymptotic expansion (2.9) with (2.10) when t→ 0+, and for its
remainder term the explicit formula (2.11) holds, both in the sector
|arg(a+z)| < π, where the coefficients Af,r+k(x, z) (k ≥ 0) are given
by (2.1).

Remark. The q-integral I1
q,zζ(s, 1 ± z) has recently been studied in

an extensive manner by Kurokawa–Mimachi–Wakayama [KMW], in con-
nection with various evaluations of infinite series involving the values of
zeta-functions; a glimpse of this aspect can be seen in formula (3.16) below.

It is in fact possible to express the coefficients of the asymptotic series
above in terms of the generalized hypergeometric functions defined by

(3.13) m+1Fm

(
α1, . . . , αm+1

β1, . . . , βm
; z
)

=
∞∑
n=0

(α1)n · · · (αm+1)n
(β1)n · · · (βm)nn!

zn (|z| < 1)

for m = 0, 1, . . . (cf. [Sl, p. 40, Chap. 2, 2.1.1(2.1.1.1)]). We can then prove
the following corollary.

Corollary 6.1. The following expressions hold for the coefficients
in (2.4) and (2.9) if f(z) = φ(s, a+ z, λ):

(i) In the region σ > 1 and in the sector |arg(a+ z)| < π,

(3.14) Af,−j(x, z) = x−j
∞∑
l=0

e(λl)(a+l)−sj+1Fj

(
s, x, . . . , x

x+1, . . . , x+ 1
;− z

a+ l

)
for j = 1, 2, . . . , and

(3.15) Af,k(x, z) = xk
∞∑
l=0

e(λl)(a+l)−sk+1Fk

(
s, x+ 1, . . . , x+1

x, . . . , x
;− z

a+ l

)
for k = 0, 1, . . . .
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(ii) For any s ∈ C and any z in the disk |z| < a,

(3.16) Af,k(x, z) =
∞∑
n=0

(−1)n(s)n
n!(x+ n)k

φ(s+ n, a, λ)zn (k ∈ Z).

4. A Mellin transform formula for (Ixq,z)rf(qyz). The aim of this
section is to deduce the Mellin transform formula (4.8) below, which plays
a crucial rôle in establishing the asymptotic expansion (2.4) with the esti-
mate (2.5).

Let at first y > 0. We will use the particular case of Barnes’ (multiple)
zeta-function ζr(s, y), defined by

(4.1) ζr(s, y) =
∞∑
n=0

(r)n
n!

(y + n)−s (Re s > r),

and its meromorphic continuation over the whole s-plane (see [Ka2, Theo-
rem 3]). Suppose temporarily that |z| < ρf , where the power series expansion

(4.2) f(z) =
∞∑
m=0

fmz
m

is valid. The proof begins with the observation that (1.1) and (1.5) yield

(4.3)
qxy

(1− q)r
(Ixq,z)rf(qyz)

= qxy
∞∑

n1,...,nr=0

f(qy+n1+···+nrz)(qn1)x−1qn1 · · · (qnr)x−1qnr

=
∞∑

n1,...,nr=0

f(qy+n1+···+nrz)qx(y+n1+···+nr) =
∞∑
n=0

(r)n
n!

f(qy+nz)qx(y+n),

upon noting that the number of r-tuples (n1, . . . , nr) of non-negative integers
with

∑r
j=1 nj = n is equal to

(
n+r−1
r−1

)
= (r)n/n!. The last expression in (4.3)

is modified by applying Cauchy’s formula into
(4.4)
∞∑
n=0

(r)n
n!

1
2πi

�

|w|=ρ

qx(y+n)f(w)
w − qy+nz

dw =
1

2πi

�

|w|=ρ

f(w)Kr

(
x, y; q,

z

w

)
dw

w
,

say, where the radius ρ satisfies |z| < |w| = ρ < ρf , and Kr is given by

(4.5) Kr(x, y; q, Z) =
∞∑
n=0

(r)n
n!

qx(y+n)

1− qy+nZ

for |Z| < 1. Then the right side of (4.5) can be transformed by applying the
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expression

(4.6)
qxy

1− qyZ
=

1
2πi

�

(c)

Γ (s)Φ(s, x, Z)(yt)−s ds,

where c is a constant satisfying c > r, providing for the location of the
(possible) poles (see (4.8) and (5.3)), and (c) denotes the vertical straight
line from c−i∞ to c+i∞; this is obtained from the Mellin inversion formula

qxy =
1

2πi

�

(c)

Γ (s)(xyt)−s ds

for |arg t| < π/2 (cf. [Er2, p. 347, 7.3(1)], [Ka3, (6.2)]), where both sides
with x + m instead of x are to be multiplied by Zm and summed up over
m = 0, 1, . . . . The expression (4.6) with y replaced by y + n is substituted
into each term on the right side of (4.5) to imply

(4.7) Kr(x, y; q, Z) =
1

2πi

�

(c)

Γ (s)Φ(s, x, Z)ζr(s, y)t−s ds.

By further substituting (4.7) into the integrand on the right side of (4.4)
and then changing the order of the w- and s-integrals we find that

(4.8)
qxy

(1− q)r
(Ixq,z)rf(qyz) =

1
2πi

�

(c)

Γ (s)Φf (s, x, z)ζr(s, y)t−s ds,

where the resulting w-integral is equal to the zeta-function Φf (s, x, z) (as-
sociated with f(z)) of the form

(4.9) Φf (s, x, z) =
1

2πi

�

|w|=ρ

f(w)Φ
(
s, x,

z

w

)
dw

w
=
∞∑
m=0

fm(x+m)−szm

for any complex s and |z| < ρf (see (4.2) and (3.2)). Here the interchange of
the integrals above is justified by Fubini’s theorem, because, from the known
vertical order estimate ζr(s, y) = O(|Im s|νr(Re s)) as Im s→ ±∞ (see [Ka2,
Lemma 2]), the right side of (4.7) is

�
�

(c)

(|Im s|+ 1)Ae−(π/2−|arg t|)|Im s||t|−c |ds| � 1

for some constant A > 0 depending on r, x, y, c and Z, in the sector
|arg t| < π/2 and uniformly on the circle |Z| = R with any R < 1.

5. Derivation of the asymptotic expansion for (Ixq,z)rf(qyz). The
aim of this section is to prove Theorem 1. For this we first prepare the
following.

Lemma 1. Let Φf (s, x, z) be defined by (4.9), where f(z) is holomorphic
in a star-shaped domain D. Then Φf (s, x, z) continues to a holomorphic
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function of (s, z) over C×D; its values at non-positive integers are

(5.1) Φf (−k, x, z) = Af,k(x, z) (k = 0, 1, . . .).

Proof. Multiplying by fm both sides of

(x+m)−szm = Γ (s)−1
∞�

0

us−1e−xu(e−uz)m du

for Re s > 0, and then summing up over m = 0, 1, . . . we see from (4.9) that

Φf (s, x, z) =
1

Γ (s)

∞�

0

us−1e−xuf(e−uz) du

for Re s > 0, provided that |z| < ρf ; this is further transformed by a stan-
dard argument into

(5.2) Φf (s, x, z) =
1

Γ (s){e(s)− 1}

�

C
ws−1e−xwf(e−wz) dw.

Here C is a contour which starts from infinity, proceeds along the real axis
to a small positive δ, rounds the origin counter-clockwise, and returns to
infinity along the real axis, where argw varies from 0 to 2π round C. Note
that e−wz ∈ D for all w ∈ C and z ∈ D if δ is chosen sufficiently small.
Formula (5.2) therefore provides the analytic continuation of Φf (s, x, z) for
all (s, z) ∈ C×D.

The evaluation of Φf (s, x, z) at non-positive integers proceeds from (5.2)
as follows:

Φf (−k, x, z) =
(−1)kk!

2πi

�

|w|=δ

w−k−1e−xwf(e−wz) dw

= (−1)k
(
∂

∂w

)k
e−xwf(e−wz)

∣∣∣∣
w=0

= Af,k(x, z)

for k = 0, 1, . . . , where the last equality follows from (2.1).

We have shown in [Ka2, Theorem 3] the following properties of ζr(s, y)
defined by (4.1).

Lemma 2. The zeta-function ζr(s, y) continues to a meromorphic func-
tion over the whole s-plane; its only singularities are the simple poles at
s = j (j = 1, . . . , r) with the residues

(5.3) Ress=j ζr(s, y) =
(−1)r−jB(r)

r−j(y)
(j − 1)!(r − j)!

(j = 1, . . . , r),

while its values at non-positive integers are

(5.4) ζr(−k, y) =
(−1)rk!B(r)

r+k(y)
(r + k)!

(k = 0, 1, . . .).
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We are now ready to prove the assertion (2.4). Let K ≥ 0 be any
integer, and cK a constant satisfying −K < cK < −K + 1. Then the
path of integration in (4.8) can be moved to the left, from (c) to (cK),
upon passing over the poles of the integrand at s = j (j = 1, . . . , r) and
s = −k (k = 0, 1, . . . ,K − 1), since the integrand for Re s ≤ c is of order
O{|Im s|Be−(π/2−|arg t|)|Im s|} as Im s → ±∞, with some constant B > 0 de-
pending on r, x, y, z and Re s. Collecting the residues of these poles, which
are computed by using (5.1), (5.3) and (5.4), we obtain (2.4) with

(5.5) R
(r)
f,K(x, y; q, z) =

1
2πi

�

(cK)

Γ (s)Φf (s, x, z)ζr(s, y)t−s ds.

The error estimate (2.5) is deduced by further moving the path in (5.5)
from (cK) to (cK+1); this leads to

(5.6) R
(r)
f,K(x, y; q, z)

=
(−1)r+KAf,K(x, z)B(r)

r+K(y)
(r +K)!

tK +
1

2πi

�

(cK+1)

Γ (s)Φf (s, x, z)ζr(s, y)t−s ds

� |t|K + |t|−cK+1 � |t|K

as t → 0, since −K − 1 < cK+1 < −K. The remaining case y = 0 of (2.5)
can be shown by using the following lemma.

Lemma 3. There exist polynomials pr,j(y) in y with rational coefficients
such that

ζr(s, y) =
r−1∑
j=0

pr,j(y)ζ(s− j, y)

for all real y > 0.

Proof. We have

(r)n
n!

=
(n+ 1)r−1

(r − 1)!
=

(y + n+ 1− y)r−1

(r − 1)!
=

r−1∑
j=0

pr,j(y)(y + n)j

for some pr,j(y) ∈ Q[y]; this with (4.1) readily implies the assertion.

We now let y → 0+ in (2.4). It is straightforward to see that the limiting
operations are possible for all the terms in (2.4) except R(r)

f,K(x, y; q, z). On
the other hand, from Lemma 3 and ζ(s, y) = y−s + ζ(s, 1 + y) for any
y > 0 it follows that ζr(s, y) converges (as y → 0+) to

∑r−1
j=0 pr,j(0)ζ(s− j)

uniformly on the line Re s = cK+1 (< 0); this further implies from (5.6) that
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limy→+0R
(r)
f,K(x, y; q, z) exists and equals

(−1)r+KAf,K(x, z)B(r)
r+K

(r +K)!
tK +

r−1∑
j=0

pr,j(0)
2πi

�

(cK+1)

Γ (s)Φf (s, x, z)ζ(s− j)t−s ds,

which is again � tK + t−cK+1 � tK . The case y = 0 of (2.5) thus remains
valid.

We next proceed to deduce the explicit formula (2.6). To this end we
first substitute the series representation in (4.9) into the right side of (5.5),
and then integrate term-by-term, to obtain

(5.7) R
(r)
f,K(x, y; q, z) =

∞∑
m=0

fmz
mIK((x+m)t),

where

(5.8) IK(T ) =
1

2πi

�

(cK)

Γ (s)ζr(s, y)T−s ds

for |arg T | < π/2. We have shown in [Ka2, Theorem 4] the functional equa-
tion

ζr(s, y) =
r−1∑
l=0

(−1)r−l−1B
(r)
r−l−1(y)

l!(r − l − 1)!
Γ (1− s+ l)

(2π)1−s+l
{e−πi(1−s+l)/2ζy(1− s+ l)

+ eπi(1−s+l)/2ζ−y(1− s+ l)}
for 0 < y ≤ r; this is substituted into the integrand in (5.8) to give, upon
term-by-term integration,

(5.9)

IK(T ) =
r−1∑
l=0

(−1)r−l−1B
(r)
r−l−1(y)

l!(r − l − 1)!
T−l−1

{ ∞∑
n=1

e(ny)ϕK,l(T/2πneπi/2)

+
∞∑
n=1

e(−ny)ϕK,l(T/2πne−πi/2)
}

with arg(e±πi/2) = ±π/2, where

(5.10) ϕK,l(Z) =
1

2πi

�

(cK)

Γ (s)Γ (1 + l − s)Z1+l−s ds

for |argZ| < π. We shall prove the following.

Lemma 4. For any K ≥ 1 and l ≥ 0 we have the equality

(5.11) ϕK,l(Z) = (−1)KZK+l+1

(
∂

∂u

)l uK+l

1 + uZ

∣∣∣∣
u=1

.
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Proof. It follows from (5.10) that

(5.12) ϕK,l(Z) =
(−1)K

2πi

�

(d)

Γ (w)Γ (1− w)(1 +K − w)lZ1+K+l−w dw,

by changing the variable s = w −K, setting cK = d −K (with 0<d< 1),
and noting that Γ (s + l) = (s)lΓ (s). The expression (1 + K − w)l =
(∂/∂u)luK+l−w|u=1 is then inserted into the integrand in (5.12), and the or-
der of differentiation and integration is interchanged. We then evaluate the
resulting w-integral by the Mellin inversion formula for (1 + Z)−1 (cf. [Er2,
p. 346, 7.2(18)]) to find the assertion (5.11).

The expression (5.11) is substituted into each term of the infinite series
in (5.9) to show that the two infinite sums in the curly brackets on the right
side of (5.9) sum up to

(5.13) (−T )K
(
∂

∂u

)l
uK+l

∞∑′

n=−∞

e(ny)
(2πin)K+l(2πin+ Tu)

∣∣∣∣
u=1

.

We further substitute (5.9), incorporating (5.13) with (2πin + Tu)−1 =	1
0 ξ

2πin+Tu−1 dξ, into each term on the right side of (5.7) to obtain the
assertion (2.6) by changing the order of the m- and n-sums, upon noting
(6.1) below. Theorem 1 is thus proved.

6. Derivation of the asymptotic expansion for (Dxq,z)rf(qyz). The
aim of this section is to prove Theorem 2. We first deduce the Mellin
transform formula (6.7) below, which plays a crucial rôle in establishing
the asymptotic expansion (2.9) with the estimate (2.10). We set f 〈k〉x (z) =
(x+ ϑz)kf(z) (k = 0, 1, . . .), which from (4.2) and (8.2) below gives

(6.1) f 〈k〉x (z) =
∞∑
m=0

fm(x+m)kzm

in particular for |z| < ρf , and first show the following relation.

Lemma 5. For any integer r ≥ 1, any real x, y ≥ 0, and any z ∈ D we
have the formula

(6.2) qxy
(

1− q
t

)r
(Dxq,z)rf(qyz)

=
1�

0

· · ·
1�

0

f 〈r〉x (qy+τ1+···+τrz)qx(y+τ1+···+τr) dτ1 · · · dτr.

Proof. The case r = 1 of (6.2) can be verified by partial integration
from (1.6) and the fact ϑzf(qy+τz) = (∂/∂τ)f(qy+τz)/(−t); the general
case follows by induction on r.
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The multiple integral on the right side is further modified by Cauchy’s
formula into

(6.3)
1�

0

· · ·
1�

0

1
2πi

�

|w|=ρ

f
〈r〉
x (w)qx(y+τ1+···+τr)

w − qy+τ1+···+τrz
dw dτ1 · · · dτr

=
1

2πi

�

|w|=ρ

f 〈r〉x (w)K−r

(
x, y; q,

z

w

)
dw

w
,

say, where the radius ρ again satisfies |z| < |w| = ρ < ρf , and K−r is given
by

(6.4) K−r(x, y; q, Z) =
1�

0

· · ·
1�

0

qx(y+τ1+···+τr)

1− qy+τ1+···+τrZ
dτ1 · · · dτr

for |Z| < 1. Suppose temporarily that c > r, providing for the location of
the (possible) poles (see (6.7) and (6.8) below). Then the right side of (6.4)
is further transformed, similarly to the derivation of (4.7), into

(6.5)
1�

0

· · ·
1�

0

1
2πi

�

(c)

Γ (s)Φ(s, x, Z){(y + τ1 + · · ·+ τr)t}−s ds dτ1 · · · dτr

=
1

2πi

�

(c)

Γ (s− r)Φ(s, x, Z)ζ−r(s− r, y)t−s ds,

where the change of the order of integration (using Fubini’s theorem) is jus-
tified by absolute convergence, and the resulting inner iterated τj-integrals
(j = 1, . . . , r) are evaluated by the following relation.

Lemma 6. For any integer r ≥ 1, and any complex s except s = j
(j = 1, . . . , r), we have the relation

(6.6)
1�

0

· · ·
1�

0

(y + τ1 + · · ·+ τr)−s dτ1 · · · dτr =
Γ (s− r)
Γ (s)

ζ−r(s− r, y),

where ζ−r(s, y) is defined by replacing r with −r in (4.1).

Proof. Suppose temporarily that Re s > 0. Then integrating both sides
of

(y + τ1 + · · ·+ τr)−s =
1

Γ (s)

∞�

0

us−1e−(y+τ1+···+τr)u du

with respect to τj (j = 1, . . . , r), we see that the left side of (6.6) equals

1
Γ (s)

∞�

0

us−1e−yu
(

1− e−u

u

)r
du,

which can be evaluated by (6.9) below, and the assertion hence follows by
analytic continuation.
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We now substitute the last expression of (6.5) (see (6.4)) into the inte-
grand on the right side of (6.3), change the order of integration (by Fubini’s
theorem), and note that Φ

f
〈r〉
x

(s, x, z) = Φf (s− r, x, z) (see (4.9) and (6.1)),
to infer from (6.2) that

(6.7) qxy
(

1− q
t

)r
(Dxq,z)rf(qyz)

=
1

2πi

�

(c)

Γ (s− r)Φf (s− r, x, z)ζ−r(s− r, y)t−s ds,

which is a key to deduce (2.9). For this we first prepare the following.

Lemma 7. Let r ≥ 1 be any integer. Then the zeta-function ζ−r(s, y) is
entire over the s-plane; its values at non-positive integers are

(6.8) ζ−r(−k, y) =


0 if k = 0, 1, . . . , r − 1,
(−1)rk!B(−r)

k−r (y)
(k − r)!

if k = r, r + 1, . . . .

Proof. We can transform the defining series in (4.1), similarly to the
proof of [Ka2, Theorem 3], into

(6.9) ζ−r(s, y) =
1

Γ (s){e(s)− 1)}

�

C
ws−1e−yw(1− e−w)r dw,

where C is the same contour as in the proof of Lemma 1; this implies

ζ−r(−k, y) =
(−1)kk!

2πi

�

|w|=δ

e−ywwr−k−1

(
w

1− e−w

)−r
dw (k = 0, 1, . . .),

which readily yields (6.8) in view of (2.2).

Let K ≥ 0 be any integer, and cK a constant satisfying −K < cK
< −K + 1. We can then move the path of integration in (6.7) to the left,
from (c) to (cK), where the residues of the relevant (possible) poles at s = h
(h = 1, . . . , r − 1) and s = −k (k = 0, 1, . . . ,K − 1) are computed by
using (5.1) and (6.8); this yields (2.9) with

(6.10) R
(−r)
f,K (x, y; q, z) =

1
2πi

�

(cK)

Γ (s− r)Φf (s− r, x, z)ζ−r(s− r, y)t−s ds,

which further leads to the bound in (2.10), similarly to (5.6), by moving the
path of integration in (6.10) from (cK) to (cK+1). The case y = 0 of (2.10)
again remains valid by an argument using Lemma 3, similar to that for
R

(r)
f,K(x, y; q, z).

We next proceed to deduce the explicit formula (2.11). To this end we
substitute the series representation in (4.9) into the integrand in (6.10), and
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integrate term-by-term, to find

(6.11) R
(−r)
f,K (x, y; q, z) =

∞∑
m=0

fm(x+m)rzmJK((x+m)t),

where

JK(T ) =
1

2πi

�

(cK)

Γ (s− r)ζ−r(s− r, y)T−s ds(6.12)

=
r∑

n=0

(−r)n
n!

(y + n)rψK((y + n)T )

with

(6.13) ψK(Z) =
1

2πi

�

(cK)

Γ (s− r)Z−s ds

for |argZ| < π/2. Here the latter equality in (6.12) is obtained by substi-
tuting the series representation in (4.1) with (r, s) replaced by (−r, s − r),
where the series terminates at n = r since (−r)n = 0 for n > r. We shall
prove the following.

Lemma 8. For any K ≥ 1 we have the equality

(6.14) ψK(Z) =
(−1)r+KZK

Γ (r +K)

1�

0

(1− ξ)r+K−1e−ξZ dξ.

Proof. To remove the poles at s = r − k (k = 0, 1, . . . , r +K − 1) of the
integrand in (6.13), we substitute the relation

Γ (s− r) =
(−1)r+KΓ (s+K)

(−s+ r)(−s+ r − 1) · · · (−s−K + 1)

=
(−1)r+KΓ (s+K)

Γ (r +K)

1�

0

ξ−s−K(1− ξ)r+K−1 dξ,

which is valid on the line Re s = cK (< −K + 1 ≤ 0). The order of the s-
and ξ-integrals is interchanged to yield (6.14), since the resulting s-integral
is evaluated as

1
2πi

�

(cK)

Γ (s+K)(ξZ)−s ds =
1

2πi

�

(d)

Γ (w)(ξZ)K−w dw = (ξZ)Ke−ξZ ,

where d = cK +K (> 0), by the Mellin inversion formula for e−Z (cf. [Er2,
p. 312, 6.3(1)]).

We therefore substitute the last expression in (6.12), incorporating (6.14),
into each term on the right side of (6.11), and then interchange the order of
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the m- and n-sums to obtain the assertion (2.11) in view of (6.1). Theorem 2
is thus proved.

7. Proofs of Corollaries 1.1, 2.1 and Theorem 3. Before starting
the proofs we prepare the following lemma.

Lemma 9. For any integers j ≥ 1 and k ≥ 0, and all z ∈ D,

(7.1) Af,−j(x, z) = z−x
z�

0

w−1
j

wj�

0

w−1
j−1 · · ·w

−1
2

w2�

0

wx−1
1 f(w1) dw1 · · · dwj

and

(7.2) Af,k(x, z) = z−xϑkz{zxf(z)} = (x+ ϑz)kf(z).

Proof. Changing the variable ui = wi/z (i = 1, . . . , j) in (2.3), we readily
obtain (7.1). Next the definition (2.1) gives

Af,k(x, z) = ∂kwe
xwf(ewz)|w=0 = ϑkττ

xf(τz)|τ=1 = z−xϑkτ (τz)xf(τz)|τ=1

for any integer k ≥ 0 and all z ∈ D, where the substitution ew = τ
and the operator change ∂w = (∂τ/∂w)∂τ = ϑτ are made. The former
equality in (7.2) hence follows from the fact that ϑwϕ(wz) = wzϕ′(wz) =
ϑwzϕ(wz) = ϑzϕ(wz) for any differentiable function ϕ(z), while the latter
from the repeated use of the operator identity ϑzzx = zx(x+ ϑz).

Proof of Corollary 1.1. It follows from the case (y, w) = (0,−t) of (2.2)
with −r instead of r that for any integer H ≥ 0 the asymptotic expansion

(7.3)
(

1− q
t

)r
=

H−1∑
h=0

(−1)hB(−r)
h

h!
th +O(|t|H)

holds as t→ 0 through the sector |arg t| ≤ π − δ with any small δ > 0. We
hence multiply the asymptotic series above (times tr) by the right side of
(2.4) with y = 0; the resulting coefficient of tk (k = 0, 1, . . .), coming from
the product with the first j-sum, is

(7.4)
(−1)k

k!

min(k,r−1)∑
l=0

(
k

l

)
B

(−r)
k−l B

(r)
l Af,l−r(x, z),

while that of tr+m (m = 0, 1, . . .), from the product with the second k-sum,
is

(7.5)
(−1)r+m

(r +m)!

m∑
j=0

(
r +m

r + j

)
B

(−r)
m−jB

(r)
r+jAf,j(x, z).

Rewriting the summation indices as l = r − j in (7.4) and m = k − r
in (7.5) respectively, and adding the resulting expressions, we obtain the
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assertion (2.7) with (2.8) in view of (7.1) and (7.2), upon noting that the
left side of (2.7) is equal to zx(Ixq,z)rf(z). The particular case r = 1 of (2.8)
is derived by incorporating

(7.6) B
(−1)
k =

1
k + 1

and
(
k

h

)
1

h+ 1
=

1
k + 1

(
k + 1
h+ 1

)
for any integers h and k with 0 ≤ h ≤ k.

Proof of Corollary 2.1. We multiply the asymptotic series in (7.3)
with −r instead of r by the right side of (2.9) with y = 0; the resulting
coefficient of tk (k = 0, 1, . . .) is equal to

(−1)k

k!

k∑
j=0

(
k

j

)
B

(r)
k−jB

(−r)
j Af,r+j(x, z),

which readily implies the assertion (2.12) with (2.13) in view of (7.2), upon
noting that the left side of (2.12) is equal to zx(Dxq,z)rf(z). The particular
case r = 1 of (2.13) is derived by incorporating (7.6).

Proof of Theorem 3. Consider first (i). We observe that the left side
in (2.4) is holomorphic for all z ∈ D by (4.3), and that the same is true
for the first and second sums on the right side in view of (2.1) and (2.3).
Further, one more path move from (cK+1) to (cK+2) in (5.6) implies that

R
(r)
f,K(x, y; q, z) =

K+1∑
k=K

(−1)r+kAf,k(x, z)B
(r)
r+k(y)

(r + k)!
tk +R

(r)
f,K+2(x, y; q, z)

at first for |z| < ρf . Hence if the ξ-integral (differentiated with respect to u)
in (2.6) with K + 2 instead of K is � 1 for any z ∈ D with the implied
�-constant independent of t, then (2.4)–(2.6) remain valid throughout D;
this can be seen as follows. The operator identities

(7.7) ∂luu
K+l =

l∑
j=0

PK,l,j(u)∂ju and (x+ ϑz)K =
K∑
k=0

QK,k(x, z)∂kz

hold with some PK,l,j(u) ∈ Z[u] and QK,k(x, z) ∈ Z[x, z], and the right
sides above are applied to the ξ-integral in (2.6), showing that the resulting
sum is a collection of terms of the form

	1
0 ξ

axtu(log ξ)bf (c)(ξtuz) dξ with the
coefficients being some polynomials in t, u and x; the operations in (7.7)
therefore do not decrease the order in t.

Consider next (ii). We observe from (6.2), (2.1) and (2.11) that (2.9)
holds for all z ∈ D by analytic continuation. Moreover the ξ-integral on
the right side of (2.11) is � 1 for all z ∈ D with the implied �-constant
independent of t, since the latter operation in (7.7), applied to the ξ-integral,
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again does not decrease the order in t; this therefore shows that (2.9)–(2.11)
remain valid throughout D.

The arguments for cases (i) and (ii) above imply the assertion of (iii).

8. Proofs of Theorems 4–6 and their corollaries

Proofs of Theorem 4 and Corollaries 4.1–4.4. Theorem 4 readily follows
from Theorem 3(i) (on (2.4) with (2.5)) by setting f(z) = Φ(s, x, z), and
noting that

1�

0

ux−1
j · · ·

1�

0

ux−1
1 (u1 · · ·ujz)m du1 · · · duj = (x+m)−jzm,(8.1)

(x+ ϑz)kzm = (x+m)kzm(8.2)

for any integers j ≥ 1 and k,m ≥ 0. Corollary 4.1 is then from (3.5) just
the particular case (r, s, x) = (1, 1, 1) of Theorem 4. Next a straightforward
application of (3.6) with y = 0 upon replacing z by (1 − q)z at first gives
for any integer K ≥ 0 that

(8.3) log eq(z) =
K−1∑
k=−1

(−1)k+1 Li1−k((1− q)z)Bk+1

(k + 1)!
tk +O(tK)

as t→ 0+. We substitute the asymptotic series in (7.3) (times tr) into each
term of the power series expansion of Lil((1−q)z); this shows for any integer
J ≥ 0 that

Lil((1− q)z) =
J−1∑
j=0

{ j∑
h=0

(1 + h)−l
B

(−h−1)
j−h z1+h

(j − h)!

}
tj+1 +O(tJ+1),

which is further substituted into each term of the k-sum in (8.3) to yield the
assertion (3.8) with (3.9). To exponentiate the asymptotic series in (3.8) we
appeal to the following lemma, which is obtained by manipulation of formal
power series.

Lemma 10. Let ϕ(t) =
∑∞

j=0 cjt
j ∈ C[[t]], and define ψ(t) = eϕ(t),

where eT is defined by
∑∞

k=0 T
k/k! ∈ C[[T ]]. Then the formal power series

expansion of ψ(t) is given by ψ(t) =
∑∞

k=0 dkt
k with

dk = ec0
∑

Pk
j=1 jlj=k

lj≥0 (j=1,...,k)

k∏
j=1

c
lj
j

lj !
(k = 0, 1, . . .).

Lemma 10 applies to (3.8) with (3.9), yielding the remaining asser-
tions of Corollary 4.2. Corollary 4.3 can be shown similarly, by using (3.6),
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the latter equality in (3.7) and Lemma 10. Lastly, Theorem 3(iii) (on (2.7)
with (2.8)) yields Corollary 4.4 by taking f(z) = Φ(0, 1, z), in view
of (3.11).

Proofs of Theorem 5 and Corollary 5.1. Theorem 5 is deduced from The-
orem 3(ii) (on (2.9) with (2.10)) by taking f(z) = Φ(s, x, z), in view of (8.2).
Corollary 5.1 then readily follows from Theorem 3(iii) (on (2.12) with (2.13)),
in view of (3.12).

Proofs of Theorem 6 and Corollary 6.1. Theorem 6 follows by direct
application of Theorem 3(i)&(ii) to f(z) = φ(s, a + z, λ). We next prove
Corollary 6.1. The series representations

(8.4) φ(s, a+z, λ) =
∞∑
l=0

e(λl)(a+l+z)−s =
∞∑
l=0

e(λl)(a+l)−s
(

1+
z

a+ l

)−s
hold for Re s > 1 from (3.2); the last expression is substituted into the inte-
grand in (2.3), and then the order of the sum and the integrals is inverted
to imply (3.14), where the resulting multiple (u1, . . . , uj)-integral is evalu-
ated by Euler’s formula for the generalized hypergeometric function (cf. [Sl,
p. 108, Chap. 4, 4.1(4.1.3)]). The last expression in (8.4) is again substituted
into the rightmost side of (7.2); the term-by-term operation in each term
gives

(x+ ϑz)k
(

1 +
z

a+ l

)−s
=
∞∑
n=0

(s)n(x+ n)k

n!

(
− z

a+ l

)n
(|z| < a),

which is evaluated by (3.13) to yield (3.15). Formulae (3.14) and (3.15) both
hold in the sector |arg(a + z)| < π by analytic continuation of generalized
hypergeometric functions.

The remaining (3.16) can be derived by substituting the series rep-
resentation in (3.13) (with the respective sets of parameters) into (3.14)
and (3.15), and by changing the order of the n- and l-sums, where each re-
sulting term is continued to a meromorphic function over the whole s-plane
by the contour integral expression in (5.2).
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