Generalised prime systems with periodic integer counting function

by

Titus Hilberdink (Reading)

Introduction. In a recent paper [7], we discussed Mellin transforms $\hat{N}(s)$ of integrators N for which $N(x)-x$ is periodic in order to study flows of holomorphic functions converging to $\zeta(s)$. Here we consider the question when such an N determines a g-prime system, i.e. $N(x)$ is the 'integer counting function' of a generalised prime system-see Section 1.3 for the definition.

An example of such a flow $\hat{N}_{\lambda}(s)$ was given in [7], but it was unclear whether or not they determined g-prime systems. As a consequence of our present results, we show that none of them does.

In fact, we investigate more generally when an increasing function N for which $N(x)-c x$ is periodic determines a g-prime system for a constant $c>0$. (At the outset we assume that N is right-continuous, $N(1)=1$, and $N(x)=0$ for $x<1$.) For example, $N(x)=c x+1-c$ for $x \geq 1$ determines a continuous g -prime system for $0<c \leq 2$ at least.

As for discontinuous examples, we have the prototype $N(x)=[x]$ for the usual primes and integers. For other examples, consider the g-prime system containing the usual primes except given primes p_{1}, \ldots, p_{k}. This has integer counting function

$$
N(x)=\sum_{\substack{n \leq P \\(n, \bar{P})=1}}\left[\frac{x-n}{P}+1\right],
$$

where $P=p_{1} \cdots p_{k}$. In this case $N(x+P)=N(x)+\varphi(P)$ where φ is Euler's function, and $N(x)-(\varphi(P) / P) x$ has period P.

Our results split quite naturally into continuous and discontinuous cases. In Section 2, where we consider the continuous case, the main result is that for N sufficiently 'nice' (e.g. continuously differentiable), N determines a

[^0]g-prime system only for the trivial case where $N(x)-c x$ is constant, i.e. $N(x)=c x+1-c$.

For discontinuous N the picture is less straightforward. A useful tool is to consider its 'jump' function N_{J}, which must necessarily also have $N_{J}(x)-c^{\prime} x$ periodic (for some $c^{\prime}>0$) and which also determines a g-prime system if N does (Theorem 1.1 below). We show that if such an N has only finitely many discontinuities in any interval but is otherwise 'smooth', then N must be a step function, the discontinuities must occur at integer points, and the period, say P, must be a natural number. Then, denoting the jump at n by a_{n}, we show that a_{n} is even modulo $P\left({ }^{1}\right)$ and multiplicative. This allows us to deduce our main result.

Theorem A. Let $N \in T$ be such that $N(x)-c x$ has period P, and suppose that N determines a g-prime system. Then $P \in \mathbb{N}$ and

$$
N(x)=\sum_{\substack{n \leq P \\(n, P)=1}}\left[\frac{x-n}{P}+1\right],
$$

i.e. N is the integer counting function of the g-prime system $\mathbb{P} \backslash\left\{p_{1}, \ldots, p_{k}\right\}$ where p_{1}, \ldots, p_{k} are the prime divisors of P.
(For the definition of T, see Section 1.2.) This actually shows that the smallest period must be squarefree and that $c=\varphi(P) / P$. Our set-up includes all the usual 'discrete' g-prime systems.

In proving Theorem A, we prove the following result on Dirichlet series with periodic coefficients, which may be of independent interest.

Theorem B. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be periodic, $a_{1}=1$, and suppose $a_{n}=\exp _{*} b_{n}$ for some $b_{n} \geq 0$. Then a_{n} is multiplicative.

Here $*$ refers to Dirichlet convolution. Thus a_{n} and b_{n} are related by $\sum_{n=1}^{\infty} a_{n} / n^{s}=\exp \left\{\sum_{n=1}^{\infty} b_{n} / n^{s}\right\}$.

1. Preliminaries

1.1. Riemann-Stieltjes convolution. Let S denote the space of functions $f: \mathbb{R} \rightarrow \mathbb{C}$ which are zero on $(-\infty, 1)$, right-continuous, and of local bounded variation. (See e.g. [3, pp. 50-70].) This is a vector space over addition. Let S^{+}denote the subspace of S consisting of increasing functions. Also, for $\alpha \in \mathbb{R}$, let $S_{\alpha}=\{f \in S: f(1)=\alpha\}$, while $S_{\alpha}^{+}=S^{+} \cap S_{\alpha}$.

[^1]For functions $f, g \in S$, define the convolution (or Mellin-Stieltjes convolution) by (2)

$$
(f * g)(x)=\int_{1-}^{x} f\left(\frac{x}{t}\right) d g(t)
$$

We note that S is closed under $*$ and that $*$ is commutative and associative. The identity (with respect to $*$) is $i(x)=1$ for $x \geq 1$ and zero otherwise.
(a) If f or g is continuous (on \mathbb{R}), then $f * g$ is continuous.
(b) Exponentials. For $f \in S_{1}$, there exists $g \in S_{0}$ such that $f=\exp _{*} g$, i.e.

$$
f=\sum_{n=0}^{\infty} \frac{g^{* n}}{n!}
$$

where $g^{* n}=g * g^{*(n-1)}$ and $g^{* 0}=i$. Also $f=\exp _{*} g$ if and only if $f * g_{L}$ $=f_{L}$ (see [5]), where $f_{L} \in S$ is the function defined for $x \geq 1$ by $f_{L}(x)=$ $\int_{1}^{x} \log t d f(t)$.
(c) For $f \in S$, define the Mellin transform of f by $\hat{f}(s)=\int_{1-}^{\infty} x^{-s} d f(x)$. This exists if $f(x)=O\left(x^{A}\right)$ for some A. Note that $\widehat{f * g}=\hat{f} \hat{g}$ and $\widehat{\exp _{*} f}=$ $\exp \hat{f}$.
(d) Let $f, g \in S$ be continuously differentiable on $(1, \infty)$. Let $g_{1}(x)=$ $\int_{1-}^{x}(1 / t) d g(t)$. Then $f * g$ is also continuously differentiable on $(1, \infty)$ with

$$
(f * g)^{\prime}=f^{\prime} * g_{1}+f(1) g^{\prime}
$$

Proof. Let $x>1$ and consider $(f * g)(x+h)-(f * g)(x)$ for h small. First suppose that $h>0$. We have

$$
\begin{align*}
& \frac{(f * g)(x+h)-(f * g)(x)}{h} \tag{1.1}\\
& \quad=\int_{1-}^{x} \frac{f((x+h) / t)-f(x / t)}{h} d g(t)+\frac{1}{h} \int_{x}^{x+h} f\left(\frac{x+h}{t}\right) d g(t)
\end{align*}
$$

The integrand in the first integral tends pointwise to $(1 / t) f^{\prime}(x / t)$, so by the continuity of f^{\prime} this integral tends to (see [1], p. 218)

$$
\int_{1-}^{x} \frac{f^{\prime}(x / t)}{t} d g(t)=\left(f^{\prime} * g_{1}\right)(x) \quad \text { as } h \rightarrow 0
$$

The second term equals

$$
f(1) \frac{g(x+h)-g(x)}{h}+\frac{1}{h} \int_{x}^{x+h}\left(f\left(\frac{x+h}{t}\right)-f(1)\right) d g(t) .
$$

[^2]The first summand tends to $f(1) g^{\prime}(x)$ while the integrand tends to 0 by right-continuity of f at 1 . Hence so does the integral.

If $h<0$, write $h=-k$ and split up the integral as $(1 / k) \int_{1}^{x-k}$ and $(1 / k) \int_{x-k}^{x}$ and argue as before.

For the proofs of (a)-(c) see [3] and [5].

1.2. The 'jump' function

Definition 1.1.

(i) For $f \in S$ and each $x \in \mathbb{R}$, we denote by $\Delta f(x)$ the left-hand jump of f at x; i.e.

$$
\Delta f(x)=f(x)-f(x-)=\lim _{h \rightarrow 0^{+}}(f(x)-f(x-h))
$$

This is well-defined for monotone f and hence for $f \in S$. Note also that Δf is non-zero on a countable set only [1, p. 162].
(ii) For $f \in S^{+}$, let f_{J} denote the jump function of f, i.e.

$$
f_{J}(x)=\sum_{x_{r} \leq x} \Delta f\left(x_{r}\right)
$$

where the x_{r} denote the discontinuities of f.
The function f_{J} is increasing and $f=f_{J}+f_{C}$, where f_{C} is continuous and increasing ([1, p. 186]).

Let δ_{a} denote the function which is 1 on $[a, \infty)$ and zero otherwise. Note that $\delta_{a} * \delta_{b}=\delta_{a b}$. Letting D_{f} denote the (countable) set of discontinuities of f, we may write

$$
\begin{equation*}
f_{J}=\sum_{\alpha \in D_{f}} \Delta f(\alpha) \delta_{\alpha} \tag{1.2}
\end{equation*}
$$

The series has only non-negative terms and converges absolutely.
Properties. Let $f, g \in S^{+}$.
(a) $(f * g)_{J}=f_{J} * g_{J}$.

Write $f=f_{J}+f_{C}$ and similarly for g. Then

$$
\begin{equation*}
f * g=\left(f_{J}+f_{C}\right) *\left(g_{J}+g_{C}\right)=f_{J} * g_{J}+f_{J} * g_{C}+f_{C} * g_{J}+f_{C} * g_{C} \tag{1.3}
\end{equation*}
$$

The last three terms are all continuous, and so their jump functions are identically zero. Therefore we need to show $\left(f_{J} * g_{J}\right)_{J}=f_{J} * g_{J}$.

To see this, use (1.2) for f_{J} and g_{J}. Hence

$$
f_{J} * g_{J}=\sum_{\alpha \in D_{f}} \sum_{\beta \in D_{g}} \Delta f(\alpha) \Delta g(\beta) \delta_{\alpha} * \delta_{\beta}=\sum_{\alpha \in D_{f}} \sum_{\beta \in D_{g}} \Delta f(\alpha) \Delta g(\beta) \delta_{\alpha \beta}
$$

which is a sum of the form $\sum_{\gamma} c_{\gamma} \delta_{\gamma}$, i.e. a jump function. Thus $\left(f_{J} * g_{J}\right)_{J}=$ $f_{J} * g_{J}$ as required.
(b) For $x \geq 1$, we have

$$
\begin{equation*}
\Delta(f * g)(x)=\sum_{\substack{\alpha \beta=x \\ \alpha \in D_{f}, \beta \in D_{g}}} \Delta f(\alpha) \Delta g(\beta) \tag{1.4}
\end{equation*}
$$

Take Δ of both sides of (1.3). As the last three terms are all continuous, $\Delta=0$ for these functions. For the remaining term
$\Delta\left(f_{J} * g_{J}\right)(x)=\sum_{\alpha \in D_{f}, \beta \in D_{g}} \Delta f(\alpha) \Delta g(\beta) \Delta \delta_{\alpha \beta}(x)=\sum_{\substack{\alpha \beta=x \\ \alpha \in D_{f}, \beta \in D_{g}}} \Delta f(\alpha) \Delta g(\beta)$,
since $\Delta \delta_{a}(x)=1$ for $x=a$ and zero otherwise.
(c) $D_{f * g}=D_{f} D_{g}=\left\{\alpha \beta: \alpha \in D_{f}, \beta \in D_{g}\right\}$.

For, if $x \notin D_{f} D_{g}$ (i.e. $x \neq \alpha \beta$ for any $\alpha \in D_{f}$ and $\beta \in D_{g}$), then there is no contribution to the sum in (1.4). Hence $\Delta(f * g)(x)=0$ and $x \notin D_{f * g}$. Thus $D_{f * g} \subset D_{f} D_{g}$.

For the converse, if $x \in D_{f} D_{g}$ then $x=\alpha \beta$ for some $\alpha \in D_{f}$ and $\beta \in D_{g}$, so that

$$
\Delta(f * g)(x)=\Delta(f * g)(\alpha \beta) \geq \Delta f(\alpha) \Delta g(\beta)>0
$$

as all the other terms in (1.4) are non-negative. Hence $x \in D_{f * g}$ and $D_{f * g}=$ $D_{f} D_{g}$ follows.
(d) For $f \in S$, let f_{L} denote the function $f_{L}(x)=\int_{1}^{x} \log t d f(t)$. Then $\Delta f_{L}(x)=\Delta f(x) \log x$ (see [3, p. 341]) and hence $\left(f_{J}\right)_{L}=\left(f_{L}\right)_{J} .($ Both sides equal $\sum_{\alpha \in D_{f}} \Delta f(\alpha) \log \alpha \delta_{\alpha}$.)

The subspace T. Consider those functions in S whose right-hand derivative exists and is continuous in $(1, \infty)$, i.e.

$$
f_{+}^{\prime}(x)=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}
$$

exists for each $x>1$ and f_{+}^{\prime} is continuous here. Let T denote the subspace of such functions which have a finite number of discontinuities per bounded interval. For example, all step functions in S lie in T with $f_{+}^{\prime} \equiv 0$. Further, for $f \in T, f_{+}^{\prime} \equiv 0$ if and only if f is a step function. This follows from the fact that if f is continuous on an interval, and f has a continuous onesided derivative, then in fact f^{\prime} exists (and of course equals the one-sided derivative) -see [9, p. 355]. Thus on each interval where f is continuous and $f_{+}^{\prime} \equiv 0$, we must have $f^{\prime} \equiv 0$ so that f is constant here.

Part (d) of 1.1 generalises to functions in $T:$ if $f, g \in T$ then $f * g \in T$ and

$$
(f * g)_{+}^{\prime}=f_{+}^{\prime} * g_{1}+f_{J, 1} * g_{+}^{\prime}
$$

where g_{1} is as before and $f_{J, 1}=\left(f_{J}\right)_{1}$.

Proof. By $1.2(\mathrm{c}), D_{f * g} \subset D_{f} D_{g}$, so $f * g$ has at most finitely many discontinuities per bounded interval.

We have, on $(1, \infty)$,

$$
(f * g)_{+}^{\prime}=\left(f_{J} * g_{J}\right)_{+}^{\prime}+\left(f_{J} * g_{C}\right)_{+}^{\prime}+\left(f_{C} * g_{J}\right)_{+}^{\prime}+\left(f_{C} * g_{C}\right)_{+}^{\prime}
$$

Now $f_{J} * g_{J}$ is again a step function, so $\left(f_{J} * g_{J}\right)_{+}^{\prime}=0$. Also, $f_{+}^{\prime}=\left(f_{C}\right)_{+}^{\prime}$ hence f_{C} is continuously differentiable, and similarly for g_{C}. By $1.1(\mathrm{~d}),\left(f_{C} * g_{C}\right)_{+}^{\prime}=$ $f_{C}^{\prime} * g_{C, 1}$. For the remaining terms

$$
\left(f_{J} * g_{C}\right)_{+}^{\prime}(x)=\left(\sum_{\alpha \in D_{f}} \Delta f(\alpha) g_{C}\left(\frac{x}{\alpha}\right)\right)_{+}^{\prime}=\sum_{\alpha \in D_{f}} \frac{\Delta f(\alpha)}{\alpha} g_{C}^{\prime}\left(\frac{x}{\alpha}\right)
$$

This is clear for $x \notin D_{f}$ (since then $\alpha \neq x$), but also true if $x \in D_{f}$ since $g_{C}\left(\frac{x}{\alpha}\right)=0$ for $x \leq \alpha$. Thus $\left(f_{J} * g_{C}\right)_{+}^{\prime}=f_{J, 1} * g_{C}^{\prime}$ and similarly $\left(f_{C} * g_{J}\right)_{+}^{\prime}=f_{C}^{\prime} * g_{J, 1}$. Putting these together gives

$$
(f * g)_{+}^{\prime}=f_{J, 1} * g_{C}^{\prime}+f_{C}^{\prime} * g_{J, 1}+f_{C}^{\prime} * g_{C, 1}=f_{J, 1} * g_{+}^{\prime}+f_{+}^{\prime} * g_{1}
$$

Thus $(f * g)_{+}^{\prime}$ is continuous and $f * g \in T$.
1.3. Generalised prime systems. We distinguish between two different types of g-prime system.

Definition 1.2. An outer g-prime system is a pair of functions Π, N with $\Pi \in S_{0}^{+}$and $N \in S_{1}^{+}$such that $N=\exp _{*} \Pi$.

Of course, if $\Pi \in S_{0}^{+}$, then $\exp _{*} \Pi \in S_{1}^{+}$, so (Π, N) is an outer g-prime system (with $N=\exp _{*} \Pi$). On the other hand, if $N \in S_{1}^{+}$, then $N=\exp _{*} \Pi$ for some $\Pi \in S_{0}$ by $1.1(\mathrm{~b})$, but Π need not be increasing. If Π is increasing, then we say N determines an outer g-prime system. The above definition is somewhat more general than the usual 'generalised primes', since we have not mentioned the equivalent of the prime counting function $\pi(x)$.

Definition 1.3. A g-prime system is an outer g-prime system for which there exists $\pi \in S_{0}^{+}$such that

$$
\Pi(x)=\sum_{k=1}^{\infty} \frac{1}{k} \pi\left(x^{1 / k}\right)
$$

We say N determines a g-prime system if there exists such an increasing $\pi \in S_{0}$.

Remarks. (a) As such, $\pi(x)$ is given by

$$
\pi(x)=\sum_{k=1}^{\infty} \frac{\mu(k)}{k} \Pi\left(x^{1 / k}\right)
$$

In fact this sum always converges for $\Pi \in S^{+}$(since $\Pi\left(x^{1 / k}\right)$ decreases with k and $\sum_{k=1}^{\infty} \mu(k) / k$ converges $)$. But of course π need not be increasing.
(b) A g-prime system is discrete if π is a step function with integer jumps. In this case the g-primes are the discontinuities of π and the step is the multiplicity.
(c) An outer g-prime system is continuous if N (and hence Π, see below) is continuous in $(1, \infty)$.
(d) For an outer g-prime system (Π, N), let $\psi=\Pi_{L}$ (i.e. $\psi(x)=$ $\left.\int_{1}^{x} \log t d \Pi(t)\right)$ denote the generalised Chebyshev function.

Note that $\psi \in S_{0}^{+}$, and that $N=\exp _{*} \Pi$ is equivalent to $\psi * N=N_{L}$ (see [3] and [5]).

If N determines a g-prime system and $N(x)=c x+O\left(x(\log x)^{-\gamma}\right)$ for some $\gamma>3 / 2$, then by Beurling's prime number theorem (${ }^{3}$) (see [2] or [4]), $\psi(x) \sim x$. Also $\psi_{1}(x)=\log x+\kappa+o(1)$ for some constant κ, where $\psi_{1}(x)=$ $\int_{1}^{x}(1 / t) d \psi(t)$.
(e) Applying 1.2(c) to outer g-primes shows that $D_{N_{L}}=D_{N} D_{\psi}$. But $D_{N_{L}}=D_{N} \backslash\{1\}$, so $D_{N} \backslash\{1\}=D_{N} D_{\psi}$.

Theorem 1.1. Let (Π, N) be an outer g-prime system. Then
(a) $\Delta \Pi \leq \Delta N$. In particular, Π is continuous at the points of continuity of N.
(b) $\left(\Pi_{J}, N_{J}\right)$ is an outer g-prime system.

Proof. (a) Apply Δ to both sides of $\psi * N=N_{L}$ and use $\Delta N_{L}(x)=$ $\Delta N(x) \log x$. Thus

$$
\Delta N(x) \log x=\Delta\left(\psi *\left(N_{J}+N_{C}\right)\right)(x)=\Delta\left(\psi * N_{J}\right)(x) \geq \Delta \psi(x)
$$

since N has a jump of 1 at 1 . But $\Delta \psi(x)=\Delta \Pi(x) \log x$, so $\Delta \Pi \leq \Delta N$ and (a) follows.
(b) Take the jump function of both sides of the equation $\psi * N=N_{L}$. Thus $(\psi * N)_{J}=\left(N_{L}\right)_{J}$. By 1.2(a) and (d) this is $\psi_{J} * N_{J}=\left(N_{J}\right)_{L}$. Since N_{J} and ψ_{J} are increasing, this implies $\left(\Pi_{J}, N_{J}\right)$ forms a g-prime system.

Theorem 1.1 gives a useful necessary condition for $N \in S_{1}^{+}$to determine a g-prime system, namely that N_{J} must determine a g-prime system. Of course, this is of no use if N is continuous, in which case $N_{J}=i$, the identity with respect to $*$.

Finally, we remark that if N is continuously differentiable on $(1, \infty)$, then so is ψ and $\psi^{\prime}=N_{L}^{\prime}-N^{\prime} * \psi_{1}$. The proof follows 1.1(d) with $f=N$ and $g=\psi$, so that $(f * g)^{\prime}=N_{L}^{\prime}$. The first integral on the RHS of (1.1) then

[^3]tends to $f^{\prime} * g_{1}=N^{\prime} * \psi_{1}$, while the second integral lies between
$$
\frac{N(1)}{h} \int_{x}^{x+h} d \psi(t) \quad \text { and } \quad \frac{N(1+h)}{h} \int_{x}^{x+h} d \psi(t)
$$

Since N is right-continuous at 1 , it follows that $(\psi(x+h)-\psi(x)) / h$ must therefore tend to a limit as $h \rightarrow 0^{+}$. Similarly for $h \rightarrow 0^{-}$.

In the same way, $N \in T$ implies $\psi \in T$.
2. Continuous g-prime systems with $N(x)-c x$ periodic. Suppose now that $N \in S_{1}$ and $N(x)=c x-R(x)$ where $R(x)$ is periodic for some $c>0$. Extend R to the whole real line by periodicity. Thus R is right continuous, locally of bounded variation, and $R(1)=c-1$.

In what follows we shall always write $N=\exp _{*} \Pi$ where $\Pi \in S_{0}$.
Theorem 2.1. Let $N(x)=c x-R(x) \in S_{1}^{+}$, where R is continuously differentiable and periodic, and $c>0$. Then Π is increasing if and only if R is constant; i.e. $N(x)=c x+1-c$ for $x \geq 1$.

Proof. If R is constant, then $N(x)=c x+1-c(x \geq 1)$ and $\hat{N}(s)=$ $1+c /(s-1)$. Thus

$$
\hat{\psi}(s)=\frac{-\hat{N}^{\prime}(s)}{\hat{N}(s)}=\frac{1}{s-1}-\frac{1}{s+c-1}
$$

which implies $\psi^{\prime}(x)=1-x^{-c} \geq 0$. Hence Π is increasing.
For the converse, let R be non-constant and suppose, for a contradiction, that Π is increasing. Equivalently, suppose that $\psi^{\prime} \geq 0$. Differentiate the relation $N_{L}=\psi * N$, using $1.1(\mathrm{~d})$. Thus, for $x>1$,

$$
\begin{equation*}
N^{\prime}(x) \log x=\left(N^{\prime} * \psi_{1}\right)(x)+\psi^{\prime}(x) \geq\left(N^{\prime} * \psi_{1}\right)(x) \tag{2.1}
\end{equation*}
$$

where $\psi_{1}(x)=\int_{1}^{x}(1 / t) d \psi(t)$. Since $N^{\prime}=c-R^{\prime}$, this becomes

$$
R^{\prime}(x) \log x-\left(R^{\prime} * \psi_{1}\right)(x) \leq c \log x-c \psi_{1}(x)
$$

By Beurling's PNT, the right-hand side tends to a limit as $x \rightarrow \infty$, so for some constant A and all $x>1$,

$$
\begin{equation*}
R^{\prime}(x) \log x-\left(R^{\prime} * \psi_{1}\right)(x) \leq A \tag{2.2}
\end{equation*}
$$

Let P be a period of R. Extend R to \mathbb{R} by periodicity. By continuity and periodicity of R^{\prime} there exists $x_{0} \in[0, P]$ such that

$$
R^{\prime}\left(x_{0}\right)=\max _{x \in \mathbb{R}} R^{\prime}(x)
$$

Furthermore, for $\delta>0$ sufficiently small, the set of points x in $[0, P]$ for which $R^{\prime}(x) \leq R^{\prime}\left(x_{0}\right)-\delta$ contains an interval, say $[\alpha, \beta]$ with $0<\alpha<\beta<P$. (If not then R^{\prime} is constant, which forces R constant.) Let $x=n P+x_{0}$ in (2.2)
where $n \in \mathbb{N}$. Since $\log \left(n P+x_{0}\right)=\psi_{1}\left(n P+x_{0}\right)+O(1)$ and R^{\prime} has period P, (2.2) can be written as

$$
\begin{equation*}
\int_{1-}^{n P+x_{0}} R^{\prime}\left(x_{0}\right)-R^{\prime}\left(P\left\{\frac{n P+x_{0}}{t P}\right\}\right) d \psi_{1}(t) \leq A \tag{2.3}
\end{equation*}
$$

(A different constant A.) Note that the integrand is non-negative. Furthermore, the integrand is at least δ for $t \in\left[\frac{n P+x_{0}}{k P+\beta}, \frac{n P+x_{0}}{k P+\alpha}\right]$ for each positive integer $k \leq n$.

Let K be a fixed positive integer less than n. Thus the LHS of (2.3) is at least

$$
\sum_{k=1}^{K} \int_{\frac{n P+x_{0}}{k P+\beta}}^{\frac{n P+x_{0}}{k P+\alpha}} \delta d \psi_{1}(t)=\delta \sum_{k=1}^{K}\left(\psi_{1}\left(\frac{n P+x_{0}}{k P+\alpha}\right)-\psi_{1}\left(\frac{n P+x_{0}}{k P+\beta}\right)\right)
$$

As $n \rightarrow \infty$, the k th term in the sum tends to

$$
\log \left(\frac{k P+\beta}{k P+\alpha}\right)=-\log \left(1-\frac{\beta-\alpha}{k P+\beta}\right) \geq \frac{\beta-\alpha}{k P+\beta}
$$

Thus

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \int_{1-}^{n P+x_{0}}\left(R^{\prime}\left(x_{0}\right)-R^{\prime}\left(P\left\{\frac{n P+x_{0}}{t P}\right\}\right)\right) d \psi_{1}(t) & \geq \delta(\beta-\alpha) \sum_{k=1}^{K} \frac{1}{k P+\beta} \\
& \geq \delta^{\prime} \log K
\end{aligned}
$$

for some $\delta^{\prime}>0$. This is true for every $K \geq 1$ so the left-hand side of (2.3) cannot be bounded. This contradiction proves the theorem.

REmARK. (i) We see that $N(x)=c x+1-c$ determines an outer g-prime system for every $c>0$. What about g-prime systems, i.e. for which values of c is π increasing? We show in the appendix that this happens for $0<c \leq \lambda$ and fails for $c>\lambda$ for some $\lambda>2$.
(ii) The proof of Theorem 2.1 can be readily extended to the case where R is absolutely continuous and $R^{\prime}(x)$ has a maximum value, say at $x=x_{0}$, and the set

$$
\left\{x \in[0, P]: R^{\prime}(x) \leq R^{\prime}\left(x_{0}\right)-\delta\right\}
$$

contains an interval, for some $\delta>0$.
In particular this shows that none of the functions N_{λ} with $\lambda>1$ (as defined in [7, Section 3]) forms part of a g-prime system, except of course when $\rho_{\lambda}=0$. (To recall: $N_{\lambda}(x)=x-R_{\lambda}(x)$ for $x \geq 1$ and zero otherwise, where $R_{\lambda}(x)$ is periodic with period 1 and defined for $0 \leq x<1$ by $R_{\lambda}(x)=$ $\rho_{\lambda}(\zeta(1-\lambda, 1-x)-\zeta(1-\lambda))$. Here ρ_{λ} is a continuous function of λ with $\left.\rho_{1}=1.\right)$

For $\lambda>2$, this follows from Theorem 2.1 since R_{λ} is continuously differentiable and non-constant. For $1<\lambda \leq 2$, this follows on noting that R_{λ} is absolutely continuous and R_{λ}^{\prime} is maximum at $0+$.
3. G-prime systems with $N(x)-c x$ periodic and finitely many discontinuities. Suppose now that N has discontinuities (other than at 1). To check whether N comes from a g-prime system we consider its jump function N_{J}. By Theorem 1.1, a necessary condition that N determines a g-prime system is that N_{J} does.

Our strategy for determining the possible N will be as follows. Writing $N=N_{J}+N_{C}$, we first show by extending Theorem 2.1 that we must have $N_{C}(x)=a(x-1)$ for some $a \geq 0$. Then we show that the discontinuities must occur at the (rational) integers and that the period, say P, is an integer. Writing a_{n} for the jump at n we therefore have $a_{n+P}=a_{n}$ for $n \geq 2$. Next we show that $a_{1+P}=a_{1}$ is forced, so a_{n} is truly periodic. Using a result of Saias and Weingartner [8] on Dirichlet series with periodic coefficients, we deduce that $(\mathrm{i}) a_{n}$ must be even $(\bmod P)$, and (ii) a_{n} is multiplicative. We are then in a position to deduce $N_{C} \equiv 0$ (i.e. N is a step function) and determine exactly which N arise from g-prime systems.

First we extend Theorem 2.1 to members of T.
Theorem 3.1. Let $N(x)=c x-R(x) \in T$, where R is periodic and such that Π is increasing. Then $N(x)=N_{J}(x)+a(x-1)$ for some $a \geq 0$.

Proof. We proceed as in the proof of Theorem 2.1 but with R_{+}^{\prime} in place of R^{\prime}. Now (2.1) becomes

$$
N_{+}^{\prime}(x) \log x=\left(N_{+}^{\prime} * \psi_{1}\right)(x)+\left(N_{J, 1} * \psi_{+}^{\prime}\right)(x) \geq\left(N_{+}^{\prime} * \psi_{1}\right)(x)
$$

and (2.2) still holds with R^{\prime} replaced by R_{+}^{\prime}. If R_{+}^{\prime} is not constant, then as before, we can find an $x_{0} \in[0, P]$ which maximises R_{+}^{\prime} and for which $R_{+}^{\prime}(x) \leq R_{+}^{\prime}\left(x_{0}\right)-\delta$ holds throughout some interval for some (sufficiently small) $\delta>0$. We obtain a contradiction as before and hence N_{+}^{\prime} is constant.

But N has finitely many discontinuities in bounded intervals, so $N_{+}^{\prime}=$ $\left(N_{C}\right)_{+}^{\prime}$. So $N_{+}^{\prime} \equiv a$ implies (since N_{C} is continuous) that $N_{C}(x)=a(x-1)$, using $N_{C}(1)=0$. Since N_{C} is increasing, we must have $a \geq 0$. .

Later on, we shall see that the only possible value of a is 0 .
Notation. Let λ denote the total jump of N per interval of length P, i.e. $N_{J}(x+P)-N_{J}(x)=\lambda$ for $x \geq 1$. Thus $N_{J}(x)=(\lambda / P) x+O(1)$ and, by integration by parts, $\left(N_{J}\right)_{L}(x)=(\lambda / P) x \log x+O(x)$. Note that $\lambda=0$ implies N is continuous, while $\lambda=c P$ implies $N=N_{J}$.

For the following, D_{N} denotes the set of discontinuities of N in $(0, \infty)$ and $D_{N}^{*}=D_{N} \cap(1, P+1]$. We suppose that D_{N}^{*} is a finite, but non-empty, set.

Proposition 3.2. Let D_{N}^{*} have k elements. Suppose $\alpha \in D_{N}$ is such that α is irrational. Then there are at most k^{2} numbers $\beta \in D_{N}$ such that $\alpha \beta \in D_{N}$.

Proof. Suppose, for a contradiction, that there are $l>k^{2}$ numbers $\beta \in$ D_{N} such that $\alpha \beta \in D_{N}$. Let $D_{N}^{*}=\left\{c_{1}, \ldots, c_{k}\right\}$. Each β is of the form $n P+c_{i}$. There are k choices for c_{i} so some $c_{i_{0}}$ will appear at least $k+1$ times. (If not and all appear at most k times, then there can be at most k^{2} such numbers β.)

Thus we have (at least) $k+1$ equations

$$
\alpha\left(n P+c_{i_{0}}\right)=m P+c_{j},
$$

with (possibly different) $m, n \in \mathbb{N}$ and some $c_{j} \in D_{N}^{*}$. As D_{N}^{*} has only k elements, at least one c_{j} must occur twice, i.e. there exist positive integers $n_{1}, n_{2}, m_{1}, m_{2}$ such that

$$
\alpha\left(n_{1} P+c_{i_{0}}\right)=m_{1} P+c_{j_{0}} \quad \text { and } \quad \alpha\left(n_{2} P+c_{i_{0}}\right)=m_{2} P+c_{j_{0}} .
$$

Note that $n_{1} \neq n_{2}$ and $m_{1} \neq m_{2}$, otherwise they are not genuinely different equations. Subtracting these two gives

$$
\alpha\left(n_{2}-n_{1}\right)=m_{2}-m_{1}
$$

and α is rational-a contradiction.
Proposition 3.3. The set D_{N} contains only rational numbers and P is rational.

Proof. By 1.2(a) and Theorem 1.1,

$$
\begin{equation*}
\left(N_{J}\right)_{L}(x)=\left(N_{J} * \psi_{J}\right)(x)=\sum_{\substack{\alpha \beta \leq x \\ \alpha, \beta \in D_{N}}} \Delta N(\alpha) \Delta \psi(\beta) \tag{3.1}
\end{equation*}
$$

Since $\left(N_{J}\right)_{L}(x)=(\lambda / P) x \log x+O(x)$ and $D_{\psi} D_{N}=D_{N_{L}}=D_{N} \backslash\{1\}$, we may rewrite (3.1) as

$$
\begin{equation*}
\sum_{\alpha \leq x} \Delta N(\alpha) \sum_{\substack{\beta \leq x / \alpha \\ \alpha \beta \in D_{N}}} \Delta \psi(\beta)=\frac{\lambda}{P} x \log x+O(x) . \tag{3.2}
\end{equation*}
$$

For α irrational, by Proposition 3.2 there are at most k^{2} possible $\beta \mathrm{s}$ for which $\alpha \beta \in D_{N}$, where $k=\left|D_{N}^{*}\right|$. For each such $\beta, \Delta \psi(\beta) \leq \Delta N(\beta) \log \beta$ $\leq C \log \beta$ for some C. Hence the inner sum on the left of (3.2) is at most $C k^{2} \log (x / \alpha)$. Thus the contribution of irrational α to the LHS of (3.2) is less than

$$
C k^{2} \sum_{\alpha \leq x} \Delta N(\alpha) \log \frac{x}{\alpha}=C k^{2} \int_{1-}^{x} \log \frac{x}{t} d N_{J}(t)=C k^{2} \int_{1}^{x} \frac{N_{J}(t)}{t} d t=O(x) .
$$

Hence

$$
\begin{equation*}
\sum_{\substack{\alpha \leq x \\ \alpha \text { rational }}} \Delta N(\alpha) \sum_{\substack{\beta \leq x / \alpha \\ \alpha \bar{\beta} \in D_{N}}} \Delta \psi(\beta)=\frac{\lambda}{P} x \log x+O(x) \tag{3.3}
\end{equation*}
$$

But the LHS of (3.3) is (using Beurling's PNT for $\psi_{J}(x)$)

$$
\begin{equation*}
\sum_{\substack{\alpha \leq x \\ \alpha \text { rational }}} \Delta N(\alpha) \psi_{J}\left(\frac{x}{\alpha}\right) \sim x \sum_{\substack{\alpha \leq x \\ \alpha \text { rational }}} \frac{\Delta N(\alpha)}{\alpha} \tag{3.4}
\end{equation*}
$$

Now

$$
N_{J, \mathbb{Q}}(x):=\sum_{\substack{\alpha \leq x \\ \alpha \text { rational }}} \Delta N(\alpha)=\frac{\mu}{P} x+O(1)
$$

for some $\mu \leq \lambda$ by periodicity. (Precisely, μ is the jump per interval of length P from the rational discontinuities.) The RHS of (3.4) is therefore

$$
x \int_{1}^{x} \frac{1}{t} d N_{J, \mathbb{Q}}(t)=x \int_{1}^{x} \frac{N_{J, \mathbb{Q}}(t)}{t^{2}} d t+O(x)=\frac{\mu}{P} x \log x+O(x)
$$

It follows that $\mu=\lambda$ and there are no irrational numbers in D_{N}.
Finally, $\alpha \in D_{N}$ with $\alpha>1$ implies $\alpha+P \in D_{N}$ by periodicity. As D_{N} contains only rationals, this forces P rational.

Proposition 3.4. $D_{N} \subset \mathbb{N}$ and $P \in \mathbb{N}$.
Proof. Since $D_{N} \backslash\{1\}=D_{\psi * N}=D_{\psi} D_{N}$, if $\alpha \in D_{\psi}$ then $\alpha \beta \in D_{N}$ for every $\beta \in D_{N}$. In particular (using $D_{\psi} \subset D_{N}$), $\alpha \in D_{\psi}$ implies $\alpha^{n} \in D_{N}$ for every $n \in \mathbb{N}$. By periodicity, $\alpha^{n}-k P \in D_{N}$ for every integer k provided $\alpha^{n}-k P \geq 1$.

Now write $\alpha=r / s$ and $P=t / u$ where $r, s, t, u \in \mathbb{N}$ and $(r, s)=(t, u)=1$. For D_{N}^{*} to be finite, the numbers $1+P\left\{\left(\alpha^{n}-1\right) / P\right\}(n=1,2, \ldots)$ (take $k=\left[\left(\alpha^{n}-1\right) / P\right]$ above) must repeat themselves infinitely often. Here $\{x\}$ is the fractional part of x. Thus for infinitely many values of n,

$$
\alpha^{n}-k P=\alpha^{n_{0}}-k_{0} P
$$

for some integers k, k_{0}, and n_{0}. As such,

$$
P=\frac{\alpha^{n}-\alpha^{n_{0}}}{k-k_{0}}=\frac{(r / s)^{n}-(r / s)^{n_{0}}}{k-k_{0}}=\frac{t}{u}
$$

Multiplying through by $\left(k-k_{0}\right) u s^{n_{0}}$ shows that $s^{n-n_{0}} \mid u r^{n}$ for infinitely many n. But $(r, s)=1$, so $s^{n-n_{0}} \mid u$ for infinitely many n. This is only possible if $s=1$, i.e. $\alpha \in \mathbb{N}$. Hence $D_{\psi} \subset \mathbb{N}$.

Consequently, $D_{\Pi} \subset \mathbb{N}$ also, and $D_{\Pi^{* k}} \subset \mathbb{N}$ for every positive integer k. Since $N=\sum_{k=0}^{\infty} \Pi^{* k} / k!$, it follows that $D_{N} \subset \mathbb{N}$ as well.

Finally, $m \in D_{N}$ with $m>1$ implies $m+P \in D_{N}$ by periodicity. Since $D_{N} \subset \mathbb{N}$, this shows that $P \in \mathbb{N}$.
4. Determining the jumps. Now that we have established the discontinuities are at the integers, it remains to determine the possible jumps. Write $a_{n}=\Delta N(n)$ and $c_{n}=\Delta \psi(n)$. Thus $a_{1}=1$ and $a_{n+P}=a_{n}$ for $n>1$. The equation $\Delta N_{L}=(\Delta N) * \psi_{J}$ translates as

$$
\begin{equation*}
a_{n} \log n=\sum_{d \mid n} c_{d} a_{n / d} . \tag{4.1}
\end{equation*}
$$

Thus $c_{1}=0$; for a prime $p, c_{p}=a_{p} \log p$; and for distinct primes p and q, we have (after some calculation) $c_{p q}=\left(a_{p q}-a_{p} a_{q}\right) \log p q$.

Next we show that a_{n} is truly periodic ($a_{n+P}=a_{n}$ for $n \geq 1$). For the proof, let $\left\langle\mathbb{P}_{r, P}\right\rangle$ denote the set of numbers of the form $p_{1} \ldots p_{k}$ where the p_{i} are distinct primes, all congruent to $r(\bmod P)$. Here r is coprime to P. Each such set is infinite by Dirichlet's theorem on primes in arithmetic progressions.

Proposition 4.1. $a_{P+1}=1$.
Proof. First we prove that $a_{P+1}=0$ or 1 .
Let p_{1}, \ldots, p_{k} be distinct primes all of the form $1(\bmod P)$, with $k \geq 3$. Let $n=p_{1} \cdots p_{k}$, which is also $1(\bmod P)$. Note that for every $d \mid n, d=1(\bmod P)$, so that $a_{d}=a_{P+1}$ if $d>1$. In particular we have $c_{p_{i} p_{j}}=a_{P+1}\left(1-a_{P+1}\right) \log p_{i} p_{j}$ for any $1 \leq i, j \leq k$ with $i \neq j$. As $c_{n} \geq 0$, (4.1) implies

$$
\begin{aligned}
a_{P+1} \log n & \geq \sum_{1 \leq i<j \leq k} c_{p_{i} p_{j}} a_{n / p_{i} p_{j}}=a_{P+1}^{2}\left(1-a_{P+1}\right) \sum_{1 \leq i<j \leq k} \log p_{i} p_{j} \\
& =a_{P+1}^{2}\left(1-a_{P+1}\right)(k-1) \log n
\end{aligned}
$$

This is impossible for k sufficiently large unless a_{P+1} equals 0 or 1 .
Next we show that $a_{P+1}=0$ implies $a_{n}=0$ for all $n>1$, and hence that $N_{J}(x)=1$ for $x \geq 1$-i.e. the continuous case.

We proceed by induction. Suppose $a_{P+1}=0$ and that $a_{n}=0$ for all $n>1$ such that $\left.\left[{ }^{4}\right)\right](n)<k$, some $k \geq 1$. (It is vacuously true for $k=1$.) Then $a_{n r}=0$ for all such n and all $r \equiv 1(\bmod P)$, by periodicity. In particular, we can take $r \in\left\langle\mathbb{P}_{1, P}\right\rangle$. Note that this implies $c_{n r}=0$ also for such n and r.

[^4]Now let n be such that $\Omega(n)=k$. Then, with $r \in\left\langle\mathbb{P}_{1, P}\right\rangle$ such that $(n, r)=1$,

$$
a_{n r} \log n r=\sum_{d \mid n r} c_{d} a_{n r / d}=\sum_{d_{1} \mid n} \sum_{d_{2} \mid r} c_{d_{1} d_{2}} a_{n r / d_{1} d_{2}} .
$$

Now $d_{2} \in\left\langle\mathbb{P}_{1, P}\right\rangle$ also, so by assumption, $c_{d_{1} d_{2}}=0$ if $\Omega\left(d_{1}\right)<k$. Hence only the terms with $\Omega\left(d_{1}\right)=k$ give a contribution, i.e. only if $d_{1}=n$. Also $a_{n r}=a_{n}$ by periodicity. Thus

$$
\begin{equation*}
a_{n} \log n r=\sum_{d_{2} \mid r} c_{n d_{2}} a_{r / d_{2}}=c_{n r}, \tag{4.2}
\end{equation*}
$$

since only the term with $d_{2}=r$ makes $a_{r / d_{2}}$ non-zero.
Now consider $a_{n^{2} r}$ with n and r as above. Then

$$
a_{n^{2} r} \log n^{2} r \geq \sum_{d \mid r} c_{n d} a_{n r / d} .
$$

Using (4.2) and noting that $a_{n^{2} r}=a_{n^{2}}$, we therefore have ${ }^{5}$)

$$
a_{n^{2}} \log n^{2} r \geq a_{n}^{2} \sum_{d \mid r} \log n d=\frac{a_{n}^{2}}{2} d(r) \log n^{2} r
$$

i.e. $2 a_{n^{2}} \geq a_{n}^{2} d(r)$ for all $r \in\left\langle\mathbb{P}_{1, P}\right\rangle$ such that $(n, r)=1$. But r can be chosen such that $d(r)$ is arbitrarily large, and we have a contradiction if $a_{n}>0$. Thus $a_{n}=0$ is forced.

Hence by induction, $a_{n}=0$ for all $n>1$.
Thus, for the discontinuous case, $\hat{N}_{J}(s)$ is a Dirichlet series with purely periodic coefficients. Further, if N_{J} determines a g-prime system, then \hat{N}_{J} has no zeros in $H_{1}\left({ }^{6}\right)$, Now we use the main result of Saias and Weingartner ([8, Corollary]: Let F be a Dirichlet series with periodic coefficients. Then F does not vanish in H_{1} if and only if $F=P L_{\chi}$, where P is a Dirichlet polynomial with no zeros in H_{1} and χ is a Dirichlet charcter.

Thus $\hat{N}_{J}=P L_{\chi}$ for some Dirichlet polynomial P and Dirichlet character χ. We shall see below that the positivity of the coefficients of \hat{N}_{J} implies that χ must be a principal character, showing that we actually have $\hat{N}_{J}=Q \zeta$ for some Dirichlet polynomial Q.

Proposition 4.2. $\hat{N}_{J}(s)=Q(s) \zeta(s)$ where Q is a Dirichlet polynomial with no zeros in H_{1}. Furthermore, a_{n} is even modulo P, i.e. $a_{n}=a_{(n, P)}$, and $Q(s)=\sum_{d \mid P} q(d) / d^{s}$ for some $q(d)$.

[^5]Proof. From above, $\hat{N}_{J}(s)=P(s) L_{\chi}(s)$, where $P(s)=\sum_{n=1}^{N} b_{n} n^{-s}$ say. Extend b_{n} so that $b_{n}=0$ for $n>N$. By inversion,

$$
b_{n}=\sum_{d \mid n} \mu(d) \chi(d) a_{n / d}=0 \quad \text { for } n>N
$$

In particular, for every prime $p>N, a_{p}=\chi(p)$. A simple induction on $\Omega(n)$ shows that, more generally, $a_{n}=\chi(n)$ whenever all the prime factors of n are greater than N. Consequently, for all such $n, a_{n}=0$ or 1 (since $a_{n} \geq 0$ while $\chi(n)=0$ or a root of unity).

Now let $p>\max \{N, P\}$ be prime. Then $p \equiv r(\bmod P)$ for some r with $(r, P)=1$. Let $n=p^{\phi(P)}$. Then $n \equiv r^{\phi(P)} \equiv 1(\bmod P)$ and hence

$$
1=a_{1}=a_{n}=\chi(n)=\chi\left(p^{\phi(P)}\right)=\chi(p)^{\phi(P)}
$$

But $\chi(p)=0$ or 1 , so $\chi(p)=1$ for all sufficiently large p.
This implies χ must be a principal character. For suppose χ is a character modulo m. Let $(r, m)=1$. For a sufficiently large prime p in each residue class $r(\bmod m), 1=\chi(p)=\chi(r)$ by periodicity. Thus $\chi(r)=1$ whenever $(r, m)=1$, i.e. χ is principal. Thus

$$
\hat{N}_{J}(s)=P(s) L_{\chi_{0}}(s)=P(s) \zeta(s) \prod_{p \mid m}\left(1-\frac{1}{p^{s}}\right)=Q(s) \zeta(s)
$$

where Q is again a Dirichlet polynomial, non-zero in H_{1}. Denoting the coefficients of Q by $q(n)$, we see that $q(1)=1, q(n)=0$ for n sufficiently large, and

$$
a_{n}=\sum_{d \mid n} q(d)
$$

To show a_{n} is even modulo P, we first show that for $d \mid P, a_{p d}=a_{d}$ for all sufficiently large primes p. It is true for $d=1$, so suppose it is true if $\Omega(d)<k$ for some $k \geq 1$.

Let $d \mid P$ be such that $\Omega(d)=k$. Let p be prime and sufficiently large so that $(p, d)=1$ and $q(p d)=0$. Then

$$
\begin{aligned}
0 & =q(p d)=\sum_{c \mid p d} \mu(c) a_{p d / c}=\sum_{c \mid d} \mu(c) a_{p d / c}+\sum_{c \mid d} \mu(p c) a_{d / c} \\
& =a_{p d}+\sum_{\substack{c \mid d \\
c>1}} \mu(c) a_{p d / c}-\sum_{c \mid d} \mu(c) a_{d / c}=a_{p d}-a_{d}
\end{aligned}
$$

since $a_{p d / c}=a_{d / c}$ as $\Omega(d / c)<k$ in the first sum.
Let $d=(n, P)$. Then $(n / d, P / d)=1$ and there exist arbitrarily large primes p congruent to $n / d(\bmod P / d)$. For such primes $p, p d \equiv n(\bmod P)$, and by periodicity $a_{n}=a_{p d}=a_{d}$ for p sufficiently large. Thus $a_{n}=a_{(n, P)}$.

As a result, we can write

$$
\begin{aligned}
\hat{N}_{J}(s) & =\sum_{d \mid P} \sum_{\substack{n=1 \\
(n, P)=d}}^{\infty} \frac{a_{n}}{n^{s}}=\sum_{d \mid P} \frac{a_{d}}{d^{s}} \sum_{\substack{m=1 \\
(m, P / d)=1}}^{\infty} \frac{1}{m^{s}}=\sum_{d \mid P} \frac{a_{d}}{d^{s}} \prod_{p \mid P / d}\left(1-\frac{1}{p^{s}}\right) \zeta(s) \\
& =Q(s) \zeta(s)
\end{aligned}
$$

which shows that $q(n)$ is supported on the divisors of P.
Theorem 4.3. a_{n} is multiplicative.
Proof. Equivalently, we show $q(n)$ is multiplicative. Let the period be $P=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$. Write

$$
Q(s)=\sum_{d \mid P} \frac{q(d)}{d^{s}}=\exp \left\{\sum_{n=1}^{\infty} \frac{t(n)}{n^{s}}\right\}
$$

for some $t(n)$, where $t(1)=0$. Since $\hat{N}_{J}(s)=\exp \left\{\sum_{n=1}^{\infty} b_{n} / n^{s}\right\}$ for some $b_{n} \geq 0$, Proposition 4.2 implies that $t(n)=b_{n} \geq 0$ for n not a prime power. The aim is to show that $t(n)=0$ for such n.

Since the $q(n)$ are supported on the divisors of $P, t(n)$ is supported on the set $\left\{p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}: n_{1}, \ldots, n_{k} \in \mathbb{N}_{0}\right\}$.

For each $p \mid P$ let

$$
Q_{p}(s)=\sum_{r=0}^{\infty} \frac{q\left(p^{r}\right)}{p^{r s}}
$$

(This is a polynomial in p^{-s}.) Then

$$
\prod_{p \mid P} Q_{p}(s)=\exp \left\{\sum_{n \text { prime power }} \frac{t(n)}{n^{s}}\right\} .
$$

Now define $T_{1}(s)$ and $t_{1}(n)$ by

$$
\begin{equation*}
\frac{Q(s)}{\prod_{p \mid P} Q_{p}(s)}=\exp \left\{T_{1}(s)\right\}=\exp \left\{\sum_{n=1}^{\infty} \frac{t_{1}(n)}{n^{s}}\right\} \tag{4.3}
\end{equation*}
$$

i.e. $t_{1}(n)=t(n)$ for n not a prime power and zero otherwise.

If the Dirichlet series for $T_{1}(s)$ converges everywhere, then the result follows. Indeed, the LHS of (4.3) is then entire and of order 1, while if $t_{1}\left(n_{0}\right)>0$ for some $n_{0}>1$, then the RHS of (4.3) is, for negative s, at least $e^{t_{1}\left(n_{0}\right) n_{0}^{-s}}$, which has infinite order. The contradiction implies T_{1} is identically zero and $Q=\prod_{p} Q_{p}$.

Suppose then that the series for T_{1} has a finite abscissa of convergence, say $-\beta$. Since the coefficients are non-negative, $-\beta$ must be a singularity of the function, i.e. $-\beta$ must be a zero of one of the $Q_{p}(s)$. (As we shall see
later, $Q_{p}(s) \neq 0$ in H_{0}, so $\beta \geq 0$, but we do not require to know this at this stage.)

We can write down the 'spatial extension' of (4.3). We can think of this as substituting $z_{i}=p_{i}^{-s}$. For p prime, let $\tilde{Q}_{p}(z)=\sum_{r=0}^{\infty} q\left(p^{r}\right) z^{r}$, so that $\tilde{Q}_{p}\left(p^{-s}\right)=Q_{p}(s)$. Now define

$$
\tilde{Q}\left(z_{1}, \ldots, z_{k}\right)=\sum_{b_{1}, \ldots, b_{k} \geq 0} q\left(p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}\right) z_{1}^{b_{1}} \cdots z_{k}^{b_{k}}
$$

(the series is of course finite) and similarly for \tilde{T}_{1}. Then (4.3) becomes

$$
\begin{align*}
\frac{\tilde{Q}\left(z_{1}, \ldots, z_{k}\right)}{\tilde{Q}_{p_{1}}\left(z_{1}\right) \cdots \tilde{Q}_{p_{k}}\left(z_{k}\right)} & =\exp \left\{\tilde{T}_{1}\left(z_{1}, \ldots, z_{k}\right)\right\} \tag{4.4}\\
& =\exp \left\{\sum_{n_{1}, \ldots, n_{k} \geq 0} t_{1}\left(p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}\right) z_{1}^{n_{1}} \cdots z_{k}^{n_{k}}\right\}
\end{align*}
$$

Since (4.3) holds for $\sigma>-\beta$, (4.4) holds in the domain $\left\{\left(z_{1}, \ldots, z_{k}\right)\right.$: $\left.\left|z_{1}\right|<p_{1}^{\beta}, \ldots,\left|z_{k}\right|<p_{k}^{\beta}\right\}$.

Let r be the smallest positive integer such that $t_{1}(n)=0$ whenever $\omega(n)<r$. (Thus $2 \leq r \leq k$.) Put $z_{r+1}, \ldots, z_{k}=0$. Then (4.4) becomes

$$
\begin{equation*}
\frac{\tilde{Q}\left(z_{1}, \ldots, z_{r}\right)}{\tilde{Q}_{p_{1}}\left(z_{1}\right) \cdots \tilde{Q}_{p_{r}}\left(z_{r}\right)}=\exp \left\{\sum_{n_{1}, \ldots, n_{r} \geq 0} t_{1}\left(p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}\right) z_{1}^{n_{1}} \cdots z_{r}^{n_{r}}\right\} \tag{4.5}
\end{equation*}
$$

where we identified $\tilde{Q}\left(z_{1}, \ldots, z_{r}\right)$ with $\tilde{Q}\left(z_{1}, \ldots, z_{r}, 0, \ldots, 0\right)$. Without loss of generality, we may assume that the numerator and denominator of the left-hand side of (4.5) have no common factors. (If there are any, cancel them, and apply the argument to what remains.)

Let $z_{i}=x_{i}(i=1, \ldots, r)$ be real and positive. Take logs of (4.5) and differentiate with respect to each of the variables x_{1}, \ldots, x_{r}. This gives

$$
\begin{align*}
\sum_{n_{1}, \ldots, n_{r} \geq 0} n_{1} \cdots & n_{r} t_{1}\left(p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}\right) x_{1}^{n_{1}} \cdots x_{r}^{n_{r}} \tag{4.6}\\
& =\frac{\partial^{r}}{\partial x_{1} \cdots \partial x_{r}} \log \tilde{Q}\left(x_{1}, \ldots, x_{r}\right)=\frac{P\left(x_{1}, \ldots, x_{r}\right)}{\tilde{Q}\left(x_{1}, \ldots, x_{r}\right)^{r}}
\end{align*}
$$

for some polynomial P. The crucial point here is that the polynomials \tilde{Q}_{p} have all disappeared.

Now, $\tilde{Q}_{p}\left(p^{\beta}\right)=0$ for some $p \mid P$, say $p=p_{1}$. Fix x_{2}, \ldots, x_{r} and let $x_{1} \rightarrow p_{1}^{\beta}$ through real values from below. If $\tilde{Q}\left(p_{1}^{\beta}, x_{2}, \ldots, x_{r}\right) \neq 0$, then the RHS of (4.6) remains bounded, and hence (since $\left.t_{1}(n) \geq 0\right)$ the series

$$
\begin{equation*}
\sum_{n_{1}, \ldots, n_{k} \geq 1} n_{1} \cdots n_{r} t_{1}\left(p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}\right) p_{1}^{n_{1} \beta} x_{2}^{n_{2}} \cdots x_{r}^{n_{r}} \quad \text { converges } \tag{4.7}
\end{equation*}
$$

while the LHS of (4.5) tends to infinity, so

$$
\begin{equation*}
\sum_{n_{1}, \ldots, n_{r} \geq 0} t_{1}\left(p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}\right) p_{1}^{n_{1} \beta} x_{2}^{n_{2}} \cdots x_{r}^{n_{r}} \quad \text { diverges. } \tag{4.8}
\end{equation*}
$$

But (4.7) and (4.8) are in contradiction since in (4.8) we actually require $n_{1}, \ldots, n_{r} \geq 1$ (if any $n_{j}=0$, there is no contribution to the sum as $\left.\omega\left(p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}\right)<r\right)$.

Thus this forces $\tilde{Q}\left(p_{1}^{\beta}, x_{2}, \ldots, x_{r}\right)=0$ for every $x_{i}(i=2, \ldots, r)$ in some interval, and hence for all such x_{i}, since \tilde{Q} is a polynomial. But this implies $x_{1}-p_{1}^{\beta}$ is a factor of both $\tilde{Q}\left(x_{1}, \ldots, x_{r}\right)$ and $\tilde{Q}_{p_{1}}\left(x_{1}\right)$-a contradiction. Hence T_{1} is identically zero and the result follows.

Remark. This proves Theorem B of the introduction.
Determining a for which $N_{J}(x)+a(x-1)$ is a g-prime system. The problem thus reduces to determining $Q_{p}(s)$. We shall see in Theorem 4.4 that the zeros of $Q_{p}(s)$ all have real part less than or equal to zero. We use this fact to deduce that the only permissible value of a is 0 .

For, using this fact, the zeros of Q then all lie in $\mathbb{C} \backslash H_{0}$. In particular, in H_{0}, the zeros of \hat{N}_{J} are precisely the zeros of ζ and hence \hat{N}_{J} has no real positive zeros. Indeed, $Q(\sigma)>0$ for $\sigma>0$ since $Q(\sigma)$ is real and non-zero here and as $\sigma \rightarrow \infty, Q(\sigma) \rightarrow 1$. Thus $\hat{N}_{J}(\sigma)<0$ for $0<\sigma<1$. Also $\hat{N}(\sigma)=\hat{N}_{J}(\sigma)-a /(1-\sigma)<0$ for $\sigma \in(0,1)$.

Now $N=N_{J}+N_{C}$ and $\psi=\psi_{J}+\psi_{C}$ and by assumption ψ_{C} is increasing. (Here $N_{C}(x)=a(x-1)$, so that $\hat{N}_{C}(s)=a /(s-1)$.) Thus

$$
\hat{\psi}_{C}(s)=\hat{\psi}(s)-\hat{\psi}_{J}(s)=\frac{\hat{N}_{J}^{\prime}(s)}{\hat{N}_{J}(s)}-\frac{\hat{N}^{\prime}(s)}{\hat{N}(s)}
$$

since $\left(\Pi_{J}, N_{J}\right)$ and (Π, N) are g-prime systems. Note that $\hat{\psi}_{C} \neq-\hat{N}_{C}^{\prime} / \hat{N}_{C}$ as $\left(\Pi_{C}, N_{C}\right)$ is not a g-prime system (indeed $\left.N_{C}(1)=0\right)$.

Both $\psi(s)$ and $\psi_{J}(s)$ are meromorphic functions, holomorphic in $\bar{H}_{1} \backslash\{1\}$, with simple poles at $s=1$ and residue 1 . Thus $\psi_{C}(s)$ has a removable singularity at 1 and poles at the zeros of \hat{N} and \hat{N}_{J}.

Landau's oscillation theorem (cf. [3, p. 137]) applied to $\hat{\psi}_{C}$ implies that $\hat{\psi}_{C}$ has a singularity at its abscissa of convergence, say θ. Of course $\theta<1$ must be a zero of \hat{N} or \hat{N}_{J}. But neither \hat{N} nor \hat{N}_{J} has real positive zeros, so $\theta \leq 0$. But then $\hat{\psi}_{C}$ must be holomorphic in H_{0}, implying that \hat{N} and \hat{N}_{J} have the same zeros here, i.e. all the non-trivial Riemann zeros. But at each such zero, say ρ, also $\hat{N}_{C}(\rho)=0$. This is impossible as \hat{N}_{C} has no zeros, except if $a=0$.

Hence $a=0$ is forced and $N=N_{J}$.

Criteria for g-primes. We have $\hat{N}(s)=Q(s) \zeta(s)=\exp \{T(s)+$ $\log \zeta(s)\}=\exp \{\hat{\Pi}(s)\}$. Thus

$$
\hat{\Pi}(s)=\sum_{n=1}^{\infty} \frac{\Lambda_{1}(n)+t(n)}{n^{s}}
$$

For Π to be increasing, the coefficients of $\hat{\Pi}$ must be non-negative, that is, $\Lambda_{1}(n)+t(n) \geq 0$ for all $n \in \mathbb{N}$. As $t(n)$ is supported on the powers of the prime divisors of P, we have

$$
\begin{equation*}
\Pi \text { is increasing } \Leftrightarrow t\left(p^{k}\right) \geq-\frac{1}{k} \text { for } p \mid P \text { and } k \in \mathbb{N} \text {. } \tag{*}
\end{equation*}
$$

Note that $t(p)=q(p)=a_{p}-1 \geq-1$ for p prime, so $(*)$ is satisfied for $k=1$.
Turning now to $\pi(x)$, we observe that N determines g-primes if π is increasing, where $\pi(x)=\sum_{k=1}^{\infty}(\mu(k) / k) \Pi\left(x^{1 / k}\right)$. But

$$
\hat{\pi}(s)=\sum_{k=1}^{\infty} \frac{\mu(k)}{k} \hat{\Pi}(k s)=\sum_{p} \frac{1}{p^{s}}+\sum_{k, n \geq 1} \frac{\mu(k) t(n)}{k n^{k s}}=\sum_{n=1}^{\infty} \frac{\pi_{n}}{n^{s}},
$$

say, for some coefficients π_{n}. Thus π is increasing if and only if $\pi_{n} \geq 0$ for all n. Now $\pi_{1}=0$ and $\pi_{p}=1+t(p) \geq 0$ for p prime, while $\pi_{n}=0$ for n not a prime power. Hence
$(* *) \quad \pi$ is increasing $\Leftrightarrow \sum_{d \mid n} \frac{\mu(d)}{d} t\left(p^{n / d}\right) \geq 0$ for $n \geq 2$ and $p \mid P$.
To deal with these criteria, it is useful to write them in terms of the zeros of \tilde{Q}_{p}.

The zeros of \tilde{Q}_{p}. Let $p \mid P$ and let k be the degree of \tilde{Q}_{p}. Then \tilde{Q}_{p} has k zeros $\lambda_{1}, \ldots, \lambda_{k}$. Letting $\mu_{r}=1 / \lambda_{r}$ gives $\tilde{Q}_{p}(z)=\left(1-\mu_{1} z\right) \cdots\left(1-\mu_{k} z\right)$ and

$$
\log \tilde{Q}_{p}(z)=\sum_{r=1}^{k} \log \left(1-\mu_{r} z\right)=-\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{r=1}^{k} \mu_{r}^{n}\right) z^{n}
$$

Since $\log \tilde{Q}_{p}(z)=\sum_{r=1}^{\infty} t\left(p^{r}\right) z^{r}$, equating coefficients gives

$$
t\left(p^{n}\right)=-\frac{1}{n} \sum_{r=1}^{k} \mu_{r}^{n}
$$

Hence $(*)$ is satisfied for a prime $p \mid P$ if and only if

$$
\tau_{n}:=\sum_{r=1}^{k} \mu_{r}^{n} \leq 1 \quad \text { for } n \in \mathbb{N}
$$

Turning to $(* *)$, let $s_{n}(w)=\sum_{d \mid n} \mu(d) w^{n / d}$ for $w \in \mathbb{C}$. Then

$$
\sum_{d \mid n} \frac{\mu(d)}{d} t\left(p^{n / d}\right)=-\frac{1}{n} \sum_{r=1}^{k} s_{n}\left(\mu_{r}\right)
$$

and $(* *)$ is satisfied for a prime $p \mid P$ if and only if

$$
\sum_{r=1}^{k} s_{n}\left(\mu_{r}\right) \leq 0 \quad \text { for } n \geq 2
$$

TheOrem 4.4. Let \tilde{Q}_{p}, k and μ_{1}, \ldots, μ_{k} be as above. For $k=1,(\dagger)$ is satisfied if and only if $\left|\mu_{1}\right| \leq 1$. For $k>1$, if (\dagger) is satisfied, then $\left|\mu_{r}\right|<1$ for all r.

Proof. For $k=1$ this is trivial so assume $k>1$ and that (\dagger) is satisfied. The numbers μ_{1}, \ldots, μ_{k} are either real or occur in complex conjugate pairs. Denote the real ones by μ_{1}, \ldots, μ_{l} and the complex ones by $\nu_{1} e^{ \pm i \theta_{1}}, \ldots, \nu_{m} e^{ \pm i \theta_{m}}$ where $\nu_{r}>0$ and $0<\theta_{r}<\pi$. Thus (\dagger) becomes

$$
\begin{equation*}
\tau_{n}=\mu_{1}^{n}+\cdots+\mu_{l}^{n}+2\left(\nu_{1}^{n} \cos n \theta_{1}+\cdots+\nu_{m}^{n} \cos n \theta_{m}\right) \leq 1 \tag{4.9}
\end{equation*}
$$

Assume without loss of generality that $\left|\mu_{1}\right| \geq \cdots \geq\left|\mu_{l}\right|$ and $\nu_{1} \geq \cdots \geq \nu_{m}$. If $\left|\mu_{1}\right| \geq 1$, then $\mu_{1}^{2 n} \geq 1$ and (4.9) implies

$$
\nu_{1}^{2 n} \cos 2 n \theta_{1}+\cdots+\nu_{m}^{2 n} \cos 2 n \theta_{m} \leq 0 \quad \text { for all } n \in \mathbb{N}
$$

Suppose $\nu_{1}=\cdots=\nu_{q}>\nu_{q+1}$ for some $q \leq m$; then this involves

$$
\begin{equation*}
\cos 2 n \theta_{1}+\cdots+\cos 2 n \theta_{q} \leq \frac{a}{A^{n}} \quad(n \in \mathbb{N}) \tag{4.10}
\end{equation*}
$$

for some a and $A>1$. But this is impossible as we show below.
Thus if any μ_{r} is real, then $\left|\mu_{r}\right|<1$. Now suppose $\nu_{1}=\cdots=\nu_{q}>\nu_{q+1}$ and $\nu_{1} \geq 1$. Then (4.9) implies

$$
\begin{equation*}
\cos 2 n \theta_{1}+\cdots+\cos 2 n \theta_{q} \leq \frac{1}{2}+\frac{a}{A^{n}} \quad(n \in \mathbb{N}) \tag{4.11}
\end{equation*}
$$

for some a and $A>1$. We show this is impossible, which in turn implies (4.10) is impossible.

Let $\phi_{r}=\theta_{r} / \pi$. By Dirichlet's theorem (see [6, p. 170]), the numbers $n \phi_{1}, \ldots, n \phi_{q}$ can be made arbitrarily close to q integers simultaneously, i.e. given $\varepsilon>0$, there exists $n \in \mathbb{N}$ such that $\left|n \phi_{r}-K_{r}\right|<\varepsilon$ for $r=1, \ldots, q$ and integers K_{r}. Thus, for some $\left|\delta_{r}\right|<\varepsilon$,

$$
\cos 2 n \theta_{r}=\cos 2 \pi n \phi_{r}=\cos 2 \pi\left(K_{r}+\delta_{r}\right)=\cos 2 \pi \delta_{r}>\cos 2 \pi \varepsilon
$$

which can be made as close to 1 as we please. The inequalities (4.10) and (4.11) are impossible and hence $\nu_{r}<1$ for all r.

To deal with $(\dagger \dagger)$ we require the following.

Lemma 4.5.
(a) Let $w \in \mathbb{R}$. Then $s_{n}(w) \leq 0$ for all $n>1$ if and only if $w=0$ or 1 .
(b) Let w_{1}, \ldots, w_{k} be non-zero complex numbers of modulus less than one, and symmetric about \mathbb{R}, i.e. $\bar{w}_{i}=w_{j}$ for some j. Then $s_{n}\left(w_{1}\right)+$ $\cdots+s_{n}\left(w_{k}\right)$ changes sign infinitely often.
Proof. (a) For p prime, $s_{p}(w)=w^{p}-w>0$ for $w>1$, while for p an odd prime, $s_{2 p}(w)=w^{2 p}-w^{p}-w^{2}+w>0$ whenever $w<-1$ for p sufficiently large. This leaves $-1 \leq w \leq 1$. For $w=1, s_{n}(w)=0$ for all $n>1$ and the condition $s_{n}(w) \leq 0$ is satisfied, while for $w=-1, s_{n}(w)=0$ for $n>2$ and $s_{2}(-1)=2$, so the condition (narrowly) fails in this case. For $w=0$ the result holds trivially.

Now suppose $-1<w<1, w \neq 0$. Consider the entire function defined by the Dirichlet series

$$
H_{w}(s)=\sum_{n=1}^{\infty} \frac{w^{n}}{n^{s}}
$$

Note that

$$
\frac{H_{w}(s)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{s_{n}(w)}{n^{s}}
$$

Now if $s_{n}(w)$ is ultimately of one sign, then the abscissa of convergence of this series must be a singularity of H_{w} / ζ. This singularity must be real, and there can be no others further to the right. But the first real singularity (furthest to the right) is at -2 , so H_{w} must be zero at all the complex zeros of ζ. This is a contradiction as H_{w}, being bounded in any strip, has at most $O(T)$ zeros up to height T here.
(b) This time

$$
\frac{H_{w_{1}}(s)+\cdots+H_{w_{k}}(s)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{s_{n}\left(w_{1}\right)+\cdots+s_{n}\left(w_{k}\right)}{n^{s}}
$$

If $s_{n}\left(w_{1}\right)+\cdots+s_{n}\left(w_{k}\right)$ is ultimately of one sign, then the abscissa of convergence is a singularity of the LHS. Each $H_{w_{i}}$ is entire, so the first real singularity occurs at -2 . As in (a), this gives a contradiction.

Proof of Theorem A. By Lemma 4.5(b), if $k>1$, $(\dagger \dagger)$ cannot be satisfied (for then $\left|\mu_{r}\right|<1$ for all r). So, for π to be increasing, we require $k=1$, i.e. $\tilde{Q}_{p}(z)=1+q(p) z$. Hence $\mu_{1}=-q(p)$ and $(\dagger \dagger)$ holds if and only if $s_{n}\left(\mu_{1}\right)=s_{n}(-q(p)) \leq 0$ for $n \geq 2$. By (a) of Lemma 4.5, this only happens if $q(p)=0$ or -1 . Thus

$$
\hat{N}(s)=\zeta(s) \prod_{p \mid P}\left(1+\frac{q(p)}{p^{s}}\right)=\zeta(s) \prod_{i=1}^{l}\left(1-\frac{1}{p_{i}^{s}}\right)
$$

for some prime divisors p_{1}, \ldots, p_{l} of P.

Outer g-prime systems with $N(x)-c x$ periodic. The condition in Theorem 4.4 does not allow us to determine which coefficients a_{n} will lead to outer g-prime systems, as they are only necessary and not sufficient. Instead we use the relation

$$
\begin{equation*}
k q\left(p^{k}\right)=\sum_{r=1}^{k} r t\left(p^{r}\right) q\left(p^{k-r}\right), \tag{4.12}
\end{equation*}
$$

which follows directly from $Q=e^{T}$. This allows us to calculate $t\left(p^{k}\right)$ explicitly in special cases. Suppose \tilde{Q}_{p} has degree 1 . Then $q\left(p^{r}\right)=0$ for $r>1$ and (4.12) gives $k t\left(p^{k}\right)=-(k-1) t\left(p^{k-1}\right) q(p)$ for $k \geq 2$. Thus

$$
t\left(p^{k}\right)=\frac{(-1)^{k-1} q(p)^{k}}{k}
$$

As a result, (*) holds if and only if $(-q(p))^{k} \leq 1$ for all k, which is easily seen to be equivalent to $-1 \leq q(p) \leq 1$ for all $p \mid P$ (i.e. $0 \leq a_{p} \leq 2$). In particular, we have proven:

Theorem C. Let $N \in T$ be such that $N(x)-c x$ has squarefree period P. Then N determines an outer g-prime system if and only if

$$
N(x)=\sum_{d \mid P} q(d)\left[\frac{x}{d}\right],
$$

where $q(\cdot)$ is multiplicative, $q(p) \in[-1,1]$, and $c=\prod_{p \mid P}(1+q(p) / p)$.
For example, the outer g -prime systems for which $N(x)-c x$ has period 6 are given by

$$
N(x)=[x]+\lambda\left[\frac{x}{2}\right]+\mu\left[\frac{x}{3}\right]+\lambda \mu\left[\frac{x}{6}\right],
$$

where $(\lambda, \mu \in[-1,1])$ and $(1+\lambda / 2)(1+\mu / 3)=c$.
Appendix. When does $N(x)=c x+1-c$ determine a g-prime system? From the proof of Theorem 2.1 we saw that $\psi^{\prime}(x)=1-x^{-c}$ for $x \geq 1$. Thus ψ (equivalently Π) is increasing for every $c \geq 0$. What about π ? Let $\theta=\pi_{L}$ be the generalisation of Chebyshev's θ-function. Then $\theta(x)=\sum_{n=1}^{\infty} \mu(n) \psi\left(x^{1 / n}\right)$ so that

$$
\theta^{\prime}(x)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n} x^{1 / n-1} \psi^{\prime}\left(x^{1 / n}\right)=\frac{1}{x} \sum_{n=1}^{\infty} \frac{\mu(n)}{n}\left(x^{1 / n}-x^{(1-c) / n}\right) .
$$

Let f be the entire function

$$
f(z)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n}\left(e^{z / n}-1\right)=\sum_{k=1}^{\infty} \frac{z^{k}}{k!\zeta(k+1)} .
$$

Then $e^{x} \theta^{\prime}\left(e^{x}\right)=f(x)-f((1-c) x)$ and θ is increasing if and only if $\left(\mathrm{A}_{c}\right) \quad f(x) \geq f((1-c) x) \quad \forall x \geq 0$.
For $0 \leq c \leq 2$ this is easily seen to hold as

$$
f(x)-f((1-c) x)=\sum_{k=1}^{\infty} \frac{\left(1-(1-c)^{k}\right) x^{k}}{k!\zeta(k+1)}
$$

and the coefficients are all non-negative if (and only if) $0 \leq c \leq 2$.
Now consider $c>2$. It is clear that $\left(\mathrm{A}_{c}\right)$ holds for all $c>2$ (actually for $c \geq 1$) if and only if

$$
\begin{equation*}
f(-x) \leq 0 \quad \text { for } x \geq 0 \tag{B}
\end{equation*}
$$

For if (B) is true, then since $(1-c) x \leq 0$, we have

$$
f((1-c) x) \leq 0 \leq f(x)
$$

and $\left(\mathrm{A}_{c}\right)$ holds. Conversely, assume $\left(\mathrm{A}_{c}\right)$ holds for all $c>2$. Suppose, for a contradiction, that $f\left(-x_{0}\right)>0$ for some $x_{0}>0$. Then

$$
0<f\left(-x_{0}\right)=f\left((1-c) \cdot \frac{x_{0}}{c-1}\right) \leq f\left(\frac{x_{0}}{c-1}\right)
$$

for every $c>2$. This is false for c sufficiently large as the RHS can be arbitrarily close to zero. Thus (B) is true.

However, we show that (B) is false, and hence that $\left(\mathrm{A}_{c}\right)$ fails for some $c>2$.

Theorem A1. There exists $\lambda>2$ such that for $c \leq \lambda, \pi$ is increasing, while for $c>\lambda, \pi$ is not increasing.

Proof. Clearly, if $\left(\mathrm{A}_{c}\right)$ holds for some $c=c_{0}>1$, then it holds for all smaller c, since $\left(\mathrm{A}_{c}\right)$ is equivalent to

$$
\begin{equation*}
f(-y) \leq f\left(\frac{y}{c-1}\right) \quad \forall y \geq 0 \tag{c}
\end{equation*}
$$

and f is increasing on $(0, \infty)$. Also, if $\left(\mathrm{A}_{c}^{\prime}\right)$ holds for all $c<c_{1}$, then by continuity of f, it holds for $c=c_{1}$. Now we show (B) is false.

Starting from the formula $\left(^{7}\right) \frac{1}{2 \pi i} \int_{(-1,0)} \Gamma(s) x^{-s} d s=e^{-x}-1(x>0)$ we have

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{(-1,0)} \frac{\Gamma(s)}{\zeta(1-s)} x^{-s} d s & =\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cdot \frac{1}{2 \pi i} \int_{(-1,0)} \Gamma(s)\left(\frac{x}{n}\right)^{-s} d s \\
& =\sum_{n=1}^{\infty} \frac{\mu(n)}{n}\left(e^{-x / n}-1\right)=f(-x)
\end{aligned}
$$

$\left(^{7}\right)$ Here $\int_{(\alpha, \beta)}$ means $\lim _{T \rightarrow \infty} \int_{\sigma-i T}^{\sigma+i T}$ for any $\sigma \in(\alpha, \beta)$.
using the absolute and uniform convergence of the Dirichlet series for $1 / \zeta(1-s)$. Changing the variable gives

$$
f(-x)=\frac{1}{2 \pi i} \int_{(1,2)} \frac{\Gamma(1-s)}{\zeta(s)} x^{s-1} d s
$$

By Mellin inversion

$$
\frac{\Gamma(1-s)}{\zeta(s)}=\int_{0}^{\infty} \frac{f(-x)}{x^{s}} d x \quad(1<\sigma<2) .
$$

Hence

$$
\begin{aligned}
\int_{1}^{\infty} \frac{f(-x)}{x^{s}} d x & =\frac{\Gamma(1-s)}{\zeta(s)}-\int_{0}^{1} \frac{f(-x)}{x^{s}} d x \\
& =\frac{\Gamma(1-s)}{\zeta(s)}+\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!\zeta(k+1)(k+1-s)} .
\end{aligned}
$$

Since the LHS converges and is holomorphic in H_{1}, the singularities at $2,3,4, \ldots$ on the RHS are all removable, as is the singularity at $s=1$.

Suppose now that $f(-x)$ is ultimately of one sign. Then the abscissa of convergence of the LHS Mellin transform must be a (real) singularity of the function. But the first real singularity occurs at -2 (zero of ζ). This is a contradiction as there are singularities at the non-trivial zeros of ζ to the right of this. Thus $f(-x)$ cannot be ultimately of one sign, i.e. f changes sign infinitely often in $(-\infty, 0)$ and has infinitely many zeros here.

Thus (A_{c}^{\prime}) fails for some $c \geq 2$ and hence all larger c. Let λ denote the supremum of those c for which $\left(\mathrm{A}_{c}^{\prime}\right)$ holds. Thus $\left(\mathrm{A}_{c}^{\prime}\right)$ holds for $c \leq \lambda$ and fails for $c>\lambda$.

Finally, $\lambda>2$ since $f(y /(\lambda-1)) \geq f(-y)$ for all $y \geq 0$ with equality for some $y>0$ (or λ would not be optimal) and this is false for $\lambda=2$.

References

[1] T. M. Apostol, Mathematical Analysis, 2nd ed., Addison-Wesley, 1974.
[2] P. T. Bateman and H. G. Diamond, Asymptotic distribution of Beurling's generalized prime numbers, in: Studies in Number Theory, Math. Assoc. Amer. Stud. Math. 6, Prentice-Hall, 1969, 152-210.
[3] -, 一, Analytic Number Theory, World Sci., 2004.
[4] A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés. I, Acta Math. 68 (1937), 255-291.
[5] H. G. Diamond, Asymptotic distribution of Beurling's generalized integers, Illinois J. Math. 14 (1970), 12-28.
[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
[7] T. W. Hilberdink, Flows of zeta functions with periodic integrator, J. Théor. Nombres Bordeaux 23 (2011), 349-363.
[8] E. Saias and A. Weingartner, Zeros of Dirichlet series with periodic coefficients, Acta Arith. 140 (2009), 335-344.
[9] E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford Univ. Press, 1976.
Titus Hilberdink
Department of Mathematics
University of Reading
Whiteknights, PO Box 220
Reading RG6 6AX, UK
E-mail: t.w.hilberdink@reading.ac.uk

Received on 23.3.2010
and in revised form on 4.7.2011

[^0]: 2010 Mathematics Subject Classification: Primary 11N80.
 Key words and phrases: generalised prime systems.

[^1]: (${ }^{1}$) That is, $a_{n}=a_{(n, P)}$.

[^2]: $\left({ }^{2}\right)$ All limits of integration are understood to be + (i.e. from the right) except where they are explicitly stated to be - .

[^3]: $\left({ }^{3}\right)$ This is usually formulated for g-prime systems, but actually proved for outer g-prime systems. No use of $\pi(x)$ being increasing is made, only that of $\Pi(x)$.

[^4]: $\left({ }^{4}\right)$ As usual, $\Omega(n)$ denotes the total number of prime factors of n, while $\omega(n)$ denotes the number of distinct prime factors of n.

[^5]: $\left({ }^{5}\right)$ Using $2 \sum_{d \mid n} \log k d=d(n) \log k^{2} n$.
 $\left(^{6}\right)$ For $\theta \in \mathbb{R}, H_{\theta}$ denotes the half-plane $\{s \in \mathbb{C}: \Re s>\theta\}$.

