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On the height of cyclotomic polynomials
by

BARTLOMIEJ BZDEGA (Poznarn)

1. Introduction. The polynomial

Gp(r)= Y ap(mia™= ] (-
0<m<p(n) k<n, (kn)=1

where ¢, = e27/™_is called the nth cyclotomic polynomial. We are interested

in estimating its coefficients, so we define

e(n)
A, = max|a,(m)| and S, = Z lan(m)|.
m=0

We also define

() = —

b, (x)

= Z cp(m)x™, Cp= mﬁx\cn(m)\.

m>0
The polynomial (1—z")%, () is called the nth inverse cyclotomic polynomial
(see [1I] for details). We remark that ¢, (m) is equal to the m/th coefficient
of the nth inverse cyclotomic polynomial, where 0 < m’ < n and m’ = m
(mod n).

We consider the numbers n which are odd and square-free only, since
it is known that Aye,) = An = Ag,, where ker(n) is the product of all
distinct prime factors of n (see [14] for details). The same is true for inverse
cyclotomic polynomials.

The order of @,, is the number w(n) of primes dividing n. For w(n) < 4
the following bounds are known:

(1) Ap =1, qu =1, qur < e3p, qurs < €4p3Q7
where p < ¢ < r < s are primes. The first of them is obvious. The second

one is due to A. Migotti [10].
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The third one with e3 = 1 is due to A. S. Bang [2]. It has been im-
proved by some authors. Presently it is known that one can take e3 = 3/4
(see [IL [ 6]) and that one cannot replace €3 by a constant smaller than
2/3 (see [7]). It is strongly believed that the estimate holds with e3 = 2/3
(see [9, 15]). This conjecture is known as the Corrected Beiter Conjecture
(see [T]).

The fourth inequality with e4 = 1 was established by Bloom [5]. We use
a simple argument from [3] to show that the inequality is true with e4 = e3.

For the inverse cyclotomic polynomials we know the following bounds

Cpo=1, Cp=1, Chy <p-—-1

The first and the second of them are easy to obtain. The third was proved by
P. Moree [I1], who in the same paper proved that p — 1 cannot be replaced
by a smaller number.

For every n = p1 - - - pi, where p; < --- < pp we define

k—2
2k—i-1_1
M, =[] » :
7j=1

In the general case, the following result by P. T. Bateman, C. Pomerance
and R. C. Vaughan [3] for standard cyclotomic polynomials is known:

(2) Ap,.pp < Mp < k2L
The same authors came up with the following conjecture (cf. [3, p. 175]).
CONJECTURE 1. In the upper bound in one can replace n by p(n).

We prove this conjecture and moreover, we improve it by multiplying the
right hand side by a constant depending on k£ only and rapidly decreasing
when k grows. We also prove a similar result for the inverse cyclotomic poly-
nomials and give the bound for the maximal magnitude B,, of the coefficients
of any divisor of 2™ — 1, improving on an earlier result of N. Kaplan [§] in
case n =p1...pr and p; B p;—1 for i = 2,..., k. The idea of estimating the
maximal magnitude of the coefficients of any divisor of " — 1 comes from
C. Pomerance and N. C. Ryan [12].

We denote by ¢, the smallest positive real number for which the inequality
Ap,..p < €My, . p, holds with any distinct primes pq,...,pg. In the same
way we define €'V for the inverse cyclotomic polynomial.

By Lemma [5| below, the ratio Spq/ (p%qr) is bounded above, and hence
we can define

Spor =~ /2 +5 a 3 3/2 1/32
3 d=sup p=H<2i+6> o= (463/ aps)
T i=0

We know that e3 < 3/4 and by Lemma[f] we have d < e3(2 — €3)/2 < 15/32.
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Numerical computations give p =~ 0.7993 and therefore C' < 0.9541. If €5 =
2/3 then d < 4/9 and so C' < 0.9473.

Recall that the notation g(k) = ox(1) means that g(k) — 0 as k — oo.
Our main results are the following four theorems.

THEOREM 1. We have (An/M,)% " < C + o(1).
THEOREM 2. We have (Cp/My)* " < C + ox(1).
THEOREM 3. We have (B, /n®"—D/@GR)=-1)37F < 04 o, (1).
THEOREM 4. We have M, < @(n)F 2" 7'=1,

In the proof of Theorem [I| we also establish the following bounds:

(4) Apgrs < ZP3Qa Apgrst < ;?ZP qr, Apgrstu < 21682212454p15q7 ’
where we assumed e3 = 3/4. For €3 = 2/3 we establish constants 2, 2, 22
respectively.

Also for the inverse cyclotomic polynomials,
(5)  Chgrs < Zp?’q, Cpgrst < 19617 ¢*r,  Cpgrstu < 113019037521315 s
for e3 = 3/4. If e3 = 2/3, then we obtain constants %, %, 8%, respectively

Let us remark that Theorem [I|, but with a larger constant, can be ob-
tained by the original method of P. T. Bateman, C. Pomerance and R. C.
Vaughan. Our method is somewhat different. It is based on a different re-
cursive formula given in Lemma [I] We also use some basic combinatorics, in
particular the following theorem.

THEOREM 5 (E. Sperner, 1928). Let A,..., Ay C A, where #A < oc.

If A; ¢ A; for every i # j, thent < (L#ﬁ?ﬂ)' O

For the proof see [13].

2. Preliminaries. Our primary tool is the following lemma.

LEMMA 1. Let py,...,pg be distinct primes. Then

-2
(6) Pp,..p, (%) = f(2) - H Pj(x)
j=1

where [ is a formal power series satisfying
Hk o (1 — aP2-Pr/pi)
Hz (1 — P pk/pz)

and Py =TT o Ppy..p, (aPie2-PHPY).

(7) f(x) = (1 —abr).
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LEMMA 2. Let f(z) = Y 0 odma™. If m < p1...pg then dm < by_o,
k—2
Lemmas [1] and [2] allow us to give the following recursive bound on €.

k—4 i
LEMMA 3. Put E), = b’“;,ﬁflg Hf;f e? 171 Then €, < E,.

To start the induction we also need the estimates provided by Lemmas
4 and [5] below.

LEMMA 4. We have €4 < e3.

Proof. Tt is known that S; = 2 and S,y < pq/2 (see [3] for a proof of the
second equality). By Lemma 4 [3, pp. 182-183],

Apgrs < ApgrSpgSpSt < €3+ pq,
so the estimate holds. m
Recall that d is defined in (3)).
LEMMA 5. We have d < e3(2 — €3)/2.
Proof. Bloom [5] proved that

|apgr(m)| = lapgr (0(pgr) —m)| < 2(m/qr] +1).

Thus
w(pgr)/2
Spr <2 min{ezp, 2(|m/qr| + 1)}
k=0
lesp/2] -1
< esp(e(pgr) +2 — 2| esp/2lqr) +2qr Y (2a+2)
a=0

= e3p(p — 1)(q — 1)(r — 1) + 2e3p — 2| e3p/2] e3pgr
+2lesp/2](2]esp/2] + 1)gr
< e3(2 — e3)p*qr/2,

which completes the proof. m

3. Proofs of Lemmas [1H3l

Proof of Lemma[1. We prove this lemma by induction on k. For k < 5
the statement holds by the results of [5]. Let us define

f HI-C:3(1 — ,jcp3~~~l’k/1’i)
= _ P2---Pk) ., i
f(CU) (1 X ) Hf:2(1 . pr-..pk/pi)

and ]5]- (z) = H§:j+2 Dpy..p; (zPs+2-Px/Pi) By the inductive assumption,

k—2
=2
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It is known that @,,(z) = @, (a?)/P,(z) for a prime p not dividing n (see
[14]). Then also

Dp,..px (z) = gpg;pzf?;;) and P](l’) - Nj(x) .

From this and ,

fu@) T2 Pi(a?)  far) %2
Ppy.pp () = —= 235 == Pj(z
) fe(@) T3 Pi(a)  f(a)Pi(a) ]Hl @
Finally,
F@™) _ pvo ey L —a?2meey
o 1(@)( ) [T, (1= i) 1(z)f (),

which completes the proof. =
Proof of Lemma @ Let n = py...px. We define f*(x) = an_:lo dpmz™.
Since f*(z) = f(z) (mod "), it suffices to prove Lemma [2] with f* instead
of f. By we have
k
(9) f*(z) = H(l _ xp2--~pk/pi) Z 2011/ PLtFakn/py (mod z™).

=2 ..., >0
Let
A== o, ) s N €{0,1} fori=2,... kY, s(\) = (=1)% 2T,

By (9),

(10) dm =Y s(A)x(m — (X v/p1)),
AeA
where (-, -) is the scalar product in R¥=1, v = (n/ps,...,n/pi) and

x(m) = { 1 if m is of the form ain/py + -+ + agn/pg,

0 otherwise.
We define a number 3(\) and a vector a(A) = (a2(A2),...,ak(Ag)) by the
congruence
(11) m =\ v/p1) = BNn/p1 + {a(M), 0) (mod n).
The numbers «;(0) and «;(1) depend only on the residue class of m mod-
ulo p;, so holds for every A € A. We have the following equivalences:

x(m—(A\v/p1)) =1
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where 01 = (0,...,0). We have

k
(@(\) = a(Br—1),0) = > (o 0))vi = Y (ai(1)—ai(0))vidi = (A, w),

=2 =2
where w = ((a;(1) — a;(0))v;)%_,. Therefore
x(m—\v/p1)) =1 < ()\ u) < D,
where u = v/p; + w and D = m — (a(f_1),v). By (10),

(12) dp= > S(A).
AEA, (Au)<D
Without loss of generality we may assume that 0 < up < ug,...,up_1.

There is a natural bijection between A and the family of subsets of

{2,...,k}, defined by
Sy={ie{2,....k}: Ny =1} for Ae A

We say that A = (A2,...,A\k—1,0) is mazimal if (\,u) < D and for every
N = (Xy, ..., A;_1,0) such that Sy C Sy we have (X, u) > D. Note that for

A= (Xz,...,—1,0) and A= (Xg,..., A1, 1)
the following statements are true:

e If \? is not maximal and (\°,u) < D then (A}, u) < D.
o If (A, u) < D then (\° u) < D.
e s(A%) +s(Ah) =0.

From this observation and we conclude that

(13) |dm| < #{\ € A: X is maximal}.

Let A, ..., At € A be maximal. By the definition of maximal A\, we have
Syi € {2,.. — 1} and Syi ¢ Sy; for every i # j. By Theoremland (13),
|dm| <t < (L(kk 2)2/2j)

Proof of Lemma @ For f(x) = ), 50 ama™ € Z[[x]] we define H,S €
[0, 00] by )

H(f) = maxlanl, 5= lanl

m>0
We call H(f) the height of f. Note that
k k
(14) H(f@ Qi) < BT S@)
i=1 i=1

(15) s(ﬁ@-(m)) <IIs
=1 =1
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for Q1,...,Qr € Z[z] and a formal power series f. By we have, for
J<k,

i—2 9j—3
Sp1~~-pj < (deg(qul-npj) + 1)AP1~--Pj < €5 Dy 'p% p% --’p]2‘—2pj*17
as deg(®y,) = ¢(n) < n for n > 1. Then again by (15),
k—j—1 j~2 9j—3 —j—
(16) S(P) < e pi-pi Py piapi) T
where P; is defined in Lemmam Additionally,
(17) Spipa < p1p2/2, Spipaps < d- p%pQPS-
Applying , , and Lemma |2[ to Lemma (1| we obtain
k—2 k—2
bp—odi 1 k—j—1 i-2 9i-3 k—j—
Aprpr < r==a § T H(pj Py Py piapi—1) !
j=1 j=1
= ExMy,

which completes the proof.

4. Proofs of Theorems [1H4]

Proof of Theorem . Consider a sequence (e,) given by the following
conditions:

epx=e2 =1, e3=eq4=e3,

k—4 k=2
~ bpod k—j—1

€k = T or—3 €
Jj=1

for k > b.

By Lemmas [3] and [4] we have ¢, < e;. We can easily compute that

3 3
18 es = —esd, eg= —e3d?
( ) 4 Y 4 3 9
For k > 7,
di—2 e
ex/ep—1 2y C1--Ch-2 ers- br—2bk—4
T dbg—3 - -2 2 ’
€k—1/€r—2 by, €l €k—3 by—3
SO
9 br2bgp 4
€k = €1 b2 )
k—3
and hence
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Note that
172 o odd i
biobi—qa ) i— oreaa
) =9 _
bi_s Z 2 for even i.
1—3
Then
2 1/2 1/4
1 2k:—8 5 6 7 8
W=d (G G) () () e

with p as in . "
For e3 = 3/4, the bounds (4) follow from and Lemma

Proof of Theorem[d By the well known formula Wy, (z) = ¥, (a?) Py ()
we have

Lm/p]
Cnp(m) = H en(f)an(m — jp).
=0
We note that a,(t) =0 for ¢t € {0,...,¢(n)}, and therefore

PP Pe—1
Cpl,..pk < <\‘(pk>J + 1) Apl..,pk,lcpl..,pk,l < b1...-Pk-2- Ancn

for k > 2. Thus

k—1
Cpr..or < Cpipy H(pl o Pj-1 - Apip;) S €2 g1 My,
=2
Therefore
) 2by,_
ey <e€x...€—1<€1...€_1 = k?’ek
dby_o

for £ > 6. The proof is completed by invoking Theorem [1} =
We can also prove that
€V <eg, eV <d V< zegd.
Using Lemma [5| we obtain the inequalities from .

Proof of Theorem[3. We recall that every divisor of 2™ — 1 is of the form
[Licp @a(x), where D is a set of divisors of n. By and Theorem

Bu<ay T S J[dAa

dn,d<n din

< 2T (T o) (TT5)

din
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We have
l Hd = n2k71_17
n
din
k
[ Ma(d) H )2 e 1)( ) _ (35-1)/(2k) 25"

Put &, = max{27“loge,, — log C,0}. Then

k
log(2 H €0(d) ) Z (5) log e, < 3Flog C + Z (5) 29,

d|n w=0

It remains to prove that the sum is of size 0(3%). Let &, = sup{&., w1, .-}
By Theorem for w — oo we have &, — 0 and hence also &, — 0. Therefore

koL [log k] k LI
) <w> 296, <& Y <w> 2%+ liog k) WZZO <w> 2

w=0 w=0
= O(2"8kelog” k100 k) + 0(3F) = 0(3%). m
Proof of Theorem[]] We have M; = Ms = 1, so the conclusion holds for

k =1,2. We argue by induction on k. We assume that p; < --- < pg. Then
for k > 3,

M, < pl —2_1 ( )2’1C 2/(k—1)—
2k 1 ok—2  Hk—1
FT TRGED b1
- (P1—1> (‘P ) (e(pr-op)) F
2k 2 2kk 2k:—1_1
< <p1_1) ( ) (opr--pK))

Since

and for k£ > 3 we have

2k—2 2kt
k
>2
2k—1 —
—1
k

the proof of Theorem [4] is complete. =

5. Concluding remarks. Note that there exists a constant ¢ > 0 such
that for C' < ¢ the bound from Theorem (1| is false. Indeed, if p; is the jth
odd prime number for j > 1, then

1< Ay, < (C+0,(1))%" M,
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and therefore
x

C+op(l) > M2 =
j=1

_93—j
2+ o(1).
Using the prime number theorem we easily see that the product is convergent
to a positive constant ¢, which is relatively small. We then have

9—w(n)
0<c<limsup<jwn> <(C<1.

n—oo n

Recall the following conjecture of P. T. Bateman, C. Pomerance and R. C.
Vaughan [3].

CONJECTURE 2. For every k there exists a constant €, such that
A, > E;ank—l/k—l
for infinitely many cyclotomic polynomials @, of order k.

If the conjecture is true, one of the moskt interesting questions is whether
the maximal €, is of the form (C' 4 o(1))?" for some constant 0 < ¢’ < 1.
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