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Introduction. In a recent paper [7], we discussed Mellin transforms
N̂(s) of integrators N for which N(x)−x is periodic in order to study flows
of holomorphic functions converging to ζ(s). Here we consider the question
when such an N determines a g-prime system, i.e. N(x) is the ‘integer
counting function’ of a generalised prime system—see Section 1.3 for the
definition.

An example of such a flow N̂λ(s) was given in [7], but it was unclear
whether or not they determined g-prime systems. As a consequence of our
present results, we show that none of them does.

In fact, we investigate more generally when an increasing function N
for which N(x)− cx is periodic determines a g-prime system for a constant
c > 0. (At the outset we assume that N is right-continuous, N(1) = 1, and
N(x) = 0 for x < 1.) For example, N(x) = cx+ 1− c for x ≥ 1 determines
a continuous g-prime system for 0 < c ≤ 2 at least.

As for discontinuous examples, we have the prototype N(x) = [x] for the
usual primes and integers. For other examples, consider the g-prime system
containing the usual primes except given primes p1, . . . , pk. This has integer
counting function

N(x) =
∑
n≤P

(n,P )=1

[
x− n
P

+ 1
]
,

where P = p1 · · · pk. In this case N(x+P ) = N(x)+ϕ(P ) where ϕ is Euler’s
function, and N(x)− (ϕ(P )/P )x has period P .

Our results split quite naturally into continuous and discontinuous cases.
In Section 2, where we consider the continuous case, the main result is that
for N sufficiently ‘nice’ (e.g. continuously differentiable), N determines a
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g-prime system only for the trivial case where N(x) − cx is constant, i.e.
N(x) = cx+ 1− c.

For discontinuous N the picture is less straightforward. A useful tool is to
consider its ‘jump’ function NJ , which must necessarily also have NJ(x)−c′x
periodic (for some c′ > 0) and which also determines a g-prime system if
N does (Theorem 1.1 below). We show that if such an N has only finitely
many discontinuities in any interval but is otherwise ‘smooth’, then N must
be a step function, the discontinuities must occur at integer points, and the
period, say P , must be a natural number. Then, denoting the jump at n
by an, we show that an is even modulo P (1) and multiplicative. This allows
us to deduce our main result.

Theorem A. Let N ∈ T be such that N(x) − cx has period P , and
suppose that N determines a g-prime system. Then P ∈ N and

N(x) =
∑
n≤P

(n,P )=1

[
x− n
P

+ 1
]
,

i.e. N is the integer counting function of the g-prime system P\{p1, . . . , pk}
where p1, . . . , pk are the prime divisors of P .

(For the definition of T , see Section 1.2.) This actually shows that the
smallest period must be squarefree and that c = ϕ(P )/P . Our set-up in-
cludes all the usual ‘discrete’ g-prime systems.

In proving Theorem A, we prove the following result on Dirichlet series
with periodic coefficients, which may be of independent interest.

Theorem B. Let {an}n∈N be periodic, a1 = 1, and suppose an = exp∗ bn
for some bn ≥ 0. Then an is multiplicative.

Here ∗ refers to Dirichlet convolution. Thus an and bn are related by∑∞
n=1 an/n

s = exp{
∑∞

n=1 bn/n
s}.

1. Preliminaries

1.1. Riemann–Stieltjes convolution. Let S denote the space of func-
tions f : R → C which are zero on (−∞, 1), right-continuous, and of local
bounded variation. (See e.g. [3, pp. 50–70].) This is a vector space over ad-
dition. Let S+ denote the subspace of S consisting of increasing functions.
Also, for α ∈ R, let Sα = {f ∈ S : f(1) = α}, while S+

α = S+ ∩ Sα.

(1) That is, an = a(n,P ).
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For functions f, g ∈ S, define the convolution (or Mellin–Stieltjes convo-
lution) by (2)

(f ∗ g)(x) =
x�

1−
f

(
x

t

)
dg(t).

We note that S is closed under ∗ and that ∗ is commutative and associative.
The identity (with respect to ∗) is i(x) = 1 for x ≥ 1 and zero otherwise.

(a) If f or g is continuous (on R), then f ∗ g is continuous.
(b) Exponentials. For f ∈ S1, there exists g ∈ S0 such that f = exp∗ g,

i.e.
f =

∞∑
n=0

g∗n

n!
,

where g∗n = g ∗ g∗(n−1) and g∗0 = i. Also f = exp∗ g if and only if f ∗ gL
= fL (see [5]), where fL ∈ S is the function defined for x ≥ 1 by fL(x) =	x
1 log t df(t).

(c) For f ∈ S, define the Mellin transform of f by f̂(s) =
	∞
1− x

−s df(x).

This exists if f(x) = O(xA) for some A. Note that f̂ ∗ g = f̂ ĝ and êxp∗ f =
exp f̂ .

(d) Let f, g ∈ S be continuously differentiable on (1,∞). Let g1(x) =	x
1−(1/t) dg(t). Then f ∗ g is also continuously differentiable on (1,∞) with

(f ∗ g)′ = f ′ ∗ g1 + f(1)g′.

Proof. Let x > 1 and consider (f ∗ g)(x + h) − (f ∗ g)(x) for h small.
First suppose that h > 0. We have

(1.1)
(f ∗ g)(x+ h)− (f ∗ g)(x)

h

=
x�

1−

f((x+ h)/t)− f(x/t)
h

dg(t) +
1
h

x+h�

x

f

(
x+ h

t

)
dg(t).

The integrand in the first integral tends pointwise to (1/t)f ′(x/t), so by the
continuity of f ′ this integral tends to (see [1], p. 218)

x�

1−

f ′(x/t)
t

dg(t) = (f ′ ∗ g1)(x) as h→ 0.

The second term equals

f(1)
g(x+ h)− g(x)

h
+

1
h

x+h�

x

(
f

(
x+ h

t

)
− f(1)

)
dg(t).

(2) All limits of integration are understood to be + (i.e. from the right) except where
they are explicitly stated to be −.
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The first summand tends to f(1)g′(x) while the integrand tends to 0 by
right-continuity of f at 1. Hence so does the integral.

If h < 0, write h = −k and split up the integral as (1/k)
	x−k
1 and

(1/k)
	x
x−k and argue as before.

For the proofs of (a)–(c) see [3] and [5].

1.2. The ‘jump’ function

Definition 1.1.

(i) For f ∈ S and each x ∈ R, we denote by ∆f(x) the left-hand jump
of f at x; i.e.

∆f(x) = f(x)− f(x−) = lim
h→0+

(f(x)− f(x− h)).

This is well-defined for monotone f and hence for f ∈ S. Note also
that ∆f is non-zero on a countable set only [1, p. 162].

(ii) For f ∈ S+, let fJ denote the jump function of f , i.e.

fJ(x) =
∑
xr≤x

∆f(xr),

where the xr denote the discontinuities of f .

The function fJ is increasing and f = fJ + fC , where fC is continuous
and increasing ([1, p. 186]).

Let δa denote the function which is 1 on [a,∞) and zero otherwise. Note
that δa ∗ δb = δab. Letting Df denote the (countable) set of discontinuities
of f , we may write

(1.2) fJ =
∑
α∈Df

∆f(α)δα.

The series has only non-negative terms and converges absolutely.

Properties. Let f, g ∈ S+.

(a) (f ∗ g)J = fJ ∗ gJ .
Write f = fJ + fC and similarly for g. Then

(1.3) f ∗ g = (fJ + fC) ∗ (gJ + gC) = fJ ∗ gJ + fJ ∗ gC + fC ∗ gJ + fC ∗ gC .
The last three terms are all continuous, and so their jump functions are
identically zero. Therefore we need to show (fJ ∗ gJ)J = fJ ∗ gJ .

To see this, use (1.2) for fJ and gJ . Hence

fJ ∗ gJ =
∑
α∈Df

∑
β∈Dg

∆f(α)∆g(β)δα ∗ δβ =
∑
α∈Df

∑
β∈Dg

∆f(α)∆g(β)δαβ,

which is a sum of the form
∑

γ cγδγ , i.e. a jump function. Thus (fJ ∗ gJ)J =
fJ ∗ gJ as required.
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(b) For x ≥ 1, we have

(1.4) ∆(f ∗ g)(x) =
∑
αβ=x

α∈Df , β∈Dg

∆f(α)∆g(β).

Take ∆ of both sides of (1.3). As the last three terms are all continuous,
∆ = 0 for these functions. For the remaining term

∆(fJ ∗ gJ)(x) =
∑

α∈Df , β∈Dg

∆f(α)∆g(β)∆δαβ(x) =
∑
αβ=x

α∈Df , β∈Dg

∆f(α)∆g(β),

since ∆δa(x) = 1 for x = a and zero otherwise.

(c) Df∗g = DfDg = {αβ : α ∈ Df , β ∈ Dg}.
For, if x 6∈ DfDg (i.e. x 6= αβ for any α ∈ Df and β ∈ Dg), then there

is no contribution to the sum in (1.4). Hence ∆(f ∗ g)(x) = 0 and x 6∈ Df∗g.
Thus Df∗g ⊂ DfDg.

For the converse, if x ∈ DfDg then x = αβ for some α ∈ Df and β ∈ Dg,
so that

∆(f ∗ g)(x) = ∆(f ∗ g)(αβ) ≥ ∆f(α)∆g(β) > 0,

as all the other terms in (1.4) are non-negative. Hence x ∈ Df∗g and Df∗g =
DfDg follows.

(d) For f ∈ S, let fL denote the function fL(x) =
	x
1 log t df(t). Then

∆fL(x) = ∆f(x) log x (see [3, p. 341]) and hence (fJ)L = (fL)J . (Both sides
equal

∑
α∈Df ∆f(α) logα δα.)

The subspace T . Consider those functions in S whose right-hand
derivative exists and is continuous in (1,∞), i.e.

f ′+(x) = lim
h→0+

f(x+ h)− f(x)
h

exists for each x > 1 and f ′+ is continuous here. Let T denote the subspace
of such functions which have a finite number of discontinuities per bounded
interval. For example, all step functions in S lie in T with f ′+ ≡ 0. Further,
for f ∈ T , f ′+ ≡ 0 if and only if f is a step function. This follows from
the fact that if f is continuous on an interval, and f has a continuous one-
sided derivative, then in fact f ′ exists (and of course equals the one-sided
derivative)—see [9, p. 355]. Thus on each interval where f is continuous and
f ′+ ≡ 0, we must have f ′ ≡ 0 so that f is constant here.

Part (d) of 1.1 generalises to functions in T : if f, g ∈ T then f ∗ g ∈ T
and

(f ∗ g)′+ = f ′+ ∗ g1 + fJ,1 ∗ g′+,
where g1 is as before and fJ,1 = (fJ)1.
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Proof. By 1.2(c), Df∗g ⊂ DfDg, so f ∗ g has at most finitely many
discontinuities per bounded interval.

We have, on (1,∞),

(f ∗ g)′+ = (fJ ∗ gJ)′+ + (fJ ∗ gC)′+ + (fC ∗ gJ)′+ + (fC ∗ gC)′+.

Now fJ∗gJ is again a step function, so (fJ∗gJ)′+ = 0. Also, f ′+ = (fC)′+ hence
fC is continuously differentiable, and similarly for gC . By 1.1(d), (fC∗gC)′+ =
f ′C ∗ gC,1. For the remaining terms

(fJ ∗ gC)′+(x) =
(∑
α∈Df

∆f(α)gC

(
x

α

))′
+

=
∑
α∈Df

∆f(α)
α

g′C

(
x

α

)
.

This is clear for x /∈ Df (since then α 6= x), but also true if x ∈ Df

since gC( xα) = 0 for x ≤ α. Thus (fJ ∗ gC)′+ = fJ,1 ∗ g′C and similarly
(fC ∗ gJ)′+ = f ′C ∗ gJ,1. Putting these together gives

(f ∗ g)′+ = fJ,1 ∗ g′C + f ′C ∗ gJ,1 + f ′C ∗ gC,1 = fJ,1 ∗ g′+ + f ′+ ∗ g1.

Thus (f ∗ g)′+ is continuous and f ∗ g ∈ T .

1.3. Generalised prime systems. We distinguish between two differ-
ent types of g-prime system.

Definition 1.2. An outer g-prime system is a pair of functions Π,N
with Π ∈ S+

0 and N ∈ S+
1 such that N = exp∗Π.

Of course, if Π ∈ S+
0 , then exp∗Π ∈ S+

1 , so (Π,N) is an outer g-prime
system (with N = exp∗Π). On the other hand, if N ∈ S+

1 , then N = exp∗Π
for some Π ∈ S0 by 1.1(b), but Π need not be increasing. If Π is increasing,
then we say N determines an outer g-prime system. The above definition is
somewhat more general than the usual ‘generalised primes’, since we have
not mentioned the equivalent of the prime counting function π(x).

Definition 1.3. A g-prime system is an outer g-prime system for which
there exists π ∈ S+

0 such that

Π(x) =
∞∑
k=1

1
k
π(x1/k).

We say N determines a g-prime system if there exists such an increasing
π ∈ S0.

Remarks. (a) As such, π(x) is given by

π(x) =
∞∑
k=1

µ(k)
k

Π(x1/k).
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In fact this sum always converges for Π ∈ S+ (since Π(x1/k) decreases with
k and

∑∞
k=1 µ(k)/k converges). But of course π need not be increasing.

(b) A g-prime system is discrete if π is a step function with integer
jumps. In this case the g-primes are the discontinuities of π and the step is
the multiplicity.

(c) An outer g-prime system is continuous if N (and hence Π, see below)
is continuous in (1,∞).

(d) For an outer g-prime system (Π,N), let ψ = ΠL (i.e. ψ(x) =	x
1 log t dΠ(t)) denote the generalised Chebyshev function.

Note that ψ ∈ S+
0 , and that N = exp∗Π is equivalent to ψ ∗ N = NL

(see [3] and [5]).
If N determines a g-prime system and N(x) = cx + O(x(log x)−γ) for

some γ > 3/2, then by Beurling’s prime number theorem (3) (see [2] or [4]),
ψ(x) ∼ x. Also ψ1(x) = log x+κ+ o(1) for some constant κ, where ψ1(x) =	x
1 (1/t) dψ(t).

(e) Applying 1.2(c) to outer g-primes shows that DNL = DNDψ. But
DNL = DN \ {1}, so DN \ {1} = DNDψ.

Theorem 1.1. Let (Π,N) be an outer g-prime system. Then

(a) ∆Π ≤ ∆N . In particular, Π is continuous at the points of continuity
of N .

(b) (ΠJ , NJ) is an outer g-prime system.

Proof. (a) Apply ∆ to both sides of ψ ∗ N = NL and use ∆NL(x) =
∆N(x) log x. Thus

∆N(x) log x = ∆(ψ ∗ (NJ +NC))(x) = ∆(ψ ∗NJ)(x) ≥ ∆ψ(x),

since N has a jump of 1 at 1. But ∆ψ(x) = ∆Π(x) log x, so ∆Π ≤ ∆N and
(a) follows.

(b) Take the jump function of both sides of the equation ψ ∗ N = NL.
Thus (ψ ∗N)J = (NL)J . By 1.2(a) and (d) this is ψJ ∗NJ = (NJ)L. Since
NJ and ψJ are increasing, this implies (ΠJ , NJ) forms a g-prime system.

Theorem 1.1 gives a useful necessary condition for N ∈ S+
1 to determine

a g-prime system, namely that NJ must determine a g-prime system. Of
course, this is of no use if N is continuous, in which case NJ = i, the
identity with respect to ∗.

Finally, we remark that if N is continuously differentiable on (1,∞),
then so is ψ and ψ′ = N ′L − N ′ ∗ ψ1. The proof follows 1.1(d) with f = N
and g = ψ, so that (f ∗g)′ = N ′L. The first integral on the RHS of (1.1) then

(3) This is usually formulated for g-prime systems, but actually proved for outer
g-prime systems. No use of π(x) being increasing is made, only that of Π(x).
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tends to f ′ ∗ g1 = N ′ ∗ ψ1, while the second integral lies between

N(1)
h

x+h�

x

dψ(t) and
N(1 + h)

h

x+h�

x

dψ(t).

Since N is right-continuous at 1, it follows that (ψ(x+ h)− ψ(x))/h must
therefore tend to a limit as h→ 0+. Similarly for h→ 0−.

In the same way, N ∈ T implies ψ ∈ T .

2. Continuous g-prime systems with N(x)−cx periodic. Suppose
now that N ∈ S1 and N(x) = cx − R(x) where R(x) is periodic for some
c > 0. Extend R to the whole real line by periodicity. Thus R is right
continuous, locally of bounded variation, and R(1) = c− 1.

In what follows we shall always write N = exp∗Π where Π ∈ S0.

Theorem 2.1. Let N(x) = cx − R(x) ∈ S+
1 , where R is continuously

differentiable and periodic, and c > 0. Then Π is increasing if and only if
R is constant; i.e. N(x) = cx+ 1− c for x ≥ 1.

Proof. If R is constant, then N(x) = cx + 1 − c (x ≥ 1) and N̂(s) =
1 + c/(s− 1). Thus

ψ̂(s) =
−N̂ ′(s)
N̂(s)

=
1

s− 1
− 1
s+ c− 1

,

which implies ψ′(x) = 1− x−c ≥ 0. Hence Π is increasing.
For the converse, let R be non-constant and suppose, for a contradiction,

that Π is increasing. Equivalently, suppose that ψ′ ≥ 0. Differentiate the
relation NL = ψ ∗N , using 1.1(d). Thus, for x > 1,

(2.1) N ′(x) log x = (N ′ ∗ ψ1)(x) + ψ′(x) ≥ (N ′ ∗ ψ1)(x),

where ψ1(x) =
	x
1 (1/t) dψ(t). Since N ′ = c−R′, this becomes

R′(x) log x− (R′ ∗ ψ1)(x) ≤ c log x− cψ1(x).

By Beurling’s PNT, the right-hand side tends to a limit as x → ∞, so for
some constant A and all x > 1,

(2.2) R′(x) log x− (R′ ∗ ψ1)(x) ≤ A.

Let P be a period of R. Extend R to R by periodicity. By continuity and
periodicity of R′ there exists x0 ∈ [0, P ] such that

R′(x0) = max
x∈R

R′(x).

Furthermore, for δ > 0 sufficiently small, the set of points x in [0, P ] for
which R′(x) ≤ R′(x0)−δ contains an interval, say [α, β] with 0 < α < β < P .
(If not then R′ is constant, which forces R constant.) Let x = nP+x0 in (2.2)
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where n ∈ N. Since log(nP +x0) = ψ1(nP +x0)+O(1) and R′ has period P ,
(2.2) can be written as

(2.3)
nP+x0�

1−
R′(x0)−R′

(
P

{
nP + x0

tP

})
dψ1(t) ≤ A.

(A different constant A.) Note that the integrand is non-negative. Further-
more, the integrand is at least δ for t ∈

[
nP+x0
kP+β ,

nP+x0
kP+α

]
for each positive

integer k ≤ n.
Let K be a fixed positive integer less than n. Thus the LHS of (2.3) is

at least

K∑
k=1

nP+x0
kP+α�

nP+x0
kP+β

δ dψ1(t) = δ
K∑
k=1

(
ψ1

(
nP + x0

kP + α

)
− ψ1

(
nP + x0

kP + β

))
.

As n→∞, the kth term in the sum tends to

log
(
kP + β

kP + α

)
= − log

(
1− β − α

kP + β

)
≥ β − α
kP + β

.

Thus

lim inf
n→∞

nP+x0�

1−

(
R′(x0)−R′

(
P

{
nP + x0

tP

}))
dψ1(t) ≥ δ(β − α)

K∑
k=1

1
kP + β

≥ δ′ logK

for some δ′ > 0. This is true for every K ≥ 1 so the left-hand side of (2.3)
cannot be bounded. This contradiction proves the theorem.

Remark. (i) We see that N(x) = cx+1−c determines an outer g-prime
system for every c > 0. What about g-prime systems, i.e. for which values of
c is π increasing? We show in the appendix that this happens for 0 < c ≤ λ
and fails for c > λ for some λ > 2.

(ii) The proof of Theorem 2.1 can be readily extended to the case where
R is absolutely continuous and R′(x) has a maximum value, say at x = x0,
and the set

{x ∈ [0, P ] : R′(x) ≤ R′(x0)− δ}
contains an interval, for some δ > 0.

In particular this shows that none of the functions Nλ with λ > 1 (as
defined in [7, Section 3]) forms part of a g-prime system, except of course
when ρλ = 0. (To recall: Nλ(x) = x − Rλ(x) for x ≥ 1 and zero otherwise,
where Rλ(x) is periodic with period 1 and defined for 0 ≤ x < 1 by Rλ(x) =
ρλ(ζ(1 − λ, 1 − x) − ζ(1 − λ)). Here ρλ is a continuous function of λ with
ρ1 = 1.)
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For λ > 2, this follows from Theorem 2.1 since Rλ is continuously differ-
entiable and non-constant. For 1 < λ ≤ 2, this follows on noting that Rλ is
absolutely continuous and R′λ is maximum at 0+.

3. G-prime systems with N(x) − cx periodic and finitely many
discontinuities. Suppose now that N has discontinuities (other than at 1).
To check whether N comes from a g-prime system we consider its jump
function NJ . By Theorem 1.1, a necessary condition that N determines a
g-prime system is that NJ does.

Our strategy for determining the possible N will be as follows. Writing
N = NJ +NC , we first show by extending Theorem 2.1 that we must have
NC(x) = a(x−1) for some a ≥ 0. Then we show that the discontinuities must
occur at the (rational) integers and that the period, say P , is an integer.
Writing an for the jump at n we therefore have an+P = an for n ≥ 2. Next
we show that a1+P = a1 is forced, so an is truly periodic. Using a result
of Saias and Weingartner [8] on Dirichlet series with periodic coefficients,
we deduce that (i) an must be even (mod P ), and (ii) an is multiplicative.
We are then in a position to deduce NC ≡ 0 (i.e. N is a step function) and
determine exactly which N arise from g-prime systems.

First we extend Theorem 2.1 to members of T .

Theorem 3.1. Let N(x) = cx−R(x) ∈ T , where R is periodic and such
that Π is increasing. Then N(x) = NJ(x) + a(x− 1) for some a ≥ 0.

Proof. We proceed as in the proof of Theorem 2.1 but with R′+ in place
of R′. Now (2.1) becomes

N ′+(x) log x = (N ′+ ∗ ψ1)(x) + (NJ,1 ∗ ψ′+)(x) ≥ (N ′+ ∗ ψ1)(x),

and (2.2) still holds with R′ replaced by R′+. If R′+ is not constant, then
as before, we can find an x0 ∈ [0, P ] which maximises R′+ and for which
R′+(x) ≤ R′+(x0) − δ holds throughout some interval for some (sufficiently
small) δ > 0. We obtain a contradiction as before and hence N ′+ is constant.

But N has finitely many discontinuities in bounded intervals, so N ′+ =
(NC)′+. So N ′+ ≡ a implies (since NC is continuous) that NC(x) = a(x− 1),
using NC(1) = 0. Since NC is increasing, we must have a ≥ 0.

Later on, we shall see that the only possible value of a is 0.

Notation. Let λ denote the total jump of N per interval of length P ,
i.e. NJ(x + P ) −NJ(x) = λ for x ≥ 1. Thus NJ(x) = (λ/P )x + O(1) and,
by integration by parts, (NJ)L(x) = (λ/P )x log x + O(x). Note that λ = 0
implies N is continuous, while λ = cP implies N = NJ .

For the following, DN denotes the set of discontinuities of N in (0,∞)
and D∗N = DN ∩ (1, P + 1]. We suppose that D∗N is a finite, but non-empty,
set.
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Proposition 3.2. Let D∗N have k elements. Suppose α ∈ DN is such
that α is irrational. Then there are at most k2 numbers β ∈ DN such that
αβ ∈ DN .

Proof. Suppose, for a contradiction, that there are l > k2 numbers β ∈
DN such that αβ ∈ DN . Let D∗N = {c1, . . . , ck}. Each β is of the form
nP + ci. There are k choices for ci so some ci0 will appear at least k + 1
times. (If not and all appear at most k times, then there can be at most k2

such numbers β.)
Thus we have (at least) k + 1 equations

α(nP + ci0) = mP + cj ,

with (possibly different) m,n ∈ N and some cj ∈ D∗N . As D∗N has only k
elements, at least one cj must occur twice, i.e. there exist positive integers
n1, n2,m1,m2 such that

α(n1P + ci0) = m1P + cj0 and α(n2P + ci0) = m2P + cj0 .

Note that n1 6= n2 and m1 6= m2, otherwise they are not genuinely different
equations. Subtracting these two gives

α(n2 − n1) = m2 −m1,

and α is rational—a contradiction.

Proposition 3.3. The set DN contains only rational numbers and P
is rational.

Proof. By 1.2(a) and Theorem 1.1,

(3.1) (NJ)L(x) = (NJ ∗ ψJ)(x) =
∑
αβ≤x
α,β∈DN

∆N(α)∆ψ(β).

Since (NJ)L(x) = (λ/P )x log x + O(x) and DψDN = DNL = DN \ {1}, we
may rewrite (3.1) as

(3.2)
∑
α≤x

∆N(α)
∑
β≤x/α
αβ∈DN

∆ψ(β) =
λ

P
x log x+O(x).

For α irrational, by Proposition 3.2 there are at most k2 possible βs for
which αβ ∈ DN , where k = |D∗N |. For each such β, ∆ψ(β) ≤ ∆N(β) log β
≤ C log β for some C. Hence the inner sum on the left of (3.2) is at most
Ck2 log(x/α). Thus the contribution of irrational α to the LHS of (3.2) is
less than

Ck2
∑
α≤x

∆N(α) log
x

α
= Ck2

x�

1−
log

x

t
dNJ(t) = Ck2

x�

1

NJ(t)
t

dt = O(x).
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Hence

(3.3)
∑
α≤x

α rational

∆N(α)
∑
β≤x/α
αβ∈DN

∆ψ(β) =
λ

P
x log x+O(x).

But the LHS of (3.3) is (using Beurling’s PNT for ψJ(x))

(3.4)
∑
α≤x

α rational

∆N(α)ψJ

(
x

α

)
∼ x

∑
α≤x

α rational

∆N(α)
α

.

Now
NJ,Q(x) :=

∑
α≤x

α rational

∆N(α) =
µ

P
x+O(1)

for some µ ≤ λ by periodicity. (Precisely, µ is the jump per interval of length
P from the rational discontinuities.) The RHS of (3.4) is therefore

x

x�

1

1
t
dNJ,Q(t) = x

x�

1

NJ,Q(t)
t2

dt+O(x) =
µ

P
x log x+O(x).

It follows that µ = λ and there are no irrational numbers in DN .
Finally, α ∈ DN with α > 1 implies α+ P ∈ DN by periodicity. As DN

contains only rationals, this forces P rational.

Proposition 3.4. DN ⊂ N and P ∈ N.

Proof. Since DN \ {1} = Dψ∗N = DψDN , if α ∈ Dψ then αβ ∈ DN for
every β ∈ DN . In particular (using Dψ ⊂ DN ), α ∈ Dψ implies αn ∈ DN

for every n ∈ N. By periodicity, αn− kP ∈ DN for every integer k provided
αn − kP ≥ 1.

Now write α= r/s and P = t/u where r, s, t, u∈N and (r, s) = (t, u) = 1.
For D∗N to be finite, the numbers 1 + P{(αn − 1)/P} (n = 1, 2, . . .) (take
k = [(αn − 1)/P ] above) must repeat themselves infinitely often. Here {x}
is the fractional part of x. Thus for infinitely many values of n,

αn − kP = αn0 − k0P

for some integers k, k0, and n0. As such,

P =
αn − αn0

k − k0
=

(r/s)n − (r/s)n0

k − k0
=
t

u
.

Multiplying through by (k − k0)usn0 shows that sn−n0 |urn for infinitely
many n. But (r, s) = 1, so sn−n0 |u for infinitely many n. This is only
possible if s = 1, i.e. α ∈ N. Hence Dψ ⊂ N.

Consequently, DΠ ⊂ N also, and DΠ∗k ⊂ N for every positive integer k.
Since N =

∑∞
k=0Π

∗k/k!, it follows that DN ⊂ N as well.
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Finally, m ∈ DN with m > 1 implies m+ P ∈ DN by periodicity. Since
DN ⊂ N, this shows that P ∈ N.

4. Determining the jumps. Now that we have established the dis-
continuities are at the integers, it remains to determine the possible jumps.
Write an = ∆N(n) and cn = ∆ψ(n). Thus a1 = 1 and an+P = an for n > 1.
The equation ∆NL = (∆N) ∗ ψJ translates as

(4.1) an log n =
∑
d|n

cdan/d.

Thus c1 = 0; for a prime p, cp = ap log p; and for distinct primes p and q,
we have (after some calculation) cpq = (apq − apaq) log pq.

Next we show that an is truly periodic (an+P = an for n ≥ 1). For
the proof, let 〈Pr,P 〉 denote the set of numbers of the form p1 . . . pk where
the pi are distinct primes, all congruent to r (mod P ). Here r is coprime
to P . Each such set is infinite by Dirichlet’s theorem on primes in arithmetic
progressions.

Proposition 4.1. aP+1 = 1.

Proof. First we prove that aP+1 = 0 or 1.
Let p1, . . . , pk be distinct primes all of the form 1 (mod P ), with

k ≥ 3. Let n = p1 · · · pk, which is also 1 (mod P ). Note that for every
d |n, d = 1 (mod P ), so that ad = aP+1 if d > 1. In particular we have
cpipj = aP+1(1 − aP+1) log pipj for any 1 ≤ i, j ≤ k with i 6= j. As cn ≥ 0,
(4.1) implies

aP+1 log n ≥
∑

1≤i<j≤k
cpipjan/pipj = a2

P+1(1− aP+1)
∑

1≤i<j≤k
log pipj

= a2
P+1(1− aP+1)(k − 1) log n.

This is impossible for k sufficiently large unless aP+1 equals 0 or 1.
Next we show that aP+1 = 0 implies an = 0 for all n > 1, and hence

that NJ(x) = 1 for x ≥ 1—i.e. the continuous case.
We proceed by induction. Suppose aP+1 = 0 and that an = 0 for all

n > 1 such that (4) Ω(n) < k, some k ≥ 1. (It is vacuously true for k = 1.)
Then anr = 0 for all such n and all r ≡ 1 (mod P ), by periodicity. In
particular, we can take r ∈ 〈P1,P 〉. Note that this implies cnr = 0 also for
such n and r.

(4) As usual, Ω(n) denotes the total number of prime factors of n, while ω(n) denotes
the number of distinct prime factors of n.
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Now let n be such that Ω(n) = k. Then, with r ∈ 〈P1,P 〉 such that
(n, r) = 1,

anr log nr =
∑
d|nr

cdanr/d =
∑
d1|n

∑
d2|r

cd1d2anr/d1d2 .

Now d2 ∈ 〈P1,P 〉 also, so by assumption, cd1d2 = 0 if Ω(d1) < k. Hence
only the terms with Ω(d1) = k give a contribution, i.e. only if d1 = n. Also
anr = an by periodicity. Thus

(4.2) an log nr =
∑
d2|r

cnd2ar/d2 = cnr,

since only the term with d2 = r makes ar/d2 non-zero.
Now consider an2r with n and r as above. Then

an2r log n2r ≥
∑
d|r

cndanr/d.

Using (4.2) and noting that an2r = an2 , we therefore have (5)

an2 log n2r ≥ a2
n

∑
d|r

log nd =
a2
n

2
d(r) log n2r,

i.e. 2an2 ≥ a2
nd(r) for all r ∈ 〈P1,P 〉 such that (n, r) = 1. But r can be chosen

such that d(r) is arbitrarily large, and we have a contradiction if an > 0.
Thus an = 0 is forced.

Hence by induction, an = 0 for all n > 1.

Thus, for the discontinuous case, N̂J(s) is a Dirichlet series with purely
periodic coefficients. Further, if NJ determines a g-prime system, then N̂J

has no zeros in H1 (6). Now we use the main result of Saias and Weingartner
([8, Corollary]: Let F be a Dirichlet series with periodic coefficients. Then
F does not vanish in H1 if and only if F = PLχ, where P is a Dirichlet
polynomial with no zeros in H1 and χ is a Dirichlet charcter.

Thus N̂J = PLχ for some Dirichlet polynomial P and Dirichlet char-
acter χ. We shall see below that the positivity of the coefficients of N̂J

implies that χ must be a principal character, showing that we actually have
N̂J = Qζ for some Dirichlet polynomial Q.

Proposition 4.2. N̂J(s) = Q(s)ζ(s) where Q is a Dirichlet polynomial
with no zeros in H1. Furthermore, an is even modulo P , i.e. an = a(n,P ),
and Q(s) =

∑
d|P q(d)/ds for some q(d).

(5) Using 2
P
d|n log kd = d(n) log k2n.

(6) For θ ∈ R, Hθ denotes the half-plane {s ∈ C : <s > θ}.
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Proof. From above, N̂J(s) = P (s)Lχ(s), where P (s) =
∑N

n=1 bnn
−s say.

Extend bn so that bn = 0 for n > N . By inversion,

bn =
∑
d|n

µ(d)χ(d)an/d = 0 for n > N.

In particular, for every prime p > N , ap = χ(p). A simple induction on Ω(n)
shows that, more generally, an = χ(n) whenever all the prime factors of n
are greater than N . Consequently, for all such n, an = 0 or 1 (since an ≥ 0
while χ(n) = 0 or a root of unity).

Now let p > max{N,P} be prime. Then p ≡ r (mod P ) for some r with
(r, P ) = 1. Let n = pφ(P ). Then n ≡ rφ(P ) ≡ 1 (mod P ) and hence

1 = a1 = an = χ(n) = χ(pφ(P )) = χ(p)φ(P ).

But χ(p) = 0 or 1, so χ(p) = 1 for all sufficiently large p.
This implies χ must be a principal character. For suppose χ is a character

modulo m. Let (r,m) = 1. For a sufficiently large prime p in each residue
class r (mod m), 1 = χ(p) = χ(r) by periodicity. Thus χ(r) = 1 whenever
(r,m) = 1, i.e. χ is principal. Thus

N̂J(s) = P (s)Lχ0(s) = P (s)ζ(s)
∏
p|m

(
1− 1

ps

)
= Q(s)ζ(s),

where Q is again a Dirichlet polynomial, non-zero in H1. Denoting the coef-
ficients of Q by q(n), we see that q(1) = 1, q(n) = 0 for n sufficiently large,
and

an =
∑
d|n

q(d).

To show an is even modulo P , we first show that for d |P , apd = ad for
all sufficiently large primes p. It is true for d = 1, so suppose it is true if
Ω(d) < k for some k ≥ 1.

Let d |P be such that Ω(d) = k. Let p be prime and sufficiently large so
that (p, d) = 1 and q(pd) = 0. Then

0 = q(pd) =
∑
c|pd

µ(c)apd/c =
∑
c|d

µ(c)apd/c +
∑
c|d

µ(pc)ad/c

= apd +
∑
c|d
c>1

µ(c)apd/c −
∑
c|d

µ(c)ad/c = apd − ad

since apd/c = ad/c as Ω(d/c) < k in the first sum.
Let d = (n, P ). Then (n/d, P/d) = 1 and there exist arbitrarily large

primes p congruent to n/d (mod P/d). For such primes p, pd ≡ n (mod P ),
and by periodicity an = apd = ad for p sufficiently large. Thus an = a(n,P ).
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As a result, we can write

N̂J(s) =
∑
d|P

∞∑
n=1

(n,P )=d

an
ns

=
∑
d|P

ad
ds

∞∑
m=1

(m,P/d)=1

1
ms

=
∑
d|P

ad
ds

∏
p|P/d

(
1− 1

ps

)
ζ(s)

= Q(s)ζ(s),

which shows that q(n) is supported on the divisors of P .

Theorem 4.3. an is multiplicative.

Proof. Equivalently, we show q(n) is multiplicative. Let the period be
P = pm1

1 · · · p
mk
k . Write

Q(s) =
∑
d|P

q(d)
ds

= exp
{ ∞∑
n=1

t(n)
ns

}
for some t(n), where t(1) = 0. Since N̂J(s) = exp{

∑∞
n=1 bn/n

s} for some
bn ≥ 0, Proposition 4.2 implies that t(n) = bn ≥ 0 for n not a prime power.
The aim is to show that t(n) = 0 for such n.

Since the q(n) are supported on the divisors of P , t(n) is supported on
the set {pn1

1 · · · p
nk
k : n1, . . . , nk ∈ N0}.

For each p |P let

Qp(s) =
∞∑
r=0

q(pr)
prs

.

(This is a polynomial in p−s.) Then∏
p|P

Qp(s) = exp
{ ∑
n prime power

t(n)
ns

}
.

Now define T1(s) and t1(n) by

(4.3)
Q(s)∏
p|P Qp(s)

= exp{T1(s)} = exp
{ ∞∑
n=1

t1(n)
ns

}
,

i.e. t1(n) = t(n) for n not a prime power and zero otherwise.
If the Dirichlet series for T1(s) converges everywhere, then the result

follows. Indeed, the LHS of (4.3) is then entire and of order 1, while if
t1(n0) > 0 for some n0 > 1, then the RHS of (4.3) is, for negative s, at
least et1(n0)n−s0 , which has infinite order. The contradiction implies T1 is
identically zero and Q =

∏
pQp.

Suppose then that the series for T1 has a finite abscissa of convergence,
say −β. Since the coefficients are non-negative, −β must be a singularity of
the function, i.e. −β must be a zero of one of the Qp(s). (As we shall see
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later, Qp(s) 6= 0 in H0, so β ≥ 0, but we do not require to know this at this
stage.)

We can write down the ‘spatial extension’ of (4.3). We can think of this
as substituting zi = p−si . For p prime, let Q̃p(z) =

∑∞
r=0 q(p

r)zr, so that
Q̃p(p−s) = Qp(s). Now define

Q̃(z1, . . . , zk) =
∑

b1,...,bk≥0

q(pb11 · · · p
bk
k )zb11 · · · z

bk
k

(the series is of course finite) and similarly for T̃1. Then (4.3) becomes

Q̃(z1, . . . , zk)
Q̃p1(z1) · · · Q̃pk(zk)

= exp{T̃1(z1, . . . , zk)}(4.4)

= exp
{ ∑
n1,...,nk≥0

t1(pn1
1 · · · p

nk
k )zn1

1 · · · z
nk
k

}
.

Since (4.3) holds for σ > −β, (4.4) holds in the domain {(z1, . . . , zk) :
|z1| < pβ1 , . . . , |zk| < pβk}.

Let r be the smallest positive integer such that t1(n) = 0 whenever
ω(n) < r. (Thus 2 ≤ r ≤ k.) Put zr+1, . . . , zk = 0. Then (4.4) becomes

(4.5)
Q̃(z1, . . . , zr)

Q̃p1(z1) · · · Q̃pr(zr)
= exp

{ ∑
n1,...,nr≥0

t1(pn1
1 · · · p

nr
r )zn1

1 · · · z
nr
r

}
where we identified Q̃(z1, . . . , zr) with Q̃(z1, . . . , zr, 0, . . . , 0). Without loss
of generality, we may assume that the numerator and denominator of the
left-hand side of (4.5) have no common factors. (If there are any, cancel
them, and apply the argument to what remains.)

Let zi = xi (i = 1, . . . , r) be real and positive. Take logs of (4.5) and
differentiate with respect to each of the variables x1, . . . , xr. This gives

(4.6)
∑

n1,...,nr≥0

n1 · · ·nrt1(pn1
1 · · · p

nr
r )xn1

1 · · ·x
nr
r

=
∂r

∂x1 · · · ∂xr
log Q̃(x1, . . . , xr) =

P (x1, . . . , xr)
Q̃(x1, . . . , xr)r

for some polynomial P . The crucial point here is that the polynomials Q̃p
have all disappeared.

Now, Q̃p(pβ) = 0 for some p |P , say p = p1. Fix x2, . . . , xr and let
x1 → pβ1 through real values from below. If Q̃(pβ1 , x2, . . . , xr) 6= 0, then the
RHS of (4.6) remains bounded, and hence (since t1(n) ≥ 0) the series

(4.7)
∑

n1,...,nk≥1

n1 · · ·nrt1(pn1
1 · · · p

nr
r )pn1β

1 xn2
2 · · ·x

nr
r converges,
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while the LHS of (4.5) tends to infinity, so

(4.8)
∑

n1,...,nr≥0

t1(pn1
1 · · · p

nr
r )pn1β

1 xn2
2 · · ·x

nr
r diverges.

But (4.7) and (4.8) are in contradiction since in (4.8) we actually require
n1, . . . , nr ≥ 1 (if any nj = 0, there is no contribution to the sum as
ω(pn1

1 · · · pnrr ) < r).
Thus this forces Q̃(pβ1 , x2, . . . , xr) = 0 for every xi (i = 2, . . . , r) in some

interval, and hence for all such xi, since Q̃ is a polynomial. But this implies
x1−pβ1 is a factor of both Q̃(x1, . . . , xr) and Q̃p1(x1)—a contradiction. Hence
T1 is identically zero and the result follows.

Remark. This proves Theorem B of the introduction.

Determining a for which NJ(x) + a(x − 1) is a g-prime system.
The problem thus reduces to determining Qp(s). We shall see in Theorem 4.4
that the zeros of Qp(s) all have real part less than or equal to zero. We use
this fact to deduce that the only permissible value of a is 0.

For, using this fact, the zeros of Q then all lie in C \H0. In particular,
in H0, the zeros of N̂J are precisely the zeros of ζ and hence N̂J has no real
positive zeros. Indeed, Q(σ) > 0 for σ > 0 since Q(σ) is real and non-zero
here and as σ → ∞, Q(σ) → 1. Thus N̂J(σ) < 0 for 0 < σ < 1. Also
N̂(σ) = N̂J(σ)− a/(1− σ) < 0 for σ ∈ (0, 1).

Now N = NJ+NC and ψ = ψJ+ψC and by assumption ψC is increasing.
(Here NC(x) = a(x− 1), so that N̂C(s) = a/(s− 1).) Thus

ψ̂C(s) = ψ̂(s)− ψ̂J(s) =
N̂ ′J(s)
N̂J(s)

− N̂ ′(s)
N̂(s)

,

since (ΠJ , NJ) and (Π,N) are g-prime systems. Note that ψ̂C 6= −N̂ ′C/N̂C

as (ΠC , NC) is not a g-prime system (indeed NC(1) = 0).
Both ψ(s) and ψJ(s) are meromorphic functions, holomorphic inH1\{1},

with simple poles at s = 1 and residue 1. Thus ψC(s) has a removable
singularity at 1 and poles at the zeros of N̂ and N̂J .

Landau’s oscillation theorem (cf. [3, p. 137]) applied to ψ̂C implies that
ψ̂C has a singularity at its abscissa of convergence, say θ. Of course θ < 1
must be a zero of N̂ or N̂J . But neither N̂ nor N̂J has real positive zeros, so
θ ≤ 0. But then ψ̂C must be holomorphic in H0, implying that N̂ and N̂J

have the same zeros here, i.e. all the non-trivial Riemann zeros. But at each
such zero, say ρ, also N̂C(ρ) = 0. This is impossible as N̂C has no zeros,
except if a = 0.

Hence a = 0 is forced and N = NJ .
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Criteria for g-primes. We have N̂(s) = Q(s)ζ(s) = exp{T (s) +
log ζ(s)} = exp{Π̂(s)}. Thus

Π̂(s) =
∞∑
n=1

Λ1(n) + t(n)
ns

.

For Π to be increasing, the coefficients of Π̂ must be non-negative, that is,
Λ1(n) + t(n) ≥ 0 for all n ∈ N. As t(n) is supported on the powers of the
prime divisors of P , we have

(∗) Π is increasing ⇔ t(pk) ≥ −1
k

for p |P and k ∈ N.

Note that t(p) = q(p) = ap−1 ≥ −1 for p prime, so (∗) is satisfied for k = 1.
Turning now to π(x), we observe that N determines g-primes if π is

increasing, where π(x) =
∑∞

k=1 (µ(k)/k)Π(x1/k). But

π̂(s) =
∞∑
k=1

µ(k)
k

Π̂(ks) =
∑
p

1
ps

+
∑
k,n≥1

µ(k)t(n)
knks

=
∞∑
n=1

πn
ns
,

say, for some coefficients πn. Thus π is increasing if and only if πn ≥ 0 for
all n. Now π1 = 0 and πp = 1 + t(p) ≥ 0 for p prime, while πn = 0 for n not
a prime power. Hence

(∗∗) π is increasing ⇔
∑
d|n

µ(d)
d

t(pn/d) ≥ 0 for n ≥ 2 and p |P .

To deal with these criteria, it is useful to write them in terms of the zeros
of Q̃p.

The zeros of Q̃p. Let p |P and let k be the degree of Q̃p. Then Q̃p has
k zeros λ1, . . . , λk. Letting µr = 1/λr gives Q̃p(z) = (1 − µ1z) · · · (1 − µkz)
and

log Q̃p(z) =
k∑
r=1

log(1− µrz) = −
∞∑
n=1

(
1
n

k∑
r=1

µnr

)
zn.

Since log Q̃p(z) =
∑∞

r=1 t(p
r)zr, equating coefficients gives

t(pn) = − 1
n

k∑
r=1

µnr .

Hence (∗) is satisfied for a prime p |P if and only if

(†) τn :=
k∑
r=1

µnr ≤ 1 for n ∈ N.
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Turning to (∗∗), let sn(w) =
∑

d|n µ(d)wn/d for w ∈ C. Then

∑
d|n

µ(d)
d

t(pn/d) = − 1
n

k∑
r=1

sn(µr),

and (∗∗) is satisfied for a prime p |P if and only if

(††)
k∑
r=1

sn(µr) ≤ 0 for n ≥ 2.

Theorem 4.4. Let Q̃p, k and µ1, . . . , µk be as above. For k = 1, (†) is
satisfied if and only if |µ1| ≤ 1. For k > 1, if (†) is satisfied, then |µr| < 1
for all r.

Proof. For k = 1 this is trivial so assume k > 1 and that (†) is sat-
isfied. The numbers µ1, . . . , µk are either real or occur in complex conju-
gate pairs. Denote the real ones by µ1, . . . , µl and the complex ones by
ν1e
±iθ1 , . . . , νme

±iθm where νr > 0 and 0 < θr < π. Thus (†) becomes

(4.9) τn = µn1 + · · ·+ µnl + 2(νn1 cosnθ1 + · · ·+ νnm cosnθm) ≤ 1.

Assume without loss of generality that |µ1| ≥ · · · ≥ |µl| and ν1 ≥ · · · ≥ νm.
If |µ1| ≥ 1, then µ2n

1 ≥ 1 and (4.9) implies

ν2n
1 cos 2nθ1 + · · ·+ ν2n

m cos 2nθm ≤ 0 for all n ∈ N.

Suppose ν1 = · · · = νq > νq+1 for some q ≤ m; then this involves

(4.10) cos 2nθ1 + · · ·+ cos 2nθq ≤
a

An
(n ∈ N)

for some a and A > 1. But this is impossible as we show below.
Thus if any µr is real, then |µr| < 1. Now suppose ν1 = · · · = νq > νq+1

and ν1 ≥ 1. Then (4.9) implies

(4.11) cos 2nθ1 + · · ·+ cos 2nθq ≤
1
2

+
a

An
(n ∈ N)

for some a and A > 1. We show this is impossible, which in turn implies
(4.10) is impossible.

Let φr = θr/π. By Dirichlet’s theorem (see [6, p. 170]), the numbers
nφ1, . . . , nφq can be made arbitrarily close to q integers simultaneously, i.e.
given ε > 0, there exists n ∈ N such that |nφr − Kr| < ε for r = 1, . . . , q
and integers Kr. Thus, for some |δr| < ε,

cos 2nθr = cos 2πnφr = cos 2π(Kr + δr) = cos 2πδr > cos 2πε,

which can be made as close to 1 as we please. The inequalities (4.10) and
(4.11) are impossible and hence νr < 1 for all r.

To deal with (††) we require the following.
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Lemma 4.5.

(a) Let w ∈ R. Then sn(w) ≤ 0 for all n > 1 if and only if w = 0 or 1.
(b) Let w1, . . . , wk be non-zero complex numbers of modulus less than

one, and symmetric about R, i.e. wi = wj for some j. Then sn(w1)+
· · ·+ sn(wk) changes sign infinitely often.

Proof. (a) For p prime, sp(w) = wp−w > 0 for w > 1, while for p an odd
prime, s2p(w) = w2p − wp − w2 + w > 0 whenever w < −1 for p sufficiently
large. This leaves −1 ≤ w ≤ 1. For w = 1, sn(w) = 0 for all n > 1 and the
condition sn(w) ≤ 0 is satisfied, while for w = −1, sn(w) = 0 for n > 2 and
s2(−1) = 2, so the condition (narrowly) fails in this case. For w = 0 the
result holds trivially.

Now suppose −1 < w < 1, w 6= 0. Consider the entire function defined
by the Dirichlet series

Hw(s) =
∞∑
n=1

wn

ns
.

Note that
Hw(s)
ζ(s)

=
∞∑
n=1

sn(w)
ns

.

Now if sn(w) is ultimately of one sign, then the abscissa of convergence of
this series must be a singularity of Hw/ζ. This singularity must be real, and
there can be no others further to the right. But the first real singularity
(furthest to the right) is at −2, so Hw must be zero at all the complex zeros
of ζ. This is a contradiction as Hw, being bounded in any strip, has at most
O(T ) zeros up to height T here.

(b) This time

Hw1(s) + · · ·+Hwk(s)
ζ(s)

=
∞∑
n=1

sn(w1) + · · ·+ sn(wk)
ns

.

If sn(w1) + · · ·+ sn(wk) is ultimately of one sign, then the abscissa of con-
vergence is a singularity of the LHS. Each Hwi is entire, so the first real
singularity occurs at −2. As in (a), this gives a contradiction.

Proof of Theorem A. By Lemma 4.5(b), if k > 1, (††) cannot be satisfied
(for then |µr| < 1 for all r). So, for π to be increasing, we require k = 1,
i.e. Q̃p(z) = 1 + q(p)z. Hence µ1 = −q(p) and (††) holds if and only if
sn(µ1) = sn(−q(p)) ≤ 0 for n ≥ 2. By (a) of Lemma 4.5, this only happens
if q(p) = 0 or −1. Thus

N̂(s) = ζ(s)
∏
p|P

(
1 +

q(p)
ps

)
= ζ(s)

l∏
i=1

(
1− 1

psi

)
for some prime divisors p1, . . . , pl of P .
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Outer g-prime systems with N(x)− cx periodic. The condition in
Theorem 4.4 does not allow us to determine which coefficients an will lead to
outer g-prime systems, as they are only necessary and not sufficient. Instead
we use the relation

(4.12) kq(pk) =
k∑
r=1

rt(pr)q(pk−r),

which follows directly from Q = eT . This allows us to calculate t(pk) explic-
itly in special cases. Suppose Q̃p has degree 1. Then q(pr) = 0 for r > 1 and
(4.12) gives kt(pk) = −(k − 1)t(pk−1)q(p) for k ≥ 2. Thus

t(pk) =
(−1)k−1q(p)k

k
.

As a result, (∗) holds if and only if (−q(p))k ≤ 1 for all k, which is easily
seen to be equivalent to −1 ≤ q(p) ≤ 1 for all p |P (i.e. 0 ≤ ap ≤ 2). In
particular, we have proven:

Theorem C. Let N ∈ T be such that N(x)−cx has squarefree period P .
Then N determines an outer g-prime system if and only if

N(x) =
∑
d|P

q(d)
[
x

d

]
,

where q(·) is multiplicative, q(p) ∈ [−1, 1], and c =
∏
p|P (1 + q(p)/p).

For example, the outer g-prime systems for which N(x)−cx has period 6
are given by

N(x) = [x] + λ

[
x

2

]
+ µ

[
x

3

]
+ λµ

[
x

6

]
,

where (λ, µ ∈ [−1, 1]) and (1 + λ/2)(1 + µ/3) = c.

Appendix. When does N(x) = cx + 1 − c determine a g-prime
system? From the proof of Theorem 2.1 we saw that ψ′(x) = 1 − x−c

for x ≥ 1. Thus ψ (equivalently Π) is increasing for every c ≥ 0. What
about π? Let θ = πL be the generalisation of Chebyshev’s θ-function. Then
θ(x) =

∑∞
n=1 µ(n)ψ(x1/n) so that

θ′(x) =
∞∑
n=1

µ(n)
n

x1/n−1ψ′(x1/n) =
1
x

∞∑
n=1

µ(n)
n

(x1/n − x(1−c)/n).

Let f be the entire function

f(z) =
∞∑
n=1

µ(n)
n

(ez/n − 1) =
∞∑
k=1

zk

k!ζ(k + 1)
.
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Then exθ′(ex) = f(x)− f((1− c)x) and θ is increasing if and only if

(Ac) f(x) ≥ f((1− c)x) ∀x ≥ 0.

For 0 ≤ c ≤ 2 this is easily seen to hold as

f(x)− f((1− c)x) =
∞∑
k=1

(1− (1− c)k)xk

k!ζ(k + 1)

and the coefficients are all non-negative if (and only if) 0 ≤ c ≤ 2.
Now consider c > 2. It is clear that (Ac) holds for all c > 2 (actually for

c ≥ 1) if and only if

(B) f(−x) ≤ 0 for x ≥ 0.

For if (B) is true, then since (1− c)x ≤ 0, we have

f((1− c)x) ≤ 0 ≤ f(x)

and (Ac) holds. Conversely, assume (Ac) holds for all c > 2. Suppose, for a
contradiction, that f(−x0) > 0 for some x0 > 0. Then

0 < f(−x0) = f

(
(1− c) · x0

c− 1

)
≤ f

(
x0

c− 1

)
for every c > 2. This is false for c sufficiently large as the RHS can be
arbitrarily close to zero. Thus (B) is true.

However, we show that (B) is false, and hence that (Ac) fails for some
c > 2.

Theorem A1. There exists λ > 2 such that for c ≤ λ, π is increasing,
while for c > λ, π is not increasing.

Proof. Clearly, if (Ac) holds for some c = c0 > 1, then it holds for all
smaller c, since (Ac) is equivalent to

(A′c) f(−y) ≤ f
(

y

c− 1

)
∀y ≥ 0

and f is increasing on (0,∞). Also, if (A′c) holds for all c < c1, then by
continuity of f , it holds for c = c1. Now we show (B) is false.

Starting from the formula (7) 1
2πi

	
(−1,0) Γ (s)x−s ds = e−x−1 (x > 0) we

have
1

2πi

�

(−1,0)

Γ (s)
ζ(1− s)

x−s ds =
∞∑
n=1

µ(n)
n
· 1

2πi

�

(−1,0)

Γ (s)
(
x

n

)−s
ds

=
∞∑
n=1

µ(n)
n

(e−x/n − 1) = f(−x),

(7) Here
	
(α,β)

means limT→∞
	σ+iT

σ−iT
for any σ ∈ (α, β).
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using the absolute and uniform convergence of the Dirichlet series for
1/ζ(1− s). Changing the variable gives

f(−x) =
1

2πi

�

(1,2)

Γ (1− s)
ζ(s)

xs−1 ds.

By Mellin inversion

Γ (1− s)
ζ(s)

=
∞�

0

f(−x)
xs

dx (1 < σ < 2).

Hence
∞�

1

f(−x)
xs

dx =
Γ (1− s)
ζ(s)

−
1�

0

f(−x)
xs

dx

=
Γ (1− s)
ζ(s)

+
∞∑
k=1

(−1)k−1

k!ζ(k + 1)(k + 1− s)
.

Since the LHS converges and is holomorphic in H1, the singularities at
2, 3, 4, . . . on the RHS are all removable, as is the singularity at s = 1.

Suppose now that f(−x) is ultimately of one sign. Then the abscissa of
convergence of the LHS Mellin transform must be a (real) singularity of the
function. But the first real singularity occurs at −2 (zero of ζ). This is a
contradiction as there are singularities at the non-trivial zeros of ζ to the
right of this. Thus f(−x) cannot be ultimately of one sign, i.e. f changes
sign infinitely often in (−∞, 0) and has infinitely many zeros here.

Thus (A′c) fails for some c ≥ 2 and hence all larger c. Let λ denote the
supremum of those c for which (A′c) holds. Thus (A′c) holds for c ≤ λ and
fails for c > λ.

Finally, λ > 2 since f(y/(λ− 1)) ≥ f(−y) for all y ≥ 0 with equality for
some y > 0 (or λ would not be optimal) and this is false for λ = 2.
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