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1. Introduction. It is well-known that every real number x can be
written as a finite (in case x € Q) or infinite (regular) continued fraction
expansion (RCF) of the form

M r=ag+ L ,
ai + 1
ag+ -+ —
ap + -
where a9 € Z is such that  — a9 € [0,1), i.e. a9 = |z, and a, € N
for n > 1. The expansion (1)), abbreviated by z = [0;a1,a2,...,an,...], is

infinite if and only if z € R\ Q; in case x € Q—essentially due to Euclid’s
algorithm—zx has two finite expansions.
The partial quotients a,, are given by

(2) an = an(@) = (/T (@)] T (@) £0,

where T : [0,1) — [0, 1) is the continued fraction (or Gauss) map, defined
by

(3) T(x)=1/z— |1/z| ifxz+#0,
and T'(0) = 0; for more information, proofs, etc. on continued fractions; see
also the monographs [DKO02), [HO6l TK02, (K56, P50, RS92].

Apart from the regular continued fraction expansion, there are (un-
countably) many other continued fraction algorithms. Examples of these
are Nakada’s a-expansions, the backward continued fraction, the continued
fraction expansion with odd partial quotients (and the continued fraction
with even partial quotients), Minkowski’s diagonal expansion, etc. In this
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paper we will introduce and study a new class of continued fraction ex-
pansions: the D-expansions, or flipped expansions. Although the definition
will be very simple, we will see that this class of expansions will contain a
large class of different continued fraction algorithms, such as the (folded)
a-expansions, a variation on the backward continued fraction, the odd and
even continued fraction expansions. However, Minkowski’s diagonal expan-
sion [Pi55] and the Bosma—Selenius optimal continued fraction expansion
[B87] are not D-expansions.

1.1. Definition of D-expansions. Let D C [0, 1] be a Borel measur-
able subset of the unit interval. We define the map Tp : [0,1) — [0,1)

by
(4) TD(aj) ::{U/'ﬂ—i_l_l/x if:L‘GD,

1/x —|1/z] if x €[0,1)\ D.

-1 ifzxeD,

+1 ifze0,1)\ D,
|1/z] +1 ifze D,
|1/z] ifx €0,1)\ D.

e1 =e¢1(x) = {

di = di(z) = {
It follows from that
Tp(z) =e1(l/x — dy).
Now setting, for n > 1 for which Tg_l(aj) # 0,
dn = di(T ' (2)),  en=e1(Th (2)),
we find that

(5) 1 1

xr =
dy +e1Tp(x) dy + °1
do + --

En—1
ST L S
dy + e, T ()

We denote the continued fraction expansion of x thus obtained by
(6) :L':[0;1/d1,€1/d2,82/d3,...].

The proof that the convergents of this continued fraction expansion of x
(obtained by setting T73(z) equal to 0 in () indeed converge to z, as indi-
cated by @, is postponed to Section [2| In that section other classical basic
properties of continued fractions will be derived for D-expansions.

1.2. Examples of D-expansions

1.2.1. Nakada’s a-continued fractions. In 1981, H. Nakada [N81] gener-
alized the RCF-expansion to a new class of continued fraction expansions,
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which is now well known as Nakada’s a-expansions. The underlying contin-
ued fraction transformation T,, for « € [0, 1], is given by

To(z) =11/z| = ||1/z|+1—a] fora—1<z<a,z#0,

and T,(0) = 0.

In 1997, Marmi, Moussa and Yoccoz [MMYO97] modified Nakada’s a-
expansions to the folded or Japanese continued fractions, with underlying
map

To(z) =1/z — |1/z]s] fora—1<az<a, z#0; To(0)=0,

where |2|q = min{p € Z : £ < o+ p}. We have T, = |T,|. Clearly, folded
a-expansions can also be described as D-expansions with

D_D 1 1]
_n=1 n+1'n+al’

see also Figure [T}

1

Fig. 1. The ‘folded’ a-continued fraction map Ta

Note that for folded a-expansions the interval [0, max{c,1 — a}] is an
attractor, i.e., To([0,max{a,1 — a}]) = [0,max{a, 1 — a}]. Furthermore, if
z ¢ [0,max{a, 1 — a}], then Ty (z) € [0, max{e,1 — a}]. So it is natural to
restrict one’s attention to the interval [0, max{c, 1 — a}].

1.2.2. Backward continued fractions. Let D = [0,1) and = € [0,1). In
this case [0,1) \ D = 0, so we always use the map

Tp(x) =1+ |1/z] — 1/=x,
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and we will get an expansion of the form

1
d [
1+d2+...

see also Figure 2] It is a classical result that every x € [0,1)\ Q has a unique
backward continued fraction expansion

1
r=1-———— = [0;-1/e1,~1/ca,...],

CcC1 —

xr =

Coy — ...
where the ¢;s are all integers greater than 1; see [AF84]. This continued
fraction is generated by the map
1 1
T = —
b(:E) 1— 7 \‘1 — .TJ ’

which we obtain from 7Tp via the isomorphism ¢ : z — 1 —x, i.e., o T} =
Tp o 1); see also Figure

1

0

N
Wik
Ol - - - - TS
—
[en)

Fig. 2. The D-backward continued fraction map Tp (left), and the classical backward
continued fraction map 75 (right)

1.2.3. Odd and even continued fractions. Setting

1 1
D := Dogq = U [n—l—l’n)’
neven
one easily finds that the D-expansion for every z € [0,1) only has odd
partial quotients d,. In case D := Deyen = Dgyq, the partial quotients
are always even. The maps Tp_,, resp. Tp,.., have been studied by Fritz

Schweiger [S82, [S84].

1.2.4. Continued fraction expansion without a particular digit. Using
the definition of D-expansions, it is very easy to find continued fraction
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expansions in which a particular digit is always missing in the expansion of
any = € [0,1). Indeed, fix a positive integer ¢, and suppose that we want
an expansion in which the digit ¢ never appears, that is, a, # ¢ for all
n > 1. Now just take D = (1/(l+1),1/l] to get such an expansion. Figure [3]
represents the map which yields the expansion without digit 2.

1

N
—_

1
3

T S

0

Fig. 3. The D-expansion map Tp corresponding to D = (1/3,1/2]

1.3. Outline of the paper. In the next section we study the basic
properties of D-expansions. In particular, we will see that two ‘operations’
on partial quotients (singularizations and insertions) can be used to under-
stand the relation between the D-expansion (for a particular set D) and the
RCF-expansion of any = € [0,1). Among other things we obtain the result
(classical for RCF) that = has an eventually periodic D-expansion if and
only if x is an irrational root of a quadratic equation.

In Section [3| we study the metric properties of D-expansions. Due to
results by Rényi, Rychlik, Thaler, and Zweimiiller, for each measurable set
D C [0,1] there exists a measure pp on [0,1) which is Tp-invariant, and for
which the dynamical system ([0, 1), up,Tp) is ergodic. In case D contains a
neighborhood of 1 which is a subset of the support of up, the measure up
is o-finite infinite, while it is a finite measure otherwise. In the final section
we will see that for many choices of D it is still an open question to deter-
mine the density dp of the measure pup. For example, the explicit density
of Nakada’s a-expansion is still unknown when o € (0,v/2 — 1]; see [LMOS,
NNO8|. Using an approach of Geon Choe ([C00, [C05]) we will see that for
some ‘easy’ choices of D the density dp seems to have a surprising shape.

2. Basic properties of D-expansions. Singularizations and insertions
are two algebraic procedures that work via manipulation of partial quotients.
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They are both classical (cf. [P50]), and have been used a lot lately; see for
example [K91, [DK00, [HKO02, [S04]. We will use them to built a link between
D-expansions and regular continued fractions, from which the elementary
properties of D-expansions easily follow.

2.1. Singularizations and insertions
2.1.1. Singularizations. Let a,b be positive integers, ¢ = +1, and let
€ €10,1). A singularization is based on the identity

—€
=a+e€+

€
(R

b+ ¢
To see the effect of a singularization on a continued fraction expansion, let

x € [0,1) have continued fraction expansion
(8) x = [ag;e0/a1,e1/az,€2/as, . ..],
and suppose that for some n > 0 one has
pt1 =1, ept1 =41, ap+e, #0,
ie.,
(9)  [0;e0/a1,...,an,...] =ao;e0/a,...,en—1/an,en/1,1/ans+2,...].

Singularization then changes the continued fraction expansion in into

(10) [ao;e0/at, ... en—1/(an + €n), —en/(ant2 + 1),...].

As in the case of the regular continued fraction, finite truncation yields
the sequence of convergents (py/qx)r>—1 of this new expansion of x, and
let (ry/sk)k>—1 be the sequence of convergents of the ‘old’ expansion of z,
ie., . It was shown in [K91] that the sequence of vectors (pi/qi)k>—1 is
obtained from (7y/sk)r>—_1 by removing the term (r,/sy), i.e.,

<pk> _ (7“—1 o "n—1 Tn+l )
— 777’--.7 [} PECEE] .
Ak / >-1 5-1 50 Sn—1 Sn+l

2.1.2. Insertions. An insertion is an operation that can be considered

as inverse to singularization. An insertion is based upon the identity
-1
1 )

1+—7——

b—1+4+¢
where € € [0,1) and a, b are positive integers with b > 2.

Let (8) be a continued fraction expansion of z € [0, 1), with (ry/sk)k>—1
as its sequence of convergents, and suppose that for some n > 0,

(11) 4 +14
a+-——=a
b+¢

ant+1 > 1, e, =1
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An insertion ‘between’ a,, and a,+1 will change into

[ap;e0/a1, ..., en—1/(an +1),—1/1,1/(apn+1 — 1),...].
Let (pr/qr)k>—1 be the convergents relative to this last expansion. Using
some matrix identities it was shown in [K91] that the sequence (pr/qr)r>—1
is obtained from (74 /sk)k>—1 by inserting the term ((rp+rn—1)/(sp+sn—1))
before the nth term, i.e.,

(12) (pk) -~ <7“_1 o Tn—1 Tn+Tn-1 Tn )
— 7, 77 ceey ) ’7’ ... .
4k / k>—1 S—1 S0 Sp—1 Sn + Sp—1 $Sn

Every time we insert between a, and a,1; we decrease a,11 by 1, i.e.
the new (n + 2)th digit equals a,+1 — 1. This implies that for every n we
can insert between a, and a,41 at most a,41 — 1 times.

On the other hand, suppose that a,+; = 1 and that we singularize it.
Then both a, and a,4+2 will be increased by 1, so we can singularize at
most one out of two consecutive digits. For an example, see [HK02], where
algorithms based upon singularizations and insertions are given to change
the regular expansion of any x € [0,1) into an odd or an even continued
fraction expansion.

In fact, in [HK02] two kinds of insertions were introduced. For our pur-
poses, the insertion described by suffices.

2.2. The D-map vs. singularizations and insertions. For n € N,
let z € I, := (1/(n + 1), 1/n], so that the RCF-expansion of x looks like

_ 1
=

n+ —

and suppose that = € I,, N D # (). Consider the following two cases:
2.2.1. The case x € (ﬁ, TQH] N D. In this case, due to the definitions
of ap, and T (cf. and (3))), the RCF-expansion of z is given by

1
x = i =1[0;n,1,as,...],

n+ I
" ag +§

where ¢ € [0,1) and where the first partial quotient a; equals n due to the
fact that = € (1/(n + 1),1/n], and the second partial quotient ay equals 1
as T'(z) € [1/2,1]; see Figure

Singularizing the second digit, equal to 1, in the previous expansion we
find
(13) 2= L =01/ + D).~ /(a3 + 1), .

nAld——
a3+1+£
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1
1
2
y:%fn:ET(z) y:n+1~%:17T(z)
1 2 1
O n+1l 2n+1 n

1 1}

Fig. 4. D-map and regular map in the interval (TLJrl o

Let us now consider the D-expansion of z. Since z € (1/(n+1),1/n] N D,
the D-expansion of x will look like
1

.T:i_l.
n+1+—

Let us compute Tp(z) to see how to continue. We have

1 1 1
Tp(a)=n+l-—-=1-T(x)=1~ - 7
x

1
1+ az+1+¢
as +§

so that the D-expansion of x is

1

T = — ,
n+l4+———

as+1+¢

which is equal to ; Tp acts as a singularization on (n%rl, 2n2+1] NnD.

2.2.2. The case x € (2n2+1, %] N D. In this case the RCF-expansion of
x is given by
1

+
az +§
where £ € [0,1] and as > 2 because T'(x) < 1/2; see Figure
An insertion after the first partial quotient yields
1

(14) x =
n+1+

14—
ag —1+¢
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Going to the D-expansion, since z € (1/(n +1),1/n] N D, the D-expansion
of z will look like

1
r=-——-—.
-1
n+1+—
Computing Tp(z) we find
1 1
ITp(z)=1-T(z)=1- = ,
ap —14+¢
so that the D-expansion of x is
1
T = T ,
n+1+ I
1 -
+a2—1—|—§

which is equal to 1) Thus we see that Tp acts as an insertion on (
NnD.

We showed that the D-expansion of a real number x can be obtained
from its regular expansions via singularization and insertion. Summarizing,
we have the following theorem.

breati

THEOREM 1. Let x be a real irrational number with RCF-expansion
(so en, = +1 for all n > 1), and with ‘tails’ t, = T"(z) = [0;1/any1,
1/ant2,...]. Let D be a measurable subset of [0,1). Then the following
algorithm yields the D-expansion of x:

[1] Let m := inf{m € NU {oo} : t,, € D and e, = 1}. In case m = oo,
the RCF-expansion of x is also the D-expansion of x. In case m € N:
(i) If amy2 = 1, singularize the digit ap+2 to get
z=lag;...,1/(ams1 + 1), —1/amys,...].
(ii) If amyo # 1, insert —1/1 after apm41 to get
x=1laop; .., 1 ams1 +1,—1/1,1/(amy2 — 1),...].
[2] Replace the RCF-expansion of x with the continued fraction obtained

in [1], and let t,, for n > 1 denote the ‘tails’ of this new continued
fraction expansion of x. Repeat the above procedure.

Since the D-expansion of z can be obtained from the RCF-expansion
of z via suitable singularizations and insertions, we immediately have the
following corollary.

COROLLARY 2. Let D C [0,1) be a measurable set and let x € [0,1).
Then the D-continued fraction expansion of x is infinite if and only if x is
irrational.
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2.3. More about D-expansions. Let z be a real number with se-
quence (7,,/spn)n of RCF-convergents. It is well-known that the s;’s satisfy
the recurrence relations

s.1:=0, sg:=1, and s, =anSp_1+ Sn_2, n>1,

and, in particular, they form an increasing sequence. This is essential to the
proof of the convergence of the partial quotients (r,/sy), to the number x,
and justifies the notation (1)) (see also Chapter 4 in [DK02]).

This property however no longer holds in the D-case, since we saw in
that inserting in the nth position yields a new continued fraction expansion
with sequence of convergents (pr/qk)k, for which ¢,1 < ¢,. Note that we
might even have a chain of insertions, thus finding a new sequence of con-
vergents (pn/dqn)n>—1, satisfying
(15)

Pk -1 Tn—1 Tn +Tn—1 mry + -1 Tn Tn4l

ey , s R , g
gk k>—1 S—1 Sp—1 Sn + Sn—1 MSp + Sn—1 Sn’ Sn+l

It is still possible though to prove the convergence. In [I89], Shunji Ito
studied the map S :[0,1) — [0,1) defined by
x
1—xa’

1_
To1p<e<t.

0<z<1/2,
S(z) =

x
Ito showed that S yields a sequence of convergents (A,,/B,),>—1 converging
to x, which consists of the RCF-convergents of x, and of all the mediants of z,
i.e., the S-convergents A, /B, are of the form either r /sy (for a certain k),

or
Mrg—1 + Tk—2

with 0 <m < ai,
msg—1 + Sg—2

(clearly a mediant does not exist if ay = 1). One can show that the in-
sertion/singularization mechanism described in Theorem (1| implies that the
sequence of D-convergents of x forms a subsequence of the S-convergents
of x, and therefore we can still conclude that = = lim, oo pn/qn, which
justifies the notation @

A proof that x = limy, o0 prn/¢n along the lines of Chapter 4 in [DKO02]
can also be given. It is essential that

= Pn +pn71TB(5L‘
Gn + Qn—lTB(x

)en
(16) o

that ged(pn,¢n) = 1 and pp_1gn — pngn-1 = (—=1)" Z;i e, = *1 forn > 1,

and that
b (C)M(T e T ()

an  Gnldn + gorenTh(x))
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From these facts it follows that

tn 1

a0 |~ Ntultn + an12aTp@) |~ 4t + tsenTp))]
After a careful analysis of the relation between the si’s and the g,’s one
finds that x = lim,—c0 Pn/qn-

(17)

2.4. Periodic expansions and quadratic irrationals. A number x
is called quadratic irrational if it is a root of a polynomial az? + bx + ¢ with
a,b,c € Z, a # 0, and b?> — 4ac not a perfect square (i.e., = is an irrational
root of a quadratic equation).

The following result is classical; see e.g. [HWT9] for a proof.

THEOREM 3. A number x is a quadratic irrational number if and only
if  has an eventually periodic reqular continued fraction expansion.

Similar to the regular case, we say that a D-expansion of z is purely
periodic of period-length m if the initial block of m partial quotients is
repeated throughout the expansion, that is, agm+1 = a1,..., A(x41)m = am,
and €gm41 = €1, .., E(k+1)m = Em for every k > 1. The notation for such a
continued fraction is

(18) T = [ao;eo/al,sl/ag,...,Em,l/am,sm].
An (eventually) periodic continued fraction consists of an initial block of
length n > 0 followed by a repeating block of length m and it is written as
(19)

r = [ag;€0/a1,€1/a2, . .- En—1/An;En/Ani1;s - - Entm—1/Antms Entm)-

We have the following result, which is a generalization of Theorem

THEOREM 4. Let D be a measurable subset in the unit interval. Then a
number x is a quadratic irrational number if and only if x has an eventually
periodic D-expansion.

Proof. Suppose first that = is purely periodic and is given by . Due
to (16| and the fact that the D-expansion of x is purely periodic, we have
v = Pm + Pm—1EmT

Gm + Gm—1Emz’
implying that z is a root of the quadratic equation
Gm-1EmZ> + (Gm — EmPm—1)T — Pm = 0.
Since the ¢;s are different from 0 it follows that x is quadratic irrational.
Now let y = [0;1/b1,e1/ba, ..., ep—1/bp, z] be periodic, with z as in
purely periodic. Clearly for every integer b the number b + 1/x is again

quadratic irrational. The fact that y is quadratic irrational then follows by
finite induction.
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Now suppose that x is a quadratic irrational. We must show that = has
an eventually periodic D-expansion.

In Section we saw how every D-expansion of x can be derived via
insertion and singularization from the regular continued fraction of x. More-
over, given a regular periodic continued fraction y € [0,1), y=[0;b1,...,b,_1,
bp, ..., bpti—1], recall that between b, and b, 1 we can insert at most by41—1
times. In particular, the set of partial quotients of y is finite.

Consider the orbit of the point x, which is the (ordered) set
O ={T(x), T*(x),..., T"(z),... },

obtained by iterations of the Gauss map 7. Note that in case x is quadratic
irrational, it follows from Theorem [3| that O is finite.

Recall that with every singularization we loose a point in the orbit, while
we get a new point every time we insert. However, the maximum number of
insertions between two digits is bounded, since we can insert at most b,41—1
times between b,, and b,41. Thus, there must exist m,n with m > n such
that t7 = tz. In particular, the tails of the new D-expansion will coincide,
Le,tpl, =t 1. =

3. Metric properties of D-expansions. In this section we investigate
the metric properties of D-expansions when D is a countable collection of
disjoint intervals. We are interested in Tp-invariant ergodic measures that
are absolutely continuous with respect to Lebesgue measure. When D is a
countable collection of disjoint intervals, the map Tp is an example of the
family of transformations studied by M. Rychlik [Ry83], who showed the
existence of a finite number of exact (hence ergodic) measures absolutely
continuous with respect to Lebesgue measure. For completeness, we will
describe the general setup and result of Rychlik.

Let X be a totally ordered order-complete set. Open intervals constitute
a base of a complete topology in X, making X into a topological space. If
X is separable, then X is homeomorphic to a closed subset of an interval.
Let B be the Borel o-algebra on X, and m a fixed regular, Borel probability
measure on X (in our case m will be the normalized Lebesgue measure
restricted to X). Let U C X be an open dense subset of X such that
m(U) =1. Let S = X \ U, clearly m(S) = 0.

Let T : U — X be a continuous map, and 3 a countable family of closed
intervals with disjoint interiors such that U C |J 3. Furthermore, suppose
that for any B € 3 the set BN S consists only of endpoints of B, and that T’
restricted to BNU admits an extension to a homeomorphism of B with some
interval in X. Suppose that T"(x) # 0 for € U, and let g(z) = 1/|T"(x)|
for x € U, g|s = 0. Let P : L*(X,m) — L*(X,m) be the Perron-Frobenius
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operator of T,

yeT— 1z
In [Ry83] it was proved (among many other things) that if ||g|le < 1
and Var g < oo, then there exist functions ¢, ..., s of bounded variation
such that:
(1) Pyi = i

(ii) pidm =1;

(iii) there exists a measurable partition C1,...,Cs of X with TC; = C;
fori=1,...,s;

(iv) the dynamical systems (Cj,T;,v;), where T; = T|¢c, and v;(B) =
X g Pidm, are exact, and v; is the unique invariant measure for 73,
absolutely continuous with respect to m|c;,.

Let us return to the map Tp with D a countable union of disjoint in-
tervals. Denote by m the normalized Lebesgue measure on [0, 1), and let
S = NUM, where N = {1/n : n € N} and M the set of endpoints of
elements of D. Furthermore, let U = [0,1) \ S. Note that Tp : U — [0, 1) is
continuous, and the image of the restriction of Tp to each open interval in
U is homeomorphic to an interval.

We have g(x) = 1/|T},(z)| = 2? on U, hence ||g||oc < 1 and Varg < oo.
Applying Rychlik’s result we obtain the following theorem.

THEOREM 5. Suppose D is a countable union of disjoint intervals. Then
Tp admits at most a finite number of ergodic exact Tp-invariant measures
absolutely continuous with respect to Lebesgue measure.

Throughout the rest of the section, we consider special classes of sets D,
where the underlying map satisfies the so-called finite tmage condition; see
condition (F) in Theorem [6] below. In this case we can apply a result by
Roland Zweimiiller [Zw00] to characterize when there is a unique ergodic
measure that is absolutely continuous with respect to Lebesgue measure,
and to give the support explicitly; see also the related papers [Th80, [Th83]
by Max Thaler. For completeness we state the result of Zweimiiller.

THEOREM 6 (Zweimdiiller). Let T : [0,1] — [0,1], and let B be a collec-
tion (not necessarily finite) of nonempty pairwise disjoint open subintervals
with m(|J B) = 1 such that T restricted to each element Z of B is continuous
and strictly monotone. Suppose T satisfies the following two conditions:

(A) Adler’s condition: 7" /(T")? is bounded on | B,
(F) Finite image condition: TB = {T'Z : Z € B} is finite.

Then there are a finite number of pairwise disjoint open sets X1, ..., X, such
that TX; = X; (modulo sets of m-measure zero) and T|x, is conservative
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and ergodic with respect to m. Almost all points of [0, 1]\|J; X; are eventually
mapped into one of these ergodic components and every ergodic component
X; can be written as a finite union of open intervals.

Furthermore, each X; supports an absolutely continuous invariant mea-
sure w; which is unique up to a constant factor.

Finally, for each i, the measure u; is o-finite if and only if X; contains
a neighborhood of some indifferent fized point x, i.e. |T'(x)| = 1.

Note that the above theorem says that the support of each ergodic com-
ponent is a finite union of open intervals. We apply the above theorem to a
few examples.

EXAMPLE 7. Suppose D = (J;2,(1/(n; + 1),1/n;], where (n;)i>o is a
sequence of positive integers. It is clear that in this case [0, 1) is the only Tp
forward invariant set. Hence, Tp admits a unique ergodic invariant measure
equivalent to Lebesgue measure on [0, 1). Furthermore, it is finite if and only
if D does not contain 1, and o-finite infinite if 1 € D.

EXAMPLE 8. Let € (0,1), and suppose D=J;,(1/(n+1),1/(n+a)];
see Figure [II As mentioned in Subsection [I.2.I] one gets the folded a-
expansions, which satisfy the conditions of Zweimiiller’s theorem. It is easily
seen that Tp has one ergodic component absolutely continuous with respect
to Lebesgue measure, which is finite and with support [0, max{c,1 — a}).
Note that the invariant measure is known only for o € [v/2 —1,1], and that
for v < v/2—1 various remarkable phenomena related to the entropy of these
a-expansions occur; see [LMO08, NaNa0g]. In fact, the case o € [v/2—1,1/2]
can be obtained from the natural extension of the nearest integer continued
fraction via singularizations and insertions, in a way similar to the procedure
described in [K91]. One could ‘stretch’ this procedure even a little further for
a slightly smaller than /2 — 1, thus obtaining the remarkable ‘fractal-like’
natural extensions described by Luzzi and Marmi in [LMOS].

EXAMPLE 9. Let o € (0,1) and D = ;2 ,[1/(n + ), 1/(n + 1)). Then
Tp also has one ergodic component absolutely continuous with respect to
Lebesgue measure, which is o-finite and with support (min{l — o, a}, 1).

ExampLE 10. If D = (2/3,1) U U, 25(1/(n + 1),2/(2n + 1)], then one
gets two ergodic components absolutely continuous with respect to Lebesgue
measure. One is finite with support [0, 1/2] (this continued fraction is in fact
the folded nearest integer continued fraction), and the other is o-finite with
support (1/2,1) (this one is in essence Ito’s mediant map from [I89]); see
Figure

We summarize and generalize the above examples in the following theo-
rem.
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1

=

1

[N

Fig. 5. D= (3, 1) UUn, (s 51)

THEOREM 11. Let D = U;’ozl D,,, where for n > 1 the set D, is either
(1/(n+1),1,] with I, < 1/n, or (In,1/n] with l,, > 1/(n+ 1), or the whole
interval (1/(n+1),1/n), or an empty set. Then the following hold:

(i) If D is as in Ea:ample then Tp admits two ergodic components;
one with support [0,1/2] and with a finite invariant measure, and
the other o-finite with support (1/2,1). This is the only case where
one can have two ergodic components.

(ii) If Dy, = (1/(n+1),1,] for n > 1, with {Tp(l,) : n € N} finite, then
there is a unique ergodic component with support [0,a] for some
O<a<l.

(iii) If Dy, = (ln,1/n] for n > 1, with {Tp(ly) : n € N} finite, then there
is a unique ergodic component with support [3,1] for some > 0.

(iv) If D1 = [2/3,1], and if there is at least one n > 2 for which D,, is
a proper nonempty subset of [1/(n+1),1/n], then there is a unique
ergodic component with support [1/2,1].

REMARK 12. 1. If the support of an ergodic measure contains a neigh-
borhood of 1, then the measure is o-finite. Note that D containing a neigh-
borhood of 1 is not enough to have an infinite invariant measure; one needs
that the neighborhood of 1 is in the support of the invariant measure. Con-
sider for example the set

p=@iu (-t 2
—\¢ M\n1 201

with 2/3 < ¢ < 1; see Figure @ In this example the map Tp maps the
interval [0,1/2] to itself, and after at most a finite number of steps each
point in (1/2,1) is mapped to [0,1/2].
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—
1 1 2
4 3 5

0 1
Fig. 6. The case D = (g, 1] U %, (= 2 )

n=2\n+1’ 2n+1
2. If D is a combination of cases (ii) and (iii) of Theorem and if
D is different from the set discussed in Example then one might have
an (erroneous) impression that there is a unique ergodic component with
support [0, 1]. For example, if D¢ is the complement in [0, 1] of the set D from
Example then Tpe has only one ergodic component, which is the whole
unit interval [0, 1]. However, if ¢ € (1/2,1) is such that 1/3 < 1/¢—1 < 1/2,

and if
21 o 1 2
D= (q,1 -2
(4 ]U<5’2>UU<n+1’2n+1>’

n=3

or even D = (¢,1] U (2/5,1/2) (so D,, = 0 for n > 3), or D = (¢q,1] U
(2/5,1/2) U [0,1/3] (so D, = [1/(n + 1),1/n] for n > 3), then Tp has as
support the interval (1/¢ —1,1).

4. Computer simulations. To find the density of an invariant mea-
sure is in general an extremely hard problem. Most results in this field are
merely of an existential nature, i.e. one proves, like we did, that under cer-
tain conditions there exists a unique invariant measure, generally assumed
equivalent to Lebesgue measure.

In Example [§] we remarked that we are able to obtain the invariant
measure of Nakada’s a-expansions for o € [v/2 — 1,1] via singularizations
and insertions. In particular, in [K91] it is shown that for o between 1/2 and
1 only singularizations suffice, and that the method described in that paper
can be applied to many other cases, like the optimal continued fractions (see
[BK90]) and Minkowski’s diagonal expansions.

Invariant densities are also known for other continued fraction expan-
sions. In [S91], Fritz Schweiger proved that the odd continued fractions pre-
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serve the measure

1 dz dz
A =
HiA) 3logG(£G+x—1+£G+1—m>’

where G = ¢g~!, while Rényi [Re57] proved that the measure

p(A) =\ do/x
A
is invariant and ergodic for the backward continued fractions map.

In this section we present two methods of estimating the densities of vari-
ous D-expansions. The first method is rather primitive, and counts frequen-
cies based on Birkhoff’s ergodic theorem. The second method is accurate
and based on a power series method.

4.1. Ergodic method. In general, to get an idea of the density of an
invariant measure, we could use Geon Ho Choe’s computational approach;
see [C00, [CO5]. Using the R program (|R]), we have studied and represented,
for particular sets D, the distribution of the orbit {z, Tpx, T%ac, ...} ofa
random point = € [0, 1] under the map Tp.

(a) (b)

1.4

06 1.0 12 1.4
I I I |
0.4 0.6 0.8
I I
v

0.4
I

02
I
02

0.0
L
0.0
L

Fig. 7. Invariant measures for (a) the regular continued fraction and (b) the odd continued
fraction

Once the ergodicity of the maps is known, the procedure is a straightfor-
ward application of Birkhoff’s ergodic theorem. In particular we use that,
for a measurable set A and sufficiently large n,

n—1

u(A) = lim % > 1a(T' (),
=0
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where 14 is the characteristic function of A; see [C05| for a detailed descrip-
tion of the method used.

Of course, this will only give a rough idea of the invariant densities.
However it still seems to be a valuable method. To check the correctness
of the code and see how well the algorithm works, we first checked it on
some well-known examples: the regular continued fraction expansion and
the odd-continued fraction expansions. The results are given in Figure [7]
where the curves drawn in the graphics represent, respectively, the Gauss
density (Figure[7[(a)) and the Odd-CF density (Figure[f|(b)).

All the other results are relative to distributions with unknown densities,
and we compare them with the Gauss density. Note, in particular, that
Figures [§fc) and [§(d) show that, if a neighborhood of 1 is in D and if this
neighborhood is also in the forward orbit of the unit interval under Tp,
then 1 is an attractor for the points of the orbit, and the invariant measure
appears to be infinite.

Finally, from Figures (b), it might seem that the Gauss measure is the
invariant measure for the maps Tp with D = [1/95,1/94). It can be very
easily checked by direct calculation that this is not correct.

4.2. Power series methods. In this subsection we use a ‘power series’
method to compute numerically the invariant density and other numerical
indicators, including the entropy and the ‘Wirsing constant’, for a variety
of D-expansions.

The idea of using power series in computations related to continued frac-
tions has already a considerable history. The bibliography of [B03] amounts
to eight pages. Briggs uses this idea to compute, to several hundred decimal
places, the Gauss—Kuzmin—Wirsing constant A = 0.3036630029. . ., related
to the ‘relaxation rate’ governing how quickly an initial uniform density 1
for a random variable X settles down to the Gauss density 10221%; in the
sequence of probability density functions for 7" X, n > 1.

For folded continued fractions the invariant density is normally not con-
tinuous on [0, 1], let alone analytic. We cannot use this idea ‘straight out of
the box’. Nevertheless, it can be adapted to fit our new circumstances. The
main idea is to keep track of a number of power series, each representing
the density on one of the intervals of continuity of the invariant density, if
such intervals exist.

Here, we take a heuristic approach, and focus on a few examples, leaving
the general case, and a rigorous justification of the method in its new setting,
for another day. [We have that justification for a variation of the approach
taken here.] We have reported a handful of digits, truncating further scores
of apparently correct digits we obtained. We believe the method is good for
about one hundred digits, without need of better hardware or new code.
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After that, most PC’s run out of random-access memory. This could be
circumvented by a code that swaps data to the hard drive, were there some
good reason to get the next hundred digits.

4.2.1. The method and a first example. Our first example is the case a =
1/3 in the examples of D-expansions, where D = [J;7 ,(1/(n+1),1/(n+a)].
The map T, is illustrated in Figure 1. Our intervals are I} = [0,1/3], I =
[1/3,1/2], and I3 = [1/2,2/3]. For other rational o with 0 < a < 1, one
would again have a collection of intervals with rational endpoints. If « is
quadratic irrational, it may still be possible to use the same approach; we
did this with o = /2 — 1. Of course, the endpoints of the intervals will no
longer all be rational.

For the method to work, our set of intervals must have the property that
each of the inverse branches of Tp maps each interval cleanly into exactly one
member of the same collection. We can achieve this whenever D is a finite
collection of rational intervals that stay away from zero, and also whenever
the image under T of D is a finite collection of rational intervals that stay
away from zero. We can proceed in much the same spirit as did Briggs and
others, but instead of keeping one matrix, we keep several, one for each pair
(J, K) of intervals.

Returning to the specific case of & = 1/3, our T, the analogue here of
the classical map T': z + 1/x — [1/z], is given by T'(0) = 0, and for values
in (0,2/3],

T(x):{l/x—{l/xj if 1/x —|1/x] < 1/3,

|1/x| +1—1/x otherwise.

The graph of T is a variation of Figure
The transfer operator for T, call it L, is given by

Somta(n+a)2f(1/(n+ x))
L(z) = +3% (n—2)2f(1/(n—2)) if0<z<1/3,
) 2, (n—x) "2 f(1/(n — ) if1/3 <z <1/2,
S0 s(n—x)2f(1/(n —x)) if1/2 <2 <2/3.

The invariant density g for T is the positive eigenfunction of L corresponding
to the eigenvalue 1, normalized by the condition Sg/ % g(x) dx = 1.
Assuming that ¢ is given by three analytic functions, one on each inter-
val, and that these functions have power series expansions about the right
endpoints (we will more often use the centers; taking left endpoints fails
because zero will be one of the left endpoints and that causes difficulties) of
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the respective intervals, we find that g can be represented as follows:
S pak(l/3—z)k if0 <z <1/3,

9(@) = S gam(l/2—2)F if1/3<z<1/2,
S pask(2/3 - )k if 1/2 <2 <2/3.

We compute the matrix of L with respect to the ‘basis’ consisting of the
union of the following three sets of functions: By = {(1/3 — ﬂf)kI[071/3] (x) :
kZO}, BQ:{(1/2—$)k1[1/371/2](x) : k’ZO}, and Bg:{(2/3—$)k1[1/272/3]($) :
k> 0}. We take ¢; = 1/3, co = 1/2, and ¢3 = 2/3 as our centers of expansion
for the series giving g on Iy, Is, and I3, respectively, and we set about
computing the matrix whose leading eigenvalue will give the coefficients of
g with respect to this ‘basis’.

Before getting into detail, we discuss briefly a possible choice of space for
L to live on, and some reasons why we should expect a matrix representation.
The case of one matrix has been extensively studied in [HO6]. The key fact
in the classical case is that the maps 1/(k + x) not only carry the interval
[0, 1] into itself, but they even carry a complex disk that encloses [0, 1], say
with center 1 and radius 3/2, into itself. Classical complex analysis, based
on the fact that contour integrals give coefficients in power series, can then
be applied to bound these coefficients. The details in the classical case may
be found in [HO6].

After some tinkering, weighting coefficients so that the norm assigned to
(x — cx)™ depends on cx and m (we have considerable leeway here, and it
pays to be cognizant of the fact that (z — cx)™ is uniformly small on Ik
when m is large), it turns out that in the classical case, the coefficients in
our matrix go to zero exponentially with increasing m and n. This makes
it safe to truncate; the missing coefficients were small anyway. We expect,
and experimentally we observe, the same in the case at hand, from the
perspective of our norm. That is not to say that the coefficients literally
become small—for some choices of D, the largest coefficient encountered in
the unweighted matrix with m,n < N goes to infinity in absolute value as
N tends to infinity. This is not that problematic, because our intervals have
radius less than 1/2, which helps with convergence.

For m,n > 0, we let {(u,v) = > 7 (n + v)~™ be the Hurwitz zeta
function with arguments u, v.

To continue with the specific case at hand, for 1 < J, K < 3, we con-
struct a matrix A;x. The matrix A2, one of nine such matrices, will en-
code the effect of values of f in the second interval on the values taken
by Lf in the first interval. We then form a big matrix by quilting to-
gether the nine smaller matrices. (If we had just four smaller matrices,
A1q = [[0,0],[0,0]], A12 = [[0,0],[0,1]], A21 = [[1,2],[3,4]], and Azo =
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[[3,2],[1,0]], for instance, our quilted-together matrix A would be A =
[0,0,0,0],[0,0,0,1],[1,2,3,2],[3,4,1,0]].)

For the entry at position (m + 1,n + 1) in Ay we take Ajgmn to
be the coefficient of (c; — )™ in Taylor’s series expansion about c; of
Lr((cx —2) L1, cx) (). (In effect, indexing begins with 0 rather than 1.)

With this notation, we have

= B ()

j=0
((=D)"™C2+n+m—j,d—c1)+C¢(n+m+2—7534+c1)).

As sums of very similar appearance give the other eight matrices, it will save
space if we introduce some further notation. Let

=9 — ;
blm, n, j, K] = (") <—cK>f< " *‘7).
J m
We then have

Atimn =Y blm,n, j, 1]
7=0
((=D)™C2+n+m—j,d—c1)+C¢(n+m+2—7534c1)),
AlZmn = Zb[m,n,j, 2]
j=0

. ((_1>m(3 N cl)f(2+m+nfj) + (2 + cl)f(Qer+nfj))7

Atgmn = (=1)™ Y " b[m,n, 5,3](2 — ¢)~FFmEn=i),
7=0
At = (=1)™ Y blm,n, 4, 1¢(2 +m+n — j, 4 — c2),
j=0
Aggmn = (=1)™ Y " b[m, n, 5,2](3 — )~ M=),
7=0
Aggmn = (_1)m Z ()[77@7 n’j’ 3](2 _ 02)—(2+m+n—j)7
j=0
A31mn = (71)m Z b[mv n’ja 1]((2 +m+n— j, 4 — 03),

Aggmn = (=)™ b[m, n, j,2](3 — e5) " FFmn=d),

A33mn =0.
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On the face of it, then, our L is represented by an ensemble of nine matri-
ces (one of them identically zero). We can shoehorn this situation into the
previous context either by interleaving the coefficients, or by simply quilting
together our nine square matrices into one. Instead of keeping three lists of
coefficients for g, we can keep one list. This will not change the eigenvalues of
Lp, nor, if we keep track of things, the underlying function g corresponding
to the leading eigenvalue, shown in Figure [0

x1/3 12 23 1

xaxis

Fig. 9. The underlying function g corresponding to the leading eigenvalue

On the basis of such computations, we expect that g has approximately
this series expansion: on (0, 1/3), with all coefficients positive, the coefficients
of (x —1/3)k, 0 <k <19, are

2.00332757 0.30681097 0.84714782 0.34869381 0.48266905
0.28069360 0.29529103 0.19953556 0.18397860 0.13403717
0.11548237 0.087616324 0.072856661  0.056552088  0.046169031
0.036316611  0.029376081  0.023292992  0.018758880  0.014948498

We find

xEIg+g(x) = 1.987410582312584846, x_l)iln/ag_g(:c) = 2.003327565838890855,
x_l)ilr?%g(x) = 1.09516796670788, x_l)ilrilfg(a:) = 1.24182555817422596,
m_l}iglﬁg(x) = 0.8381990696715544, m_l)i2r;137g(x) = 0.90815991310109928.

The entropy of a dynamical system, such as the one here given by the
map 7" on [0, 2/3] together with the T-invariant measure associated with the
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probability density g on [0,2/3], is given by

2/3

e=— S g(x)log |T'(x)| du.

=0

We find that the entropy is approximately 3.2691593716606420703780299.
The relaxation rate of the dynamical system is the rate at which ar-

bitrary, reasonably smooth initial pdf’s decay to that system’s invariant
density g under application of L. Here, that will be governed by the second
eigenvalue of L, which is also the leading eigenvalue of the restriction of
L to functions ¢ for which 8(2)/ Sw(:v) dx = 0. The second eigenvalue of our
approximate matrix for L is

—0.171918835762094311006213249951490933693141706412769

(we expect all places given to be accurate). The associated eigenfunction is
shown in Figure Of course, it should have integral zero. This number

\‘i %

Fig. 10. The associated eigenfunction

is the analogue for our T of the Gauss—Kuzmin—Wirsing constant, whose
computation was reported in the reference with which we began our section.

4.2.2. The case D = [3/10,7/10]. Our second example is the case
D = [3/10,7/10]. With this choice of D, the graph of T is given in Fig-
ure together with its inverse branches: Guided by these graphs and
the logic of how the images of intervals fit into each other under the vari-
ous inverse branches, we dissect [0,1] into ten intervals, with endpoints at
0,1/4,3/10,1/3,3/7,1/2,4/7,2/3,7/10,3/4,1. We compute 100 matrices, in
the same spirit as the nine matrices in the previous case. See Figure [12] for
the invariant density for T (compare this with Figure [§(f)).

We have obtained the following parameters:

entropy = 2.495064971257713861101117578,
Wirsing constant = 0.4504808929430973477827600728336106346,
N(1) = —2.4950649712577138611011175784764653641768256,
log A" (1) = 3.01514265386003190660939125462523356855698.
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Fig. 11. Left: the graph of Tp; right: its inverse branches

Fig. 12. The invariant density for Tp for D = [3/10,7/10]

4.2.3. The case D = [3/10,9/20]. Our third example is D=[3/10,9/20].
We dissect [0, 1] into eight intervals by breaking it at 2/9, 2/7, 3/10, 1/3,
1/2,2/3, and 7/9. The point of these breaks is that with this dissection, for
every positive integer a, and every interval J, 1/(a + J) falls either entirely
within the closure of D, or within the closure of D¢, and likewise, for a > 2,
1/(a — J) falls entirely into one of the above. Also, if 1/(a + J) C D¢,
then there is a single dissection interval K such that 1/(a + J) C K, while
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if 1/(a — J) C D, then there is a single dissection interval K such that
1/(a—J) C K.
See Figure[13]for the invariant density for T (compare with Figure[§(e)).
In this case we obtained the following parameters:
entropy = 2.33918451569994744128050557,
Wirsing constant = 0.2927073344680756517102318946443266,

log \"(1) = 3.56660725749380750318932268.

Fig. 13. The invariant density for Tp for D = [3/10,9/20]

4.2.4. Nakada-type continued fractions for o near v/2 — 1. For our last
three examples, we look at choices of D that lead to Nakada-type folded
continued fractions associated with a T, with o near v2 — 1. First, we take
D=,2,[1/(n+1),1/(n+ 5/12)]. The invariant density (and with it, the
entropy) are already known. The invariant density is shown in Figure
The intervals used were demarcated by 0,2/7,2/5,5/12,1/2,7/12, but on
the numerical evidence, the last two intervals could have been merged. (Our
computed values for the invariant density at 1/2, from the left and the right,
differed by about 5 - 107193).

We do have some new numbers: the Wirsing constant for this continued
fraction is 0.02269373118279925814257292770843 (no typo!), our computed
value for the entropy is

3.4183159706112438529276313872406590859580694323377,
and the second derivative of log A(0) at o = 1 is 3.89528129026419411664.
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Fig. 14. The invariant density for T, for o = 5/12

For our second example from this batch, we take o = 12/29, so that
D = U [1/(n + 1),1/(n 4+ 12/29)]. The invariant density is shown in
Figure The Wirsing constant is now 0.1715728752538099, the entropy is

Fig. 15. The invariant density for T, for o = 12/29

3.418315970611, and the counterpart of the final constant in the previous
paragraph is now 3.89528129.
For our final example, we take a = /2 — 1 itself. Our methods give a
computed value for the entropy of
3.41831597061124385292763138724065908595806943233770016849255

35548092485587831272489207280457903309193048618995660506975
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(all digits reported, including those in which we have no confidence), a
Wirsing constant of 0.1715728752538099023966, and for log A" (1) the value
3.895281290264. For ¢(0), we get 2.0780869212350. For g(2 — \@), at the
other end, we get 1.022555997219289295539258258.

Acknowledgments. The third author was sponsored by ‘Bezoekers-
beurs’ 2010/10672/BOO of the Dutch Organization for Scientific Research

NWO.

The fourth author was sponsored by a grant of Fondazione Ing. Aldo
Gini, Padova.

[AF84]

[B87]
[BK90]

[BO3]
[C00]
[C05]
[DK00]
[DK02]

[HO6]
[HW79]

[HK02]
[1K02]
[189)]
[K56]
[K91]
[LMO8]
[MMY97]
[N81]

[NaNa0g]

References

R. L. Adler and L. Flatto, The backward continued fraction map and geodesic
flow, Ergodic Theory Dynam. Systems 4 (1984), 487-492.

W. Bosma, Optimal continued fractions, Indag. Math. 49 (1987), 353-379.
W. Bosma and C. Kraaikamp, Metrical theory for optimal continued fractions,
J. Number Theory 34 (1990), 251-270.

K. Briggs, A precise computation of the Gauss—Kuzmin—Wirsing constant,
http: //keithbriggs.info/documents/wirsing.pdf 2003.

G. H. Choe, Generalized continued fractions, Appl. Math. Comput. 109 (2000),
287-299.

—, Computational Ergodic Theory, Algorithms Comput. Math. 13, Springer,
Berlin, 2005.

K. Dajani and C. Kraaikamp, The mother of all continued fractions, Colloq.
Math. 84/85 (2000), 1, 109-123.

—, —, Ergodic Theory of Numbers, Carus Math. Monogr. 29, Math. Assoc.
Amer., Washington, DC, 2002.

D. Hensley, Continued Fractions, World Sci., Hackensack, NJ, 2006.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,
5th ed., Clarendon Press, New York, 1979.

Y. Hartono and C. Kraaikamp, On continued fractions with odd partial quo-
tients, Rev. Roumaine Math. Pures Appl. 47 (2002), 4362 (2003).

M. Iosifescu and C. Kraaikamp, Metrical Theory of Continued Fractions,
Math. Appl. 547, Kluwer, Dordrecht, 2002.

Sh. Tto, Algorithms with mediant convergents and their metrical theory, Osaka
J. Math. 26 (1989), 557-578.

A. Khintchine, Kettenbriche, Teubner, Leipzig, 1956; see also: A. Khintchine,
Continued Fractions, Noordhoff, Groningen, 1963.

C. Kraaikamp, A new class of continued fraction expansion, Acta Arith. 57
(1991), 1-39.

L. Luzzi and S. Marmi, On the entropy of Japanese continued fractions, Dis-
crete Contin. Dynam. Systems 20 (2008), 673-711.

S. Marmi, P. Moussa and J.-C. Yoccoz, The Brjuno functions and their regu-
larity properties, Comm. Math. Phys. 186 (1997), 265-293.

H. Nakada, Metrical theory for a class of continued fractions transformations,
Tokyo J. Math. 4 (1981), 399-426.

H. Nakada and R. Natsui, The non-monotonicity of the entropy of a-continued
fraction transformations, Nonlinearity 21 (2008), 1207-1225.


http://dx.doi.org/10.1016/0022-314X(90)90135-E
http://keithbriggs.info/documents/wirsing.pdf
http://dx.doi.org/10.1016/S0096-3003(99)00028-4
http://dx.doi.org/10.1007/s002200050110
http://dx.doi.org/10.1088/0951-7715/21/6/003

Properties of ‘flipped’ continued fraction algorithms 79

[NNOg] H. Nakada and R. Natsui, The non-monotonicity of the entropy of a-continued
fraction transformations, ibid. 21 (2008), 1207-1225.
[Pi55] N. Pipping, Semi-regular continued fractions, Nordisk Mat. Tidskr. 3 (1955),
96-106, 127-128.
[P50] O. Perron, Die Lehre von den Kettenbriichen, Chelsea, New York, 1950.
[R] R Development Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, 2008;
http: //www.R-project.org
[RebT] A. Rényi, On algorithm for the generation of real numbers, M.T.A. Mat. Fiz.
Oszt. Kozl. 7 (1957), 265-293 (in Hungarian).
[RS92] A. M. Rockett and P. Sziisz, Continued Fractions, World Sci., River Edge,
NJ, 1992.
[Ry83] M. Rychlik, Bounded wvariation and invariant measures, Studia Math. 76
(1983), 69-80.
[S04] B. Schratzberger, S-expansion in dimension two, J. Théor. Nombres Bordeaux
16 (2004), 705-732.
[S82] F. Schweiger, Continued fractions with odd and even partial quotients, Arbeit-
ber. Math. Inst. Salzburg 1982, no. 4, 59-70.
[S84] —, On the approximation by continued fractions with odd and even partial
quotients, ibid. 1984, no. 1-2, 105-114.
[S91] —, Invariant measures for maps of continued fraction type, J. Number Theory
39 (1991), 162-174.
[Th80] M. Thaler, Estimates of the invariant densities of endomorphisms with indif-
ferent fized points, Israel J. Math. 37 (1980), 303-314.
[Th&3| —, Transformations on [0, 1] with infinite invariant measures, ibid. 46 (1983),
67-96.
[Zw00] R. Zweimiiller, Ergodic properties of infinite measure-preserving interval maps
with indifferent fized points, Ergodic Theory Dynam. Systems 20 (2000), 1519—
1549.
K. Dajani D. Hensley
Department of Mathematics Department of Mathematics
Utrecht University Mailstop 3368
Postbus 80.000 Texas A&M University
3508 TA Utrecht, the Netherlands College Station, TX 77843-3368, U.S.A.
E-mail: k.dajanil@uu.nl E-mail: Doug.Hensley@math.tamu.edu
C. Kraaikamp V. Masarotto
Delft University of Technology Dipartimento di Matematica Pura ed Applicata
EWI (DIAM) Universita di Padova
Mekelweg 4 35131 Padova, Italy
2628 CD Delft, the Netherlands and
E-mail: c.kraaikamp@tudelft.nl Delft University of Technology
EWTI (DIAM)
Mekelweg 4

2628 CD Delft, the Netherlands
E-mail: vale.masarotto@libero.it

Received on 23.3.2010
and in revised form on 29.9.2011 (6341)


http://dx.doi.org/10.1088/0951-7715/21/6/003
http://www.R-project.org
http://dx.doi.org/10.5802/jtnb.467
http://dx.doi.org/10.1016/0022-314X(91)90042-A
http://dx.doi.org/10.1007/BF02788928
http://dx.doi.org/10.1007/BF02760623
http://dx.doi.org/10.1017/S0143385700000821




	Introduction
	Definition of D-expansions
	Examples of D-expansions
	Nakada's -continued fractions
	Backward continued fractions
	Odd and even continued fractions
	Continued fraction expansion without a particular digit

	Outline of the paper

	Basic properties of D-expansions
	Singularizations and insertions
	Singularizations
	Insertions

	The D-map vs. singularizations and insertions
	The case x(to9.5. 1n+1,22n+1]to9.5.D
	The case x(to9.5. 22n+1,1n]to9.5.D

	More about D-expansions
	Periodic expansions and quadratic irrationals

	Metric properties of D-expansions
	Computer simulations
	Ergodic method
	Power series methods
	The method and a first example
	The case D=[3/10,7/10]
	The case D=[3/10,9/20]
	Nakada-type continued fractions for  near 2-1



