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On the height of cyclotomic polynomials
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Bartłomiej Bzdęga (Poznań)

1. Introduction. The polynomial

Φn(x) =
∑

0≤m≤ϕ(n)

an(m)xm =
∏

k≤n, (k,n)=1

(x− ζkn)

where ζn = e2iπ/n, is called the nth cyclotomic polynomial. We are interested
in estimating its coefficients, so we define

An = max
m
|an(m)| and Sn =

ϕ(n)∑
m=0

|an(m)|.

We also define

Ψn(x) =
1

Φn(x)
=
∑
m≥0

cn(m)xm, Cn = max
m
|cn(m)|.

The polynomial (1−xn)Ψn(x) is called the nth inverse cyclotomic polynomial
(see [11] for details). We remark that cn(m) is equal to the m′th coefficient
of the nth inverse cyclotomic polynomial, where 0 ≤ m′ < n and m′ ≡ m
(mod n).

We consider the numbers n which are odd and square-free only, since
it is known that Aker(n) = An = A2n, where ker(n) is the product of all
distinct prime factors of n (see [14] for details). The same is true for inverse
cyclotomic polynomials.

The order of Φn is the number ω(n) of primes dividing n. For ω(n) ≤ 4
the following bounds are known:

(1) Ap = 1, Apq = 1, Apqr ≤ ε3p, Apqrs ≤ ε4p3q,

where p < q < r < s are primes. The first of them is obvious. The second
one is due to A. Migotti [10].

2010 Mathematics Subject Classification: 11B83, 11C08, 11N56.
Key words and phrases: cyclotomic polynomial, inverse cyclotomic polynomial, divisors of
xn − 1, height of a polynomial, bounds on coefficients.

DOI: 10.4064/aa152-4-2 [349] c© Instytut Matematyczny PAN, 2012



350 B. Bzdęga

The third one with ε3 = 1 is due to A. S. Bang [2]. It has been im-
proved by some authors. Presently it is known that one can take ε3 = 3/4
(see [1, 4, 6]) and that one cannot replace ε3 by a constant smaller than
2/3 (see [7]). It is strongly believed that the estimate holds with ε3 = 2/3
(see [9, 15]). This conjecture is known as the Corrected Beiter Conjecture
(see [7]).

The fourth inequality with ε4 = 1 was established by Bloom [5]. We use
a simple argument from [3] to show that the inequality is true with ε4 = ε3.

For the inverse cyclotomic polynomials we know the following bounds

Cp = 1, Cpq = 1, Cpqr ≤ p− 1.

The first and the second of them are easy to obtain. The third was proved by
P. Moree [11], who in the same paper proved that p− 1 cannot be replaced
by a smaller number.

For every n = p1 · · · pk, where p1 < · · · < pk we define

Mn =
k−2∏
j=1

p2k−j−1−1
j .

In the general case, the following result by P. T. Bateman, C. Pomerance
and R. C. Vaughan [3] for standard cyclotomic polynomials is known:

(2) Ap1...pk
≤Mn ≤ nk

−12k−1−1.

The same authors came up with the following conjecture (cf. [3, p. 175]).

Conjecture 1. In the upper bound in (2) one can replace n by ϕ(n).

We prove this conjecture and moreover, we improve it by multiplying the
right hand side by a constant depending on k only and rapidly decreasing
when k grows. We also prove a similar result for the inverse cyclotomic poly-
nomials and give the bound for the maximal magnitude Bn of the coefficients
of any divisor of xn − 1, improving on an earlier result of N. Kaplan [8] in
case n = p1 . . . pk and pi 6� pi−1 for i = 2, . . . , k. The idea of estimating the
maximal magnitude of the coefficients of any divisor of xn − 1 comes from
C. Pomerance and N. C. Ryan [12].

We denote by εk the smallest positive real number for which the inequality
Ap1...pk

≤ εkMp1...pk
holds with any distinct primes p1, . . . , pk. In the same

way we define εinv
k for the inverse cyclotomic polynomial.

By Lemma 5 below, the ratio Spqr/(p2qr) is bounded above, and hence
we can define

(3) d = sup
p,q,r

Spqr
p2qr

, ρ =
∞∏
i=0

(
2i+ 5
2i+ 6

)4−i

, C =
(

3
4
ε
3/2
3 dρ1/8

)1/32

.

We know that ε3 ≤ 3/4 and by Lemma 5 we have d ≤ ε3(2− ε3)/2 ≤ 15/32.
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Numerical computations give ρ ≈ 0.7993 and therefore C < 0.9541. If ε3 =
2/3 then d ≤ 4/9 and so C < 0.9473.

Recall that the notation g(k) = ok(1) means that g(k) → 0 as k → ∞.
Our main results are the following four theorems.

Theorem 1. We have (An/Mn)2
−k ≤ C + ok(1).

Theorem 2. We have (Cn/Mn)2
−k ≤ C + ok(1).

Theorem 3. We have (Bn/n(3k−1)/(2k)−1)3
−k ≤ C + ok(1).

Theorem 4. We have Mn ≤ ϕ(n)k
−12k−1−1.

In the proof of Theorem 1 we also establish the following bounds:

(4) Apqrs ≤
3
4
p3q, Apqrst ≤

135
512

p7q3r, Apqrstu ≤
18225
262144

p15q7r3s,

where we assumed ε3 = 3/4. For ε3 = 2/3 we establish constants 2
3 ,

2
9 ,

32
729 ,

respectively.
Also for the inverse cyclotomic polynomials,

(5) Cpqrs ≤
3
4
p3q, Cpqrst ≤

9
16
p7q3r, Cpqrstu ≤

10935
131072

p15q7r3s

for ε3 = 3/4. If ε3 = 2/3, then we obtain constants 2
3 ,

4
9 ,

8
81 , respectively

Let us remark that Theorem 1, but with a larger constant, can be ob-
tained by the original method of P. T. Bateman, C. Pomerance and R. C.
Vaughan. Our method is somewhat different. It is based on a different re-
cursive formula given in Lemma 1. We also use some basic combinatorics, in
particular the following theorem.

Theorem 5 (E. Sperner, 1928). Let A1, . . . , At ⊂ A, where #A < ∞.
If Ai 6⊂ Aj for every i 6= j, then t ≤

( #A
b#A/2c

)
.

For the proof see [13].

2. Preliminaries. Our primary tool is the following lemma.

Lemma 1. Let p1, . . . , pk be distinct primes. Then

(6) Φp1...pk
(x) = f(x) ·

k−2∏
j=1

Pj(x),

where f is a formal power series satisfying

(7) f(x) = (1− xp1...pk) ·
∏k
i=2(1− xp2...pk/pi)∏k
i=1(1− xp1...pk/pi)

,

and Pj =
∏k
i=j+2 Φp1...pj (x

pj+2...pk/pi).
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Lemma 2. Let f(x) =
∑∞

m=0 dmx
m. If m < p1 . . . pk then dm ≤ bk−2,

where bk−2 =
(

k−2
b(k−2)/2c

)
.

Lemmas 1 and 2 allow us to give the following recursive bound on εk.

Lemma 3. Put Ek = bk−2d
k−4

2k−3

∏k−2
j=1 ε

k−j−1
j . Then εk ≤ Ek.

To start the induction we also need the estimates provided by Lemmas
4 and 5 below.

Lemma 4. We have ε4 ≤ ε3.
Proof. It is known that S1 = 2 and Spq ≤ pq/2 (see [5] for a proof of the

second equality). By Lemma 4 [3, pp. 182–183],

Apqrs ≤ ApqrSpqSpS1 ≤ ε3 · p3q,

so the estimate holds.

Recall that d is defined in (3).

Lemma 5. We have d ≤ ε3(2− ε3)/2.
Proof. Bloom [5] proved that

|apqr(m)| = |apqr(ϕ(pqr)−m)| ≤ 2(bm/qrc+ 1).

Thus

Spqr ≤ 2
ϕ(pqr)/2∑
k=0

min{ε3p, 2(bm/qrc+ 1)}

≤ ε3p(ϕ(pqr) + 2− 2bε3p/2cqr) + 2qr
bε3p/2c−1∑

a=0

(2a+ 2)

= ε3p(p− 1)(q − 1)(r − 1) + 2ε3p− 2bε3p/2cε3pqr
+2bε3p/2c(2bε3p/2c+ 1)qr

< ε3(2− ε3)p2qr/2,

which completes the proof.

3. Proofs of Lemmas 1–3

Proof of Lemma 1. We prove this lemma by induction on k. For k < 5
the statement holds by the results of [5]. Let us define

f̃(x) = (1− xp2...pk) ·
∏k
i=3(1− xp3...pk/pi)∏k
i=2(1− xp2...pk/pi)

and P̃j(x) =
∏k
i=j+2 Φp2...pj (x

pj+2...pk/pi). By the inductive assumption,

(8) Φp2...pk
= f̃(x) ·

k−2∏
j=2

P̃j(x).
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It is known that Φnp(x) = Φn(xp)/Φn(x) for a prime p not dividing n (see
[14]). Then also

Φp1...pk
(x) =

Φp2...pk
(xp1)

Φp2...pk
(x)

and Pj(x) =
P̃j(xp1)

P̃j(x)
.

From this and (8),

Φp1...pk
(x) =

f̃k(xp1) ·
∏k−2
j=2 P̃j(x

p1)

f̃k(x) ·
∏k−2
j=2 P̃j(x)

=
f̃(xp)

f̃(x)P1(x)
·
k−2∏
j=1

Pj(x).

Finally,

f̃(xp1)

f̃(x)
= P1(x)(1− xp1...pk) ·

∏k
i=2(1− xp2...pk/pi)∏k
i=1(1− xp1...pk/pi)

= P1(x)f(x),

which completes the proof.

Proof of Lemma 2. Let n = p1 . . . pk. We define f∗(x) =
∑n−1

m=0 dmx
m.

Since f∗(x) ≡ f(x) (mod xn), it suffices to prove Lemma 2 with f∗ instead
of f . By (7) we have

(9) f∗(x) ≡
k∏
i=2

(1− xp2...pk/pi)
∑

α1,...,αk≥0

xα1n/p1+···+αkn/pk (mod xn).

Let

Λ = {λ = (λ2, . . . , λk) : λi ∈ {0, 1} for i = 2, . . . , k}, s(λ) = (−1)λ2+...+λk .

By (9),

(10) dm =
∑
λ∈Λ

s(λ)χ(m− 〈λ, v/p1〉),

where 〈·, ·〉 is the scalar product in Rk−1, v = (n/p2, . . . , n/pk) and

χ(m) =
{

1 if m is of the form α1n/p1 + · · ·+ αkn/pk,

0 otherwise.
We define a number β(λ) and a vector α(λ) = (α2(λ2), . . . , ak(λk)) by the
congruence

(11) m− 〈λ, v/p1〉 ≡ β(λ)n/p1 + 〈α(λ), v〉 (mod n).

The numbers αi(0) and αi(1) depend only on the residue class of m mod-
ulo pi, so (11) holds for every λ ∈ Λ. We have the following equivalences:

χ(m− 〈λ, v/p1〉) = 1

⇔ 〈λ, v/p1〉+ 〈α(λ), v〉 ≤ m
⇔ 〈λ, v/p1〉+ 〈α(λ)− α(θk−1), v〉 ≤ m− 〈α(θk−1), v〉,
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where θk−1 = (0, . . . , 0). We have

〈α(λ)−α(θk−1), v〉 =
k∑
i=2

(αi(λi)−αi(0))vi =
k∑
i=2

(αi(1)−αi(0))viλi = 〈λ,w〉,

where w = ((αi(1)− αi(0))vi)ki=2. Therefore

χ(m− 〈λ, v/p1〉) = 1 ⇔ 〈λ, u〉 ≤ D,
where u = v/p1 + w and D = m− 〈α(θk−1), v〉. By (10),

(12) dm =
∑

λ∈Λ, 〈λ,u〉≤D

s(λ).

Without loss of generality we may assume that 0 ≤ uk ≤ u2, . . . , uk−1.
There is a natural bijection between Λ and the family of subsets of

{2, . . . , k}, defined by

Sλ = {i ∈ {2, . . . , k} : λi = 1} for λ ∈ Λ.
We say that λ = (λ2, . . . , λk−1, 0) is maximal if 〈λ, u〉 ≤ D and for every
λ′ = (λ′2, . . . , λ

′
k−1, 0) such that Sλ ⊂ Sλ′ we have 〈λ′, u〉 > D. Note that for

λ0 = (λ2, . . . , λk−1, 0) and λ1 = (λ2, . . . , λk−1, 1)

the following statements are true:

• If λ0 is not maximal and 〈λ0, u〉 ≤ D then 〈λ1, u〉 ≤ D.
• If 〈λ1, u〉 ≤ D then 〈λ0, u〉 ≤ D.
• s(λ0) + s(λ1) = 0.

From this observation and (12) we conclude that

(13) |dm| ≤ #{λ ∈ Λ : λ is maximal}.
Let λ1, . . . , λt ∈ Λ be maximal. By the definition of maximal λ, we have
Sλi ⊂ {2, . . . , k− 1} and Sλi 6⊂ Sλj for every i 6= j. By Theorem 5 and (13),
|dm| ≤ t ≤

(
k−2

b(k−2)/2c
)
.

Proof of Lemma 3. For f(x) =
∑

m≥0 amx
m ∈ Z[[x]] we define H,S ∈

[0,∞] by
H(f) = max

m≥0
|am|, S(f) =

∑
m≥0

|am|.

We call H(f) the height of f . Note that

H
(
f(x)

k∏
i=1

Qi(x)
)
≤ H(f)

k∏
i=1

S(Qi),(14)

S
( k∏
i=1

Qi(x)
)
≤

k∏
i=1

S(Qi)(15)
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for Q1, . . . , Qk ∈ Z[x] and a formal power series f . By (15) we have, for
j < k,

Sp1...pj ≤ (deg(Φp1...pj ) + 1)Ap1...pj ≤ εj · pj · p2j−2

1 p2j−3

2 . . . p2
j−2pj−1,

as deg(Φn) = ϕ(n) < n for n > 1. Then again by (15),

(16) S(Pj) ≤ εk−j−1
j (pj · p2j−2

1 p2j−3

2 . . . p2
j−2pj−1)k−j−1,

where Pj is defined in Lemma 1. Additionally,

(17) Sp1p2 < p1p2/2, Sp1p2p3 ≤ d · p2
1p2p3.

Applying (14), (16), (17) and Lemma 2 to Lemma 1 we obtain

Ap1...pk
≤ bk−2d

k−4

2k−3
·
k−2∏
j=1

εk−j−1
j ·

k−2∏
j=1

(pj · p2j−2

1 p2j−3

2 . . . p2
j−2pj−1)k−j−1

= EkMn,

which completes the proof.

4. Proofs of Theorems 1–4

Proof of Theorem 1. Consider a sequence (en) given by the following
conditions:

e1 = e2 = 1, e3 = e4 = ε3,

ek =
bk−2d

k−4

2k−3

k−2∏
j=1

ek−j−1
j for k ≥ 5.

By Lemmas 3 and 4 we have εk ≤ ek. We can easily compute that

(18) e5 =
3
4
ε3d, e6 =

3
4
ε33d

2, . . .

For k ≥ 7,

ek/ek−1

ek−1/ek−2
=

dbk−2

2bk−3
· e1 . . . ek−2

dbk−3

2bk−4
· e1 . . . ek−3

= ek−2 ·
bk−2bk−4

b2k−3

,

so

ek = e2k−1 ·
bk−2bk−4

b2k−3

,

and hence

ek = e2
k−6

6 ·
k∏
i=7

(
bi−2bi−4

b2i−3

)2k−i

.
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Note that

bi−2bi−4

b2i−3

=


i− 2
i− 1

for odd i,

i− 2
i− 3

for even i.

Then

e
1/2k−8

k = e46 ·
(

5
6

)2

·
(

6
5

)
·
(

7
8

)1/2

·
(

8
7

)1/4

· . . . = e46ρ+ o(1),

with ρ as in (3).

For ε3 = 3/4, the bounds (4) follow from (18) and Lemma 5.

Proof of Theorem 2. By the well known formula Ψnp(x) = Ψn(xp)Φn(x)
we have

cnp(m) =
bm/pc∏
j=0

cn(j)an(m− jp).

We note that an(t) = 0 for t 6∈ {0, . . . , ϕ(n)}, and therefore

Cp1...pk
≤
(⌊

ϕ(p1 . . . pk−1)
pk

⌋
+ 1
)
Ap1...pk−1

Cp1...pk−1
≤ p1 . . . pk−2 ·AnCn

for k ≥ 2. Thus

Cp1...pk
≤ Cp1p2

k−1∏
j=2

(p1 . . . pj−1 ·Ap1...pj ) ≤ ε2 . . . εk−1Mn.

Therefore

εinv
k ≤ ε2 . . . εk−1 ≤ e1 . . . ek−1 =

2bk−3

dbk−2
ek

for k ≥ 6. The proof is completed by invoking Theorem 1.

We can also prove that

εinv
4 ≤ ε3, εinv

5 ≤ ε23, εinv
6 ≤ 3

4
ε33d.

Using Lemma 5 we obtain the inequalities from (5).

Proof of Theorem 3. We recall that every divisor of xn− 1 is of the form∏
d∈D Φd(x), where D is a set of divisors of n. By (14) and Theorem 1,

Bn ≤ An
∏

d|n, d<n

Sd ≤
2
n

∏
d|n

dAd

≤ 2
n

(∏
d|n

d
)(∏

d|n

εω(d)

)(∏
d|n

Md

)
.
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We have
1
n

∏
d|n

d = n2k−1−1,

∏
d|n

Mn(d) ≤
k∏

ω=1

(
(( k
√
n)ω)2

ω−1/ω−1
)(k

ω) = n(3k−1)/(2k)−2k−1
.

Put ξω = max{2−ω log εω − logC, 0}. Then

log
(
2
∏
d|n

εω(d)

)
∼

k∑
ω=0

(
k

ω

)
log εω ≤ 3k logC +

k∑
ω=0

(
k

ω

)
2ωξω.

It remains to prove that the sum is of size o(3k). Let ξ′ω = sup{ξω, ξω+1, . . .}.
By Theorem 1 for ω →∞ we have ξω → 0 and hence also ξ′ω → 0. Therefore

k∑
ω=0

(
k

ω

)
2ωξω ≤ ξ′0

blog kc∑
ω=0

(
k

ω

)
2ω + ξ′dlog ke

k∑
ω=0

(
k

ω

)
2ω

= O(2log kelog2 k log k) + o(3k) = o(3k).

Proof of Theorem 4. We have M1 = M2 = 1, so the conclusion holds for
k = 1, 2. We argue by induction on k. We assume that p1 < · · · < pk. Then
for k ≥ 3,

Mn ≤ p2k−2−1
1 · ϕ(p2 . . . pk)2

k−2/(k−1)−1

=
(

p1

p1 − 1

) 2k−1

k
−1

·
(

pk−1
1

ϕ(p2 . . . pk)

) 2k−2

k−1
− 2k−1

k(k−1)

· (ϕ(p1 . . . pk))
2k−1

k
−1

≤
(

p1

p1 − 1

) 2k−1

k
−1

·
(

p1

p1 + 1

)2k−2− 2k−1

k

· (ϕ(p1 . . . pk))
2k−1

k
−1.

Since
p1

p1 − 1

(
p1

p1 + 1

)2

< 1

and for k ≥ 3 we have
2k−2 − 2k−1

k
2k−1

k − 1
≥ 2,

the proof of Theorem 4 is complete.

5. Concluding remarks. Note that there exists a constant c > 0 such
that for C < c the bound from Theorem 1 is false. Indeed, if pj is the jth
odd prime number for j ≥ 1, then

1 ≤ Ap1...pk
≤ (C + ok(1))2

k
Mn
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and therefore

C + ok(1) ≥M−2k

n =
∞∏
j=1

p−23−j

j + ok(1).

Using the prime number theorem we easily see that the product is convergent
to a positive constant c, which is relatively small. We then have

0 < c ≤ lim sup
n→∞

(
An
Mn

)2−ω(n)

≤ C < 1.

Recall the following conjecture of P. T. Bateman, C. Pomerance and R. C.
Vaughan [3].

Conjecture 2. For every k there exists a constant ε′k such that

An ≥ ε′kn2k−1/k−1

for infinitely many cyclotomic polynomials Φn of order k.

If the conjecture is true, one of the most interesting questions is whether
the maximal ε′k is of the form (C ′ + o(1))2

k for some constant 0 < C ′ < 1.
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