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On the hybrid mean value of Cochrane sums
and generalized Kloosterman sums

by

Tingting Wang (Xi’an)

1. Introduction. Let q be a natural number and h an integer with
(h, q) = 1. The Cochrane sums C(h, q) are defined by

C(h, q) =
q∑′

a=1

((
a

q

))((
ah

q

))
,

where

((x)) =
{
x− [x]− 1/2 if x is not an integer,
0 if x is an integer,

a is defined by aa ≡ 1 mod q, and
∑′q

a=1 denotes the summation over all
1 ≤ a ≤ q such that (a, q) = 1.

These sums were introduced by Todd Cochrane. In October 2000, during
his visit in Xi’an, Professor Todd Cochrane suggested studying the arith-
metical and mean value distribution properties of C(h, q). On this subject,
many interesting results have been obtained; related work can be found in
[4], [7], [8] and [9]. For example, Wenpeng Zhang [8] studied the hybrid mean
value properties of Cochrane sums and generalized Kloosterman sums, and
proved that for any prime p > 3, we have the asymptotic formulas

p−1∑
h=1

K(h, 1, 1; p)C(h, p) =
−1
2π2

p2 +O

(
p exp

(
3 ln p
ln ln p

))
and

p−1∑
h=1

K(h, 1, r; p)C(h, p) =
−1
2π2

p2 +O(rp3/2 ln2 p),

where r is a fixed positive integer, exp(y)=ey, e(y)=e2πiy, and K(m,n, r; q)
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denotes the generalized Kloosterman sum defined as

K(m,n, r; q) =
q∑′

a=1

e

(
mar + nar

q

)
.

At the same time, Wenpeng Zhang [8] also proposed the following:

Conjecture. The asymptotic formula
q∑′

h=1

K(h, 1, r; q)C(h, q) ∼ −1
2π2

qφ(q), q →∞,(1)

holds for all integers q > 2 and any fixed positive integer r.

In this paper, we shall prove that (1) is not correct for some special
positive integers q. Namely, we shall prove the following:

Theorem. Let q be an odd square-full number (q > 1, and prime p | q if
and only if p2 | q). Then for any fixed positive integer r,

q∑′

h=1

K(h, 1, r; q)C(h, q) =
−1
2π2

φ2(q) +O

(
rω(q)q3/2 exp

(
8 ln q
ln ln q

))
,

where ω(q) denotes the number of all distinct prime divisors of q.

It is clear that taking q = 9p2, from our theorem we can immediately
deduce the asymptotic formula

q∑′

h=1

K(h, 1, r; q)C(h, q) ∼ −1
3π2

qφ(q), q →∞ (p→∞).

So the asymptotic formula (1) is not correct.
For general integer q > 2, whether there exists an asymptotic formula

for
∑′q

h=1K(h, 1, r; q)C(h, q) is still an open problem.

2. Several lemmas. In this section, we shall give several lemmas,
which are necessary in the proof of our Theorem. First we have the following:

Lemma 1. Let q be a square-full number. Then for any non-primitive
character χ modulo q, we have

τ(χ) =
q∑

a=1

χ(a)e
(
a

q

)
= 0.

Proof. Since the Gauss sum τ(χ) is a multiplicative function, without
loss of generality we can assume that q = pα, where p is an odd prime and
α an integer with α ≥ 2. If χ is not a primitive character modulo pα, then χ



Cochrane sums 193

must be a character modulo pα−1. Then from the properties of the reduced
residue system modulo pα and trigonometric sums we have

τ(χ) =
pα∑
a=1

χ(a)e
(
a

pα

)
=

p−1∑
r=0

pα−1∑
b=1

χ(rpα−1 + b)e
(
rpα−1 + b

pα

)

=
pα−1∑
b=1

χ(b)e
(
b

pα

) p−1∑
r=0

e

(
r

p

)
= 0.

Lemma 2 (see [7]). Let a, q be two integers with q ≥ 3 and (a, q) = 1.
Then

C(a, q) =
−1

π2φ(q)

∑
χ mod q
χ(−1)=−1

χ(a)
( ∞∑
n=1

G(χ, n)
n

)2

,

where χ runs through the Dirichlet characters modulo q with χ(−1) = −1,
and

G(χ, n) =
q∑

a=1

χ(a) e
(
an

q

)
denotes the Gauss sum corresponding to χ.

Lemma 3. Let q > 3 be an integer. Then∑∗

χ mod q
χ(−1)=−1

L2(1, χ) =
1
2
J(q) +O

(
exp
(

5 ln q
ln ln q

))
,

where the summation is restricted to all primitive odd characters χ modulo q,
and J(q) =

∑
d|q µ(d)φ(q/d) denotes the number of all primitive characters

modulo q.

Proof. For any non-principal character χmodulo q, applying Abel’s iden-
tity (see Theorem 4.2 of [1]) we have

(2) L2(1, χ) =
q3∑
n=1

χ(n)d(n)
n

+
∞�

q3

A(y, χ)
y2

dy,

where A(y, χ) =
∑

q3<n≤y χ(n)d(n).
From [7] we know that for any real number y > q3,

(3)
∑

χmod q
χ(−1)=−1

|A(y, χ)|2 � yφ2(q).

Applying the properties of character sums modulo q we find that for any
integer n with (n, q) = 1, we have the identity
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(4)
∑∗

χ mod q

χ(n) =
∑

d|(q,n−1)

µ

(
q

d

)
φ(d).

From (2)–(4) we can deduce that∑∗

χmod q
χ(−1)=−1

L2(1, χ)

=
1
2

q3∑
n=1

d(n)
n

∑∗

χmod q

(χ(n)− χ(−n)) +O

( ∑
χ mod q
χ(−1)=−1

∞�

q3

A(y, χ)
y2

dy

)

=
1
2

q3∑′

n=1

d(n)
n

( ∑
d|(q,n−1)

µ

(
q

d

)
φ(d)−

∑
d|(q,n+1)

µ

(
q

d

)
φ(d)

)
+O(1)

=
1
2
J(q) +O

(∑
r|q

φ(r)
q3∑
n=2

n≡1mod r

d(n)
n

)
+O

(∑
r|q

φ(r)
q3∑
n=1

n≡−1mod r

d(n)
n

)

=
1
2
J(q) +O

(∑
r|q
r>1

φ(r)
q3/r∑
l=1

d(lr ± 1)
lr ± 1

)
+ ln2 q

=
1
2
J(q) +O

(∑
r|q
r>1

φ(r)
r

q3/r∑
l=1

1
l

exp
(

3(1 + ε) ln q
ln ln q

))
+ ln2 q

=
1
2
J(q) +O

(
exp
(

5 ln q
ln ln q

))
,

where d(n) is the Dirichlet divisor function, and d(n)� exp
( (1+ε) lnn

ln lnn

)
with

ε > 0 any fixed real number.

Lemma 4. Let q > 3 be an integer. Then
q−1∑
a=1

(a+ 1, q)1/2
∣∣∣∣ ∑∗

χmod q
χ(−1)=−1

χ(a)L2(1, χ)
∣∣∣∣ = O

(
q exp

(
6 ln q
ln ln q

))
.

Proof. From the method of proof of Lemma 3 we have∑∗

χmod q
χ(−1)=−1

χ(a)L2(1, χ) =
1
2

q3∑
n=1

d(n)
n

∑∗

χmod q

(χ(an)− χ(−an)) +O(1)(5)

= O

(
d(a)
a
J(q)

)
+O

(
exp
(

5 ln q
ln ln q

))
.
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Hence we obtain the estimate
q−1∑
a=1

(a+ 1, q)1/2
∣∣∣∣ ∑∗

χmod q
χ(−1)=−1

χ(a)L2(1, χ)
∣∣∣∣

= O

( q−1∑
a=1

d(a)(a+ 1, q)1/2

a
J(q)

)
+O

( q−1∑
a=1

(a+ 1, q)1/2 exp
(

5 ln q
ln ln q

))

= O

(
J(q)

∑
h|q

h1/2

q/h∑
l=2

d(lh− 1)
lh− 1

)
+O

(∑
h|q

h1/2

q/h∑
l=1

exp
(

5 ln q
ln ln q

))

= O

(
q exp

(
6 ln q
ln ln q

))
.

Lemma 5. Let q > 3 be an integer and r a fixed positive integer. Then
for any integer n,

q∑′

b=1

e

(
nbr

q

)
= O(rω(q)(n, q)1/2q1/2d(q)),

where (n, q) denotes the GCD of n and q, and d(q) is the Dirichlet divisor
function.

Proof. Let C(n, r, q) =
∑q

b=1 e(nb
r/q). As |C(n, r, q)| is clearly a mul-

tiplicative function, we only have to prove the assertion for q = pα, where
p is a prime and α a positive integer. From A. Weil’s classical work [6] or
T. Cochrane [2], [3] we know that for any integer n with (n, pα) = 1, we
have the estimate

|C(n, r, pα)| =
∣∣∣∣ p

α∑
b=1

e

(
nbr

pα

)∣∣∣∣ ≤ rpα/2.
If (n, pα) = pβ, then (n/pβ, pα−β) = 1. Hence from the above estimate we
deduce that

|C(n, r, pα)| =
∣∣∣∣ p

α∑
b=1

e

(
(n/pβ)br

pα−β

)∣∣∣∣ = pβ
∣∣∣∣ p

α−β∑
b=1

e

(
(n/pβ)br

pα−β

)∣∣∣∣
≤ pβrp(α−β)/2 = r(n, pα)1/2pα/2.

Now the Möbius inversion formula yields∣∣∣∣ q∑′

b=1

e

(
nbr

q

)∣∣∣∣ =
∣∣∣∣∑
d|q

µ(d)C
(
n, r,

q

d

)∣∣∣∣ = O(rω(q)(n, q)1/2q1/2d(q)).
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3. Proof of the Theorem. In this section, we shall use the lemmas
proved in Section 2 to complete the proof of our Theorem. For any odd
square-full number q, note the identity
q∑′

h=1

χ(h)K(h, 1, r; q)=
q∑′

b=1

e

(
br

q

) q∑′

h=1

χ(h)e
(
hb
r

q

)
=τ(χ)

q∑
b=1

χ(br)e
(
br

q

)
.

From Lemmas 1 and 2 and the properties of Gauss sums G(χ, n) we have

(6)
q∑′

h=1

K(h, 1, r; q)C(h, q)

=
−1

π2φ(q)

∑
χ mod q
χ(−1)=−1

q∑′

h=1

χ(h)K(h, 1, r; q)
( ∞∑
n=1

G(χ, n)
n

)2

=
−1

π2φ(q)

∑∗

χmod q
χ(−1)=−1

τ(χ)τ2(χ)
( q∑
b=1

χ(br)e
(
br

q

))
L2(1, χ)

=
q

π2φ(q)

∑∗

χ mod q
χ(−1)=−1

τ(χ)
( q∑
b=1

χ(br)e
(
br

q

))
L2(1, χ),

where we have used the fact that τ(χ) · τ(χ) = χ(−1)τ(χ) · τ(χ) = −q if χ
is a primitive character modulo q with χ(−1) = −1.

For any primitive character χ modulo q with χ(−1) = −1, note the
identity

τ(χ)
q∑
b=1

χ(br)e
(
br

q

)
=

q∑
a=1

q∑
b=1

χ(a)χr(b)e
(
br + a

q

)

=
q∑

a=1

χ(a)
q∑′

b=1

e

(
(a+ 1)br

q

)
= −φ(q) +

q−2∑
a=1

χ(a)
q∑′

b=1

e

(
(a+ 1)br

q

)
.

From Lemmas 3–5 and (2) we have

q∑′

h=1

K(h, 1, r; q)C(h, q)

=
−q
π2

∑∗

χmod q
χ(−1)=−1

L2(1, χ) +
q

π2φ(q)

∑∗

χmod q
χ(−1)=−1

q−2∑
a=1

q∑′

b=1

e

(
(a+ 1)br

q

)
χ(a)L2(1, χ)
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=
−q
π2

∑∗

χmod q
χ(−1)=−1

L2(1, χ)

+O

(
q

φ(q)

q−2∑
a=1

∣∣∣∣ q∑′

b=1

e

(
(a+ 1)br

q

)∣∣∣∣ · ∣∣∣∣ ∑∗

χmod q
χ(−1)=−1

χ(a)L2(1, χ)
∣∣∣∣)

=
−q
2π2

J(q) +O

(
q3/2rω(q)d(q)

φ(q)

q−2∑
a=1

(a+ 1, q)1/2
∣∣∣∣ ∑∗

χmod q
χ(−1)=−1

χ(a)L2(1, χ)
∣∣∣∣)

=
−φ2(q)

2π2
+O

(
q3/2rω(q) exp

(
8 ln q
ln ln q

))
,

where we have used the identity J(q) = φ2(q)/q if q is a square-full number.
This completes the proof of our Theorem.

Acknowledgements. The author would like to thank the referee for
his very helpful and detailed comments, which have significantly improved
the presentation of this paper.

This work was supported by the N.S.F. (11071194) of P.R. China.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.
[2] T. Cochrane and C. Pinner, A further refinement of Mordell’s bound on exponential

sums, Acta Arith. 116 (2005), 35–41.
[3] T. Cochrane and Z. Zheng, Upper bounds on a two-term exponential sum, Sci. China

Ser. A 44 (2001), 1003–1015.
[4] J. B. Conrey, E. Fransen, R. Klein and C. Scott, Mean values of Dedekind sums,

J. Number Theory 56 (1996), 214–226.
[5] L. K. Hua, Introduction to Number Theory, Science Press, Beijing, 1979.
[6] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 203–210.
[7] W. P. Zhang, On the mean values of Dedekind sums, J. Théor. Nombres Bordeaux 8
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