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Tamás Erdélyi (College Station, TX)

1. Introduction. Finding polynomials in the class

Ln :=
{
Q : Q(z) =

n∑
k=0

akz
k, ak ∈ {−1, 1}

}
with small uniform norm on the unit circle raised the interest of many
authors. Observe that the uniform norm of any polynomial in Ln on the unit
circle is always at least (n+1)1/2 since the L2 norm of any such polynomial is
(2π(n+1))1/2 by the Parseval formula. It is difficult to exhibit a polynomial
Q ∈ Ln with uniform norm at most C(n + 1)1/2 for all n with an absolute
constant C. An example was found by H. S. Shapiro [13] and W. Rudin [12].
A nice account of this and related problems was given by Littlewood in [9,
pp. 25–32].

For a prime number p the pth Fekete polynomial is defined as

fp(z) :=
p−1∑
k=1

(
k

p

)
zk,

where (
k

p

)
=


1 if x2 ≡ k (mod p) has a nonzero solution,
0 if p divides k,
−1 otherwise

is the usual Legendre symbol. Since fp has constant coefficient 0, it is not
a Littlewood polynomial, but gp(z) := fp(z)/z is a Littlewood polynomial,
and has the same modulus as fp has on the unit circle. Fekete polynomials
are examined in detail in [1] and [4].
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Let α < β be real numbers. The Mahler measure M0(Q, [α, β]) is defined
for bounded measurable functions Q(eit) defined on [α, β] as

M0(Q, [α, β]) := exp
(

1
β − α

β�

α

log |Q(eit)| dt
)
.

It is well known that

M0(Q, [α, β]) = lim
q→0+

Mq(Q, [α, β]),

where

Mq(Q, [α, β]) :=
(

1
β − α

β�

α

|Q(eit)|q dt
)1/q

, q > 0.

It is a simple consequence of the Jensen formula that

M0(Q, [0, 2π]) = |c|
n∏
k=1

max{1, |zk|}

for every polynomial of the form

Q(z) = c
n∏
k=1

(z − zk), c, zk ∈ C.

In [11] Montgomery proved that there is an absolute constant c such that

max
t∈[0,2π]

|fp(eit)| ≤ cp1/2 log p

for all primes p. In fact a closer look at his argument shows that combining
Lemma 1.1 (see below) due to Gauss and the upper bound for the Lebesgue
constant for trigonometric interpolation on equidistant nodes given in
[3, Theorem 1] implies that

max
t∈[0,2π]

|fp(eit)| ≤ p1/2

(
5
3

+
2
π

log
p− 1

2

)
.

Montgomery [11] also showed that the lower bound
2
π
p1/2 log log p < max

t∈[0,2π]
|fp(eit)|

holds for all sufficiently large primes p. No better upper or lower bounds
than those of Montgomery are known even today.

In [7] we proved that for every ε > 0 there is a constant cε such that

(1.1) M0(fp, [0, 2π]) ≥
(

1
2
− ε
)
p1/2

for all primes p ≥ cε. One of the key lemmas in the proof of the above theo-
rem formulates a remarkable property of the Fekete polynomials. A simple
proof of it is given in [1, pp. 37–38].
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Lemma 1.1 (Gauss). We have

fp(zjp) = εp

(
j

p

)
p1/2, j = 1, . . . , p− 1,

and fp(1) = 0, where

zp := exp
(

2πi
p

)
is the first pth root of unity, and εp ∈ {−1, 1,−i, i}.

The choice of εp is more subtle. This is also a result of Gauss (see [8]).

Lemma 1.2 (Gauss). In Lemma 1.1 we have

εp =
{

1 if p ≡ 1 (mod 4),
i if p ≡ 3 (mod 4).

In [6] the author extended (1.1) to subarcs of the unit circle. Namely it
is proved that there is an absolute constant c1 > 0 such that

M0(fp, [α, β]) ≥ c1p1/2

for all primes p and for all α, β ∈ R such that (log p)3/2p−1/2 ≤ β −α ≤ 2π.

2. New results. We give an upper bound for the average value of
|fp(z)|q over any subarc I of the unit circle, valid for all sufficiently large
primes p and exponents q > 0.

Theorem 2.1. There is a constant c2(q, ε) depending only on q > 0 and
ε > 0 such that (

1
|I|

�

I

|fp(z)|q |dz|
)1/q

≤ c2(q, ε)p1/2

for every subarc I of the unit circle with length |I| ≥ 2p−1/2+ε.

We remark that together with the result from [6] mentioned at the end
of the Introduction, Theorem 2.1 shows that there is an absolute constant
c1 > 0 and a constant c2(q, ε) > 0 depending only on q > 0 and ε > 0 such
that

c1p
1/2 ≤

(
1
|I|

�

I

|fp(z)|q |dz|
)1/q

≤ c2(q, ε)p1/2

for every subarc I of the unit circle with |I| ≥ 2p−1/2+ε ≥ (log p)3/2p−1/2.

Theorem 2.2. For every sufficiently large prime p and for every 8πp−1/8

≤ s ≤ 2π there is a closed subset E := Ep,s of the unit circle with linear
measure |E| = s such that

1
|E|

�

E

|fp(z)| |dz| ≥ c3 p1/2 log log(1/s)

with an absolute constant c3 > 0.
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3. Proofs. Our proof of Theorem 2.1 is a combination of Lemma 1.1 due
to Gauss, a well-known direct approximation theorem due to Jackson, and
the Marcinkiewicz–Zygmund inequality [10], [16, Theorem 7.5, Chapter X].
The Marcinkiewicz–Zygmund inequality asserts that there is a constant c4(q)
depending only on q such that

c4(q)−1 1
n

n∑
j=1

|P (zjn)|q ≤
2π�

0

|P (eit)|q dt ≤ c4(q)
1
n

n∑
j=1

|P (zjn)|q

for any polynomial P of degree at most n−1 and for any 1 < q <∞, where

zn := exp(2πi/n)

is the first nth root of unity.

Proof of Theorem 2.1. It is well known that(
1
|I|

�

I

|fp(z)|q |dz|
)1/q

is an increasing function of q on (0,∞). So it is sufficient to prove the theorem
only for q > ε−1 > 2. Let q > 1; we will use q ≥ ε−1 > 2 only at the end of
the proof. Without loss of generality we may assume that |I| ≤ 2π/3. We
introduce the truncated Fekete polynomials fp,m by

fp,m(z) :=
p−(m+1)∑
k=1

(
k

p

)
zk,

with m := bp1/2c. Then fp,m is a polynomial of degree p− (m+ 1).
Let I = {eit : t ∈ [a, b]} and let 3I := {eit : t ∈ [2a − b, 2b − a]} be the

arc centered at the midpoint of I with arclength 3|I|. We first define the
piecewise linear function LI on [2a− b, 2a− b+ 2π] by

LI(t) :=



1 if t ∈ [a, b],
t− (2a− b)

b− a
if t ∈ [2a− b, a],

(2b− a)− t
b− a

if t ∈ [b, 2b− a],

0 if t ∈ [2b− a, 2a− b+ 2π],

and then we extend it as a periodic function with period 2π defined on R.
By a well-known direct approximation theorem (see [5, p. 205], for example)
there is a real trigonometric polynomial Tm of degree at most m/2 such that

(3.1) max
t∈R
|LI(t)− Tm(t)| ≤ c5

m|I|
≤ 1

2
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with an absolute constant c5 > 0. Without loss of generality we may as-
sume that Tm(t) ≥ 0 for every t ∈ R, hence Tm(t) = |Qm(eit)| with
an appropriate algebraic polynomial Qm of degree at most m. Note that
1/2 ≤ |Qm(z)| ≤ 3/2 for every z = eit ∈ I.

Observe that

(3.2) |fp(z)− fp,m(z)| ≤ m, z = eit, t ∈ R.

Using Lemma 1.1 and (3.2) we can deduce that

(3.3) |fp,m(zjp)| ≤ |fp(zjp)|+ |fp,m(zjp)−fp(zjp)| ≤ p1/2 +m, j = 1, . . . , p.

Combining the inequality

|a+ b|q ≤ 2q−1(|a|q + |b|q), a, b ∈ C, q ∈ [1,∞),

with (3.2), and then recalling that 1/2 ≤ |Qm(z)| for all z = eit ∈ I, we
obtain �

I

|fp(z)|q |dz| ≤
�

I

2q−1(|fp,m(z)|q + |fp(z)− fp,m(z)|q) |dz|(3.4)

= 2q−1
�

I

|fp,m(z)|q |dz|+ 2q−1
�

I

|fp(z)− fp,m(z)|q |dz|

≤ 2q−1
�

I

|fp,m(z)|q |dz|+ 2q−1mq|I|

≤ 2q−12q
�

I

|(fp,mQm)(z)|q |dz|+ 2q−1mq|I|.

Applying the Marcinkiewicz–Zygmund inequality to the polynomial

P := fp,mQm

of degree at most p− 1, then using (3.3), we obtain

�

I

|(fp,mQm)(z)|q |dz| ≤ c4(q)
1
p

p∑
j=1

|(fp,mQm)(zjp)|q(3.5)

≤ c4(q)(p1/2 +m)q
1
p

p∑
j=1

|Qm(zjp)|q.

Observe that (3.1) implies that

|Qm(zjp)|q ≤


2q, zjp ∈ 3I,(

c5
m|I|

)q
, zjp /∈ 3I,

and there are at most 3p|I|/(2π)+1 values of j = 1, . . . , p for which zjp ∈ 3I.
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Hence
1
p

p∑
j=1

|Qm(zjp)|q ≤
1
p

(
2q
(

3p|I|
2π

+ 1
)

+
(

c5
m|I|

)q
p

)
(3.6)

≤
(

2q
(

3|I|
2π

+
1
p

)
+ (2c5)q|I|

)
≤ c6(q)|I|

with a constant c6(q) depending only on q, whenever(
c5
m|I|

)q
≤ (2c5)q|I|,

that is, whenever
1/m ≤ 2p−1/2 ≤ 2 |I|1+1/q.

Combining (3.4)–(3.6), and recalling that m ≤ p1/2, we conclude
1
|I|

�

I

|fp(z)|q |dz| ≤
4q

|I|

( �
I

|(fp,mQm)(z)|q |dz|
)

+ 2qmq

≤ 4q

|I|
c4(q)(p1/2 +m)q

1
p

( p∑
j=1

|Qm(zjp)|q
)

+ 2qmq

≤ 4qc4(q)2qpq/2c6(q) + 2qmq ≤ c7(q)pq/2

with a constant c7(q) depending only on q, whenever

1/m ≤ 2p−1/2 ≤ 2 |I|1+1/q.

So the theorem is proved for all q > 0 satisfying
−1/2

1 + 1/q
≤ −1

2
+ ε,

hence for all q > ε−1 > 2, with a constant c2(q, ε) depending only on q
and ε.

To prove Theorem 2.2 we follow [11]. Let e(t) = exp(2πit). Our first
lemma is Lemma 1 of [11].

Lemma 3.1. Let χ be a primitive character (mod q), q > 1. Then
q−1∑
m=0

χ(m)e(mα) = τ(χ) q−1e
(

1
2qα

)
(sin(πqα))T (α, χ),

where τ(χ) is the Gauss sum

τ(χ) =
q∑

n=1

χ(n)e
(
n

q

)
,

and

T (α, χ) =
q∑

a=1

χ(a) cot
(
π

(
α− a

q

))
.
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Note that if
χ(n) =

(
n

p

)
is the quadratic character, then Lemma 1.1 implies τ(χ) = εpp

1/2, and the
content of Lemma 3.1 is just the identity obtained by expressing the Fekete
polynomial fp by the Lagrange interpolation formula associated with the pth
root of unity. In fact, in the proof of Theorem 2.2 we will need Lemma 3.1
above only in the case when χ is the quadratic character.

Our second lemma is Lemma 2 of [11].

Lemma 3.2. Let p be a prime. For k ≥ 1 let a1, . . . , ak be integers,
distinct modulo p, and put f(x) =

∏k
j=1 (x− aj). Then∣∣∣∣ p∑

n=1

(
f(n)
p

)∣∣∣∣ ≤ (k − 1)p1/2.

Montgomery writes “This is a consequence of Weil’s Riemann Hypothesis
for the zeta function of a curve over a finite field; see Weil [14], [15]. The
derivation of the particular bound above is given by Burgess ([2]; §2).”

Proof of Theorem 2.2. We rely heavily on Montgomery’s beautiful line
of proof in [11] to connect the two lemmas above to the proof of the theorem.
Let T (α) := T (α, χ) with

χ(h) =
(
h

p

)
.

It follows from Lemma 1.1 that |τ(χ)| = p1/2 and hence Lemma 3.1 implies

(3.7)
∣∣∣∣fp(e( 2n+ δ

2p

))∣∣∣∣ ≥ 1√
2
p−1/2

∣∣∣∣T(2n+ δ

2p

)∣∣∣∣
for every n = 1, . . . , p and δ ∈ [1/2, 3/2]. We define

(3.8) W (n) := WH(n) :=
H∏
h=1

(
1−

(
n+ h

p

)) H∏
h=0

(
1 +

(
n− h
p

))
,

and compute the size of the weighted sum
p∑

n=1

T

(
2n+ δ

2p

)
W (n)

for δ ∈ [1/2, 3/2]. By multiplying the product (3.8) out, we have

W (n) = 1 +
∑
f

εf

(
f(n)
p

)
, εf ∈ {−1, 1},

where f runs through 22H+1 − 1 polynomials of the sort considered in
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Lemma 3.2. Hence, using Lemma 3.2 we can deduce that

(3.9)
p∑

n=1

W (n) = p+O(H22Hp1/2).

Similarly,

(3.10)
p∑

n=1

W (n)
(
n− a
p

)
= c(a)p+O(H22Hp1/2),

where c(a) = 1 if 0 ≤ a ≤ H, c(a) = 0 if H < a < p−H, and c(a) = −1 if
p−H ≤ a < p. We have

(3.11)
p∑

n=1

T

(
2n+ δ

2p

)
W (n)

=
p∑

n=1

p∑
a=1

(
a

p

)
cot
(
π

(
2n+ δ

2p
− a

p

))
W (n)

=
p∑
a=1

p∑
n=1

(
n− a
p

)
W (n) cot

(
π

(
2a+ δ

2p

))
=

H∑
a=1

+
p∑

a=p−H
+
p−H−1∑
a=H+1

for every δ ∈ [1/2, 3/2]. Using (3.10) and the facts that

cotx = − cot(π − x) =
{
x−1 +O(x) if x ∈ (0, π/2],
−(π − x)−1 +O(π − x) if x ∈ [π/2, π),

and
p−H−1∑
a=H+1

cot
(
π

(
2a+ δ

2p

))
= O

( p−H−1∑
a=H+1

p

a

)
= O(p log p),

we obtain

(3.12)
H∑
a=1

+
p∑

a=p−H
+
p−H−1∑
a=H+1

=
4p2

π

H∑
a=1

1
2a− 1

+O(p2) +O(H22Hp1/2p log p)

=
2
π
p2 logH +O(p2) +O(H22Hp1/2p log p) =

2
π
p2 logH +O(p2)

whenever δ ∈ [1/2, 3/2] and 2 ≤ H ≤ 1
8 log p. Combining (3.11) and (3.12),

we conclude

(3.13)
p∑

n=1

T

(
2n+ δ

2p

)
W (n) =

2
π
p2 logH +O(p2)

whenever δ ∈ [1/2, 3/2] and 2 ≤ H ≤ 1
8 log p.
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Now let A := Ap,H be the union of all intervals[
2n+ 1/2

2p
,
2n+ 3/2

2p

]
with W (n) := WH(n) 6= 0, n = 1, . . . , p. Let B = Bp,H := {e(t) : t ∈ A}.
Note that

(3.14) W (n) ∈ {22H , 22H+1, 0}, n = 1, . . . , p.

This, together with (3.9), implies that the linear measure of B can be esti-
mated as

(3.15) |B| ≤ p

22H

2π
2p

+O(Hp−1/2) = (π +O(p−1/4 log p))2−2H

whenever 2 ≤ H ≤ 1
8 log p. Also |B| ≤ 2π2−2H for all sufficiently large

primes p and for all integers 2 ≤ H ≤ 1
8 log p. Using (3.7) we obtain

�

B

|fp(z)| |dz| = 2π
�

A

|fp(e(t))| dt(3.16)

=
π

p

p∑
n=1

W (n)6=0

3/2�

1/2

∣∣∣∣fp(e(2n+ δ

2p

))∣∣∣∣ dδ
≥ π

p

1√
2
p−1/2

p∑
n=0

W (n)6=0

3/2�

1/2

∣∣∣∣T(2n+ δ

2p

)∣∣∣∣ dδ
≥ π√

2
p−3/2

3/2�

1/2

( p∑
n=1

W (n)6=0

T

(
2n+ δ

2p

))
dδ.

Using (3.14) and (3.13) we can continue as follows:

(3.17)
π√
2
p−3/2

3/2�

1/2

( p∑
n=1

W (n)6=0

T

(
2n+ δ

2p

))
dδ

≥ π√
2
p−3/22−(2H+1)

3/2�

1/2

( p∑
n=1

W (n)6=0

T

(
2n+ δ

2p

)
W (n)

)
dδ

≥ π√
2
p−3/22−(2H+1)

(
2
π
p2 logH +O(p2)

)
≥ π√

2
2−(2H+1)

(
2
π
p1/2 logH +O(p1/2)

)
.
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Thus (3.16) and (3.17) imply

(3.18)
�

B

|fp(z)| |dz| ≥
π√
2

2−(2H+1)

(
2
π
p1/2 logH +O(p1/2)

)
.

Now let 8πp−1/8 ≤ s ≤ 2π be fixed. Without loss of generality we may
assume that s ≤ 1. Let H ≥ 2 be the (only) integer such that

(3.19) s/4 < 2π 2−2H ≤ s.
Then

H ≤ log p
16 log 2

≤ 1
8

log p.

As |Bp,H | ≤ 2π 2−2H for all sufficiently large primes p and for all integers
2 ≤ H ≤ 1

8 log p, there is a closed subset E := Ep,s of the unit circle with
linear measure s containing B := Bp,H . Then (3.18) and (3.19) imply that

1
s

�

E

|fp(z)| |dz| ≥ c(p1/2 log log(1/s) +O(p1/2))

with an absolute constant c > 0.
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[6] T. Erdélyi, Sieve-type lower bounds for the Mahler measure of polynomials on sub-
arcs, Comput. Methods Function Theory 11 (2011), 213–228.

[7] T. Erdélyi and D. S. Lubinsky, Large sieve inequalities via subharmonic methods and
the Mahler measure of the Fekete polynomials, Canad. J. Math. 59 (2007), 730–741.

[8] L. K. Hua, Introduction to Number Theory, Springer, New York, 1982.
[9] J. E. Littlewood, Some problems in real and complex analysis, Heath, Lexington,

MA, 1968.
[10] J. Marcinkiewicz and A. Zygmund, Mean values of trigonometrical polynomials,

Fund. Math. 28 (1937), 131–166.
[11] H. L. Montgomery, An exponential polynomial formed with the Legendre symbol,

Acta Arith. 37 (1980), 375–380.
[12] W. Rudin, Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959),

855–859.
[13] H. S. Shapiro, Extremal problems for polynomials and power series, Master’s thesis,

MIT, 1951.

http://dx.doi.org/10.1112/S0025579300001157
http://dx.doi.org/10.1216/RMJ-1976-6-3-435
http://dx.doi.org/10.5802/aif.1776
http://dx.doi.org/10.4153/CJM-2007-032-x
http://dx.doi.org/10.1090/S0002-9939-1959-0116184-5


Upper bounds for the Lq norm 91
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